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Abstract

Recently, multi-robot systems, in which several robots coordinate along with each other

to achieve clearly defined goals, have become increasingly popular. But the challenge is to

schedule them efficiently to avoid collisions and execute their respective jobs in the least

time possible. The simplicity of multi-robots led to a wide range of potential applications,

and we will focus on applications in the process of fiber placement. Fiber placement refers

to a fabrication process for composite materials where reinforcing fibers are placed along

a predetermined path in the component. The present thesis proposes various approaches

like reinforcement learning and graph-based methods for optimal collision control in a

multi-robot system and to schedule the robots to execute their tasks in the least possible

time. These can be compared and later employed to significantly reduce the lead time in

the multi-robot fiber placement process.

Keywords: Multi-robot system, Collision control, Reinforcement learning, Graph-based

shortest path algorithms
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1 Introduction
Fiber placement refers to a fabrication process for composite materials where reinforc-

ing fibers are placed along a predetermined path in the component. Usually, a Multi-

Robot System (MRS) where several robots coordinate among themselves is employed to

achieve this process. One of the examples of an MRS for fiber placement is GRoFi oper-

ated by the Center for Lightweight-Production-Technology in Deutsche Zentrum für Luft-

und Raumfahrt (DLR), Stade. GroFi is developed to manufacture several highly integral

components of fiber composite materials in an automated fiber placement process. But

the challenge here is to ensure that these robots efficiently coordinate among themselves

and take the optimal path with the least time. This thesis focuses on solving this challenge

and finding the optimal paths in a multi-robot system to schedule the robots to execute

their tasks as early as possible without any collisions. The findings of the thesis are based

on the work carried out by me as a student assistant at Zentrum für Leichtbauproduktion-

stechnologie (ZLP), DLR, Stade.

To approach the challenge, we need the data from a multi-robot system. For this pur-

pose, we could use the data generated by a simulation software VNCK provided by Siemens

that simulates the working of multiple robots to check for possible collisions when they

function simultaneously. But this software has limited data set from the real world. Hence

we will create a small-scale collision control environment that randomly generates the

data set with collision points similar to the actual simulation data. The data set generated

randomly will be represented in a matrix form that is called a collision matrix. Later, we

will apply deep Q learning, a type of model-free reinforcement learning using the open-

source software of the TF-agents library by Google to find the fastest path of robots in

the collision matrix. For a random collision matrix configuration, we will validate the

performance of this method by using several metrics for evaluation and represent only

the best hyperparameters and high accuracy models. In the next step, for the same col-

lision matrix, we will be representing the robot scheduling task as a graph and conse-

quently querying it with various algorithms to find the shortest path from the source to

the target. We present a few speed-up techniques to reduce the total execution time of

these graph-based methods. Additionally, this thesis discusses learning-based speed-up

for large graphs as a literature survey. We then compare the results of several algorithms

in graph-based methods against each other and also against the results from reinforce-

ment learning. Furthermore, we will also evaluate the graph-based method by applying it

to data generated by VNCK software. As the last step, we will explore the advantages and

disadvantages of all these methods in finding the optimal fastest path in the multi-robot

system.



2

The report will be divided into six main chapters, the first being this introductory chap-

ter. The overview of upcoming chapters is as follows. The Chapter 2 elaborates the prob-

lem, data set, and the motivation of the thesis. Chapters 3 and 4 brief on reinforcement

learning and graph-based methods used to find the optimal fastest path. Here, we will

discuss the fundamental of different algorithms used and explain the implementation of

these methods to solve our task. In Chapter 5, these methods are applied to the data sets,

and the results are interpreted. Finally, the concluding Chapter 6 contains a review of the

findings and the valuable takeaways from the thesis.



2 Problem Description
This chapter briefly describes the structure of Großbauteile in Fibreplacementtech-

nologie (GroFi) and presents the manufacturing process at the DLR plant in Stade. For

the multi-robot system described in the manufacturing process, an efficient method is

to be developed such that the multi-robot system is scheduled in a way that the robots

execute their respective jobs in the least possible time excluding the risk of collision. The

thesis focuses on a two robot system that can be easily expanded to a n-robot system in

many cases. This is explained in detail in the further chapters. This chapter is based on

the observation of the production process during my work at ZLP Stade, as well as ex-

planations from various employees, the thesis of Markus Schreiber [Sch15] and the final

documentation of the GroFi project [KB14].

2.1 GRoFi system
GRoFi is a large-scale facility operated by the Center for Lightweight Production Tech-

nology in German Aerospace Center (DLR), Stade. GroFi is developed with an aim to

manufacture large, highly integral components made of fibre composite materials in an

automated fibre placement process. Therefore, a system of coordinated robots was devel-

oped which enables simultaneous fiber placement which is used flexibly for production

tasks. In addition to the robotic platform, the system’s technology also includes a new

generation of fiber placement and tape laying heads. Through the use of coordinated and

simultaneous working layup, a highly flexible research platform is realized. The combina-

tion of different layup technologies, namely fiber placement (dry) and tape laying enable

the development and validation of new technologies and manufacturing processes for

large-area composite parts. This allows the investigation of new materials, technologies

and processes on both, small coupons, but also large components such as wing covers or

fuselage skins [Luf16].

The facility is developed based on several coordinated robot-based layup units that can

be moved on the rail system. Up to 8 layup units are located on the rail network. The

rail system is outlined in Figure 2.1. The rail system is divided into a manufacturing loop,

which allows circumferential movement around the double-sided moulding tool, and an

additional loop for maintenance. It consists of straight, continuous sections connected by

rotating platforms, two of which are designated as working areas. In the area between these

two rails, workpieces can be suspended onto which the depositing units apply the carbon

fiber reinforced plastic (CFRP). In addition, there are six maintenance rails on which the

depositing units are refitted and retooled. The remaining rails are only intended as a
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connection between these areas.

Work rail 1

Work rail 2

Maintenance/setup rails 

Workpiece

Figure 2.1: Schematic representation of the rail network. Straight lines represent rails and circles

represent rotating platforms.

A layup unit consists of a shuttle platform on which a 6-joint articulated robot is placed.

A tool head is mounted on the flange of the robot. These units can move independently

along the rails. To reach an adjacent rail, the units have to cross the rotating platforms

between the rails. If necessary, they are rotated by these according to the orientation of

the rail to be approached.

As discussed above, numerous robots work on the same workpiece simultaneously. The

limitation of the present system is that the robot jobs are not scheduled optimally. The

lead time for the multi-robot system can be significantly reduced if the jobs are scheduled

efficiently. The next sections form the baseline of the research, which motivates the use

of different methods to efficiently schedule the robots.

2.2 Robot Job Scheduling
Presently, the multiple robots are scheduled in such a way that they always maintain a cer-

tain distance from each other during execution to avoid collisions. For efficient schedul-

ing of the multi-robot system, we first need a data set that provides information about

possible collisions. The data set can be achieved by a simulation that simulates the work-

ing of multiple robots to check for possible collisions when they function simultaneously.
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Simulation software VNCK provided by Siemens is used to carry out such simulations. It

simulates all the possible sequences in which the jobs can be carried out by a single robot.

Each time step corresponds to a 4 millisecond. This simulation is carried out for every

robot that works simultaneously on the workpiece. By comparing the data from every

robot that work simultaneously, a matrix (for a 2D case) or a tensor (for a higher dimen-

sional case) is formed that represents the various possible collisions at different timesteps.

This data set can be called a collision matrix/tensor. The shape of this data set depends

on the number of robots that work simultaneously, i.e., 2D matrix for 2 robot system, 3D

tensor for 3 robot system and so on. This thesis mainly deals with the 2 robot system. The

assignment of jobs to robots takes place before the collision matrix is established. Based

on that, the VNCK simulates parallel execution of all pairs of jobs (j1, j2) ∈ J1 × J2, where

Ji is the set of jobs assigned to robot i. So, finding a shortest collision-free path through

the matrix can be considered a subsequent scheduling step. The upcoming section gives

a clear insight into the representation of data in the collision matrix.

2.2.1 Collision Matrix
The collision matrix is a binary matrix where the collision points are represented by 1,

and the others are represented by 0. A 0-point indicates the timestamps of non-collision

between the jobs carried out by different robots simultaneously. We can also interpret this

matrix as a graph in which each axis represents the jobs of a particular robot. The goal is to

find an efficient traceable path from the first entry (source) of the matrix to the diagonally

opposite last entry (target) of the matrix. To accomplish this goal, we can trace several

different paths from first entry to last entry without encountering a single collision point

(1). But an optimal path is such that the task completion takes the least possible time. To

illustrate this, the thesis considers a 2 robot system that generates a 2d matrix to find the

optimal path. These procedures can be further extended to find the optimal fastest path

in an n-robot system.

