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Abstract

Recently, multi-robot systems, in which several robots coordinate along with each other

to achieve clearly defined goals, have become increasingly popular. But the challenge is to

schedule them efficiently to avoid collisions and execute their respective jobs in the least

time possible. The simplicity of multi-robots led to a wide range of potential applications,

and we will focus on applications in the process of fiber placement. Fiber placement refers

to a fabrication process for composite materials where reinforcing fibers are placed along

a predetermined path in the component. The present thesis proposes various approaches

like reinforcement learning and graph-based methods for optimal collision control in a

multi-robot system and to schedule the robots to execute their tasks in the least possible

time. These can be compared and later employed to significantly reduce the lead time in

the multi-robot fiber placement process.

Keywords: Multi-robot system, Collision control, Reinforcement learning, Graph-based

shortest path algorithms
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1 Introduction
Fiber placement refers to a fabrication process for composite materials where reinforc-

ing fibers are placed along a predetermined path in the component. Usually, a Multi-

Robot System (MRS) where several robots coordinate among themselves is employed to

achieve this process. One of the examples of an MRS for fiber placement is GRoFi oper-

ated by the Center for Lightweight-Production-Technology in Deutsche Zentrum für Luft-

und Raumfahrt (DLR), Stade. GroFi is developed to manufacture several highly integral

components of fiber composite materials in an automated fiber placement process. But

the challenge here is to ensure that these robots efficiently coordinate among themselves

and take the optimal path with the least time. This thesis focuses on solving this challenge

and finding the optimal paths in a multi-robot system to schedule the robots to execute

their tasks as early as possible without any collisions. The findings of the thesis are based

on the work carried out by me as a student assistant at Zentrum für Leichtbauproduktion-

stechnologie (ZLP), DLR, Stade.

To approach the challenge, we need the data from a multi-robot system. For this pur-

pose, we could use the data generated by a simulation software VNCK provided by Siemens

that simulates the working of multiple robots to check for possible collisions when they

function simultaneously. But this software has limited data set from the real world. Hence

we will create a small-scale collision control environment that randomly generates the

data set with collision points similar to the actual simulation data. The data set generated

randomly will be represented in a matrix form that is called a collision matrix. Later, we

will apply deep Q learning, a type of model-free reinforcement learning using the open-

source software of the TF-agents library by Google to find the fastest path of robots in

the collision matrix. For a random collision matrix configuration, we will validate the

performance of this method by using several metrics for evaluation and represent only

the best hyperparameters and high accuracy models. In the next step, for the same col-

lision matrix, we will be representing the robot scheduling task as a graph and conse-

quently querying it with various algorithms to find the shortest path from the source to

the target. We present a few speed-up techniques to reduce the total execution time of

these graph-based methods. Additionally, this thesis discusses learning-based speed-up

for large graphs as a literature survey. We then compare the results of several algorithms

in graph-based methods against each other and also against the results from reinforce-

ment learning. Furthermore, we will also evaluate the graph-based method by applying it

to data generated by VNCK software. As the last step, we will explore the advantages and

disadvantages of all these methods in finding the optimal fastest path in the multi-robot

system.



2

The report will be divided into six main chapters, the first being this introductory chap-

ter. The overview of upcoming chapters is as follows. The Chapter 2 elaborates the prob-

lem, data set, and the motivation of the thesis. Chapters 3 and 4 brief on reinforcement

learning and graph-based methods used to find the optimal fastest path. Here, we will

discuss the fundamental of different algorithms used and explain the implementation of

these methods to solve our task. In Chapter 5, these methods are applied to the data sets,

and the results are interpreted. Finally, the concluding Chapter 6 contains a review of the

findings and the valuable takeaways from the thesis.



2 Problem Description
This chapter briefly describes the structure of Großbauteile in Fibreplacementtech-

nologie (GroFi) and presents the manufacturing process at the DLR plant in Stade. For

the multi-robot system described in the manufacturing process, an efficient method is

to be developed such that the multi-robot system is scheduled in a way that the robots

execute their respective jobs in the least possible time excluding the risk of collision. The

thesis focuses on a two robot system that can be easily expanded to a n-robot system in

many cases. This is explained in detail in the further chapters. This chapter is based on

the observation of the production process during my work at ZLP Stade, as well as ex-

planations from various employees, the thesis of Markus Schreiber [Sch15] and the final

documentation of the GroFi project [KB14].

2.1 GRoFi system
GRoFi is a large-scale facility operated by the Center for Lightweight Production Tech-

nology in German Aerospace Center (DLR), Stade. GroFi is developed with an aim to

manufacture large, highly integral components made of fibre composite materials in an

automated fibre placement process. Therefore, a system of coordinated robots was devel-

oped which enables simultaneous fiber placement which is used flexibly for production

tasks. In addition to the robotic platform, the system’s technology also includes a new

generation of fiber placement and tape laying heads. Through the use of coordinated and

simultaneous working layup, a highly flexible research platform is realized. The combina-

tion of different layup technologies, namely fiber placement (dry) and tape laying enable

the development and validation of new technologies and manufacturing processes for

large-area composite parts. This allows the investigation of new materials, technologies

and processes on both, small coupons, but also large components such as wing covers or

fuselage skins [Luf16].

The facility is developed based on several coordinated robot-based layup units that can

be moved on the rail system. Up to 8 layup units are located on the rail network. The

rail system is outlined in Figure 2.1. The rail system is divided into a manufacturing loop,

which allows circumferential movement around the double-sided moulding tool, and an

additional loop for maintenance. It consists of straight, continuous sections connected by

rotating platforms, two of which are designated as working areas. In the area between these

two rails, workpieces can be suspended onto which the depositing units apply the carbon

fiber reinforced plastic (CFRP). In addition, there are six maintenance rails on which the

depositing units are refitted and retooled. The remaining rails are only intended as a
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connection between these areas.

Work rail 1

Work rail 2

Maintenance/setup rails 

Workpiece

Figure 2.1: Schematic representation of the rail network. Straight lines represent rails and circles

represent rotating platforms.

A layup unit consists of a shuttle platform on which a 6-joint articulated robot is placed.

A tool head is mounted on the flange of the robot. These units can move independently

along the rails. To reach an adjacent rail, the units have to cross the rotating platforms

between the rails. If necessary, they are rotated by these according to the orientation of

the rail to be approached.

As discussed above, numerous robots work on the same workpiece simultaneously. The

limitation of the present system is that the robot jobs are not scheduled optimally. The

lead time for the multi-robot system can be significantly reduced if the jobs are scheduled

efficiently. The next sections form the baseline of the research, which motivates the use

of different methods to efficiently schedule the robots.

2.2 Robot Job Scheduling
Presently, the multiple robots are scheduled in such a way that they always maintain a cer-

tain distance from each other during execution to avoid collisions. For efficient schedul-

ing of the multi-robot system, we first need a data set that provides information about

possible collisions. The data set can be achieved by a simulation that simulates the work-

ing of multiple robots to check for possible collisions when they function simultaneously.
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Simulation software VNCK provided by Siemens is used to carry out such simulations. It

simulates all the possible sequences in which the jobs can be carried out by a single robot.

Each time step corresponds to a 4 millisecond. This simulation is carried out for every

robot that works simultaneously on the workpiece. By comparing the data from every

robot that work simultaneously, a matrix (for a 2D case) or a tensor (for a higher dimen-

sional case) is formed that represents the various possible collisions at different timesteps.

This data set can be called a collision matrix/tensor. The shape of this data set depends

on the number of robots that work simultaneously, i.e., 2D matrix for 2 robot system, 3D

tensor for 3 robot system and so on. This thesis mainly deals with the 2 robot system. The

assignment of jobs to robots takes place before the collision matrix is established. Based

on that, the VNCK simulates parallel execution of all pairs of jobs (j1, j2) ∈ J1 × J2, where

Ji is the set of jobs assigned to robot i. So, finding a shortest collision-free path through

the matrix can be considered a subsequent scheduling step. The upcoming section gives

a clear insight into the representation of data in the collision matrix.

2.2.1 Collision Matrix
The collision matrix is a binary matrix where the collision points are represented by 1,

and the others are represented by 0. A 0-point indicates the timestamps of non-collision

between the jobs carried out by different robots simultaneously. We can also interpret this

matrix as a graph in which each axis represents the jobs of a particular robot. The goal is to

find an efficient traceable path from the first entry (source) of the matrix to the diagonally

opposite last entry (target) of the matrix. To accomplish this goal, we can trace several

different paths from first entry to last entry without encountering a single collision point

(1). But an optimal path is such that the task completion takes the least possible time. To

illustrate this, the thesis considers a 2 robot system that generates a 2d matrix to find the

optimal path. These procedures can be further extended to find the optimal fastest path

in an n-robot system.

For a 2 robot system, if n1 and n2 are the total number of jobs for robot 1 and robot 2,

respectively, the resulting size of the collision matrix will be n1 × n2. The job execution

starts at (0, 0). If robot 1 executes its respective job while the robot 2 stays idle, the job

pointer is moved towards the right to (0, 1). Similarly, if robot 2 executes its respective job

while the robot 1 stays idle, the job pointer has moved a step downwards to (1, 0). Finally,

if both the robots execute their respective jobs, the job pointer moves 1 step diagonally

downwards to (1, 1). As explained before, each job step represents the execution of the

robot for 4ms. Figure 2.2 shows three collision matrices for a 2 robot system obtained by

simulation. In all the 3 matrices considered here, the robots are assigned at most 2500
jobs each. In the worst-case scenario where the two robots work individually, each robot

completes its job in around 10s (2500× 4ms = 10s). Therefore, the datasets considered

here are for relatively small workpieces. In the figure, the grey points represent the colli-
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sion points 1. As seen in the figure, there exist various paths through the traceable points

from the source (0, 0) to the target (n1, n2) and we aim to find the shortest one.
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(a) Collision Matrix for n1 = 2266 and n2 = 2566
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(b) Collision Matrix for n1 = 1602 and n2 = 1879
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(c) Collision Matrix for n1 = 1761 and n2 = 1649

Figure 2.2: Collision matrix dataset generated by simulation

However, due to the limited availability of data and also to simplify the problem, we

try to first solve the task in a small scale regime. The algorithms can be later extended to

the actual data. To do so, datasets are randomly generated with various collision points.

The creation of such datasets for a small scale regime will be explained in the upcoming

Chapter 3. Figure 2.3 shows a couple of examples of such dataset for (a) n1 = 40, n2 = 40
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and (b) n1 = 37, n2 = 39. Similar to the previous case, grey points represent the collision

points. We follow this colour representation in the rest of the thesis to represent the col-

lision points.

Since the motivation of the task is to find an efficient path with minimal total execution

time, we can use optimal methods to find the shortest path. Although various methods can

be used to find an efficient path, we consider deep Q learning and graph-based methods

to solve such problems, which will be explained in Chapters 3 and 4.
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(a) Collision Matrix for n1 = 40 and n2 = 40
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(b) Collision Matrix for n1 = 37 and n2 = 39

Figure 2.3: Randomly generated collision matrix dataset for a small scale regime



3 Methodology 1 -
Reinforcement learning

Human beings do not learn from a concrete set of data, rather through continuous

experience-driven trial and error processes in which decisions are made. Each decision

has its outcome which can be positive or negative, and these feedbacks received from the

environment guide the learning process for further decisions. In reinforcement learn-

ing, the feedback from the environment is called reward/punishment. Almost all bio-

logical intelligence is due to an interactive trial and error process with its environment,

and all living organisms are greedy reward-driven entities. The reward-driven trial-and-

error process in which a system learns to interact with a complex environment to achieve

rewarding outcomes is referred to in machine learning parlance as reinforcement learning
[Agg18, p. 373].

Reinforcement learning (RL) is one of three basic machine learning paradigms, along-

side supervised learning and unsupervised learning. In reinforcement learning, the agent

(e.g., a real or simulated robot) takes an action to maximize the cumulative reward to solve

a sequential decision task. The agent is a mimic of the human brain that can understand

the coupling between action, state of the system, and reward function. RL seeks an opti-

mal policy that dictates the learning agent’s behaviour in each state to maximize the total

expected reward (or minimize the punishment) by trial and error interaction with the

environment. The RL problem is defined by three features, namely, agent-environment

interface, function for evaluating rewards, and Markov property of the learning process

[DS13, p. 547]. In Deep Reinforcement Learning (DRL), the learning of taking an action

based on feedback is achieved by deep learning. In a larger scope, DRL can be a gateway

to the journey of creating truly intelligent systems and revolutionize the field of Artificial

Intelligence (AI) by building autonomous systems with a high-level understanding of the

visual world.

3.1 Basic Framework of Reinforcement Learning
In Reinforcement Learning, the agent interacts with its environment through various ac-

tions. The environment is typically the set of states the agent tries to alter by taking certain

actions. These actions modify the environment resulting in a new state, and rewards are

awarded or deducted as a consequence of these actions. The awarded rewards are based

on how well the goals of the learning applications are achieved. For example, in a video
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game, the movement of the playing character in a certain direction is considered as an

action and the player who controls the movement is the agent. The environment can be

considered as the entire set-up of the video game itself where the agent brings in an ac-

tion. All the variables describing the current position of the player at a particular point

are represented by a state.

Each reward is associated with a certain action in isolation. However, how the rewards

are considered in the system depends on the particular problem at hand. For example, in a

video game for which the initial state and the state transitions are deterministic, a reward

is not earned based on a particular move rather it depends on all the moves done in the

past. The credit assessment for a self-driving car is different as the reward for rapidly

steering the car in the normal state would be different from performing similar action

which would increase the risk of collision. Therefore these rewards are problem-specific

and hence it is required to quantify the reward of each action in a way that is specific to a

particular system state.

Agent

Environment
Reward

Action 

State
Transition

 to 

Current state 

Figure 3.1: Framework of reinforcement learning

One of the primary goals of reinforcement learning is to identify the inherent values of

actions in different states, irrespective of the timing and stochasticity of the reward. The

learning process helps the agent choose actions based on the inherent values of the actions

in different states [Agg18, p. 378]. In deep reinforcement learning, neural networks are used

to predict the actions from the sensory inputs. Figure 3.1 shows the interaction of the agent

with its environment. RL learns the mapping from states s to actions a by maximizing

the rewards r. The agent receives sensory input as a state st from its environment. After

performing a specific action at, the agent receives a reward rt. This loop stabilizes the

algorithm. Trial and error (exploration) help find a better possible action, whereas the

memory of high reward winning actions (exploitation) helps keep good solutions. This

is called the exploration-exploitation trade-off and is explained in detail in Section 3.4.1.

In every step, the agent receives the feedback of the next environment state st+1 and the
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reward rt for its action at. This process is continued till it terminates. The entire set of

states, actions and transitions from one state to another is called the Markov decision

process. The state in a particular time step encodes all the information required by the

environment to make a state transition by carrying out a specific action. The finite Markov

decision process terminates after a certain number of steps, which is referred to as an

episode. An episode of this process is a finite sequence of states, actions and rewards. An

episode of length (n + 1) is as follows:

s0a0r0s1a1r1.....statrt.....snanrn

On the other hand, Infinite Markov decision (continuous reinforcement learning) pro-

cesses do not have finite episode length and are referred to as non-episodic. Function

approximators are used to approximate the value function. Although longer exploration

leads to a better approximation of the action-value function in discrete reinforcement

learning, it is not the case in continuous reinforcement learning. In the latter, the ap-

proximation accuracy of the function depends on the distribution of the data [DS13, p. 550].

