Differential common path interferometry for picometre surface metrology

A. Schultze1, A. Sell1, H. Kögel1, D. Weise1, and C. Braxmaier2,3

1Airbus Defence and Space, 88039 Friedrichshafen, Germany
2Universität Bremen, ZARM, Am Fallturm 2, 28359 Bremen, Germany
3DLR Institut für Raumfahrtsysteme, Robert-Hooke-Str. 7, 28359 Bremen, Germany

Motivation

Future gravitational wave research missions would benefit from spherical gravitational reference sensors (GRS):

- Single GRS design
- Fully suspension-free operation possible
- Strongly reduced actuation-crosstalk
- Strongly reduced tilt-to-length coupling

Challenges:

- Surface deviations part of the measurement path, requires compensation of the surface map
- On-flight or a-priori surface map determination
- Understanding of tilt-to-length effects at pm scale required

Experimental test bed

- Symmetrical heterodyne interferometer in differential configuration
- 3 interferometers based on Nd:YAG lasers with AOM for frequency shift
- 2 beams sample in Differential configuration (x1/x2) with an azimuthal beam separation of 56 mrad
- Fixed-reference interferometer for recording lateral position (x) of spheres for compensating sphere center movements
- Full coverage of sphere using second mechanism
- Setup in vacuum chamber on air-cushion dampers

Simulation

- Position of the sphere is impacted by error movements of rotation stages and its eccentricity (total residual ± 3 m)
- Measurement is geometrically influenced by the shape (~50 nm / m) of the and additionally by driving tilt-to-length effects in the optical system (~1 nm / m)
- Currently a 2D linear correction fit on the measurement based on the sphere position is proposed

Measurement and Processing

- Interferometer zero stability < 10 pm for relevant measurement path (x1 - x2)
- Per-pixel repeatability of measurement < 2nm
- Measurement shows 200 great circles at different elevations, each with 8192 pixels along azimuth direction
- Circles were recorded at 5 deg/s and low-pass filtered (6 Hz) resulting in an effective spatial resolution of 290 m (19 px)

Post Processing:

- Integration over the beam distance between the two differential arms (x1 - x2)

Methods for circle profile reconstruction from differential measurements:

Fourier-space reconstruction approach or

\[\varphi(\theta) = \varphi_0(\theta) - \sum_{i=0}^{n} A_i \cos(i \theta) \]

\[\varphi(\theta) = \sum_{i=0}^{n} A_i \sin(i \theta) \]

Discrete reconstruction approach

- Combination of several circle profiles into a sphere map by a elevation mechanism
- Data shows repetition along elevation after full rotation and mirror of sphere’s second dome

- Stitching of several circles along elevation axis intersection and mapping into spherical coordinates

Conclusions

- A concept of reconstructing circle profiles and sphere surfaces along a sphere using point interferometers has been proposed.
- Advantage of the method is high suppression of common path errors in the symmetrical differential interferometer path, combined with a compensation for non-common path errors.
- Two integration methods are demonstrated and reconstruction over completed sphere has been shown.
- Very high accuracy of differential measurement below nanometers repeatability was demonstrated.
- Integration method very sensitive to periodic errors (1/rev), which tend to get amplified

\[\text{Fig 1: Different concepts for GRS configurations.} \]
\[\text{Fig 2: Measurement setup in the vacuum chamber.} \]
\[\text{Fig 3: Schematic of the optical setup.} \]
\[\text{Fig 4: Test mass support with two mechanisms (elevation, azimuth) to rotate the sphere.} \]
\[\text{Fig 5: Simulated results of path length contribution by optical system (tilt-to-length)} \]
\[\text{Fig 6: Correction of a circle profile measurement by a fitted 2D (X-Y) linear correction.} \]
\[\text{Fig 7: Instrument noise: Amplitude spectral density of path-length measurements for a resting sphere.} \]
\[\text{Fig 8: Performance of differential measurement for one exemplary circle profile.} \]
\[\text{Fig 9: Preliminary measurement of a complete sphere surface, covering a range >2pi in elevation angle} \]
\[\text{Fig 10: Visualisation of all circle profiles measured over different evaluations.} \]

alexander.schultze@airbus.com