For a 2 robot system, if n1 and n2 are the total number of jobs for robot 1 and robot 2,

respectively, the resulting size of the collision matrix will be n1 × n2. The job execution

starts at (0, 0). If robot 1 executes its respective job while the robot 2 stays idle, the job

pointer is moved towards the right to (0, 1). Similarly, if robot 2 executes its respective job

while the robot 1 stays idle, the job pointer has moved a step downwards to (1, 0). Finally,

if both the robots execute their respective jobs, the job pointer moves 1 step diagonally

downwards to (1, 1). As explained before, each job step represents the execution of the

robot for 4ms. Figure 2.2 shows three collision matrices for a 2 robot system obtained by

simulation. In all the 3 matrices considered here, the robots are assigned at most 2500
jobs each. In the worst-case scenario where the two robots work individually, each robot

completes its job in around 10s (2500× 4ms = 10s). Therefore, the datasets considered

here are for relatively small workpieces. In the figure, the grey points represent the colli-
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sion points 1. As seen in the figure, there exist various paths through the traceable points

from the source (0, 0) to the target (n1, n2) and we aim to find the shortest one.
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(a) Collision Matrix for n1 = 2266 and n2 = 2566
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(b) Collision Matrix for n1 = 1602 and n2 = 1879
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(c) Collision Matrix for n1 = 1761 and n2 = 1649

Figure 2.2: Collision matrix dataset generated by simulation

However, due to the limited availability of data and also to simplify the problem, we

try to first solve the task in a small scale regime. The algorithms can be later extended to

the actual data. To do so, datasets are randomly generated with various collision points.

The creation of such datasets for a small scale regime will be explained in the upcoming

Chapter 3. Figure 2.3 shows a couple of examples of such dataset for (a) n1 = 40, n2 = 40
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and (b) n1 = 37, n2 = 39. Similar to the previous case, grey points represent the collision

points. We follow this colour representation in the rest of the thesis to represent the col-

lision points.

Since the motivation of the task is to find an efficient path with minimal total execution

time, we can use optimal methods to find the shortest path. Although various methods can

be used to find an efficient path, we consider deep Q learning and graph-based methods

to solve such problems, which will be explained in Chapters 3 and 4.
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(a) Collision Matrix for n1 = 40 and n2 = 40
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(b) Collision Matrix for n1 = 37 and n2 = 39

Figure 2.3: Randomly generated collision matrix dataset for a small scale regime



3 Methodology 1 -
Reinforcement learning

Human beings do not learn from a concrete set of data, rather through continuous

experience-driven trial and error processes in which decisions are made. Each decision

has its outcome which can be positive or negative, and these feedbacks received from the

environment guide the learning process for further decisions. In reinforcement learn-

ing, the feedback from the environment is called reward/punishment. Almost all bio-

logical intelligence is due to an interactive trial and error process with its environment,

and all living organisms are greedy reward-driven entities. The reward-driven trial-and-

error process in which a system learns to interact with a complex environment to achieve

rewarding outcomes is referred to in machine learning parlance as reinforcement learning
[Agg18, p. 373].

Reinforcement learning (RL) is one of three basic machine learning paradigms, along-

side supervised learning and unsupervised learning. In reinforcement learning, the agent

(e.g., a real or simulated robot) takes an action to maximize the cumulative reward to solve

a sequential decision task. The agent is a mimic of the human brain that can understand

the coupling between action, state of the system, and reward function. RL seeks an opti-

mal policy that dictates the learning agent’s behaviour in each state to maximize the total

expected reward (or minimize the punishment) by trial and error interaction with the

environment. The RL problem is defined by three features, namely, agent-environment

interface, function for evaluating rewards, and Markov property of the learning process

[DS13, p. 547]. In Deep Reinforcement Learning (DRL), the learning of taking an action

based on feedback is achieved by deep learning. In a larger scope, DRL can be a gateway

to the journey of creating truly intelligent systems and revolutionize the field of Artificial

Intelligence (AI) by building autonomous systems with a high-level understanding of the

visual world.

3.1 Basic Framework of Reinforcement Learning
In Reinforcement Learning, the agent interacts with its environment through various ac-

tions. The environment is typically the set of states the agent tries to alter by taking certain

actions. These actions modify the environment resulting in a new state, and rewards are

awarded or deducted as a consequence of these actions. The awarded rewards are based

on how well the goals of the learning applications are achieved. For example, in a video
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game, the movement of the playing character in a certain direction is considered as an

action and the player who controls the movement is the agent. The environment can be

considered as the entire set-up of the video game itself where the agent brings in an ac-

tion. All the variables describing the current position of the player at a particular point

are represented by a state.

Each reward is associated with a certain action in isolation. However, how the rewards

are considered in the system depends on the particular problem at hand. For example, in a

video game for which the initial state and the state transitions are deterministic, a reward

is not earned based on a particular move rather it depends on all the moves done in the

past. The credit assessment for a self-driving car is different as the reward for rapidly

steering the car in the normal state would be different from performing similar action

which would increase the risk of collision. Therefore these rewards are problem-specific

and hence it is required to quantify the reward of each action in a way that is specific to a

particular system state.

Agent

Environment
Reward

Action 

State
Transition

 to 

Current state 

Figure 3.1: Framework of reinforcement learning

One of the primary goals of reinforcement learning is to identify the inherent values of

actions in different states, irrespective of the timing and stochasticity of the reward. The

learning process helps the agent choose actions based on the inherent values of the actions

in different states [Agg18, p. 378]. In deep reinforcement learning, neural networks are used

to predict the actions from the sensory inputs. Figure 3.1 shows the interaction of the agent

with its environment. RL learns the mapping from states s to actions a by maximizing

the rewards r. The agent receives sensory input as a state st from its environment. After

performing a specific action at, the agent receives a reward rt. This loop stabilizes the

algorithm. Trial and error (exploration) help find a better possible action, whereas the

memory of high reward winning actions (exploitation) helps keep good solutions. This

is called the exploration-exploitation trade-off and is explained in detail in Section 3.4.1.

In every step, the agent receives the feedback of the next environment state st+1 and the
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reward rt for its action at. This process is continued till it terminates. The entire set of

states, actions and transitions from one state to another is called the Markov decision

process. The state in a particular time step encodes all the information required by the

environment to make a state transition by carrying out a specific action. The finite Markov

decision process terminates after a certain number of steps, which is referred to as an

episode. An episode of this process is a finite sequence of states, actions and rewards. An

episode of length (n + 1) is as follows:

s0a0r0s1a1r1.....statrt.....snanrn

On the other hand, Infinite Markov decision (continuous reinforcement learning) pro-

cesses do not have finite episode length and are referred to as non-episodic. Function

approximators are used to approximate the value function. Although longer exploration

leads to a better approximation of the action-value function in discrete reinforcement

learning, it is not the case in continuous reinforcement learning. In the latter, the ap-

proximation accuracy of the function depends on the distribution of the data [DS13, p. 550].

3.1.1 Model-Based vs Model-Free
The model has a very specific meaning in reinforcement learning. It refers to the different

dynamic states of the environment and how the rewards are achieved from these states.

Reinforcement learning can be either model-based or model-free. Irrespective of it being

model-based or model-free, agents may use value functions or direct policy search. The

terms model-based and model-free do not refer to the use of the neural network or other

statistical learning models. Rather, the term refers to whether the agent uses predictions

of the environmental response during learning. The agent can use a single prediction

from the model of the next reward and next state (a sample), or it can ask the model for

the expected next reward. These predictions can be provided entirely outside the learning

agent or can be learned by the agent (approximation). In model-free approaches, the op-

timal policy is obtained by directly mapping the states to the actions. They learn to take

different actions based on the situation (state) but do not learn the effect of the actions. On

the other hand, model-based methods try to construct a model of the environment, typi-

cally in the form of a Markov decision process (MDP). They acquire optimal behaviour by

learning the model of the environment by taking actions and observing their outcomes.