3.1.1 Model-Based vs Model-Free
The model has a very specific meaning in reinforcement learning. It refers to the different

dynamic states of the environment and how the rewards are achieved from these states.

Reinforcement learning can be either model-based or model-free. Irrespective of it being

model-based or model-free, agents may use value functions or direct policy search. The

terms model-based and model-free do not refer to the use of the neural network or other

statistical learning models. Rather, the term refers to whether the agent uses predictions

of the environmental response during learning. The agent can use a single prediction

from the model of the next reward and next state (a sample), or it can ask the model for

the expected next reward. These predictions can be provided entirely outside the learning

agent or can be learned by the agent (approximation). In model-free approaches, the op-

timal policy is obtained by directly mapping the states to the actions. They learn to take

different actions based on the situation (state) but do not learn the effect of the actions. On

the other hand, model-based methods try to construct a model of the environment, typi-

cally in the form of a Markov decision process (MDP). They acquire optimal behaviour by

learning the model of the environment by taking actions and observing their outcomes.

Therefore, model-based methods often use limited experience and mostly achieve a bet-

ter policy with fewer interactions with the environment. However, model-free methods

are simple and computationally less expensive compared to model-based methods. Algo-

rithms that sample from the experience such as Q-learning and SARSA are examples of

model-free algorithms. They rely on samples from the environment and never use gen-

erated predictions of the next state and next rewards to alter behaviours. However, they

might sample from experience memory which is close to being a model.
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3.1.2 On-policy vs Off-policy
On-policy learning algorithms evaluate and improve the same policy that is used to select

the action. That is, they use the policy that the agent is already using for selecting an

action. State-action-reward-state-action (SARSA) is an example of an on-policy algorithm

that estimates the policy being followed. In this algorithm, the agent grasps the optimal

policy and uses the same to act. The policy that is used for updating and the policy used

for acting is the same, unlike in Q-learning. In contrast to this, off-policy algorithms

evaluate and improve a policy that is different from the policy that is used to select an

action. It is independent of the agent’s action and it finds the optimal policy regardless

of the agent’s motivation. Q-learning is an example of an off-policy algorithm where the

agent learns the optimal policy with the help of a greedy policy during exploration and

behaves using a different policy. The Q(s, a) function is learned from actions that we took

using our current policy. In Q learning, the best possible action is chosen to update the

parameters even though the policy that is actually executed is greedy. Most commonly,

an ϵ-greedy policy is used which acts randomly with the probability ϵ or greedily with the

probability 1− ϵ. It is explained further in Section 3.4.1. If we set the value of the greedy

policy to 0, Q-Learning and SARSA would specialize to the same algorithm. However, due

to no exploration, such a method will not function well. SARSA is used when learning

cannot be separated from prediction. Q learning is used when offline learning is possible.

However, it should be noted that ϵ-greedy policy must not be used at inference as the

policy never pays for its exploratory component and therefore does not learn how to keep

exploration safe. For example, a Q learning based robot will attempt to find the shortest

path from source to destination though it is along the edge of a cliff, whereas a SARSA

trained robot will not [Agg18, p. 388].

3.1.3 Actor-Critic Model
An agent tries to find an optimal policy π that maximizes the expected value function

of immediate rewards while following that policy. A policy can be defined as the algo-

rithm an agent uses to determine its action [Ger19, p. 612]. The reinforcement learning

algorithm can be divided into three groups [WS92, p. 469]: actor(policy)-only, critic(value

function)-only, and actor-critic methods. Actor only methods that work with a parameter-

ized policy over its optimization can be used to get an optimal policy. The optimization

method used sometimes suffers from high variance in the gradient estimation. Due to its

gradient descent nature, the actor only methods have strong convergence but results in

slow learning. The advantage of the actor only methods over critic only methods are that

they allow the policy to generate action on complete continuous action space.

In critic-only methods, the estimates of expected returns have lower variance [Sut88].

A policy can be obtained by selecting greedy actions [SB98]. Hence, critic-only methods

usually discretize the continuous action space, in which the optimization can be carried
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out. Q-learning [WD92], Temporal difference (TD) and SARSA [SB98] are examples of critic

only methods where they use a state action-value function and no other explicit function

for the policy. For continuous state-action space, this function is approximated and used.

The Q value for the state-action pair is denoted as Q(st, at) which is the measure of long

term value of performing certain action at in the state st. Q function represents the best

possible actions taken by the agent in the state till the end of the learning. Therefore

Q(s, a) can be written as Eπ[Rt|at = a, st = s], where R is the cumulative rewards or

otherwise called action’s return. Therefore, if A is the set of all possible actions, then the

chosen action at time t is given by the action a∗t that maximizes Q(st, at). In other words,

we have:

a∗t = argmaxa∈AQ(st, at) (3.1)

The predicted action is combined with an exploratory method like ϵ-greedy policy to im-

prove long-term learning [Agg18, p. 383]. This approach is used in our project for multi-

robot collision control which is explained in detail in Section 3.4.

Finally, in the actor-critic methods, advantages of both actor-only and critic-only meth-

ods are combined where the critic evaluates the quality of the policy described by the

actor. Based on the rewards received, the critic approximates and updates the value func-

tion. The actor’s policy parameters are then updated using the state value function for

best control action.

3.2 Environment
In reinforcement learning, the task which needs to be solved by an agent is described

as an environment. An environment interacts with the agent by returning its state and

reward. As mentioned before, in the video game example, the environment can be con-

sidered as the entire set-up of the game where changes are made to the state observation

by bringing in an action. It is responsible for the calculation of the reward. In many cases,

systems are required to exercise a deep understanding of the situation and analyse the

different choices that they have to return an accurate reward or penalty. In a nutshell, the

environment contains the entire simulation of the problem to be addressed. Therefore,

the environment can be considered as the heart of reinforcement learning. In order to

train the agent, one of the biggest challenges of RL is to have a working environment.

Therefore, for an agent to learn a game or complete any other task, a simulator is to be

built or programmed. For a robot agent, the actual working environment can be used as

a simulator but it has its limits. Since the agent learns by its failures, it increases compo-

nent damages and hence the total learning cost. For many video games, the OpenAI Gym

toolkit provides a wide variety of simulated environments (Atari games, board games, 2D

and 3D physical simulations, and so on), so one can train agents, compare them, or de-

velop new RL algorithms. However, for a robot agent, a virtual simulator of the robot
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is to be created that replicates the actual functioning of the agent and must account for

the allocation of rewards based on the actions. Hence, a collision control environment is

created to simulate the job sequence of a multi-robot system.

3.2.1 Collision Control Environment
In this thesis, a replica of state observations is used to create a collision control environ-

ment for a small scale regime. The environment is created based on two important param-

eters, namely, the minimum number of jobs per robot nmin and the maximum number

of jobs per robot nmax. The number of jobs per robot for a two robots system is ran-

domly drawn from discrete uniform distribution from the range [nmin, nmax] ∩N. The

total number of jobs for robot 1 is represented by n1 and the total number of jobs for

robot 2 is represented by n2. Based on their respective jobs, the state observation matrix is

generated which includes randomly generated clusters of collision points. The state ma-

trix is further zero-padded so that the resulting shape of nmax × nmax × 2 is achieved. The

state matrix can be considered as an image where the 1st channel represents the collision

points and the 2nd channel represents the position of the robot. The creation of the state

observation is further described in the Section 3.2.2.

Three actions are allowed for the multi-robot system: a step in the rightward direction

which indicates completion of a job for robot 1, a step in the downward direction which

indicates completion of a job for robot 2 and finally, a diagonal step in the down-right

direction which indicates that both the robots 1 and 2 completed their respective jobs (1
job each). When the action towards the right direction is taken, only robot 1 executes its

respective job while the other robot waits till robot 1 finished its job. Similarly, in case

of a downward step, only the job of robot 2 is executed while robot 1 waits for the other

robot to complete its job. Finally, the ideal scenario is a step in the straight down-right

direction where both the robots execute their respective jobs. During this process, if an

action leads to a collision, the episode is terminated and is reset with a new state observa-

tion based on the new randomly chosen values n1 and n2. The environment can be reset

to a new random configuration of state observation at any given point. However, the en-

vironment is usually reset when encountered with a collision point or on the completion

of the assigned total task. These features of the environment are exclusively handled by

the learning algorithm. Collision is determined based on the position of the job path of

the multi-robot system in channel 2 and the collision matrix of channel 1. If the position

of the job path is a collision point in channel 1, it is considered a collision and hence

negative reward is awarded. The penalty is given to the system every time a wrong action

is taken. The goal of the system is to find an optimal path such that both the robots com-

plete their respective total number of jobs n1 and n2. Therefore a high reward is awarded

when the job path reaches the final position. In our case, the final position is when the job

path position reaches the bottom right end of the state observation matrix. The complete
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formulation of the reward function is described in detail in Section 3.2.4.

Finally, a trajectory is the entirety of all state-action-reward-next state tuples of one

episode, where the collision matrix representation is the state, the robot motion is the

action, and the resulting outcomes of the motion are the reward. In other words, the

complete simulation can be called a trajectory. The simulation for each action is provided

by the collision control environment.

3.2.2 State Observation
As mentioned before, the state is the observation of the current world or the environment

at a particular time. Initially, the state matrix is created as the replica of the real collision

matrix in a small scale regime. The state matrix is generated as a 3-dimensional array in

which the 1st dimension represents the total number of jobs for robot 1 n1 and the 2nd

dimension represents the total number of jobs for robot 2 n2. The total number of jobs n1

and n2 are randomly drawn from the interval [nmin, nmax] ∩N. A random configuration

is selected so that the algorithm is scalable and robust. At inference, it can be applied for

any number of jobs within the interval. The 3rd dimension however has a fixed index of 2

making the resulting shape nmax × nmax × 2. The state matrix could be considered as an

image with two channels, where channel 2 represents the actual position of the job path

and channel 1 represents the collision points. The whole state matrix could have been

generated as a 2-dimensional matrix having only one channel which represents both the

job position and the collision matrix. For example, each collision point could be repre-

sented as 1 and job position as 2. However, since the state observations are fed into the

convolutional neural network (CNN), considering the position of the job path and the col-

lision points as two different input channels results in better generalization and quicker

learning.

The state observation matrix is a binary array. In the second slice, the current job po-

sition is indicated by 1 and the rest by 0. In the first slice, clusters of 7 collision points

are generated in random locations of the array. The random locations are integers sam-

pled from discrete uniform distribution from the range [nmax − n1 + 1, nmax − 2] ∩N

for robot 1 and [nmax − n2 + 1, nmax − 2] ∩N for robot 2. The total number of collision

clusters are decided by the formula ⌈ n1+n2
5 ⌉, where the operator ⌈⌉ rounds the quantity to

the next largest integer. The collision matrix is again a binary matrix where 1’s represent

the collision points and 0’s represent the traceable path. When considered as a grid, each

sequence of grid points represents a traceable path. For example, if the job sequence is at

index (0, 0), one movement to the right represents the execution of a job for robot 1 (while

robot 2 waits), one movement in the downward direction represents the execution of a job

for robot 2 (while robot 1 waits) and finally, one movement in the diagonally downward

direction represents that both the robots execute their respective jobs simultaneously as
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mentioned earlier. The collision points denote a collision between the two robots during

the execution of their respective jobs. The collision matrix is generated in a way such that

there always exists a traceable path so that both the robots completed their respective jobs.

The plot of the collision matrix with n1 = n2 = 36 is shown in Figure 3.2. In this particular
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Figure 3.2: Visualisation of a random configuration of collision matrix for n1 = 36 and n2 = 36

example, we consider the n1 = 36 and n2 = 36. As seen in the figure, the x-axis represents

the job sequence of robot 1 and the y-axis represents the job sequence of robot 2. There-

fore, the task is considered complete when both the robots execute their respective jobs

and reach the final position of the path. The collision points are obstructions to the job

path while tracing the path. As we see, numerous job paths are possible to complete the

job sequence, and the task persists to obtain the best path. It is clear from the figure that

the fastest possible path would be around the diagonal where both the robots complete

their respective jobs simultaneously.

Finally, both the slices of state observation are further zero-padded in the top and the

left direction such that the resulting shape of nmax × nmax × 2 is achieved. Since the state

matrix is inputted into the Neural network, a consistent shape must be maintained to

make the model scalable up to a maximum number of robot jobs nmax. Therefore, the

state observation is represented as a combination of both collision and position matrix.

Figure 3.3 shows the overview of state observation. As seen in the figure, irrespective of

total number of jobs for robot 1 and 2, the state observation is 0-padded to have a final
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Figure 3.3: Overview of state observation

shape of nmax × nmax × 2. The area coloured in light grey represents the collision matrix

for a specific number of jobs per robot: n1, n2 before zero-padding. As usual, dark grey

points represent the collision point. Finally, the yellow point in the figure is the initial

position of the job pointer in the position matrix. Figure 3.4 shows an example of such

state observation for n1 = 7, n2 = 7 and nmax = 8 where collision matrix and position

matrix are separately visualized for better understanding.

3.2.3 Step Action
In principle, the agent can move in three directions: towards the right where the job of

robot 1 is executed, towards the downward direction where the job of robot 2 is executed

and finally the diagonally downwards directions where both the robot jobs are executed

simultaneously. To measure the quality of the actions, a well-defined reward function is

to be formulated. Each action and its consequences are examined based on the changes it
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Figure 3.4: An example of state observation for n1 = 7, n2 = 7 and nmax = 8

brings to the environment. The formulation of the reward function is explained below in

detail.

3.2.4 Reward Function
A reward in reinforcement learning is the feedback to the system from the environment.

When interacting with the environment, changes are brought in the state observations

by performing actions. This reward signal can be positive for a good action and negative

(then called a penalty) for a bad action. A negative reward penalizes the agent informing

it about the consequence of a bad action, and a positive reward informs the agent to take

more such actions to reach the goal. In goal-oriented problems, a very high reward is given

to the system on completion of the task. The goal, in general, is to solve a given task with

maximum rewards and minimal time. That is why many algorithms have a small negative

reward for each action taken by the agent to minimize the total time taken to solve the

problem.

In our task, the goal of the agent is to find an optimal path without collision. The op-

timal path would take the least possible time compared to any other possible job path.

Therefore small negative rewards are given to the system every time an action is taken.

We want to encourage the agent to move diagonally so that both the robots can execute

their jobs simultaneously. Hence the negative reward of the diagonal step is less than

the rightward/downward step. For every diagonally downward action, −0.01 reward is

given since both the robots perform their respective jobs simultaneously. However, for

the rightward action (execution of the job by robot 1) and downward action (execution of

the job by robot 2), −0.02 reward is awarded respectively.

