Is the strategy for sustainable transition of automobility through electric shared automated vehicles realistic? An analysis of key actors’ purposes and motivations

Dimitris Milakis, Stephan Müller, Dennis Seibert
Institute of Transport Research, German Aerospace Center (DLR)

September 1st, 2021
Presentation outline

1. Introduction
 Three revolutions of automobility (electric-shared-automated): scientific, market and policy perspectives

2. Theoretical background and methods

3. Key actor I: Automotive industry and mobility operators

4. Key actor II: Users

5. Key actor III: Public authorities

6. Conclusions
1. Introduction

Three revolutions of automobility (electric-shared-automated): scientific evidence

1. Introduction

Three revolutions of automobility (electric-shared-automated): market and policy
1. Introduction

To what extent is the strategy for sustainable transition of automobility through electric shared automated vehicles realistic?
2. Theoretical background and methods

1. Theoretical background:
Social construction of technology (SCOT) and multi-level perspective (MLP)

2. Identification of key actors:
Automotive industry and mobility operators, users and societal groups, public authorities

3. Analysis of key actors’ preferences and motivations towards shared automated electric vehicles:
Backward snowballing of grey and peer-reviewed literature per key actor

3. Key actor I: Automotive industry and mobility operators

Preferences towards owned vs shared vehicles business model

• **With an increase in shared mobility in Europe, vehicle manufacturers face ...**

 … a decline in vehicle sales (private segment),

 … an increase in vehicles sales (shared vehicles segment; partly compensating the decline in private segment sales),

 … large fleet customers (strong negotiation power, main focus on cost-related factors),

 … fierce competition (traditional competitors developing mobility services; new market entrants – tech related companies in the mobility sector, e.g. Waymo),

 … and brand building challenges (“aviationfication” of car market).

3. Key actor I: Automotive industry and mobility operators

Preferences towards ICE shared vs electric shared vehicles business model

• **Today, (independent) fleet operators large rely on the ICE shared business model due to ...**
 ... higher leasing costs of electric vehicles,
 ... an insufficient public charging infrastructure,
 ... range anxiety of electric vehicle users,
 ... the lower number of electric vehicle repair shops.

• **In the future, however, electric fleets will be more profitable for operators due to ...**
 ... vanishing additional leasing costs,
 ... smaller maintenance costs,
 ... and lower energy consumptions, especially for short distance services of shared vehicles.

4. Key actor II: Users
Preferences towards shared vs owned AVs

- Preference for shared AVs is lower than owned AVs due to...
 - instrumental factors: limited vehicle availability, higher waiting or access time, increased journey time, lower time and cost reliability, higher total cost of ownership and use,
 - psychological factors: aversion of sharing, privacy and security concerns, self-efficacy concerns, inherent attractiveness of ownership,
 - ideological and symbolic factors: socio-economic status, subjective identity, sense of power, freedom, superiority, proprietorship, individuality, independence, masculinity, professional accomplishment.

5. Key actor III: Public authorities
Possible public revenue losses from the transition from owned to shared AVs

- For public authorities shared AVs translate into lower public revenues because of less...
 - sales and property taxes,
 - license plate and registration fees,
 - parking tickets,
 - traffic fines.

- Overall transport-related revenues could by reduced by more than 20% (US context).
- Case study Buenos Aires: 70%/30% owned/shared AVs (-17.9% transport revenues)
 30%/70% owned/shared AVs (-57.4% transport revenues)

5. Key actor III: Public authorities

Possible public revenue losses from the transition from ICE to electric vehicles

- **For public authorities electric vehicles translate into lower public revenues because...**
 - ... revenues today primarily come from energy taxes on gasoline and diesel,
 - ... the electricity tax paid by an electric vehicle user per kilometer is less than 10 percent of the energy tax paid by an ICE vehicle user.

6. Conclusions

- **Electric shared automated vehicles**: silver bullet for **sustainable transition** of **automobility** (automotive industry, consultancies, media supported by research evidence).

- **Our outcomes**: **key actors** (automotive industry, users, public authorities) have **opposing** interests, preferences, motivations or financing schemes to the **electric shared automated vehicles transition**. Appears as a no realistic transition at the moment.

- **Primary resistance**: vehicle ownership to sharing transition, **secondary resistance**: ICE to electric vehicles transition.

- **Reasons**: (a) automotive industry - **smaller profit margins**, (b) users - **instrumental, psychological, symbolic reasons**, (c) public authorities - **less public revenues**.

- **Future research**: explore ‘contradictions’ of expressed visions by key actors on the future of **automobility** (e.g. greenwashing, market overcapitalization, discourses of sustainable mobility delay).
References