Therefore, model-based methods often use limited experience and mostly achieve a bet-

ter policy with fewer interactions with the environment. However, model-free methods

are simple and computationally less expensive compared to model-based methods. Algo-

rithms that sample from the experience such as Q-learning and SARSA are examples of

model-free algorithms. They rely on samples from the environment and never use gen-

erated predictions of the next state and next rewards to alter behaviours. However, they

might sample from experience memory which is close to being a model.
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3.1.2 On-policy vs Off-policy
On-policy learning algorithms evaluate and improve the same policy that is used to select

the action. That is, they use the policy that the agent is already using for selecting an

action. State-action-reward-state-action (SARSA) is an example of an on-policy algorithm

that estimates the policy being followed. In this algorithm, the agent grasps the optimal

policy and uses the same to act. The policy that is used for updating and the policy used

for acting is the same, unlike in Q-learning. In contrast to this, off-policy algorithms

evaluate and improve a policy that is different from the policy that is used to select an

action. It is independent of the agent’s action and it finds the optimal policy regardless

of the agent’s motivation. Q-learning is an example of an off-policy algorithm where the

agent learns the optimal policy with the help of a greedy policy during exploration and

behaves using a different policy. The Q(s, a) function is learned from actions that we took

using our current policy. In Q learning, the best possible action is chosen to update the

parameters even though the policy that is actually executed is greedy. Most commonly,

an ϵ-greedy policy is used which acts randomly with the probability ϵ or greedily with the

probability 1− ϵ. It is explained further in Section 3.4.1. If we set the value of the greedy

policy to 0, Q-Learning and SARSA would specialize to the same algorithm. However, due

to no exploration, such a method will not function well. SARSA is used when learning

cannot be separated from prediction. Q learning is used when offline learning is possible.

However, it should be noted that ϵ-greedy policy must not be used at inference as the

policy never pays for its exploratory component and therefore does not learn how to keep

exploration safe. For example, a Q learning based robot will attempt to find the shortest

path from source to destination though it is along the edge of a cliff, whereas a SARSA

trained robot will not [Agg18, p. 388].

3.1.3 Actor-Critic Model
An agent tries to find an optimal policy π that maximizes the expected value function

of immediate rewards while following that policy. A policy can be defined as the algo-

rithm an agent uses to determine its action [Ger19, p. 612]. The reinforcement learning

algorithm can be divided into three groups [WS92, p. 469]: actor(policy)-only, critic(value

function)-only, and actor-critic methods. Actor only methods that work with a parameter-

ized policy over its optimization can be used to get an optimal policy. The optimization

method used sometimes suffers from high variance in the gradient estimation. Due to its

gradient descent nature, the actor only methods have strong convergence but results in

slow learning. The advantage of the actor only methods over critic only methods are that

they allow the policy to generate action on complete continuous action space.

In critic-only methods, the estimates of expected returns have lower variance [Sut88].

A policy can be obtained by selecting greedy actions [SB98]. Hence, critic-only methods

usually discretize the continuous action space, in which the optimization can be carried
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out. Q-learning [WD92], Temporal difference (TD) and SARSA [SB98] are examples of critic

only methods where they use a state action-value function and no other explicit function

for the policy. For continuous state-action space, this function is approximated and used.

The Q value for the state-action pair is denoted as Q(st, at) which is the measure of long

term value of performing certain action at in the state st. Q function represents the best

possible actions taken by the agent in the state till the end of the learning. Therefore

Q(s, a) can be written as Eπ[Rt|at = a, st = s], where R is the cumulative rewards or

otherwise called action’s return. Therefore, if A is the set of all possible actions, then the

chosen action at time t is given by the action a∗t that maximizes Q(st, at). In other words,

we have:

a∗t = argmaxa∈AQ(st, at) (3.1)

The predicted action is combined with an exploratory method like ϵ-greedy policy to im-

prove long-term learning [Agg18, p. 383]. This approach is used in our project for multi-

robot collision control which is explained in detail in Section 3.4.

Finally, in the actor-critic methods, advantages of both actor-only and critic-only meth-

ods are combined where the critic evaluates the quality of the policy described by the

actor. Based on the rewards received, the critic approximates and updates the value func-

tion. The actor’s policy parameters are then updated using the state value function for

best control action.

3.2 Environment
In reinforcement learning, the task which needs to be solved by an agent is described

as an environment. An environment interacts with the agent by returning its state and

reward. As mentioned before, in the video game example, the environment can be con-

sidered as the entire set-up of the game where changes are made to the state observation

by bringing in an action. It is responsible for the calculation of the reward. In many cases,

systems are required to exercise a deep understanding of the situation and analyse the

different choices that they have to return an accurate reward or penalty. In a nutshell, the

environment contains the entire simulation of the problem to be addressed. Therefore,

the environment can be considered as the heart of reinforcement learning. In order to

train the agent, one of the biggest challenges of RL is to have a working environment.

Therefore, for an agent to learn a game or complete any other task, a simulator is to be

built or programmed. For a robot agent, the actual working environment can be used as

a simulator but it has its limits. Since the agent learns by its failures, it increases compo-

nent damages and hence the total learning cost. For many video games, the OpenAI Gym

toolkit provides a wide variety of simulated environments (Atari games, board games, 2D

and 3D physical simulations, and so on), so one can train agents, compare them, or de-

velop new RL algorithms. However, for a robot agent, a virtual simulator of the robot
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is to be created that replicates the actual functioning of the agent and must account for

the allocation of rewards based on the actions. Hence, a collision control environment is

created to simulate the job sequence of a multi-robot system.

3.2.1 Collision Control Environment
In this thesis, a replica of state observations is used to create a collision control environ-

ment for a small scale regime. The environment is created based on two important param-

eters, namely, the minimum number of jobs per robot nmin and the maximum number

of jobs per robot nmax. The number of jobs per robot for a two robots system is ran-

domly drawn from discrete uniform distribution from the range [nmin, nmax] ∩N. The

total number of jobs for robot 1 is represented by n1 and the total number of jobs for

robot 2 is represented by n2. Based on their respective jobs, the state observation matrix is

generated which includes randomly generated clusters of collision points. The state ma-

trix is further zero-padded so that the resulting shape of nmax × nmax × 2 is achieved. The

state matrix can be considered as an image where the 1st channel represents the collision

points and the 2nd channel represents the position of the robot. The creation of the state

observation is further described in the Section 3.2.2.

Three actions are allowed for the multi-robot system: a step in the rightward direction

which indicates completion of a job for robot 1, a step in the downward direction which

indicates completion of a job for robot 2 and finally, a diagonal step in the down-right

direction which indicates that both the robots 1 and 2 completed their respective jobs (1
job each). When the action towards the right direction is taken, only robot 1 executes its

respective job while the other robot waits till robot 1 finished its job. Similarly, in case

of a downward step, only the job of robot 2 is executed while robot 1 waits for the other

robot to complete its job. Finally, the ideal scenario is a step in the straight down-right

direction where both the robots execute their respective jobs. During this process, if an

action leads to a collision, the episode is terminated and is reset with a new state observa-

tion based on the new randomly chosen values n1 and n2. The environment can be reset

to a new random configuration of state observation at any given point. However, the en-

vironment is usually reset when encountered with a collision point or on the completion

of the assigned total task. These features of the environment are exclusively handled by

the learning algorithm. Collision is determined based on the position of the job path of

the multi-robot system in channel 2 and the collision matrix of channel 1. If the position

of the job path is a collision point in channel 1, it is considered a collision and hence

negative reward is awarded. The penalty is given to the system every time a wrong action

is taken. The goal of the system is to find an optimal path such that both the robots com-

plete their respective total number of jobs n1 and n2. Therefore a high reward is awarded

when the job path reaches the final position. In our case, the final position is when the job

path position reaches the bottom right end of the state observation matrix. The complete
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formulation of the reward function is described in detail in Section 3.2.4.

Finally, a trajectory is the entirety of all state-action-reward-next state tuples of one

episode, where the collision matrix representation is the state, the robot motion is the

action, and the resulting outcomes of the motion are the reward. In other words, the

complete simulation can be called a trajectory. The simulation for each action is provided

by the collision control environment.

3.2.2 State Observation
As mentioned before, the state is the observation of the current world or the environment

at a particular time. Initially, the state matrix is created as the replica of the real collision

matrix in a small scale regime. The state matrix is generated as a 3-dimensional array in

which the 1st dimension represents the total number of jobs for robot 1 n1 and the 2nd

dimension represents the total number of jobs for robot 2 n2. The total number of jobs n1

and n2 are randomly drawn from the interval [nmin, nmax] ∩N. A random configuration

is selected so that the algorithm is scalable and robust. At inference, it can be applied for

any number of jobs within the interval. The 3rd dimension however has a fixed index of 2

making the resulting shape nmax × nmax × 2. The state matrix could be considered as an

image with two channels, where channel 2 represents the actual position of the job path

and channel 1 represents the collision points. The whole state matrix could have been

generated as a 2-dimensional matrix having only one channel which represents both the

job position and the collision matrix. For example, each collision point could be repre-

sented as 1 and job position as 2. However, since the state observations are fed into the

convolutional neural network (CNN), considering the position of the job path and the col-

lision points as two different input channels results in better generalization and quicker

learning.