Since avoiding the collision is one of our most important goals, a very high penalty

is given to the system when the job path encounters a collision point. Therefore, if an
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action leads to a collision, a negative reward of −1 is given to the system, the episode is

terminated and the environment is reset with a freshly initialized state observation. Since

it is safer when the two robots maintain a certain distance from each other to avoid the

chance of collision, a small negative reward of −0.1 is given to the system whenever the

robots come closer. In other words, a small negative reward is given when the job path is

in close vicinity to the collision points. Finally, on completion of all the respective jobs of

the robots, a positive reward of +1 is awarded.

Credit Assessment Problem

The RL algorithms guide the agent to learn by rewards, and these rewards are usually

sparse and delayed. For example, if the agent meets a collision point after 50 steps, it

becomes difficult to say which of these actions were good and which were not. It cannot

be known which of the actions led to the collision of the robots. When the agent gets a

reward, it is hard for it to identify which actions must be credited or blamed. To tackle this

problem, a common strategy is to evaluate an action based on the discounted sum of all

the rewards that come after it. This is called the discount factor γ. This sum of discounted

rewards is called the action’s return. The discount factor determines how much the agent

cares about rewards in the distant future relative to those in the immediate future. The

total rewards at the end of the trajectory are computed as the discounted sum of rewards

collected from every time step. For the finite-horizon trajectory (trajectory that terminates

after a certain number of time steps due to failure or on reaching the goal), the action’s

return Rt is computed as shown in equation:

Rt = rt + γrt+1 + γ2rt+2 + ...γT−1rt+(T−1) (3.2)

=
T−1

∑
k=0

γkrt+k (3.3)

where T is the length of the trajectory/episode. In our study, the length of the trajectory

depends on collision points and the goal.

For example if the agent takes 4 steps: 2 diagonal steps followed by 2 steps in the right-

ward direction, then considering a discount factor γ of 0.9, the first action will have return

of −0.01 + γ× (−0.01) + γ2 × (−0.02) + γ3 × (−0.02) = −0.019. Discount factors can

vary between 0 and 1. If the discount factor is close to 0, the future rewards won’t count

much compared to immediate rewards and if the discount factor is close to 1, then the

rewards far in the future will count as much as the immediate results. Most often, a dis-

count factor between 0.9 to 0.99 is used. With a discount factor of 0.95, rewards 13 steps

into the future count roughly for half as much as immediate rewards, while with a dis-

count factor of 0.99, rewards 69 steps into the future count for half as much as immediate

rewards [Ger19, p. 619].
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3.3 Temporal Difference Learning
Reinforcement learning with discrete actions can be modelled as Markov decision pro-

cesses (MDPs). However, when a reward is received, a major problem that arises is how to

distribute the rewards among the decisions that led to it. This is known as the temporal

credit assessment problem. Temporal Difference (TD) [Sut88] learning is a model-free RL

method to solve these problems. TD is an incremental learning procedure that uses past

experiences with a partly known system to predict future actions. The step in a sequence

is evaluated and adjusted based on their immediate or near immediate successor rather

than their final outcome. In TD learning, the agent has partial knowledge of the MDP,

i.e, in the beginning, we assume that the agent knows only a few possible states and ac-

tions. The agent uses an exploration policy (example ϵ-greedy) to explore the MDP as it

progresses. TD methods assign credit by the means of the difference between temporally

successive predictions and the learning occurs when there is a change in prediction over

time. In TD learning, reward estimates at successive times are compared. The algorithm

updates the estimates of state values based on transitions and rewards that are observed.

TD methods require peak computation but less memory and produce accurate outcomes.

We consider (st, at, rt, st+1) as state-action-reward-next state experience tuple summa-

rizing the transition in the environment at time t, where the state st changes to st+1 after

a transition due to an action at, and rt is the instantaneous reward it receives. The value

V of a policy is learned using the TD algorithm

V(st)← V(st) + α[rt + V(st+1)−V(st)], (3.4)

where α is the learning rate and rt + V(st+1) is the TD target. α[rt + V(st+1)−V(st)] =

δ(st, rt, st+1) is called the TD error. If the learning rate α is adjusted properly and the

policy is held fixed, TD is guaranteed to converge to the optimal value function.

3.4 Q-learning
Q-learning is an off-policy algorithm in which approximation to optimal action takes

place independently of the evaluation policy by using the path with the greatest action

value to calculate the one periodic difference. Q learning is the most widely used algo-

rithm with good converges control. If we had the observed value of the Q-function, we

could easily set up a loss function in terms of Q(s, a)− Q̂(s, a) to learn after each action,

where Q̂ is the target. The problem here is that the Q-function represents the maximum

discounted reward over all the future actions and it is impossible to observe it at the cur-

rent time. However, we do not really need the observed Q-values to set up a loss function

as long as an improved estimate of the Q-values can be calculated by using partial knowl-

edge about the future. A surrogate observed model can be created using this improved
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estimate. This observed value is defined by the Bellman equation [Bel57], which is a dy-

namic programming relationship satisfied by the Q-function and the partial knowledge

of the rewards. Assuming that the best action is taken initially, we get the optimal policy

π = argmaxQ(s, a), which chooses an action having the maximum Q value for the cur-

rent state. Q learning works by watching the agent explore the environment and gradually

improve its Q-value estimates. Once accurate Q value estimates are achieved, the optimal

policy is then obtained by choosing the action that has the highest Q-Value. Based on the

Bellman equation, we set the ground truth by looking ahead one step and predicting the

next state st+1:

Q(st, at)← rt + γ argmax
a∈A

Q̂(st+1, a). (3.5)

The correctness of this equation comes from the fact that the Q-function is designed to

maximize the discounted future rewards. We look for an action 1 step ahead to create an

improved estimate Q̂(st+1, a). This term must be set to 0 when the episode terminates.

The Q-value estimate is essentially similar to TD learning. It is important to mention

the update rule in Q-learning. The new Q-value is the sum of the old Q-value and TD-

error. Q-values can be estimated online by:

Q(st, at)← Q(st, at) + α(rt + γ max
a∈A

Q(st+1, a)−Q(st, at)). (3.6)

where α is the learning rate and γ is the discount factor. For each state-action pair, the

agent keeps track of the running average of immediate rewards plus the sum of discounted

rewards it expects to achieve. For doing this, the maximum Q-value estimate for the next

state is considered assuming that the target would act optimally.

If every action in each state is executed an infinite number of times and α is decayed

appropriately, on an infinite run, the Q-values will converge to the optimal values with

probability 1 to Q∗ [WD92], independent of how the agent behaves while the data are

being collected. Hence, it is an effective model-free algorithm with delayed rewards that

are widely used. However, it sometimes does not generalize well over large state-action

space. It may also converge quite slowly to a good policy. When it almost converges,

the greedy action with the highest Q-value is taken. However, it is difficult to make an

exploitation-exploration trade-off during learning.

3.4.1 Exploration vs Exploitation
When we train an agent, the challenges of exploration and exploitation immediately arise.

To maximise its rewards, the agent repeats the best actions based on its learnt knowledge.

This is called exploitation, where the agent takes advantage of the learnt information and

takes actions that lead to favourable long term rewards. However, in order to find these

optimal actions, the agent has to sample from a set of actions and try out different actions
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which it has not previously experienced. For this, random actions are taken to explore

the environment, and this randomness in the output is called exploration. Therefore,

exploration is when an agent has to sample different actions from a set of actions to obtain

better rewards. The key challenge that arises is to balance the trade-off between the two.

All learning algorithms aim at solving the exploration-exploitation dilemma, meaning

achieving the best performance at a minimum learning cost. This is decisive, as too much

randomness leads to an increase in learning cost, and less randomness reduces the overall

performance of the agent due to overfitting. Thus finding a right balance between the two

becomes crucial.

ϵ-greedy

Q-learning only functions when the exploration policy explores the MDP thoroughly. A

random policy can be used to visit every state and transition. However, such an approach

would take a long time and would be computationally expensive. Therefore, ϵ-greedy is

usually used to explore different states. The goal of the greedy algorithm is to use the best

strategy as soon as possible without wasting a significant number of trials. At each step, it

acts randomly with the probability ϵ or greedily with the probability 1− ϵ (i.e. choosing

the action corresponding to the highest Q-value) [Ger19, p. 632]. The advantage of this

approach is that one is assured to not be trapped in a bad strategy forever. Furthermore,

as the exploration starts in the early stage, one is likely to use the best strategy for a large

fraction of time. In other words, it will spend more time exploring the interesting parts

of the environment, as the estimates of Q-values improve, while still exploring unknown

regions of the MDP. The most common practice is to use annealing, in which, a high value

of ϵ is used in the beginning and is then gradually reduced to as low as 0.01 as the learning

progresses. Hence, in the beginning, the agent takes many random actions to explore the

environment. As the learning progresses, the ϵ value decreases and the agent exploits the

learnt behaviour and takes actions based on its knowledge. The value of ϵ is required to

be reasonably small towards the end to gain significant advantages from the exploitation

portion of the approach.

3.5 Deep Q learning
The major problem of Q-learning is that it does not scale well to large MDPs with many

states and actions, and it gets impossible to keep track of an estimate for every single

Q-Value. This is the case for our problem since the number of possible states and their

associated actions are large because of the size and randomness of the collision matrix.

The solution for this is to use a deep neural network for such complex problems to esti-

mate the Q-values of the respective states. This section explains in detail the functioning

of the Deep Q-Network (DQN) as described by [Agg18, p. 384]. We assume that the state

representation st is denoted as Xt. Therefore, the neural network inputs the state Xt and
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outputs the Q-values Q(st, a) for all the possible actions a. Let the set A be the set of all

the possible actions a. We consider that the network is parameterized by weights W and

has |A| outputs containing Q-values that correspond to various actions in A. Therefore

the network computes the function F(Xt, W, a) which is the learnt estimate of Q(st, a):

F(Xt, W, a) = Q̂(st, a) (3.7)

Q̂ indicates the predicted value of the network. Therefore, learning the weights W is

the key to decide the different possible actions. In our case, the algorithm passes the

state observation of shape nmax × nmax × 2 as an input to a Conventional Neural Network

(CNN) to output the Q-value estimates corresponding to the 3 actions. The methodology is

described in detail in Section 3.7.2. This network used to estimate the Q-values are called

Q-network. Figure 3.5 shows the general architecture of a Q-network which takes state

observation as an input to output Q-values corresponding to the actions.
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Figure 3.5: General architecture of Q-network which takes state observation as an input to output

Q-values corresponding to the respective actions.

We can now reformulate the equation (3.5) in terms of a neural network as:

F(Xt, W, at) = rt + γ max
a∈A

F(Xt+1, W, a) (3.8)

To compute this observed value at time-step t, one has to wait to observe the state Xt+1

and reward rt by forming the action at. With this, we can express it as a neural network

loss Lt between the surrogate observed value and the predicted value at the time-step t:

Lt = [rt + γ max
a∈A

F(Xt+1, W, a)− F(Xt, W, at)]
2

(3.9)

The above equation is similar to that of equation (3.6) but is written in terms of a loss.

Although squared loss is used in this equation, any loss can be used based on the problem.

Now we can update the weights W by backpropagating the loss function. The target value

estimate rt + γ maxa∈A F(Xt+1, W, a) using inputs at (t + 1) are considered as constant

ground truths by the backpropagation algorithm. It can also be called the target Q value.

Therefore, while computing the gradient, this term is treated as a constant though they

were obtained from a parameterized neural network with input Xt+1. We consider the

prediction at t + 1 as an improved estimate of this ground truth. Hence, the weight update

using the backpropagation algorithm will compute the following:

W ←W + α{[rt + γ max
a∈A

F(Xt+1, W, a)]− F(Xt, W, at)}
∂F(Xt, W, at)

∂W
(3.10)
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At the beginning of the learning process, the Q-value estimate of the neural network is

random because of the random initialization of the weights. However, the estimate grad-

ually improves with time as the weights are constantly updated to maximize the rewards.

Therefore, if the action at, reward rt is observed at any given time-step t, the following

process is used to update the weights W:

Algorithm 1: Deep Q-learning Outline

1. Perform forward pass through the network with input Xt+1 to compute

Q̂t+1 = maxa∈A F(Xt+1, W, a). Set value to 0 in case of termination.

rt + γ maxa∈A F(Xt+1, W, a) is the surrogate for the target value at t and is

considered as an observed value.

2. Perform forward pass through the network with input Xt to compute F(Xt, W, at).

3. Set up loss function Lt = [rt + γ maxa∈A F(Xt+1, W, a)− F(Xt, W, at)]2.

4. Backpropagate the loss to update the weights W. Consider surrogate value as

constant.

Since the value of the present action is used to update the weight and select the next

action, training and prediction are performed simultaneously in deep Q-learning. The

optimality prediction is coupled with a exploration policy such as ϵ-greedy as explained

in Section 3.4.1. Instead of training the Deep Q-Network (DQN) agent purely based on

its latest experience, a better strategy is to store a set of experiences in a repay buffer or

replay memory and sample random training batch from it at each training iteration. This

intern helps in reducing the correlations between the experiences in training batch and

remarkably helps in training. Before starting the training iterations, the replay buffer is

filled with random experiences. If it is not filed sufficiently, there will not be enough

diversity in the replay buffer.

3.6 Variants of DQN
In this section, we will look into different variants of Deep Q-learning to stabilize and

speed-up the learning process.

3.6.1 Fixed Q Target
The basic deep learning algorithm uses the same network to make predictions and set

its target as explained in the previous section. This might sometimes make the network

unstable resulting in divergence or oscillation. To solve such a problem, 2 DQNs can be

used instead of a single network [Mni+13]. The first network is called the online network

which learns at each step and controls the agent to take actions. The other network is
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called the target network which is used to only define the target or the ground truth. The

target model is created as a clone of the online model. During learning, the weights of the

online model are copied to the target model at regular intervals. Since the target model

is updated less often compared to that of the online model, the Q-targets are more stable.

This dampens the feedback loop making its effects less severe.

3.6.2 Double DQN (DDQN)
It was observed that the target network was sometimes prone to overestimate the Q-values.

This is mostly the case when all the actions are equally good. In such a case, the target

Q network must estimate identical Q-values, but since they are merely approximations,

some values tend to be slightly higher than the rest, purely by chance. The target model

will hence choose the largest Q-value overestimating the true Q-value. To solve this prob-

lem, DeepMind tweaked the DQN algorithm, increasing its performance and stabilizing

the training [HGS15]. Instead of the target model, the online model was used to select the

best actions for the next states. The target model was only used to estimate the Q-values

for these best actions. This variant is called Double DQN.

3.6.3 Prioritized Experience Replay
In the generic algorithm, the experiences are sampled uniformly from the replay buffer.

However, instead of sampling uniformly, sampling important experiences more frequently

would lead to a better result. This approach is called importance sampling or prioritized

experience sampling [Sch+16]. Experiences are considered of higher priority if they speed

up the learning process. One approach to prioritize the experiences is based on the TD

error associated with it. A higher TD error indicates a bad action and thus is not worth

learning. Therefore, when recording the experiences, the ones with a low TD error is as-

sociated with a high priority so that it is sampled at least once. Every time it is sampled

from the buffer, the TD error δ is computed and the priority of that experience is reset to

|δ|+ c, where c is a small constant to ensure that every experience has a non-zero probabil-

ity of being sampled. The probability of sampling an experience P with a certain priority

p is proportional to pζ
, where ζ is the probability that controls how greedy an importance

sampling must be. ζ = 0 gives an uniform sampling, whereas ζ = 1 results in a high

importance sampling. The optimal value of this hyperparameter is problem specific and

depends on the respective task. However, since the samples are biased towards priority

experiences, the bias must be compensated during training by down weighting the expe-

riences according to their priority. If the experiences are not down-weighted, the model

will overfit to important experiences. It is done so by defining each experience’s training

weight as w = (nP)−β
, where n is the total number of experiences in the replay buffer

and β is the hyperparameter that controls the compensation for the importance sampling

bias. Here, β = 0 would result in no compensation and β = 1 would result in high com-

pensation [Ger19, p. 640]. Again, the optimal value of this hyperparameter is problem
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specific.

3.6.4 Dueling - DQN
Dueling DQN is yet another algorithm that was presented by DeepMind [Wan+16]. The

algorithm splits the Q-values into 2 different parts, the value function and the advantage

function. The Q-values of the state-action pair can be represented as follows:

Q(s, a) = V(s) + A(s, a) (3.11)

where the value function V(s) tells about the rewards collected from the state s and the

advantage function A(s, a) tells the advantage of taking an action a over all other actions

in state s. Moreover, the value of a state is equal to the Q-value of the best action a∗ for

that state, which implies A(s, a∗) = 0. In Dueling DQN, the model estimates both the

value and the advantage of each action. It splits the last layer of the neural network into

two parts to estimate the value function and the advantage function respectively. Since the

best action should have an advantage of 0, the model subtracts the maximum predicted

advantage from all predicted advantages. At the end it combines the two into a single

output to estimate the Q-values:

Q(s, a) = V(s) + (A(s, a)−max
a∈A

A(s, a)) (3.12)

The key motivation behind this architecture is that, for some problems, it is unnecessary

to know the value of each action at every timestep. By explicitly separating two estimators,

the dueling algorithm can learn which states are valuable (or not) without having to learn

the effect of each action for each state. The rest of the algorithm is the same as before. This

algorithm can be combined with different other algorithms like prioritized experience re-

play and Double DQN (Dueling-DDQN) to get improved results. For example, DeepMind

combined 6 different architectures into an agent called rainbow, which outperformed the

state of the art [Hes+17].

3.7 Implementation of Deep Q-Learning for robot
scheduling

Implementation of the deep Q-learning model is carried out using the Tf-agents library

provided by Google. It is an open-source software based on Tensorflow used for rein-

forcement learning. It has the feature to build custom environments along with different

wrappers and implements many RL algorithms like DQN, DDQN and many more, as well

as various components of reinforcement learning such as replay buffers, metrics and step

drivers. Since it is based on Tensorflow, the neural networks of Tf-agents can be easily

constructed similar to TensorFlow. The library is fast and customizable and hence can

be easily used to solve various problems. We use Tf-agents to train the agent to find an
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efficient path using a custom collision control environment with the Double DQN algo-

rithm. After preliminary trials, the DDQN variant was prefered due to its performance.

Here, we aim to find an optimal path in a small scale regime for nmin = 30 and nmax = 40.

3.7.1 TF-agent environment
The first task in reinforcement learning is to have a well-defined environment with state

observations, reward functions and step actions. Here, state observation returns the cur-

rent state, step action takes a particular action and the reward function calculates the re-

ward based on the step taken. Each episode is initiated with a random configuration of the

state observation. The total number of jobs for robots 1 and 2 are randomly chosen from

the considered interval [nmin = 30, nmax = 40] ∩N. The clusters of collision points are

generated at random locations of the state observations. The random numbers are drawn

from a discrete uniform distribution between the given range. The number of clusters

of collision points to be considered is given by the formula: ⌈ n1+n2
5 ⌉, where the operator

⌈⌉ rounds the quantity to the next largest integer. The state observations and the reward

functions are formulated exactly as described in section 3.2.1.

The environment is further wrapped with a TimeLimit wrapper which terminates the

episode if it runs longer than the maximum number of steps provided. We considered

the maximum number of steps for the timelimit wrapper to be 80. Since nmax = 40, the

path must be found within 80 steps even in the worst-case scenario. The environment is

further wrapped with a RunStas wrapper which stores the statistics of the learning which

can be later used for metric calculations. Finally, the environment must be wrapped in-

side the TFPyEnvironment wrapper. This makes the environment usable within a Ten-

sorFlow graph. After creating a useable environment, DDQN agent and other essential

components need to be created before training. In the upcoming sections, the training

architecture of the built system is discussed.

3.7.2 Deep Q learning training Architecture
The training program is split into two parts that run in parallel, namely, the collection

of the trajectories and the training. Deep Q-learning training architecture can be seen in

the Figure 3.6. Initially, a collect driver explores the environment using a collect policy

to chose actions for a certain number of steps. These collected trajectories are saved into

the replay buffer (replay memory) by the observer. The agent pulls small batches of these

trajectories from the replay buffer and trains the neural network. This process helps re-

duce the correlations between the experiences in a training batch, which tremendously

helps in training. The trajectories created by the actions taken by the network are again

saved back into the replay buffer. In short, the collect policy explores the environment

and collects trajectories and the network learns and updates the collect policy. Random
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actions are taken to explore the environment before exploiting the predictions of the net-

work. The amount of exploration and exploitation is governed by the ϵ - greedy method,

as explained in Section 3.4.1. The common practice of annealing is used in which a high

value of epsilon is used at the beginning which is then gradually reduced to a very low

value as the learning progresses. Therefore, in the initial stages, the agent explores the

environment by taking random action. As the learning progresses, fewer random actions

are taken and the agent starts to exploit the learnt behaviour of the network. Towards the

end, the agent only exploits the learnt behaviour and takes actions based on the prediction

of the network.
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Figure 3.6: Deep Q Learning training architecture.

Deep Q-learning training depends on several components and hyper-parameters. With

an optimal choice of these, the agent learns the optimal behaviour which can be then used

at inference. As discussed in the architecture, we now create all the required components:

the DQN network, DDQN agent, the replay buffer, the collect driver and finally the dataset

to train the network. After creating all the components, we populate the replay buffer with

some initial trajectories and then continue with the main training loop.



3.7 Implementation of Deep Q-Learning for robot scheduling 28

Deep Q Network and Agent

The Q-network takes the state observation as an input and outputs the Q-value for ev-

ery action. The Q-network for the small scale regime of input size nmax × nmax × 2 =

40× 40× 2 is explained in this section. It starts with a prepossessing layer which casts

the observations to a 32-bit float and normalizes it (in our case, the values are already be-

tween 0 and 1). The observations are initially integer. It is not cast to 32-bit float before

to save the RAM space in the replay buffer. After the prepossessing layer, the Q-network

contains 2 convolutional layers, the first having 32 filters of size 4× 4 with a stride of 2,

followed by a layer having 64 filters of size 2× 2 with a stride of 1. Next, the flatten output

of the convolutions layers is passed through a fully connected dense layer with 256 units.

Finally, it applies a dense output layer with 3 neurons, each to represent the Q-values of

the respective actions. All the convolutional and the dense layers except the last output

layer uses the ReLU activation function. No activation is used for the output layer. The ar-

chitecture of the neural network can be seen in the Figure 3.7. In this section, the working

of the convolutional neural networks is not explained. For further details refer [GBC16]

and [Ger19].

Input
Observed
State 

Preprocessing
layer

Conv Layer 1 Conv Layer 2 Dense Layer
 neurons

Dense Output
Layer

 for  
  for  
  for  
 

Figure 3.7: Architecture of the neural network used to train the agent.

Now that we already have the network, we need to now build the DDQN agent. The

DDQN agent provided by TFagents considers a lot of hyperparameters. We first create a

variable to count the number of training steps. We then build the optimizer based on the

problem. All the different optimisers provided by tensorflow or even custom optimisers

can be used for the problem. In our thesis, we considered RMSprop optimiser with a initial

learning rate = 1× 10−3
, decay = 0.90, momentum = 0 and a small value of 0.000001 to

avoid vanishing derivative. We also create a PolynomialDecay object that computes the ϵ

value for ϵ-greedy collect policy, given the current training step. The value decays from 1.0
to 0.01 in 250000 steps. This means that, after 250000 steps, the agent rarely takes a random

action and exploits the network. We then build the DDQN agent which takes the following

arguments: time step, action spec, the Q network, the optimiser, number of training steps

between target model update, the loss function, the discount factor, the train step counter

and finally a function that returns the ϵ value. Various models were trained with different

combinations of hyperparameters. However, the best results were obtained when using

the following parameters: target update period = 1000 training steps, loss function =

Huber loss without reduction and discount factor γ = 0.98. We want the loss function to

return an error per instance and not the mean. That is the reason we set the reduction to

none. Discount factor close to 1 is used as we want the future rewards to count as much
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as the immediate results at least for 30 steps. Since we only have 3 movements possible

without a possibility to move backwards, we need the agent to take optimal actions from

the beginning so that the agent reaches the goal with maximum rewards without getting

stuck between the collision points. Lastly, we need to initialize the agent before using it

for training.

Metric Calculation

Unlike supervised learning, the quality of learning cannot be decided based on the loss

function. The agent must be evaluated repeatedly after certain iterations to check the

performance of the agent until then. TF-agents provides implementations of several RL

metrics that can be directly used to keep track of the number of steps, episodes, aver-

age return, average episode length etc. Additionally, a custom metric evaluation function

can be written which can be repeatedly called after a certain number of iterations to see

the progress. In this thesis, a custom metric function was created which calculates the

average reward, max reward and accuracy. The function is repeatedly called after every

1000 iteration. The agent evaluates its policy on observations from the environment for a

certain number of episodes, say 100 episodes, and returns the considered metrics to log

the progress. Here, accuracy refers to the job completion accuracy in percentage, i.e. the

number of times the agent successfully reached the goal without encountering the colli-

sion points for every 100 episode. The average reward is the average cumulative reward for

100 episodes. Finally, as the name suggests, maximum reward represents the maximum

episode reward received among the 100 evaluated episodes.

Replay Buffer

For saving the experiences, we need to create a replay buffer of sufficient size. Tf-agents

provides a high-performance implementation of the replay buffer with uniform sampling

which takes the following arguments: data specification, batch size and the max length.

It saves the specification of the data in the replay buffer. Therefore the agent knows how

the data will look like. Here, the batch size specifies the number of trajectories that will

be added into the replay buffer at each step. In our case, the value is just one as the driver

just executes one action per step and collects one trajectory. If we considered a batched

environment (returns batched observations), then the driver would have to save a batch of

trajectories at each step. The maximum length argument specifies the maximum size of

the replay buffer. In our thesis, we created a large replay buffer that can store up to 100000
trajectories.

Additionally, we also need to create an observer that writes the trajectories into the

replay buffer. An observer is a function that takes a trajectory as an argument and saves it

in the replay buffer.
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Collect Driver and Dataset creation

A driver explores the environment using the given policy, collects experiences, sends them

to the observer which saves them in the replay buffer. The driver forwards the current

time step to the collect-policy, which chooses an action based on the current time step

and returns an action step object. This action is then passed into the environment by the

driver, which returns the next time step. Lastly, it creates a trajectory object to represent

the transition and sends it to the observer. In the case of a batched environment, all the

above operations are carried out in batches. Tf-agents mainly provides two drivers: Dy-

namic Step Driver which collects experiences for the given number of steps and Dynamic

Episode Driver which collects experiences for a given number of episodes. In this thesis,

a dynamic step driver was used to collect experiences for every step. The step driver takes

the following arguments: the environment, agents collect-policy, list of observers, and fi-

nally the number of steps (1 in our case). The driver is run in every iteration to collect

experience.

As discussed before, it is a good practice to fill the replay buffer with certain initial expe-

riences using a purely random policy. To implement this, we use the random policy class

to create another driver which runs for certain initial steps. In our thesis, the step driver

with random policy is run for 5000 steps, in the beginning, to collect initial experience

before training.

The final step before training is to create a data set sampled from the replay buffer.

To do so, it is important to understand how the trajectories are saved. Each trajectory is

a concise illustration of a chain of consecutive time steps and action steps, designed to

avoid redundancy. Transition n consists of time step n, action step n, and time step n + 1,

while transition n + 1 consists of time step n + 1, action step n + 1, and time step n + 2.

If we save them directly into the replay buffer, the n + 1th
time step will be duplicated. To

avoid this redundancy, the nth
trajectory step includes only the type and observation from

time step n (not its reward and discount), and it does not contain the observation from

time step n + 1. However, it does contain a copy of the next time step’s type which is the

only duplication [Ger19, p. 659].

For training our main loop, we use the Dataset method provided by TFagent. In this

way, we benefit from the power of Data API in terms of parallelization and prefetching. In

our thesis, a batch size of 128 trajectories is sampled at each training step, each having 2

steps (1 full transition including next step’s observation). The dataset processes 3 elements

in parallel and prefetches 3 batches. Now that all the components are created, the agent

can be trained to solve the collision control system.
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3.7.3 Training
Before jumping into the final training, all the hyperparameters used are summarized be-

low in Table 3.1. Several different combinations of parameters were tried and the best-

known set of parameters are listed here.

Hyperparameters Value Hyperparameters Value
Iterations 1000000 Loss Function Huber

Replay buffer size 100000 Optimizer RMSProp

Initial collect steps 5000 Learnrate, Decay 1× 10−3
, 0.90

Target update period 1000 Discount Factor 0.98
Evaluation interval 1000 ϵ-greedy decay steps 250000
Evaluation episodes 100 Batch size for dataset 128

Table 3.1: List of hyperparameters used to train the agent.

In the training, the agent first calls the collect-policy for its initial state. Since the policy

is stateless, it returns an empty tuple. Next, we iterate over the dataset and run the training

loop. At each iteration, the collect driver calls the run method by passing the current time

step and the current policy state. It runs the collect policy and collects experience for the

step and broadcasts it to the replay buffer. Next, we sample a batch of trajectories from the

dataset and pass it to the agent to train it. After every 1000 iteration, we log all the met-

rics that are calculated by evaluating the policy (or provided directly by Tf-agents). This

training iteration needs to be finally run for a certain number of iteration. In this thesis,

the agent was trained for 1000000 iterations and it could be seen that the agent gradually

learnt the system by maximizing its rewards over time. The iterations are computation-

ally expensive and require a lot of computational effort to learn the system. Moreover,

different random seeds result in different results and therefore, the algorithm needs to

be run several times with different random seeds to achieve an excellent result. However,

once the training is complete, the agent will efficiently find the path from the source to

the goal. Also, at inference, we just handle the neural network and its weights and hence

it is computationally inexpensive compared to training. Unlike supervised learning, the

model weights returned at the end of the learning need not be always the best possible

results. The results of Deep Q learning keep fluctuating and therefore the policy with the

best accuracy and best average reward must be saved for evaluation. This is carried out by

comparing the metrics after every 1000 iteration. The policy with the best metrics (highest

accuracy and max return) is saved and can be used at inference. Also, the loss is not a good

metric to measure the quality of learning which can be seen in Chapter 5.