The state observation matrix is a binary array. In the second slice, the current job po-

sition is indicated by 1 and the rest by 0. In the first slice, clusters of 7 collision points

are generated in random locations of the array. The random locations are integers sam-

pled from discrete uniform distribution from the range [nmax − n1 + 1, nmax − 2] ∩N

for robot 1 and [nmax − n2 + 1, nmax − 2] ∩N for robot 2. The total number of collision

clusters are decided by the formula ⌈ n1+n2
5 ⌉, where the operator ⌈⌉ rounds the quantity to

the next largest integer. The collision matrix is again a binary matrix where 1’s represent

the collision points and 0’s represent the traceable path. When considered as a grid, each

sequence of grid points represents a traceable path. For example, if the job sequence is at

index (0, 0), one movement to the right represents the execution of a job for robot 1 (while

robot 2 waits), one movement in the downward direction represents the execution of a job

for robot 2 (while robot 1 waits) and finally, one movement in the diagonally downward

direction represents that both the robots execute their respective jobs simultaneously as
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mentioned earlier. The collision points denote a collision between the two robots during

the execution of their respective jobs. The collision matrix is generated in a way such that

there always exists a traceable path so that both the robots completed their respective jobs.

The plot of the collision matrix with n1 = n2 = 36 is shown in Figure 3.2. In this particular
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Figure 3.2: Visualisation of a random configuration of collision matrix for n1 = 36 and n2 = 36

example, we consider the n1 = 36 and n2 = 36. As seen in the figure, the x-axis represents

the job sequence of robot 1 and the y-axis represents the job sequence of robot 2. There-

fore, the task is considered complete when both the robots execute their respective jobs

and reach the final position of the path. The collision points are obstructions to the job

path while tracing the path. As we see, numerous job paths are possible to complete the

job sequence, and the task persists to obtain the best path. It is clear from the figure that

the fastest possible path would be around the diagonal where both the robots complete

their respective jobs simultaneously.

Finally, both the slices of state observation are further zero-padded in the top and the

left direction such that the resulting shape of nmax × nmax × 2 is achieved. Since the state

matrix is inputted into the Neural network, a consistent shape must be maintained to

make the model scalable up to a maximum number of robot jobs nmax. Therefore, the

state observation is represented as a combination of both collision and position matrix.

Figure 3.3 shows the overview of state observation. As seen in the figure, irrespective of

total number of jobs for robot 1 and 2, the state observation is 0-padded to have a final
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Figure 3.3: Overview of state observation

shape of nmax × nmax × 2. The area coloured in light grey represents the collision matrix

for a specific number of jobs per robot: n1, n2 before zero-padding. As usual, dark grey

points represent the collision point. Finally, the yellow point in the figure is the initial

position of the job pointer in the position matrix. Figure 3.4 shows an example of such

state observation for n1 = 7, n2 = 7 and nmax = 8 where collision matrix and position

matrix are separately visualized for better understanding.

3.2.3 Step Action
In principle, the agent can move in three directions: towards the right where the job of

robot 1 is executed, towards the downward direction where the job of robot 2 is executed

and finally the diagonally downwards directions where both the robot jobs are executed

simultaneously. To measure the quality of the actions, a well-defined reward function is

to be formulated. Each action and its consequences are examined based on the changes it
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Figure 3.4: An example of state observation for n1 = 7, n2 = 7 and nmax = 8

brings to the environment. The formulation of the reward function is explained below in

detail.

3.2.4 Reward Function
A reward in reinforcement learning is the feedback to the system from the environment.

When interacting with the environment, changes are brought in the state observations

by performing actions. This reward signal can be positive for a good action and negative

(then called a penalty) for a bad action. A negative reward penalizes the agent informing

it about the consequence of a bad action, and a positive reward informs the agent to take

more such actions to reach the goal. In goal-oriented problems, a very high reward is given

to the system on completion of the task. The goal, in general, is to solve a given task with

maximum rewards and minimal time. That is why many algorithms have a small negative

reward for each action taken by the agent to minimize the total time taken to solve the

problem.

In our task, the goal of the agent is to find an optimal path without collision. The op-

timal path would take the least possible time compared to any other possible job path.

Therefore small negative rewards are given to the system every time an action is taken.

We want to encourage the agent to move diagonally so that both the robots can execute

their jobs simultaneously. Hence the negative reward of the diagonal step is less than

the rightward/downward step. For every diagonally downward action, −0.01 reward is

given since both the robots perform their respective jobs simultaneously. However, for

the rightward action (execution of the job by robot 1) and downward action (execution of

the job by robot 2), −0.02 reward is awarded respectively.

Since avoiding the collision is one of our most important goals, a very high penalty

is given to the system when the job path encounters a collision point. Therefore, if an
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action leads to a collision, a negative reward of −1 is given to the system, the episode is

terminated and the environment is reset with a freshly initialized state observation. Since

it is safer when the two robots maintain a certain distance from each other to avoid the

chance of collision, a small negative reward of −0.1 is given to the system whenever the

robots come closer. In other words, a small negative reward is given when the job path is

in close vicinity to the collision points. Finally, on completion of all the respective jobs of

the robots, a positive reward of +1 is awarded.

Credit Assessment Problem

The RL algorithms guide the agent to learn by rewards, and these rewards are usually

sparse and delayed. For example, if the agent meets a collision point after 50 steps, it

becomes difficult to say which of these actions were good and which were not. It cannot

be known which of the actions led to the collision of the robots. When the agent gets a

reward, it is hard for it to identify which actions must be credited or blamed. To tackle this

problem, a common strategy is to evaluate an action based on the discounted sum of all

the rewards that come after it. This is called the discount factor γ. This sum of discounted

rewards is called the action’s return. The discount factor determines how much the agent

cares about rewards in the distant future relative to those in the immediate future. The

total rewards at the end of the trajectory are computed as the discounted sum of rewards

collected from every time step. For the finite-horizon trajectory (trajectory that terminates

after a certain number of time steps due to failure or on reaching the goal), the action’s

return Rt is computed as shown in equation:

Rt = rt + γrt+1 + γ2rt+2 + ...γT−1rt+(T−1) (3.2)

=
T−1

∑
k=0

γkrt+k (3.3)

where T is the length of the trajectory/episode. In our study, the length of the trajectory

depends on collision points and the goal.

For example if the agent takes 4 steps: 2 diagonal steps followed by 2 steps in the right-

ward direction, then considering a discount factor γ of 0.9, the first action will have return

of −0.01 + γ× (−0.01) + γ2 × (−0.02) + γ3 × (−0.02) = −0.019. Discount factors can

vary between 0 and 1. If the discount factor is close to 0, the future rewards won’t count

much compared to immediate rewards and if the discount factor is close to 1, then the

rewards far in the future will count as much as the immediate results. Most often, a dis-

count factor between 0.9 to 0.99 is used. With a discount factor of 0.95, rewards 13 steps

into the future count roughly for half as much as immediate rewards, while with a dis-

count factor of 0.99, rewards 69 steps into the future count for half as much as immediate

rewards [Ger19, p. 619].
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3.3 Temporal Difference Learning
Reinforcement learning with discrete actions can be modelled as Markov decision pro-

cesses (MDPs). However, when a reward is received, a major problem that arises is how to

distribute the rewards among the decisions that led to it. This is known as the temporal

credit assessment problem. Temporal Difference (TD) [Sut88] learning is a model-free RL

method to solve these problems. TD is an incremental learning procedure that uses past

experiences with a partly known system to predict future actions. The step in a sequence

is evaluated and adjusted based on their immediate or near immediate successor rather

than their final outcome. In TD learning, the agent has partial knowledge of the MDP,

i.e, in the beginning, we assume that the agent knows only a few possible states and ac-

tions. The agent uses an exploration policy (example ϵ-greedy) to explore the MDP as it

progresses. TD methods assign credit by the means of the difference between temporally

successive predictions and the learning occurs when there is a change in prediction over

time. In TD learning, reward estimates at successive times are compared. The algorithm

updates the estimates of state values based on transitions and rewards that are observed.

TD methods require peak computation but less memory and produce accurate outcomes.

We consider (st, at, rt, st+1) as state-action-reward-next state experience tuple summa-

rizing the transition in the environment at time t, where the state st changes to st+1 after

a transition due to an action at, and rt is the instantaneous reward it receives. The value

V of a policy is learned using the TD algorithm

V(st)← V(st) + α[rt + V(st+1)−V(st)], (3.4)

where α is the learning rate and rt + V(st+1) is the TD target. α[rt + V(st+1)−V(st)] =

δ(st, rt, st+1) is called the TD error. If the learning rate α is adjusted properly and the

policy is held fixed, TD is guaranteed to converge to the optimal value function.