The results of the Deep Q learning are thereby compared with different shortest path

algorithms which are based on graph theory. The next chapter brushes through the graph
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theory and explains the working of different shortest path algorithms. There, we attempt

to represent the state observation as a graph and try to search the shortest path using

various graph-based algorithms.



4 Methodology 2 - Graph
based Approaches

In the previous chapter, we represented the robot scheduling task as a collision control

environment in order to schedule the robots efficiently by using reinforcement learning.

In this chapter, we attempt to solve that problem by representing the multi-robot system

as a graph. We then exploit different graph-based shortest path algorithms for the efficient

scheduling of the robots. We further discuss a few speed-up techniques to solve the task

in the least time possible.

4.1 Graphs and paths
A graph is a non-linear data structure consisting of nodes and edges. The nodes are also

referred to as vertices and the edges as arcs or arrows that connect two nodes of a graph.

A graph can be mathematically represented as G = (V, E) which consists of a set V of

vertices and a set E ⊂ V × V of edges. An edge is the ordered pair (u, v) ∈ E of nodes

u, v ∈ V, where u and v are source and destination nodes of an Edge set E for an uni-

directed graph. The size of the graph is represented in terms of the number of vertices

and edges of a graph and this number of vertices and uni-directed edges is represented

by |V| and |E| respectively. A weighted graph G(V, E, w) is a graph G(V, E) with an edge

distance/length/weight: w → R+
. In weighted graphs, non-negative weight w(u, v) or

dist(u, v) is assigned to each edge (u, v).

Directed graphs are a category of graphs that don’t presume symmetry or reciprocity

in edges that connects the vertices. In a directed graph, if u and v are two vertices con-

nected by an edge, then there necessarily does not exist an edge connected in the opposite

direction (v, u). However, the undirected graph assumes reciprocity in the relationship

between the pair of the vertices connected by an edge. In this case, if an edge (u, v) exists

between two vertices, it guarantees that the edge (v, u) also exist [AMO93, p. 24]. Figure

4.1 gives an example of both directed and undirected weighted graphs. As we see in the

Figures 4.1(a) and 4.1(b), the only difference between the two is the relationship between

the pair of the vertices connected by an edge. All the examples considered in this chapter

are not merely random, but represents the graph or portions of the graph used to repre-

sent our problem.

A path P in a graph G from vertices u to v is a finite sequence of vertices {u1, u2, u3, ..., uk},
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Figure 4.1: An example for directed and undirected graph.

such that u = u1, v = uk and (ui−1, ui) ∈ E for all 1 ≤ i ≤ k. The hoplength hop(P) is

the total number of edges in the path P: hop(P) = k. For a weighted graph, the length

or total weight w(P) of path P is the sum of weights of all the consecutive edges of the

path, i.e. w(P) = ∑k
i=1(ui−1, ui). P is the shortest path if there is no other path P′ from u

to v with w(P′) < w(P). A similar definition is possible in terms of hoplength for a un-

weighted graph. In the weighted graph, the distance dist(u, v) of two vertices is the total

weight/length of the shortest path P = (u, .., v): dist(u, v) = min{w(P) : P = (u, .., v)}.
If no path exists between the source u and target v, then the distance dist(u, v) = ∞. If all

the vertices on a path P are pairwise distinct, then the path P is called simple. However

a path P = (u, ..., v) is cyclic, if the target v = u and the hop(P) > 0 [Col19]. Since our

problem deals with completion of the robot jobs and finding an efficient job path, we deal

with simple graphs to find the shortest paths.

4.1.1 Representation of Graphs
A graph can be represented in two standards ways: a collection of adjacency lists or a adja-

cency matrix. Although both representations can be used interchangeably, adjacency list

representation is usually preferred for sparse graphs as it provides a compact way to rep-

resent a sparse graph. A sparse graph is a graph in which the number of edges is close to

the minimal number of edges. For a sparse graph |E| is much less than |V|2. However, a

adjacency matrix representation is preferred for a dense graph where |E| is close to |V|2.

A dense graph is opposite to a sparse graph and can be defined as a graph in which the

number of edges is close to the maximal number of edges.

The adjacency list representation consists of a list or array ’Adj_list’ containing |V| lists,

one for each vertex in V. For every u ∈ V, the adjacency list Adj_list consists of all the

vertices adjacent to u. If there exists two edges (u1, u2) and (u1, u3), then Adj_list[u1] con-

tains all the connected vertices u2 and u3. For a directed graph, the total sum of lengths
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of all the adjacency lists is |E| and for an undirected graph, it is 2|E|. The total amount of

memory it requires is O(V + E). This representation can be easily extended to represent

weighted graphs. Weights are represented alongside the adjacent vertices that the source

u is connected to. That is, the weight w(u, v) of the edge (u, v)is simple stored with vertex

v in u’s adjacency list. This representation is robust, memory efficient and can be used to

represent a variety of sparse graphs. However, the potential disadvantage is that there is no

quick way to determine the presence of the edge (u, v) in the graph, other than searching

for the vertex v in the adjacency list Adj_list[u] [Cor+01, p. 528]. An example for adjacency

list representation can be seen in Figure 4.3.

For the adjacency matrix representation [Cor+01, p. 529], if we assume that the vertices

are numbered 1, 2, ..., |V| in some arbitrary manner, then the adjacency matrix consists of

|V| × |V|matrix A = (aij) such that:

aij =

1, if (i, j) ∈ E,

0, otherwise

(4.1)

An example for adjacency matrix representation can be seen in Figure 4.4. The adjacency

matrix representation requires a memory ofO(V2) and does not depend on the number of

edges in the graph. For an undirected graph, A = AT
and therefore in some applications,

one of the values above the diagonal are stored. The adjacency matrix representation can

be easily adapted to weighted graphs. For a weighted graph G, the weight w(u, v) is simply

stored as the entry in row u and column v of the adjacency matrix. If an edge does not

exists, it can be stored as 0 or ∞ representing no or infinity distance. In other words, all

the 1’s in the adjacency list can be replaced with the respective weights, i.e. for a adjacency

matrix A = (aij), we have

aij =

w(i, j), if (i, j) ∈ E,

∞, otherwise

(4.2)

Since it is memory intensive, adjacency list representation is usually preferred for reason-

ably small and sparse graphs.

4.1.2 Robot scheduling task as a Graph
The robot scheduling task can be easily represented as a graph and can thereafter be

queried with various algorithms to find the shortest path from the source to the target.

This shortest-path would then represent the optimal job scheduling path without encoun-

tering collision points. The problem can be represented as a graph with the number of

nodes equal to the total number of job positions possible. So, if n1 and n2 are the total

number of jobs for the robot 1 and 2 respectively, the generated graph must have n1 × n2

nodes in total. In the robot scheduling task, as discussed earlier, each job position can be
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moved in 3 directions at a given time: right, down and diagonally right. Therefore each

vertex is connected to 3 other vertices representing right, down and diagonal movements,

except when the job sequence is at n1 or n2. In such cases, only 1 directional movement

is possible, i.e when robot 1 has already completed its set of jobs, the rest of the jobs are

executed by robot 2 and vice versa. Since each edge represents the completion of a job,

the edges are unidirectional. The generated graph is therefore a directed graph. The to-

tal number of edges can be calculated as 3× (n1 − 1)× (n2 − 1) + (n1 − 1) + (n2 − 1).
When the job position reaches the final node, the job sequence is deemed to be complete.

Figure 4.2 shows the general representation of a graph for n1 and n2 number of jobs for
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Figure 4.2: General representation of the scheduling task as a graph for a two robot system with n1

and n2 number of jobs.
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robots 1 and 2 respectively. The collision matrix is converted to a graph where each entry

is represented by vertices and the connection from one entry to the next is represented by

edges. The collision points are coloured grey similar to the previous chapters.

Adjacency list representation is preferred over the matrix representation, as the gen-

erated graph is sparse. For example, in a task having total number of jobs n1 = 5 and

n2 = 5, the total number of edges |E| can be calculated using the formula described ear-

lier as 3× (5− 1)× (5− 1) + (5− 1) + (5− 1) = 56 which is much less than the total

possible edges |V|2 = |5× 5|2 = 625. To find the optimal shortest path, the edge weight

must be carefully formulated based on the problem knowledge. As already discussed,

taking a diagonal step is optimal since both the robot jobs are executed simultaneously.

Therefore, the diagonal edge is weighted less compared to the edge towards the right and

the downward direction. The edge weight of w = 1 is assigned to the diagonal edge and

w = 2 is assigned to the other two edges connecting the adjacent vertices. Since a path is

not possible through the collision points, the edges connecting the collision vertices are

assigned the weight w = ∞. Since we aim to find the shortest path, considering similar

1
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3

 -1

2 2 2 1

3 2 2 1

4 2 2 1

2

Parent Node List of nodes connected to Parent Node. Format - (Node, Edge Weight)

Figure 4.3: Adjacency list graph representation for total number of jobs per robot: n1 and n2.
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edge weights for diagonal and non-diagonal movement would also give optimal results.

However, assigning edge weight as mentioned would speed up the search algorithms as

taking a diagonal step is always favoured unless not possible. Moreover, we assign the

edge weights similar to rewards achieved by the agent for taking a certain action for ease of

comparison. For every problem, the graph must be created before querying with different

algorithms. Therefore, the method is scalable and can be used to solve any configuration

of a n-robot system irrespective of its size. Figure 4.3 shows the adjacency list representa-

tion of the graph for total numbers of robot jobs n1 and n2.

1 2 .. .. . .
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0 0 . . 0 0 0 . . 0 . . 0 0 . . 0

Figure 4.4: Adjacency matrix graph representation for total number of jobs per robot: n1 and n2.
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Although we use adjacency list representation, adjacency matrix representation is also

considered for a single case to compare the time taken to create and search the shortest

path. Figure 4.4 shows the adjacency matrix representation of our task for n1, n2 number

of jobs for robot 1 and robot 2 respectively.

Different graph representations are chosen to speed up the search process. For exam-

ple, the collision vertices and their respective edges can be omitted before searching the

shortest path. Since a considerable amount of collision points exist in the data set, remov-

ing these vertices will reduce the total number of vertices considered in the graph, which

in turn reduces the computational efforts. In the upcoming sections, we discuss different

algorithms to find an optimal path through the graph from the starting vertex s = 0 to the

target t = n1 × n2. Implementation of the algorithms and various speed-up techniques

are explained later in this chapter in Section 4.8.

4.2 Breadth-first search vs Depth-first search
Before diving into the shortest path algorithm, we first discuss the two major search algo-

rithms: Breadth-first search (BFS) and Depth-first search (DFS) [Cor+01, p. 531-549]. These

are one of the simplest algorithms for searching a graph. As the name suggests, DFS

searches deeper in the graph whenever possible. The algorithm starts from the source

node and explores as far as possible along each branch before backtracking. The edges

are explored from the most recently discovered vertex v that still has undiscovered edges

leaving it. When all the edges of vertex v are discovered, the algorithm backtracks to ex-

plore the vertex from which v was discovered. This process continues till all the reachable

nodes are visited. If any of the vertices remain undiscovered, then one of them is selected

as the new source and the search is repeated till all the vertices are scanned. DFS uses a

stack (First in Last out) to store the visited nodes.

BFS is the opposite of DFS. It starts at the root source node and explores all the neigh-

bouring nodes at a present dept/layer before moving to nodes present in the next depth. It

is moved to the next node when all the neighbours of the current layer are traversed. For

a given Graph G and a source s, BFS systematically explores the edges of the graph to tra-

verse every vertex which is in reach of the s. It computes the distance from each reachable

node (smallest number of edges) to s. BFS uses a Queue (First in First out) to implement

the search algorithm. It starts from the source nodes and visits the unvisited adjacent

nodes (shortest numbered). Once scanned, it marks it visited and stores it in the Queue.

When no adjacent vertex is found in that layer, the first vertex of the queue is popped and

the process is continued till the queue gets empty. Each time a node is visited, it is also

stored in a ’discovered’ list to keep a track of all the visited nodes. In general, we use the

Breadth-first algorithm when the vertex we search is relatively close to the root as the al-

gorithm searches across the breadth of the root. We use a depth-first algorithm when the
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vertex is deep in the graph as it traverses deeper quickly. BFS also produces a breadth-first

tree from source s that contains all the reachable nodes. If a vertex v is reachable from s,

the path in the breadth-first tree corresponds to the shortest path from s to v. When a

vertex v is discovered will scanning from the vertex u, the edge (u, v) is added to the tree.

The vertex u is called the predecessor/parent of v in the breadth-first tree. Every vertex has

at most one predecessor as every vertex is discovered only once. BFS is not affected by the

weight of the edge. Therefore, if the edge weight of a weighted graph is identical (or has

no weight) and is not cyclic, it can be used to find the shortest path. If not, it must be

slightly modified which gives rise to Dijkstra’s shortest path algorithm.

4.3 Dijkstra’s Algorithm
Computing the shortest path from the source s to target t in a weighted graph is a clas-

sic problem in computer science. Dijkstra’s algorithm finds the shortest path in a graph

G = (V, E) by solving the single-source shortest-paths problem on a weighted graph for

the case in which all edge weights are non-negative. In this section, we therefore assume

that the weights w(u, v) ≥ 0 for each edge (u, v) ∈ E. The algorithm was formulated

by computer scientist Edsger W. Dijkstra in 1956 and published a few years later [Dij59].

Many variants of Dijkstra’s algorithms exists of which few are discussed in our study.

Dijkstra’s algorithm originally found the shortest path between two given nodes [Dij59],

but a more common variant fixes a node as a source node and finds the shortest path

from this node to all other nodes by analysing the graph. The algorithm keeps track of

the already known shortest distance from the present node to the source node and thereby

updates it if a shorter path is found. Once the shortest path between the source and the

present node is computed, this node and its corresponding distance from the source node

are added to the path. This process continues until the shortest path for all the traceable

nodes is computed. Hence, it returns a path that connects the source node to all the other

nodes with the shortest possible distance/weight from the source node.

Dijkstra’s algorithm starts from a given source vertex s ∈ V and visits all the other

vertices u ∈ V sorted by ascending order of distances dist(s, u). The algorithm keeps a

tentative distance array d(u) to store the distances of all the vertices from the source vertex

s. The distance is initially set to ∞ for all vertices u except the starting vertex, i.e for u ̸= s.