3.4 Q-learning
Q-learning is an off-policy algorithm in which approximation to optimal action takes

place independently of the evaluation policy by using the path with the greatest action

value to calculate the one periodic difference. Q learning is the most widely used algo-

rithm with good converges control. If we had the observed value of the Q-function, we

could easily set up a loss function in terms of Q(s, a)− Q̂(s, a) to learn after each action,

where Q̂ is the target. The problem here is that the Q-function represents the maximum

discounted reward over all the future actions and it is impossible to observe it at the cur-

rent time. However, we do not really need the observed Q-values to set up a loss function

as long as an improved estimate of the Q-values can be calculated by using partial knowl-

edge about the future. A surrogate observed model can be created using this improved
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estimate. This observed value is de�ned by the Bellman equation [Bel57], which is a dy-
namic programming relationship satis�ed by the Q-function and the partial knowledge
of the rewards. Assuming that the best action is taken initially, we get the optimal policy
p = argmaxQ(s, a), which chooses an action having the maximum Q value for the cur-
rent state. Q learning works by watching the agent explore the environment and gradually
improve its Q-value estimates. Once accurate Q value estimates are achieved, the optimal
policy is then obtained by choosing the action that has the highest Q-Value. Based on the
Bellman equation, we set the ground truth by looking ahead one step and predicting the
next statest+ 1:

Q(st , at )  r t + g argmax
a2 A

Q̂(st+ 1, a). (3.5)

The correctness of this equation comes from the fact that the Q-function is designed to
maximize the discounted future rewards. We look for an action 1 step ahead to create an
improved estimate Q̂(st+ 1, a). This term must be set to 0 when the episode terminates.

The Q-value estimate is essentially similar to TD learning. It is important to mention
the update rule in Q-learning. The new Q-value is the sum of the old Q-value and TD-
error. Q-values can be estimated online by:

Q(st , at )  Q(st , at ) + a(r t + g max
a2 A

Q(st+ 1, a) � Q(st , at )) . (3.6)

where a is the learning rate and g is the discount factor. For each state-action pair, the
agent keeps track of the running average of immediate rewards plus the sum of discounted
rewards it expects to achieve. For doing this, the maximum Q-value estimate for the next
state is considered assuming that the target would act optimally.

If every action in each state is executed an in�nite number of times and a is decayed
appropriately, on an in�nite run, the Q-values will converge to the optimal values with
probability 1 to Q� [WD92], independent of how the agent behaves while the data are
being collected. Hence, it is an e�ective model-free algorithm with delayed rewards that
are widely used. However, it sometimes does not generalize well over large state-action
space. It may also converge quite slowly to a good policy. When it almost converges,
the greedy action with the highest Q-value is taken. However, it is di�cult to make an
exploitation-exploration trade-o� during learning.

3.4.1 Exploration vs Exploitation

When we train an agent, the challenges of exploration and exploitation immediately arise.
To maximise its rewards, the agent repeats the best actions based on its learnt knowledge.
This is called exploitation, where the agent takes advantage of the learnt information and
takes actions that lead to favourable long term rewards. However, in order to �nd these
optimal actions, the agent has to sample from a set of actions and try out di�erent actions
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which it has not previously experienced. For this, random actions are taken to explore
the environment, and this randomness in the output is called exploration. Therefore,
exploration is when an agent has to sample di�erent actions from a set of actions to obtain
better rewards. The key challenge that arises is to balance the trade-o� between the two.
All learning algorithms aim at solving the exploration-exploitation dilemma, meaning
achieving the best performance at a minimum learning cost. This is decisive, as too much
randomness leads to an increase in learning cost, and less randomness reduces the overall
performance of the agent due to over�tting. Thus �nding a right balance between the two
becomes crucial.

e-greedy

Q-learning only functions when the exploration policy explores the MDP thoroughly. A
random policy can be used to visit every state and transition. However, such an approach
would take a long time and would be computationally expensive. Therefore,e-greedy is
usually used to explore di�erent states. The goal of the greedy algorithm is to use the best
strategy as soon as possible without wasting a signi�cant number of trials. At each step, it
acts randomly with the probability e or greedily with the probability 1 � e (i.e. choosing
the action corresponding to the highest Q-value) [Ger19, p. 632]. The advantage of this
approach is that one is assured to not be trapped in a bad strategy forever. Furthermore,
as the exploration starts in the early stage, one is likely to use the best strategy for a large
fraction of time. In other words, it will spend more time exploring the interesting parts
of the environment, as the estimates of Q-values improve, while still exploring unknown
regions of the MDP. The most common practice is to use annealing, in which, a high value
of e is used in the beginning and is then gradually reduced to as low as0.01as the learning
progresses. Hence, in the beginning, the agent takes many random actions to explore the
environment. As the learning progresses, thee value decreases and the agent exploits the
learnt behaviour and takes actions based on its knowledge. The value ofe is required to
be reasonably small towards the end to gain signi�cant advantages from the exploitation
portion of the approach.

3.5 Deep Q learning

The major problem of Q-learning is that it does not scale well to large MDPs with many
states and actions, and it gets impossible to keep track of an estimate for every single
Q-Value. This is the case for our problem since the number of possible states and their
associated actions are large because of the size and randomness of the collision matrix.
The solution for this is to use a deep neural network for such complex problems to esti-
mate the Q-values of the respective states. This section explains in detail the functioning
of the Deep Q-Network (DQN) as described by [Agg18, p. 384]. We assume that the state
representation st is denoted asX t . Therefore, the neural network inputs the state X t and
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outputs the Q-values Q(st , a) for all the possible actions a. Let the set A be the set of all
the possible actionsa. We consider that the network is parameterized by weightsW and
has jA j outputs containing Q-values that correspond to various actions in A. Therefore
the network computes the function F(X t ,W, a) which is the learnt estimate of Q(st , a):

F(X t ,W, a) = Q̂(st , a) (3.7)

Q̂ indicates the predicted value of the network. Therefore, learning the weightsW is
the key to decide the di�erent possible actions. In our case, the algorithm passes the
state observation of shapenmax � nmax � 2 as an input to a Conventional Neural Network
(CNN) to output the Q-value estimates corresponding to the 3 actions. The methodology is
described in detail in Section 3.7.2. This network used to estimate the Q-values are called
Q-network. Figure 3.5 shows the general architecture of a Q-network which takes state
observation as an input to output Q-values corresponding to the actions.

Figure 3.5: General architecture of Q-network which takes state observation as an input to output
Q-values corresponding to the respective actions.

We can now reformulate the equation (3.5) in terms of a neural network as:

F(X t ,W, at ) = r t + g max
a2 A

F(X t+ 1,W, a) (3.8)

To compute this observed value at time-stept, one has to wait to observe the stateX t+ 1

and reward r t by forming the action at . With this, we can express it as a neural network
loss Lt between the surrogate observed value and the predicted value at the time-stept:

Lt = [ r t + g max
a2 A

F(X t+ 1,W, a) � F(X t ,W, at )]2 (3.9)

The above equation is similar to that of equation (3.6) but is written in terms of a loss.
Although squared loss is used in this equation, any loss can be used based on the problem.
Now we can update the weightsW by backpropagating the loss function. The target value
estimate r t + g maxa2 A F(X t+ 1,W, a) using inputs at (t + 1) are considered as constant
ground truths by the backpropagation algorithm. It can also be called the target Q value.
Therefore, while computing the gradient, this term is treated as a constant though they
were obtained from a parameterized neural network with input X t+ 1. We consider the
prediction at t + 1as an improved estimate of this ground truth. Hence, the weight update
using the backpropagation algorithm will compute the following:

W  W + af [r t + g max
a2 A

F(X t+ 1,W, a)] � F(X t ,W, at )g
¶F(X t ,W, at )

¶W
(3.10)
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At the beginning of the learning process, the Q-value estimate of the neural network is
random because of the random initialization of the weights. However, the estimate grad-
ually improves with time as the weights are constantly updated to maximize the rewards.

Therefore, if the action at , reward r t is observed at any given time-stept, the following
process is used to update the weightsW:

Algorithm 1: Deep Q-learning Outline

1. Perform forward pass through the network with input X t+ 1 to compute
Q̂t+ 1 = maxa2 A F(X t+ 1,W, a). Set value to0 in case of termination.
r t + g maxa2 A F(X t+ 1,W, a) is the surrogate for the target value att and is
considered as an observed value.