Starting with the source node s having distance d(s) = 0, in each iteration, it repeat-

edly chooses a reachable vertex u having minimal distance estimate for which dist(s, u)
is still unknown and settles it. A vertex is settled if its shortest distance from the sources

is already found. Therefore, it sets the shortest distance dist(s, u) to d(u), adds u to the

visited list and relaxes all the edges leaving u. Relaxing all the outgoing edges (u, v) ∈
E refers to as comparing and possibly updating all the estimated distances d(v) with
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d(u) + dist(u, v), if smaller. A vertex is marked visited if its distance has been updated

at least once. It thus updates the estimate d(v) and the predecessor pred(v), if the short-

est path to v can be improved by going through u. The choice of vertex u with minimal

estimated distance d(u) is commonly implemented using a minimum priority queue Q
keyed by their d values that keep track of all the vertices that are discovered but not set-

tled yet. A minimum priority queue is an abstract data type that provides 3 basic oper-

ations: insert(), decrease_priority() and extract_min(). Using such a data structure in-

creases computational speed compared to a basic queue. Generally, a minimum priority

queue is initialized in the beginning with all the vertices and then extracted in each iter-

ation. The priority is then decreased every time a vertex is settled. Instead of initializing

the priority queue with all the vertices and then decreasing priority after each relaxation,

it is also possible to initialize it to contain only the source vertex along with its distance.

During relaxation, the new vertex is inserted into the queue if it is already not present in

the queue. An implementation of Dijkstra’s algorithm in pseudo-code can be seen in the

Algorithm 2.

Algorithm 2: Dijkstra’s Algorithm

1 Function DIJKSTRA(Graph, Source):
2 Create Vertex priority queue Q
3 d[Source]← 0
4 for vertex v in Graph do
5 if v ̸= Source then
6 d[v]← Infinity

7 pred[v]← None

8 end
9 Q.Insert(0, Source)
10

11 while Q is not Empty do
12 u← Q.Extract_min()
13 for neighbour v of u do
14 tentative_distance← d[u] + dist(u, v)
15 if tentative_distance < d[v] then
16 d[v]← tentative_distance
17 pred[v]← u
18 Q.Insert(tentative_distance, v)
19 end
20 end
21

22 return d, pred

To compute the shortest path tree, it is important to remember that u is the predeces-

sor of v if a shorter path to v is found. As seen above, Dijkstra’s algorithm computes the
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shortest path to all the vertices in the graph. However, if only one shortest path is required

to a target vertex t, the algorithm can be terminated when the vertex t is settled.

Dijkstra’s algorithm is correct because the vertex u ∈ V gets settled only after all the

vertices with smaller distances are already settled, i.e after all the vertices that could pos-

sibly lie on the path shorter than the current distance d(u) are taken into consideration.

Furthermore, each possible path is taken into consideration while finding the shortest

path. All the outgoing edges uv of any already settled vertex u are relaxed so that any

vertex reachable from s is eventually inserted into the queue and hence eventually settled

[Col12].

4.3.1 Proof of Correctness
The proof of correctness of Dijkstra’s algorithm is constructed by using induction on the

number of visited nodes.

In the base case, there is just one visited node, namely the source node itself. In this

case, the shortest distance is 0 and the empty path to the source node is optimal.

For the inductive case, we need to prove that if the Dijkstra’s algorithm finds the k -

shortest path correctly, it must also find the k + 1 - shortest path. We prove this by con-

tradiction. Suppose the algorithm fails to find the shortest path for k + 1th
case correctly,

then there must be a shortest path to a vertex other than the one found by Dijkstra’s algo-

rithm that is not in the set of vertices reached by k-shortest paths. We can then show that

this shorter path does not exist, and hence the path given by Dijkstra’s algorithm is the

shortest.

Assume that Dijkstra’s algorithm picks a vertex v to add to the shortest path tree having

the shortest path distance d(u) + dist(u, v), where the algorithm has already found the

shortest path to vertex u. By the inductive hypothesis, it is already found in previous iter-

ations that the shortest path to u is correct. We need to now show that this is the shortest

path of all the different paths from source s to vertex u.

Now, we assume that there exists a shorter path P2, from source s to vertex v that has not

yet been discovered. Any such path from s to v must cross the frontier between vertices

whose shortest paths are known and vertices for which the shortest paths are not known.

Let the path P2 pass through the edge (x, y) such that there is a known shortest path from

s to x, followed by the edge (x, y) and finally a path from y to v. As per the assumption of

the algorithm, the distance of the last section of the path P2 from y to v must be greater

than or equal to 0 (since all the edge weights must be non-negative).
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Finally consider the distance of the path P2 from vertex s to y given by d(x) + dist(x, y).
But the proposed better path from s to y must be lesser than or equal to the shortest

path from s to v, i.e. d(x) + dist(x, y) ≤ d(v) or d(y) ≤ d(v). Also, since the Dijkstra’s

algorithm tries to choose the vertex with minimum distance from the source, we have

d(v) ≤ d(y). Therefore, it contradicts that the vertex chosen by Dijkstra’s algorithm is

the closest vertex to the source s among all the vertices one edge away from the vertices

for which the shortest path is already known. Thus it proves the correctness of Dijkstra’s

algorithm.

4.3.2 Complexity
Run time bounds of the Dijkstra’s algorithm on a graph with edges E and vertices V is

expressed as a function of the number of edges and vertices, denoted by |E| and |V| re-

spectively, using the big -O notation. The time complexity bounds mainly depend on the

data structure used to represent the queue Q. The simplest version of Dijkstra’s algorithm

stores the vertices in an array or a list and the minimum is extracted using a linear search.

In such cases, the time complexity isO(|V|2). For sparse graphs, Dijkstra’s algorithm can

be implemented more efficiently with adjacency list representation. The binary heap and

the Fibonacci heap is used as a priority queue to extract minimum distance efficiently.

With a self-balancing binary search tree or binary heap, the algorithm complexity is re-

duced to O((|E|+ |V|)log|V|) in the worst case. For a connected graph, this reduces to

O(|E|log|V|). Finally, by using the Fibonacci heap, the time complexity can be further re-

duced toO(|E|+ |V|log|V|). The minimum priority queue used here uses the Fibonacci

heap to return the minimum distance which has a complexity of O(1) compared to the

binary heap which takes O(log(n)) time.

4.4 Best first search
As we saw in the previous section, BFS and DFS both consider an adjacent vertex and they

explore paths without considering the cost function. However, the idea of the best first

search is that the algorithm explores the graph by expanding the most promising vertex

chosen based on a cost evaluation function, i.e. it explores the graph by expanding the

node with the least cost first. A priority function is used to assign a cost to each candidate

node in a decreasing order of desirability. Efficient selection of the current best candidate

for extension is typically implemented using a priority queue. The key component of the

best first search is the cost evaluation function f (v) which is defined in terms of heuristic

evaluation function h(v) which may depend on the description of vertex v, the distance to

the goal t, information gather up-to that point etc [RN10, p. 94]. Heuristic functions are

the most common form in which additional knowledge of the problem is passed to the

search algorithm. The heuristic evaluation function could be generic or problem-specific.

If it uses the tentative distance up to a point, then it becomes similar to Dijkstra’s algo-



4.5 Goal Directed Dijkstra’s or A* 44

rithm. Best-First Search algorithms constitute a large family of algorithms, with different

evaluation functions having a variety of heuristic functions. The two special cases of the

best first search are greedy best-first search and A-star search.

Most commonly, the heuristics evaluation function that attempts to estimate the dis-

tance from the current vertex v to goal t is used, so that the path which is close to the

goal t are extended first. This type of search is called pure heuristic or greedy best-first

search. Greedy best-first search expands the node that appears to be nearest to the goal.

Straight line distance heuristics hSLD(v) from the vertex to the goal t could be used as a

cost estimate. However, the greedy best-first search is neither complete (can get stuck in

loops) nor optimal (does not guarantee a solution with the lowest cost).

4.5 Goal Directed Dijkstra’s or A*
A-star is an optimization of Dijkstra’s and best first algorithm. It is used for a case when

the source and target are known, and at any given point, the distance from the given point

to the target can be estimated. The estimation need not be precise, but the algorithm

speeds up the search and gives an optimal solution when a good estimate is chosen. The

technique modifies the priority of the unvisited nodes to alter the order in which the ver-

tices are processed.

A goal-directed Dijkstra’s algorithm adds a potential ρt to the priority d(v) based on the

goal t. These potential functions are functions that map vertices to real numbers. Given

the potential ρ, we can define the new edge weights for every vertex with a reduced cost:

dist′(u, v) = dist(u, v)− ρ(u) + ρ(v) (4.3)

With a suitable potential, the search may be driven closer to the goal, thereby decreas-

ing the running time even as the algorithm returns an identical shortest path [Koz10]. In

other words, running Dijkstra’s algorithm on the transformed graph with the new edge

weights dist′ results in the same shortest path as running Dijkstra’s algorithm on the orig-

inal graph. However, for the search to return the shortest path, the new edge weight dist′

must be feasible.

For a weighted graph G(V, E), a potential ρ : V → R is called feasible, if dist(u, v)−
ρ(u) + ρ(v) ≥ 0 for all edges e ∈ E

Potential ρ(v) is the estimated distance from vertex v to target t. With such an estimate,

the search avoids taking the incorrect direction and directs towards the target. It can be

shown that the feasible potential ρ is the lower bound of the distance to the target. For

example, a straight line distance from the vertex v to the target t is always lesser than or

equal to the actual distance from vertex v to target t. With a tighter bound, the search is
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attracted more towards the target. To be precise, goal-directed Dijkstra’s algorithm visits

nodes only on the shortest path, if the potential is the exact distance to the target [Koz10]

[WW07].

A-star algorithm is essentially a different representation of Dijkstra’s algorithm with

potential. In each step, it picks a minimizing distance of vertex v, which is dist(s, v) −
ρ(s) + ρ(v), where dist(s, v) is the distance of the path from source s to vertex v . Here we

notice that the potential ρ(s) is same for all the vertices. Therefore, the vertex which mini-

mizes this expression is same as the vertex that minimizes dist(s, v) + ρ(v). The potential

ρ(v) can be considered as a heuristic function h(v) that estimates the cheapest path from

vertex v to target t.

The above equation can be rewritten in terms of cost evaluation function f (v) as follows:

f (v) = g(v) + h(v) (4.4)

= dist(s, v) + h(v, t) (4.5)

where g(v) is the exact cost/distance of the path from source to vertex v and h(v) is the

heuristic function that estimates the distance to the target t. The algorithm balances the

two as it searches from source to the target. At each step in the loop, it chooses a vertex v
which has the minimum cost f (v). Typically, the algorithm uses a priority queue to select

the minimum cost vertices to expand. The heuristic function used is problem specific. If

the function never overestimates the actual cost to the target and is the lower bound to the

actual distance dist(v, t), i.e. h(v) ≤ dist(v, t), it is called admissible. When the heuristic

function is admissible, the algorithm is guaranteed to return a minimum cost/distance

from source to target. A* algorithm terminates when the path it tries to extend is the

target or if there are no paths eligible to be extended. Moreover, applying Dijkstra’s al-

gorithm on the transformed graph with edge weights dist′(u, v) is the same as applying

A* on the original graph with a suitable potential/heuristics. Therefore, if the heuristic is

admissible, the algorithm guarantees a shortest path, and in such cases, it can be called

A-star with admissible heuristic or Goal-directed Dijkstra’s algorithm interchangeably. In equa-

tion (4.5), if g(v) = 0, then the algorithm becomes greedy best fit search and if h(v) = 0,

then it becomes original Dijkstra’s algorithm.

An implementation of the A-star algorithm in pseudo-code can be seen in the Algorithm

3. The implementation is specific to our problem. Here, the function Loc returns the grid

location of a particular vertex. The dimension of the grid location depends on the number

of robots considered in the system, i.e. 2D for 2 robot systems, 3D for 3 robot systems

and so on. In the thesis, the Manhattan distance (straight line distance) from the present

vertex to the target is taken as a heuristic/potential. Since the straight-line heuristic never

overestimates the actual distance, the heuristic is admissible and hence guarantees an

optimal path. With an efficient choice of heuristic function, the A* algorithm works on
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any graph structure.

Algorithm 3: A-star Algorithm

1 Function heuristic(vertex : Grid Location, Target : Grid Location):
2 return abs(sum(Target− vertex))
3

4 Function A-star(Graph, Source, Target):
5 Create Vertex priority queue Q
6 d[Source]← 0
7 for vertex v in Graph do
8 if v ̸= Source then
9 d[v]← Infinity

10 pred[v]← None

11 end
12 Q.Insert(0+ heuristic(Loc(Source), Loc(Target)), Source)
13

14 while Q is not Empty do
15 u← Q.Extract_min()
16 if u == Target then
17 break

18 for neighbour v of u do
19 tentative_distance← d[u] + dist(u, v)
20 if tentative_distance < d[v] then
21 d[v]← tentative_distance
22 pred[v]← u
23 priority← tentative_distance+ heuristic(Loc(v), Loc(Target))
24 Q.Insert(priority, v)
25 end
26 end
27

28 return d, pred

4.5.1 Complexity
The time complexity of the A* or goal-directed algorithm depends on the choice of the

heuristic function. Here we use different notations. In the worst case of unbounded space,

the number of vertices expanded is exponential in the dept of the solution d: O(bd), where

b is the branching factor [RN10]. We assume that the goal is reachable as is at a dept d from

the source. Good heuristics are those having minimum branching factors. The optimal

branching factor is b∗ = 1. Therefore in the best-case scenario, the computational time

complexity reduces to O(1). In the worst case, it has the same complexity as Dijkstra’s
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algorithm.

4.6 Bi-directional Search
Bi-directional search is a search algorithm that is used to find the shortest point from

the source s to target t in a weighted directed graph. As the name suggests, it searches in

the forward direction from source s towards target t and in the backward direction from

target t towards source s. For the backward variant, the algorithm is applied to the re-

versed graph, i.e., a graph with the same vertex set V as that of the original graph G, and

the reverse edge set E = (u, v)|(v, u) ∈ E [WW07]. If a path between the vertices exists,

the search terminates when the two vertices meet. One degree of freedom of bidirectional

search is the order in which forward and backward search is executed. Different bidirec-

tional search algorithms can use different priority functions and can use different strate-

gies for alternating between the forward and backward search. Few forward and backward

search strategies are to choose the direction with a smaller priority queue, select based on

the smaller minimal distance in the queue, simultaneously implement in both directions

or simply alternate between the searches. Most commonly, the algorithm alternates be-

tween the forward and the backward search. The intuition behind bi-directional search

is as follows. Suppose we consider the search space of the algorithm as a growing ball

towards the goal. In bidirectional search, the growing ball around each end s and t would

terminate when they meet. From this, a path can be found from the source to the target

with a reduced search space. The bidirectional approach is usually considered when both

the source and target states are unique and completely defined and the branching factor is

the same in both directions. For the bidirectional search to return shortest paths, different

shortest path algorithms can be used in a bi-directional manner with specific stopping cri-

teria. In this section, bi-directional Dijkstra’s (see Section 4.6.1) and bi-directional search

guided by a heuristic (A*) (see Section 4.6.2) is discussed in details.

4.6.1 Bi-directional Dijkstra’s Algorithm
Bi-directional Dijkstra’s runs Dijkstra’s algorithm in both forward and backward direc-

tions. It optimises the Dijkstra’s algorithm and returns the shortest path in a reduced

time. The directed graph must be initially reserved to facilitate backward search. In the

considered task, the source and the target vertices are unique and the branching factor is

same in both the direction as the graph representation is symmetric. Therefore, alternat-

ing the two searches will reduce the overall speed up to half the speed of unidirectional

Dijkstra’s algorithm. Therefore, in this implementation, forward and backward searches

are performed alternatively.