2. Perform forward pass through the network with input X t to compute F(X t ,W, at ).

3. Set up loss function Lt = [ r t + g maxa2 A F(X t+ 1,W, a) � F(X t ,W, at )]2.

4. Backpropagate the loss to update the weightsW. Consider surrogate value as
constant.

Since the value of the present action is used to update the weight and select the next
action, training and prediction are performed simultaneously in deep Q-learning. The
optimality prediction is coupled with a exploration policy such as e-greedy as explained
in Section 3.4.1. Instead of training the Deep Q-Network (DQN) agent purely based on
its latest experience, a better strategy is to store a set of experiences in a repay bu�er or
replay memory and sample random training batch from it at each training iteration. This
intern helps in reducing the correlations between the experiences in training batch and
remarkably helps in training. Before starting the training iterations, the replay bu�er is
�lled with random experiences. If it is not �led su�ciently, there will not be enough
diversity in the replay bu�er.

3.6 Variants of DQN

In this section, we will look into di�erent variants of Deep Q-learning to stabilize and
speed-up the learning process.

3.6.1 Fixed Q Target

The basic deep learning algorithm uses the same network to make predictions and set
its target as explained in the previous section. This might sometimes make the network
unstable resulting in divergence or oscillation. To solve such a problem, 2 DQNs can be
used instead of a single network [Mni+13]. The �rst network is called the online network
which learns at each step and controls the agent to take actions. The other network is
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called the target network which is used to only de�ne the target or the ground truth. The
target model is created as a clone of the online model. During learning, the weights of the
online model are copied to the target model at regular intervals. Since the target model
is updated less often compared to that of the online model, the Q-targets are more stable.
This dampens the feedback loop making its e�ects less severe.

3.6.2 Double DQN (DDQN)

It was observed that the target network was sometimes prone to overestimate the Q-values.
This is mostly the case when all the actions are equally good. In such a case, the target
Q network must estimate identical Q-values, but since they are merely approximations,
some values tend to be slightly higher than the rest, purely by chance. The target model
will hence choose the largest Q-value overestimating the true Q-value. To solve this prob-
lem, DeepMind tweaked the DQN algorithm, increasing its performance and stabilizing
the training [HGS15]. Instead of the target model, the online model was used to select the
best actions for the next states. The target model was only used to estimate the Q-values
for these best actions. This variant is called Double DQN.

3.6.3 Prioritized Experience Replay

In the generic algorithm, the experiences are sampled uniformly from the replay bu�er.
However, instead of sampling uniformly, sampling important experiences more frequently
would lead to a better result. This approach is called importance sampling or prioritized
experience sampling [Sch+16]. Experiences are considered of higher priority if they speed
up the learning process. One approach to prioritize the experiences is based on the TD
error associated with it. A higher TD error indicates a bad action and thus is not worth
learning. Therefore, when recording the experiences, the ones with a low TD error is as-
sociated with a high priority so that it is sampled at least once. Every time it is sampled
from the bu�er, the TD error d is computed and the priority of that experience is reset to
jdj + c, wherecis a small constant to ensure that every experience has a non-zero probabil-
ity of being sampled. The probability of sampling an experience P with a certain priority
p is proportional to pz, wherez is the probability that controls how greedy an importance
sampling must be. z = 0 gives an uniform sampling, whereasz = 1 results in a high
importance sampling. The optimal value of this hyperparameter is problem speci�c and
depends on the respective task. However, since the samples are biased towards priority
experiences, the bias must be compensated during training by down weighting the expe-
riences according to their priority. If the experiences are not down-weighted, the model
will over�t to important experiences. It is done so by de�ning each experience's training
weight as w = ( nP) � b, where n is the total number of experiences in the replay bu�er
and b is the hyperparameter that controls the compensation for the importance sampling
bias. Here,b = 0 would result in no compensation and b = 1 would result in high com-
pensation [Ger19, p. 640]. Again, the optimal value of this hyperparameter is problem
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speci�c.

3.6.4 Dueling - DQN

Dueling DQN is yet another algorithm that was presented by DeepMind [Wan+16]. The
algorithm splits the Q-values into 2 di�erent parts, the value function and the advantage
function. The Q-values of the state-action pair can be represented as follows:

Q(s, a) = V (s) + A(s, a) (3.11)

where the value function V (s) tells about the rewards collected from the states and the
advantage function A(s, a) tells the advantage of taking an actiona over all other actions
in state s. Moreover, the value of a state is equal to the Q-value of the best actiona� for
that state, which implies A(s, a� ) = 0. In Dueling DQN, the model estimates both the
value and the advantage of each action. It splits the last layer of the neural network into
two parts to estimate the value function and the advantage function respectively. Since the
best action should have an advantage of0, the model subtracts the maximum predicted
advantage from all predicted advantages. At the end it combines the two into a single
output to estimate the Q-values:

Q(s, a) = V (s) + ( A(s, a) � max
a2 A

A(s, a)) (3.12)

The key motivation behind this architecture is that, for some problems, it is unnecessary
to know the value of each action at every timestep. By explicitly separating two estimators,
the dueling algorithm can learn which states are valuable (or not) without having to learn
the e�ect of each action for each state. The rest of the algorithm is the same as before. This
algorithm can be combined with di�erent other algorithms like prioritized experience re-
play and Double DQN (Dueling-DDQN) to get improved results. For example, DeepMind
combined 6 di�erent architectures into an agent called rainbow, which outperformed the
state of the art [Hes+17].

3.7 Implementation of Deep Q-Learning for robot
scheduling

Implementation of the deep Q-learning model is carried out using the Tf-agents library
provided by Google. It is an open-source software based on Tensor�ow used for rein-
forcement learning. It has the feature to build custom environments along with di�erent
wrappers and implements many RL algorithms like DQN, DDQN and many more, as well
as various components of reinforcement learning such as replay bu�ers, metrics and step
drivers. Since it is based on Tensor�ow, the neural networks of Tf-agents can be easily
constructed similar to TensorFlow. The library is fast and customizable and hence can
be easily used to solve various problems. We use Tf-agents to train the agent to �nd an
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e�cient path using a custom collision control environment with the Double DQN algo-
rithm. After preliminary trials, the DDQN variant was prefered due to its performance.
Here, we aim to �nd an optimal path in a small scale regime for nmin = 30and nmax = 40.

3.7.1 TF-agent environment

The �rst task in reinforcement learning is to have a well-de�ned environment with state
observations, reward functions and step actions. Here, state observation returns the cur-
rent state, step action takes a particular action and the reward function calculates the re-
ward based on the step taken. Each episode is initiated with a random con�guration of the
state observation. The total number of jobs for robots1 and 2 are randomly chosen from
the considered interval [nmin = 30,nmax = 40] \ N . The clusters of collision points are
generated at random locations of the state observations. The random numbers are drawn
from a discrete uniform distribution between the given range. The number of clusters
of collision points to be considered is given by the formula: dn1+ n2

5 e, where the operator
derounds the quantity to the next largest integer. The state observations and the reward
functions are formulated exactly as described in section 3.2.1.

The environment is further wrapped with a TimeLimit wrapper which terminates the
episode if it runs longer than the maximum number of steps provided. We considered
the maximum number of steps for the timelimit wrapper to be 80. Sincenmax = 40, the
path must be found within 80 steps even in the worst-case scenario. The environment is
further wrapped with a RunStas wrapper which stores the statistics of the learning which
can be later used for metric calculations. Finally, the environment must be wrapped in-
side the TFPyEnvironment wrapper. This makes the environment usable within a Ten-
sorFlow graph. After creating a useable environment, DDQN agent and other essential
components need to be created before training. In the upcoming sections, the training
architecture of the built system is discussed.

3.7.2 Deep Q learning training Architecture

The training program is split into two parts that run in parallel, namely, the collection
of the trajectories and the training. Deep Q-learning training architecture can be seen in
the Figure 3.6. Initially, a collect driver explores the environment using a collect policy
to chose actions for a certain number of steps. These collected trajectories are saved into
the replay bu�er (replay memory) by the observer. The agent pulls small batches of these
trajectories from the replay bu�er and trains the neural network. This process helps re-
duce the correlations between the experiences in a training batch, which tremendously
helps in training. The trajectories created by the actions taken by the network are again
saved back into the replay bu�er. In short, the collect policy explores the environment
and collects trajectories and the network learns and updates the collect policy. Random
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actions are taken to explore the environment before exploiting the predictions of the net-
work. The amount of exploration and exploitation is governed by the e - greedy method,
as explained in Section 3.4.1. The common practice of annealing is used in which a high
value of epsilon is used at the beginning which is then gradually reduced to a very low
value as the learning progresses. Therefore, in the initial stages, the agent explores the
environment by taking random action. As the learning progresses, fewer random actions
are taken and the agent starts to exploit the learnt behaviour of the network. Towards the
end, the agent only exploits the learnt behaviour and takes actions based on the prediction
of the network.

Figure 3.6: Deep Q Learning training architecture.

Deep Q-learning training depends on several components and hyper-parameters. With
an optimal choice of these, the agent learns the optimal behaviour which can be then used
at inference. As discussed in the architecture, we now create all the required components:
the DQN network, DDQN agent, the replay bu�er, the collect driver and �nally the dataset
to train the network. After creating all the components, we populate the replay bu�er with
some initial trajectories and then continue with the main training loop.
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Deep Q Network and Agent

The Q-network takes the state observation as an input and outputs the Q-value for ev-
ery action. The Q-network for the small scale regime of input size nmax � nmax � 2 =
40 � 40 � 2 is explained in this section. It starts with a prepossessing layer which casts
the observations to a 32-bit �oat and normalizes it (in our case, the values are already be-
tween 0 and 1). The observations are initially integer. It is not cast to 32-bit �oat before
to save the RAM space in the replay bu�er. After the prepossessing layer, the Q-network
contains 2 convolutional layers, the �rst having 32 �lters of size 4 � 4 with a stride of 2,
followed by a layer having64�lters of size 2 � 2 with a stride of 1. Next, the �atten output
of the convolutions layers is passed through a fully connected dense layer with256units.
Finally, it applies a dense output layer with 3 neurons, each to represent the Q-values of
the respective actions. All the convolutional and the dense layers except the last output
layer uses the ReLU activation function. No activation is used for the output layer. The ar-
chitecture of the neural network can be seen in the Figure 3.7. In this section, the working
of the convolutional neural networks is not explained. For further details refer [GBC16]
and [Ger19].

Figure 3.7: Architecture of the neural network used to train the agent.

Now that we already have the network, we need to now build the DDQN agent. The
DDQN agent provided by TFagents considers a lot of hyperparameters. We �rst create a
variable to count the number of training steps. We then build the optimizer based on the
problem. All the di�erent optimisers provided by tensor�ow or even custom optimisers
can be used for the problem. In our thesis, we considered RMSprop optimiser with a initial
learning rate = 1 � 10� 3, decay= 0.90, momentum = 0 and a small value of0.000001to
avoid vanishing derivative. We also create a PolynomialDecay object that computes thee
value for e-greedy collect policy, given the current training step. The value decays from1.0
to 0.01in 250000steps. This means that, after250000steps, the agent rarely takes a random
action and exploits the network. We then build the DDQN agent which takes the following
arguments: time step, action spec, the Q network, the optimiser, number of training steps
between target model update, the loss function, the discount factor, the train step counter
and �nally a function that returns the e value. Various models were trained with di�erent
combinations of hyperparameters. However, the best results were obtained when using
the following parameters: target update period = 1000training steps, loss function =
Huber loss without reduction and discount factor g = 0.98. We want the loss function to
return an error per instance and not the mean. That is the reason we set the reduction to
none. Discount factor close to1 is used as we want the future rewards to count as much
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as the immediate results at least for 30 steps. Since we only have 3 movements possible
without a possibility to move backwards, we need the agent to take optimal actions from
the beginning so that the agent reaches the goal with maximum rewards without getting
stuck between the collision points. Lastly, we need to initialize the agent before using it
for training.

Metric Calculation

Unlike supervised learning, the quality of learning cannot be decided based on the loss
function. The agent must be evaluated repeatedly after certain iterations to check the
performance of the agent until then. TF-agents provides implementations of several RL
metrics that can be directly used to keep track of the number of steps, episodes, aver-
age return, average episode length etc. Additionally, a custom metric evaluation function
can be written which can be repeatedly called after a certain number of iterations to see
the progress. In this thesis, a custom metric function was created which calculates the
average reward, max reward and accuracy. The function is repeatedly called after every
1000iteration. The agent evaluates its policy on observations from the environment for a
certain number of episodes, say100episodes, and returns the considered metrics to log
the progress. Here, accuracy refers to the job completion accuracy in percentage, i.e. the
number of times the agent successfully reached the goal without encountering the colli-
sion points for every 100episode. The average reward is the average cumulative reward for
100episodes. Finally, as the name suggests, maximum reward represents the maximum
episode reward received among the100evaluated episodes.

Replay Bu�er

For saving the experiences, we need to create a replay bu�er of su�cient size. Tf-agents
provides a high-performance implementation of the replay bu�er with uniform sampling
which takes the following arguments: data speci�cation, batch size and the max length.
It saves the speci�cation of the data in the replay bu�er. Therefore the agent knows how
the data will look like. Here, the batch size speci�es the number of trajectories that will
be added into the replay bu�er at each step. In our case, the value is just one as the driver
just executes one action per step and collects one trajectory. If we considered a batched
environment (returns batched observations), then the driver would have to save a batch of
trajectories at each step. The maximum length argument speci�es the maximum size of
the replay bu�er. In our thesis, we created a large replay bu�er that can store up to 100000
trajectories.

Additionally, we also need to create an observer that writes the trajectories into the
replay bu�er. An observer is a function that takes a trajectory as an argument and saves it
in the replay bu�er.
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Collect Driver and Dataset creation

A driver explores the environment using the given policy, collects experiences, sends them
to the observer which saves them in the replay bu�er. The driver forwards the current
time step to the collect-policy, which chooses an action based on the current time step
and returns an action step object. This action is then passed into the environment by the
driver, which returns the next time step. Lastly, it creates a trajectory object to represent
the transition and sends it to the observer. In the case of a batched environment, all the
above operations are carried out in batches. Tf-agents mainly provides two drivers: Dy-
namic Step Driver which collects experiences for the given number of steps and Dynamic
Episode Driver which collects experiences for a given number of episodes. In this thesis,
a dynamic step driver was used to collect experiences for every step. The step driver takes
the following arguments: the environment, agents collect-policy, list of observers, and �-
nally the number of steps (1 in our case). The driver is run in every iteration to collect
experience.

As discussed before, it is a good practice to �ll the replay bu�er with certain initial expe-
riences using a purely random policy. To implement this, we use the random policy class
to create another driver which runs for certain initial steps. In our thesis, the step driver
with random policy is run for 5000steps, in the beginning, to collect initial experience
before training.

The �nal step before training is to create a data set sampled from the replay bu�er.
To do so, it is important to understand how the trajectories are saved. Each trajectory is
a concise illustration of a chain of consecutive time steps and action steps, designed to
avoid redundancy. Transition n consists of time stepn, action stepn, and time stepn + 1,
while transition n + 1 consists of time step n + 1, action stepn + 1, and time step n + 2.
If we save them directly into the replay bu�er, the n + 1th time step will be duplicated. To
avoid this redundancy, thenth trajectory step includes only the type and observation from
time step n (not its reward and discount), and it does not contain the observation from
time step n + 1. However, it does contain a copy of the next time step's type which is the
only duplication [Ger19, p. 659].

For training our main loop, we use the Dataset method provided by TFagent. In this
way, we bene�t from the power of Data API in terms of parallelization and prefetching. In
our thesis, a batch size of128trajectories is sampled at each training step, each having 2
steps (1 full transition including next step's observation). The dataset processes3elements
in parallel and prefetches 3 batches. Now that all the components are created, the agent
can be trained to solve the collision control system.



3.7 Implementation of Deep Q-Learning for robot scheduling 31

3.7.3 Training

Before jumping into the �nal training, all the hyperparameters used are summarized be-
low in Table 3.1. Several di�erent combinations of parameters were tried and the best-
known set of parameters are listed here.

Hyperparameters Value Hyperparameters Value
Iterations 1000000 Loss Function Huber
Replay bu�er size 100000 Optimizer RMSProp
Initial collect steps 5000 Learnrate, Decay 1 � 10� 3, 0.90
Target update period 1000 Discount Factor 0.98
Evaluation interval 1000 e-greedy decay steps 250000
Evaluation episodes 100 Batch size for dataset 128

Table 3.1: List of hyperparameters used to train the agent.