The most important factor in bidirectional Dijkstra’s algorithm is the stopping condi-

tion. If we consider S f and Sb to be the set of vertices already discovered in forward and
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backward search respectively, then there is no guarantee that a newly detected edge (u, v)
between S f and Sb would contribute to the shortest path. Therefore, stopping the search as

soon as finding the edge (u, v) between the detected vertices in the forward and the back-

ward search with total distance of d f [u] + dist(u, v) + db[v] or d f [v] + dist(v, u) + db[u] is

incorrect. Here d f and db are the distance labels of forward and backward search respec-

tively.

The algorithm can be terminated when one of the nodes is permanently designated by

both forward and backward search. If x is the designated permanent vertex, then the short-

est path is determined by the vertex x with the least distance d f (x)+ db(x) and it composes

the shortest path from source s to intermediate vertex x found by the forward search and

shortest path from vertex x to the target t found by the backward search. The vertex x
itself needn’t be settled by both searches [WW07]. An implementation of Bi-directional

Dijkstra’s algorithm in pseudo-code can be seen in the Algorithm 4. Here, only the im-

plementation of the main iteration is explained since the initialization is the same as the

original Dijkstra’s algorithm. Since we are dealing with a directed graph, the graph must

be initially reversed for the backward search. Similar to the basic Dijkstra’s algorithm, we

start with forward estimations d f from source s and backward estimations db from target

t. These are initialized to infinity except d f [s] = 0 = db[t]. Similarly, two minimum pri-

ority queues: forward Queue Q f and backward Queue Qb are considered which are both

initialized with the first vertex and corresponding distance. We also maintain two sets S f

and Sb to store processed vertices in forward and backward search respectively, which is

initially empty. Also, a number µ is maintained which is initially set to infinity. µ stores

the distance of the shortest path s⇝ t yet seen. In forward and backward search, when an

edge connects the two sets of processed vertices S f and Sb, and when the distance of the

found path is lower than µ, µ is updated to the present path distance. Therefore, in each

iteration, µ is updated to a shorter path, if any, until the shortest path is found. Therefore,

when the algorithm exists the search, the value of µ is exactly equal to the distance of the

shortest path from source s to target t. To recover the actual shortest path, a vertex must

be maintained which gets updated to the considered vertex x every time µ is updated. The

shortest path is then s → x from the forward search followed by the shortest path x → t
from the backward search.

Now we discuss the correctness of the termination condition for bidirectional Dijkstra’s

algorithm. Suppose there exists a path P from s→ t with a distance lesser than µ. It cannot

consist of a vertex x outside Q f ∪Qb. As per the proof of Dijkstra’s algorithm, the consid-

ered vertex is at least d f [u] from source s and at least db[v] from target t. Therefore, path P
would have a distance of at least µ. Thus P is contained in the set of processed vertices S f ∪
Sb. Here, it is considered when one of its edges was first found to connect the two sets of

processed vertices and µ was updated to something at most the length of P [Tow20] [Gol+].

Therefore, bi-directional Dijkstra’s is correct and gives the optimal shortest path. When
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multiple shortest path exists, the shortest path given by bidirectional search might vary.

Algorithm 4: Bi-directional Dijkstra’s Algorithm

1 Function Bi_Directional_DIJKSTRA(Graph, Source, Target):
2 RGraph = Graph.reverse()

3 ...

4 Q f .Insert(0, Source)
5 Qb.Insert(0, Target)
6

7 µ← infinity

8 while Q f and Qb is not Empty do
9 u← Q f .Extract_min(); v← Qb.Extract_min()
10 S f .add(u); Sb.add(v)
11

12 if d f [u] + db[v] ≥ µ then
13 break

14

15 for neighbour x of u do
16 tentative_distance← d f [u] + dist(u, x)
17 if tentative_distance < d f [x] then
18 d f [x]← tentative_distance
19 pred f [x]← u
20 Q f .Insert(tentative_distance, x)
21 if x in Sb and d f [u] + dist(u, x) + db[x] < µ then
22 µ← d f [u] + dist(u, x) + db[x]
23 end
24 for neighbour x of v do
25 tentative_distance← db[v] + dist(v, x)
26 if tentative_distance < db[x] then
27 db[x]← tentative_distance
28 predb[x]← v
29 Qb.Insert(tentative_distance, x)
30 if x in S f and db[v] + dist(v, x) + d f [x] < µ then
31 µ← db[v] + dist(v, x) + d f [x]
32 end
33 end
34

35 Calculate shortest_path
36 distance← µ

37

38 return shortest_path, distance
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4.6.2 Bi-directional A-star Algorithm
Similar to the previous case, bi-directional A-star runs a heuristic search in both direc-

tions. The algorithm works similar to bi-directional Dijkstra’s as discussed in Section

4.6.1, but with a added heuristic or potential to guide towards the target. In the beginning,

as we are dealing with a directed graph, the graph must be reserved to facilitate a back-

ward search. In the forward search, the potential leads to the target and in the backward

search the potential leads to the source. The algorithm must be terminated when both

the searches meet based on a certain termination condition. The termination is very sim-

ilar to bi-directional Dijkstra’s with an added consideration of the potential or heuristic

estimation function. A heuristic estimate h is called consistent if h obeys the inequality

h(u)− h(v) ≤ dist(u, v) for any two nodes u, v ∈ V, where dist(u, v) is the actual weight

of the edge. As the straight-line distance to the goal is considered, the heuristic estimate is

consistent. Similar to the bi-directional Dijkstra’s, the algorithm maintains and updates

the parameter µ which is the current best estimate of the shortest path from source to

target. The algorithm terminates when the estimated distance s→ t or t→ s is at least µ.

For instance, the forward search is terminated when it is about to scan the vertex u (from

the queue Q f ) having a distance: dist(s, v) + heuristic(v, t) ≥ µ. An implementation of

the bi-directional A star algorithm in pseudo-code can be seen in the Algorithm 5. Similar

to the previous section, only the implementation of the main iteration is explained, since

the initialization is the same as the original A-star algorithm. Here, priority f and priorityb

contains the distance estimate of the respective vertex u and v which were inserted into

the queues in the previous iterations. After termination, the shortest path can be retrieved

similar to the bidirectional Dijkstra’s algorithm, as explained in Section 4.6.1.

As discussed in Section 4.5, the choice of the heuristic function decides the sequence of

the search. Since we use the Manhattan distance as the heuristics, the search is directed

towards the target, or in other words, the search leans towards the depth. The straight line

distance estimate is almost equal to the actual distance and therefore, the uni-directional

A-star should return the shortest path in the least possible time. It should be noted that bi-

directional A* is only as good as A* when the heuristic leans towards the depth. Therefore

running bi-directional A* on an exactly symmetrical graph having source and target ver-

tices at two opposite ends with the same branching factor and heuristic function should

take the same time as A* since the number of processed vertices by the bidirectional and

unidirectional variant remains the same. In cases where the number of jobs carried out by

one robot is more than the other (unsymmetrical), the search might not terminate in the

middle and thereby increases the computational time in such cases. Using a bidirectional

variant is a good way to speed up A* when the heuristic leans towards the breath. Therefore

it is clear that the bidirectional A star does not necessarily speed up our search. However,

for certain problem statements like road networks, the bidirectional variant with a good

choice of heuristic function can produce an efficient result.
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Algorithm 5: Bi-directional A* Algorithm

1 Function Bi_Directional_Astar(Graph, Source, Target):
2 RGraph = Graph.reverse()

3 ...

4 Q f .Insert(0+ heuristic(Loc(Source), Loc(Target)), Source)
5 Qb.Insert(0+ heuristic(Loc(Target), Loc(Source)), Target)
6 µ← infinity

7 while Q f and Qb is not Empty do
8 priority f , u← Q f .Extract_min(); priorityb, v← Qb.Extract_min()
9 S f .add(u); Sb.add(v)
10

11 if priority f ≥ µ or priorityb ≥ µ then
12 break

13

14 for neighbour x of u do
15 tentative_distance← d f [u] + dist(u, x)
16 if tentative_distance < d f [x] then
17 d f [x]← tentative_distance
18 pred f [x]← u
19 priority← tentative_distance+ heuristic(Loc(x), Loc(Target))
20 Q f .Insert(priority, x)
21 if x in Sb and d f [u] + dist(u, x) + db[x] < µ then
22 µ← d f [u] + dist(u, x) + db[x]
23 end
24 for neighbour x of v do
25 tentative_distance← db[v] + dist(v, x)
26 if tentative_distance < db[x] then
27 db[x]← tentative_distance
28 predb[x]← v
29 priority← tentative_distance+ heuristic(Loc(x), Loc(Source))
30 Qb.Insert(priority, x)
31 if x in S f and db[v] + dist(v, x) + d f [x] < µ then
32 µ← db[v] + dist(v, x) + d f [x]
33 end
34 end
35 Calculate shortest_path
36 distance← µ

37

38 return shortest_path, distance
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4.7 Learning based speed-up for large graphs
In the previous sections, we considered conventional speed up techniques modified for

our specific problem at hand to find the shortest path in the least time. This section

discusses the learning-based speed-up techniques for finding the shortest path for large

graphs based on the paper Shortest Path Distance Approximation using Deep learning Techniques
by [RSG18]. The implementation uses node2vec [GL16] to find feature vector embeddings

for the graph. Here we only discuss the speed-up technique as a literature survey and

therefore, this thesis does not include the implementation of the algorithm. Moreover,

the method is useful for huge graphs like social media data or road networks. The multi-

robot scheduling task can be solved with alterations to conventional techniques to receive

excellent results, and therefore using machine learning-based speed up for our problem

becomes irrelevant.

Traditional algorithms like Dijkstra’s and A-star are very slow for large graphs and con-

sume huge memory to store the precomputed distance. For a graph with millions of nodes

and edges, the computation of a single node distance can take up to a minute. For most

problems, computing approximate distance is good enough for getting accurate results.

This motivates the use of vector embeddings generated by deep learning techniques for

approximating the shortest path distance between the different nodes. Moreover, com-

puting the distance at neural network inference is computationally inexpensive with time

complexity ofO(1). So calculating the approximate shortest path distance from a starting

node to all other nodes takes O(|V|).

The general implementation is as follows. The node2vec algorithm is used to find the

embeddings ϕ(v) ∈ Rd
for each node v ∈ V. For a pair of vertices u, v ∈ V, the goal is

to build a deep neural network to approximate the distance dist(u, v). The approximate

distance d̂ can be defined as a function

d̂ : ϕ(u)× ϕ(v)→ R+

that maps the vector embeddings to the real-valued shortest path distance dist(u, v). For

training the network, training pairs must be extracted. A certain number of smartly cho-

sen landmark nodes are selected, and the actual shortest path distance is computed from

the landmark nodes to the rest of the nodes. Thereafter, the corresponding node embed-

dings of the landmarks and the nodes are fetched. These are further combined by applying

suitable binary operations like subtraction (ϕ(u)⊖ ϕ(v)), concatenation (ϕ(u)⊕ ϕ(v)),
average ( ϕ(u)⊕ϕ(v)

2 ) and point-wise multiplication (ϕ(u)⊙ ϕ(v)). This gives the samples

with input-output pair: (embedding - actual distance). From this input-output pair, a neu-

ral network with smartly chosen hyperparameters can be trained. On successfully train-

ing, the approximate distance can be computed at inference. For large graphs, different

node embedding techniques like Poincare, HARP [Che+17], etc. could be tried in an aim
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for optimal results.

The work of [BAS08] proposed yet another learning-based approach to compute the

shortest path. Here, a genetic algorithm was used to solve the shortest path problem.

The results showed that the algorithm returned the shortest path considerably faster than

Dijkstra’s algorithm.

4.8 Implementation of Graph-based approaches for
robot scheduling

In the previous sections, we have discussed the working of different shortest path algo-

rithms in detail. This section deals with the implementation of the above algorithm for

our specific problem. As explained in Section 4.1.2, for every n-robot system, the collision

matrix data set must be represented in terms of a graph. To make the model compara-

ble to the deep Q-learning approach, the edge weights are assigned similar to that of the

reward function used in the learning algorithm. A diagonal edge (most favourable) is as-

signed w = 1 and the other two edges towards the right and the downwards directions are

assigned w = 2. Initially, all the edges connecting the collision vertices are assigned the

weight w = ∞ so that the algorithm completely avoids these vertices during the search.

As explained before, the graph-based approaches are scalable and can be used to solve

any n-robot system irrespective of the robot jobs. However, in this thesis, we deal with

a 2 robot system with n1 and n2 jobs for the robots 1 and 2 respectively. As we need to

compare the results of the graph-based approaches to the deep Q-learning approach, the

same randomly generated collision matrix configuration with nmax = 40 used at the in-

ference of the Q learning approach is used to query the shortest path. In the graph-based

approach, the collision matrix need not be zero-padded and therefore the total number

of jobs n1 and n2 for robots 1 and 2 are considered to create the graph. The vertices are

represented in a serial manner from source s = 0 to target t = n1× n2. Each vertex in the

graph represents the job position at a given time. As we are dealing with a sparse graph,

adjacency list representation is preferred over adjacency matrix representation. However,

the adjacency matrix representation is also used to find the shortest path using Dijkstra’s

algorithm to compare the computational speed with Dijkstra’s algorithm with adjacency

list and Deep Q-learning at inference.

After creating the graph, it can be easily queried using different shortest path algo-

rithms. The source and the target vertices are always the first and the last vertex respec-

tively. With this information, Dijkstra’s algorithm (Algorithm 2) can be readily used to

get the shortest path. Dijkstra’s algorithm doesn’t directly return the shortest path but

returns the distance and the predecessor list. From the predecessor list, the shortest path

from the source to the target can be easily deduced as explained before. This shortest-path
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represents the efficient scheduling of the robot system.

Since the source and target are exactly opposite to each other, the shortest path must

ideally be around the diagonal of the graph. This motivates the use of goal-directed search

or the A* algorithm. Based on an appropriate heuristic function or potential, the algo-

rithm can be pushed towards the target by scanning only the required vertices. This con-

siderably decreases the total computational time to find the shortest path. For example,

in the symmetric graph with n1 = n2 having no collision points through the diagonal,

the A-star algorithm with an admissible heuristic (Manhatten distance) scans only the di-

agonal vertices till it reaches the target, therefore solving the problem in O(1) (best case).

For searching the graph using the A* algorithm, the heuristic function and a function

to find the grid location of the respective vertex must be considered additionally. In our

thesis, we used the Manhattan distance or the straight line distance to find the heuristic

estimate. With this estimate, the algorithm is guaranteed to return the shortest path as

explained in Section 4.5. Since we represent the vertices serially, the exact grid location is

required for the heuristic estimation. The grid location can be considered as the location

of the vertex in a plot with the number of jobs for robots 1 and 2 considered as x and y axis

respectively. Therefore, the grid location of the source vertex would be (0, 0), followed by

the second vertex at (0, 1) and so on. The vertex connected to the source vertex in the

downward direction would be (1, 0). Finally the grid location of the target vertex would

be (n1, n2). With this information, the search can be sped up by directing it towards the

target. Similar to the Dijkstra’s case, the shortest path must be deduced from the distance

and predecessor list.