In the training, the agent �rst calls the collect-policy for its initial state. Since the policy
is stateless, it returns an empty tuple. Next, we iterate over the dataset and run the training
loop. At each iteration, the collect driver calls the run method by passing the current time
step and the current policy state. It runs the collect policy and collects experience for the
step and broadcasts it to the replay bu�er. Next, we sample a batch of trajectories from the
dataset and pass it to the agent to train it. After every1000iteration, we log all the met-
rics that are calculated by evaluating the policy (or provided directly by Tf-agents). This
training iteration needs to be �nally run for a certain number of iteration. In this thesis,
the agent was trained for1000000iterations and it could be seen that the agent gradually
learnt the system by maximizing its rewards over time. The iterations are computation-
ally expensive and require a lot of computational e�ort to learn the system. Moreover,
di�erent random seeds result in di�erent results and therefore, the algorithm needs to
be run several times with di�erent random seeds to achieve an excellent result. However,
once the training is complete, the agent will e�ciently �nd the path from the source to
the goal. Also, at inference, we just handle the neural network and its weights and hence
it is computationally inexpensive compared to training. Unlike supervised learning, the
model weights returned at the end of the learning need not be always the best possible
results. The results of Deep Q learning keep �uctuating and therefore the policy with the
best accuracy and best average reward must be saved for evaluation. This is carried out by
comparing the metrics after every1000iteration. The policy with the best metrics (highest
accuracy and max return) is saved and can be used at inference. Also, the loss is not a good
metric to measure the quality of learning which can be seen in Chapter 5.

The results of the Deep Q learning are thereby compared with di�erent shortest path
algorithms which are based on graph theory. The next chapter brushes through the graph
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theory and explains the working of di�erent shortest path algorithms. There, we attempt
to represent the state observation as a graph and try to search the shortest path using
various graph-based algorithms.



4 Methodology 2 - Graph
based Approaches

In the previous chapter, we represented the robot scheduling task as a collision control
environment in order to schedule the robots e�ciently by using reinforcement learning.
In this chapter, we attempt to solve that problem by representing the multi-robot system
as a graph. We then exploit di�erent graph-based shortest path algorithms for the e�cient
scheduling of the robots. We further discuss a few speed-up techniques to solve the task
in the least time possible.

4.1 Graphs and paths

A graph is a non-linear data structure consisting of nodes and edges. The nodes are also
referred to as vertices and the edges as arcs or arrows that connect two nodes of a graph.
A graph can be mathematically represented asG = ( V, E) which consists of a setV of
vertices and a setE � V � V of edges. An edge is the ordered pair(u, v) 2 E of nodes
u, v 2 V, where u and v are source and destination nodes of an Edge setE for an uni-
directed graph. The size of the graph is represented in terms of the number of vertices
and edges of a graph and this number of vertices and uni-directed edges is represented
by jV j and jEj respectively. A weighted graphG(V, E, w) is a graph G(V, E) with an edge
distance/length/weight: w ! R+ . In weighted graphs, non-negative weightw(u, v) or
dist(u, v) is assigned to each edge(u, v).

Directed graphs are a category of graphs that don't presume symmetry or reciprocity
in edges that connects the vertices. In a directed graph, ifu and v are two vertices con-
nected by an edge, then there necessarily does not exist an edge connected in the opposite
direction (v, u). However, the undirected graph assumes reciprocity in the relationship
between the pair of the vertices connected by an edge. In this case, if an edge(u, v) exists
between two vertices, it guarantees that the edge(v, u) also exist [AMO93, p. 24]. Figure
4.1 gives an example of both directed and undirected weighted graphs. As we see in the
Figures 4.1(a) and 4.1(b), the only di�erence between the two is the relationship between
the pair of the vertices connected by an edge. All the examples considered in this chapter
are not merely random, but represents the graph or portions of the graph used to repre-
sent our problem.

A path P in a graph Gfrom vertices u to v is a �nite sequence of verticesf u1, u2, u3, ...,ukg,
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(a) Directed Graph (b) Undirected Graph

Figure 4.1: An example for directed and undirected graph.

such that u = u1, v = uk and (ui � 1, ui ) 2 E for all 1 � i � k. The hoplength hop(P) is
the total number of edges in the path P: hop(P) = k. For a weighted graph, the length
or total weight w(P) of path P is the sum of weights of all the consecutive edges of the
path, i.e. w(P) = å k

i= 1(ui � 1, ui ). P is the shortest path if there is no other path P0 from u
to v with w(P0) < w(P). A similar de�nition is possible in terms of hoplength for a un-
weighted graph. In the weighted graph, the distancedist(u, v) of two vertices is the total
weight/length of the shortest path P = ( u, ..,v): dist(u, v) = minf w(P) : P = ( u, ..,v)g.
If no path exists between the sourceu and target v, then the distancedist(u, v) = ¥ . If all
the vertices on a pathP are pairwise distinct, then the path P is called simple. However
a path P = ( u, ...,v) is cyclic, if the target v = u and the hop(P) > 0 [Col19]. Since our
problem deals with completion of the robot jobs and �nding an e�cient job path, we deal
with simple graphs to �nd the shortest paths.

4.1.1Representation of Graphs

A graph can be represented in two standards ways: a collection of adjacency lists or a adja-
cency matrix. Although both representations can be used interchangeably, adjacency list
representation is usually preferred for sparse graphs as it provides a compact way to rep-
resent a sparse graph. A sparse graph is a graph in which the number of edges is close to
the minimal number of edges. For a sparse graphjEj is much less than jV j2. However, a
adjacency matrix representation is preferred for a dense graph wherejEj is close to jV j2.
A dense graph is opposite to a sparse graph and can be de�ned as a graph in which the
number of edges is close to the maximal number of edges.

The adjacency list representation consists of a list or array 'Adj_list' containing jV j lists,
one for each vertex inV. For everyu 2 V, the adjacency listAdj_list consists of all the
vertices adjacent tou. If there exists two edges(u1, u2) and (u1, u3), then Adj_list[u1] con-
tains all the connected verticesu2 and u3. For a directed graph, the total sum of lengths
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of all the adjacency lists isjEj and for an undirected graph, it is 2jEj. The total amount of
memory it requires is O(V + E). This representation can be easily extended to represent
weighted graphs. Weights are represented alongside the adjacent vertices that the source
u is connected to. That is, the weightw(u, v) of the edge(u, v) is simple stored with vertex
v in u's adjacency list. This representation is robust, memory e�cient and can be used to
represent a variety of sparse graphs. However, the potential disadvantage is that there is no
quick way to determine the presence of the edge(u, v) in the graph, other than searching
for the vertex v in the adjacency list Adj_list[u] [Cor+01, p. 528]. An example for adjacency
list representation can be seen in Figure 4.3.

For the adjacency matrix representation [Cor+01, p. 529], if we assume that the vertices
are numbered1, 2, ...,jV j in some arbitrary manner, then the adjacency matrix consists of
jV j � j V j matrix A = ( ai j ) such that:

ai j =

8
<

:
1, if ( i , j) 2 E,

0, otherwise
(4.1)

An example for adjacency matrix representation can be seen in Figure 4.4. The adjacency
matrix representation requires a memory of O(V2) and does not depend on the number of
edges in the graph. For an undirected graph,A = AT and therefore in some applications,
one of the values above the diagonal are stored. The adjacency matrix representation can
be easily adapted to weighted graphs. For a weighted graphG, the weight w(u, v) is simply
stored as the entry in row u and column v of the adjacency matrix. If an edge does not
exists, it can be stored as0 or ¥ representing no or in�nity distance. In other words, all
the 1's in the adjacency list can be replaced with the respective weights, i.e. for a adjacency
matrix A = ( ai j ), we have

ai j =

8
<

:
w( i , j), if ( i , j) 2 E,

¥ , otherwise
(4.2)

Since it is memory intensive, adjacency list representation is usually preferred for reason-
ably small and sparse graphs.

4.1.2 Robot scheduling task as a Graph

The robot scheduling task can be easily represented as a graph and can thereafter be
queried with various algorithms to �nd the shortest path from the source to the target.
This shortest-path would then represent the optimal job scheduling path without encoun-
tering collision points. The problem can be represented as a graph with the number of
nodes equal to the total number of job positions possible. So, ifn1 and n2 are the total
number of jobs for the robot 1 and 2 respectively, the generated graph must haven1 � n2

nodes in total. In the robot scheduling task, as discussed earlier, each job position can be
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moved in 3 directions at a given time: right, down and diagonally right. Therefore each
vertex is connected to 3 other vertices representing right, down and diagonal movements,
except when the job sequence is atn1 or n2. In such cases, only 1 directional movement
is possible, i.e when robot1 has already completed its set of jobs, the rest of the jobs are
executed by robot2 and vice versa. Since each edge represents the completion of a job,
the edges are unidirectional. The generated graph is therefore a directed graph. The to-
tal number of edges can be calculated as3 � (n1 � 1) � (n2 � 1) + ( n1 � 1) + ( n2 � 1).
When the job position reaches the �nal node, the job sequence is deemed to be complete.
Figure 4.2 shows the general representation of a graph forn1 and n2 number of jobs for

Figure 4.2: General representation of the scheduling task as a graph for a two robot system withn1

and n2 number of jobs.














































































	MH-FA-56-FB03
	masterarbeit_adde