Finally, the bidirectional search algorithms are used to further speed up the search pro-

cess. For the bidirectional search, the graph is first reversed to enable backward search.

Bidirectional Algorithms 4 and 5 are used to find the shortest path. The implementation

is straight forward and it is guaranteed to return the shortest path. Unlike the unidirec-

tional method, the shortest path cannot be directly deduced from the predecessor. To

recover the actual shortest path, a vertex must be maintained which gets updated to the

considered vertex x every time the current estimate µ is updated. With this information,

the shortest path s→ x can be easily deduced from the predecessor of the forward search

pred f and shortest path x → t using the predecessor of the backward search predb.

For comparison, the total run time to create and solve the shortest path problem, the

total number of vertices scanned to solve the problem and the shortest path distance are

recorded for all the implemented algorithms. Furthermore, as the algorithms are scalable,

they are also used to find and compare the shortest paths for the actual data obtained from

the simulation.
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4.8.1 Speed-up based on problem knowledge
Apart from using different algorithms to speed up the search process, the graph represen-

tation itself is altered to speed up the process. The idea behind the speed up is to either

reduce the total number of vertices considered for the search or to reduce the effort of

creating a new graph for every specific problem. Few techniques to speed up the total

process are explained below. Here, the algorithms considered remain the same and only

the graph representation is changed to speed up the process.

Eliminating collision weights

In the small scale regime, the number of collision points considered are comparatively

sparse and scattered. However, in the actual dataset, the number of collision points con-

stitute around 30 - 50% of the total job positions. Therefore, omitting these collision

vertices considerably reduces both the effort to create the graph and the total number of

edges considered, thereby reducing the computational effort. That is, for a vertex u, if

the adjacent vertex is a collision vertex v, the edge (u, v) is not considered when creating

the graph. In principle, the collision vertices themselves are not connected to any other

vertices. Apart from this, the edge weights for all the other edges remain the same. There-

fore, the final graph only contains the traceable job positions represented by the vertices

along with their edge weights. It must also be noted that, in rare cases, it is possible for

certain parts of the graph to be completely disjointed from the main graph. However, this

does not affect our search process and in principle, it must also reduce the computational

time as the number of edges considered in the search further reduces. All the above-

mentioned algorithms can be readily used on the new graph without collision points to

find the shortest path.

Restricted Graph

The second approach to speed up the entire process is to create a restricted graph. As we

know, the shortest path lies around the major diagonal, and therefore, scanning vertices

away from the diagonal results in unnecessary computational efforts. This motivates the

use of the restricted graph which only considers a certain number of vertices around the

diagonal. The number of vertices around the diagonal can be called the scope. One needs

to specify the number of vertices to be considered, and this value is very problem-specific.

For example, for a graph with very few collision points around the diagonal, a lower num-

ber of vertices around the diagonal can be considered. On the other hand, when a huge

cluster of collision points exist around the diagonal, a larger section must be considered

(higher scope). The only condition is that there must exist a path from the source to the

target. In other words, the graph must not be disjointed. The following formula is used

to calculate the range of vertices around the diagonal

2× (|n2 − n1|+ c), c > 0, c ∈N
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, where c represents the number of vertices considered around the diagonal. The first term

|n2 − n1| is required for a non-symmetric graph where n1 ̸= n2. For a rectangular graph,

there exists no perfect diagonal from source to target passing through all the diagonal

vertices. Therefore, extra vertices must be considered along the diagonal in addition to

c, which acts as a correction factor. For the actual data set, a much higher value of c is

desired. It again depends on the dataset and the position of the collision point. With a

right choice of c, the creation of the graph and the search process can both be considerably

sped up. Additionally, the two speed up approaches namely, eliminating collision weights

and Restricted Graph approaches can be combined to further reduce the computation

time. On the new graph, all the explained search algorithms are used to find and compare

the shortest paths.



5 Results
This chapter summarises all the significant findings of the different approaches used

to find the shortest path. We individually discuss the results of the two methods used,

namely, the deep Q learning and Graph-based approaches, and finally compare the two

methods based on specific parameters such as computational speed, accuracy, and many

more. Although various configurations of the collision matrix are possible in the small-

scale regime, we used the same configuration for all the approaches to have an equivalent

comparison. Therefore, for validating the approaches, we considered the total numbers

of jobs for robot 1 and robot 2 as n1 = 37 and n2 = 40 respectively. Furthermore, the

approaches (except deep Q-learning) were also evaluated on the real data from the simu-

lation. Due to the limited availability of such data, training of Deep Q-learning was un-

fortunately not possible, and therefore, we evaluated only the graph-based methods using

actual data.

5.1 Deep Reinforcement learning
In this section, we first discuss the results of training the agent to solve the shortest path

problem using the collision control environment, followed by the evaluation of a random

configuration of state observation with n1 = 37 and n2 = 40 on the trained model. As seen

in Section 3.7, the agent was trained with various configurations of collision matrices for

1000000 iterations. To validate the performance, the metrics were calculated after every

1000 iterations by evaluating the learnt policy for 100 episodes and then averaging them.

The following metrics were considered to evaluate the performance: average reward, ac-

curacy, maximum reward and finally the loss. Figure 5.1 shows the plot of these metrics

with respect to the number of iterations.

As seen in Figures 5.1(a) and 5.1(b), the learning progresses is similar to that of a negative

exponential curve. 50% of the learning took place in the first 20% of the iterations. The

algorithm then progressed slowly and reached an accuracy up to 98% near the end of the

iterations. The average reward increased gradually from −1.7 to around 0.4 over time.

However, as we see, the learning performance was not smooth and showed a fluctuating

tendency. For example, the accuracy decreased from 98% to around 75% in just over 1000
iterations. In our thesis, since we only evaluated after 1000 iterations, we only have data

for every multiple of 1000 iterations. In reality, there is a possibility for the performance of

the learning to decrease after every single iteration. This is called catastrophic forgetting

and is one of the major problems in reinforcement learning. When the agent explores

the environment, it updates its policies, but what it learns in one part of the environment
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(a) Plot of Average reward vs Iterations
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(b) Plot of Accuracy vs Iterations

0.0 0.2 0.4 0.6 0.8 1.0

Number of Iterations → ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
a
x
im

u
m

R
e
w

a
rd
→

(c) Plot of Maximum reward vs Iteration
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(d) Plot of Average Loss vs Iteration

Figure 5.1: Plot of (a)Average reward, (b)Accuracy, (c)Max reward, (d)Average Loss with respect to the

number of iterations.

may conflict with what it learns in other parts of the environment. Since the experiences

are highly correlated and the learning environment keeps changing, it is not very ideal for

gradient descent. Increasing the replay buffer, reducing the learning rate or playing along

with the different hyperparameters sometimes helps in reducing catastrophic forgetting.

As explained before, different hyperparameters were tried in our study and the results of

the best ones are documented here. Therefore, even after using optimal hyperparameters,

catastrophic forgetting is sometimes inevitable. A method to get the best model is by

saving the policy or the weights of the network during training that corresponds to the

highest accuracy. Such a model with 98% accuracy was used in our study at inference for

evaluation.

In Figure 5.1(c), it can be seen that the maximum rewards were comparatively high in

the initial iterations. This is because the agent initially explores randomly due to the ϵ

greedy method. The initial max rewards are hence not because of the learnt behaviour
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but because of the random action taken. For learning to be successful, the max rewards

must be high initially as seen in our problem. This means that the agent has explored the

environment well. It leads to a lot of diversity in the replay buffer that in turn facilitates

good learning. As the learning progresses, the ϵ value gradually decreases. The plot is

then very similar to that of accuracy and average return plot.

Finally, we can see from the loss plot (Figure 5.1(d)) that it is a poor indicator of the

model’s performance. The loss might go down over time and still, the agent might per-

form worse. On the other hand, an increasing loss does not necessarily mean that the

performance of the model is decreasing. Therefore, the loss is usually not plotted as it

gives no information about the performance.

0 5 10 15 20 25 30 35

Number of Jobs for Robot 1 →

0

5

10

15

20

25

30

35

←
N

u
m

b
e
r

o
f

J
o
b

s
fo

r
R

o
b

o
t

2

Robot Path - Reinforcement Learning

Figure 5.2: Robot Path found using reinforcement learning.

For further evaluation, the policy with the accuracy of 98% and an average reward of

0.47 was used. The policy was evaluated on a random configuration of collision matrix.

The total number of jobs considered for robot 1 and robot 2 was n1 = 37, n2 = 40. Figure

5.2 shows the robot path found by the reinforcement learning. Here, grey squares repre-

sent the collision points and the black squares represent the robot path. In this particular

case, the total steps taken by the agent to reach the target was 41 and the total reward

achieved was 0.48. On average, the agent found a path 98% of times. The reason it failed

2% of times was probably that the agent was unable to analyse a certain distribution of

data. As we know, the agent was trained with various collision matrix configurations and
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varying n1 and n2 and hence, there are over million such configurations possible. How-

ever, with the right set of hyperparameters and random seeds, the algorithm will perform

excellently with an accuracy of 100%. One of the major drawbacks of this method is the

computational effort it takes to learn a certain problem. Since different neural network

configurations, hyperparameter sets and random seeds are to be tried repeatedly, the al-

gorithm takes a lot of time to give optimal results. Another drawback is the convolutional

neural network that we use. This makes the problem not scalable. The learnt model can-

not be extended to evaluate the actual data having the total number of jobs over 2500. The

only way to make the agent function for a higher range of configurations is by training

the model with all the different configurations within a particular range. For example, if

we choose nmin = 40 and nmax = 2500, the agent will then function on any configuration

having total number of jobs per robot between nmin and nmax.

Now that we have evaluated the agent on a certain configuration, we try to solve the

same configuration with different graph-based methods in Section 5.2. Furthermore, the

performance of reinforcement learning is compared to that of graph-based methods in

the Section 5.3.

5.2 Graph Based Approaches
The above-discussed collision matrix configuration was solved using all the four shortest

path algorithms discussed in Chapter 4. As discussed earlier, Adjacency list representation

was used to represent the graph as we deal with a sparse graph. Although we use adjacency

list representation, adjacency matrix graph representation was also used to search using

Dijkstra’s algorithm for the sake of comparing the total execution time with that of the

reinforcement learning method. The robot path found using Dijkstra’s algorithm for a

graph which is represented by adjacency matrix gives the same result as that of the one

found using adjacency list representation which is shown in Figure 5.3(a). This section

mainly focuses on the individual results. The execution time comparison is carried out

in Section 5.3.

As mentioned before, in all the searches except one, adjacency list representation was

used. Figure 5.3 shows the shortest path found by all the following algorithms: (a) Dijkstra’s

Algorithm, (b) A-star Algorithm, (c) Bi-directional Dijkstra’s Algorithm, (d) Bi-directional

A-star Algorithm. As mentioned before, there exists the possibility of having numerous

shortest paths with the same total edge weight. For the configuration considered here,

Dijkstra and A-star returned the same results. However, this might not be the case for

every problem. The algorithms might give different paths, all being the shortest paths.

This gets more clear in the bi-directional search case as seen in Figures 5.3(c) and 5.3(d).

Bi-directional Dijkstra’s algorithm runs Dijkstra’s search in both the direction and meets

in the center. Similarly, bi-directional A-star runs A-star algorithm is both the direction
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Robot Path - Dijkstra Algorithm

(a) Robot path found using Dijkstra’s Algorithm
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Robot Path - A-star Algorithm

(b) Robot path found using A-star Algorithm
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Robot Path - Bi-directional Dijkstra Algorithm

(c) Robot path found using Bi-directional Dijkstra’s

Algorithm
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Robot Path - Bi-directional A-star Algorithm

(d) Robot path found using Bi-directional A-star Al-

gorithm

Figure 5.3: Plot of robot path found by the following graph based algorithms: (a)Dijkstra’s Algo-

rithm, (b)A-star Algorithm, (c)Bi-directional Dijkstra’s Algorithm, (d)Bi-directional A-

star Algorithm.
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in an aim to meet in the middle. As seen in the graph, we obtained 3 different shortest

paths using 4 algorithms, each having the same total step of 41 and a total edge wait of 48.

It can also be seen that the reinforcement learning approach found yet another shortest

path that is completely different from the ones obtained by these algorithms.

The advantage of these graph-based approaches is that they are scalable. Since these are

not learning-based methods, the collision matrices can be easily represented as a graph

and then queried using any of the approaches mentioned above. Also, these approaches

are guaranteed to give optimal solutions. These are relatively very quick and there exists

numerous speed up techniques to speed them up further. Therefore the most important

task here is to represent the collision matrix as a graph with appropriate edge weights.

We now try to solve the same task with a restricted graph as explained in Section 4.8.

As seen above, the shortest path passes through or around the diagonal that connects

the source s and the target t. For this example, we chose the value of c to be 5. There-

fore the number of vertices considered around the diagonal was 2 × |n2 − n1| + c =

2 × |40 − 37| + 5 = 16. That is 16 vertices were considered around the diagonal such

that the diagonal passes through the center of the considered vertices. Figure 5.4 shows

the shortest path found by all the four algorithms on the restricted graph. As we see in

the plots, the shortest paths found was exactly the same as previous graphs. The only

difference here is that we consider a restricted graph which reduces the computational

efforts significantly. Here, light grey represents the vertices considered in the restricted

graph. Therefore, in the restricted graph, only a small portion of the required region is

considered. Grey and black square represents collision points and robot path as explained

before. The advantage of considering a restricted graph is that it significantly reduces the

computational time. This is because of two reasons: 1. A graph with fewer nodes is cre-

ated; 2. Fewer nodes are considered in the search process. Apart from this, the algorithms

function similarly and return the shortest path having an edge weight of 48.

We also tried to speed up the process by eliminating collision weights from the ini-

tial and the restricted graph. This again does not change the shortest path as the edge

weights considered are still the same (except for the collision weights). Therefore, plot-

ting these would be redundant. Furthermore, these methods were also extended to the

n-robot system. The only difference here is the creation of the graph. Once we have the

correct representation of the graph for the n-robot system, the rest of the process remains

the same. Since it is harder to visualize a system with more than 2 robots (greater than 2d),

we have skipped the evaluation on higher-dimensional data. In the upcoming section, we

compare the performance, computational speed and few other metrics of different graph-

based and reinforcement learning algorithms.

As we know these algorithms are scalable, these can be used to find the shortest path
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Robot Path - Dijkstra Algorithm

Restricted Graph

(a) Robot path found using Dijkstra’s algorithm on a

restricted graph
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Robot Path - A-star Algorithm

Restricted Graph

(b) Robot path found using A-star Algorithm on a re-

stricted graph
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Robot Path - Bi-directional Dijkstra Algorithm

Restricted Graph

(c) Robot path found using Bi-directional Dijkstra’s

Algorithm on a restricted graph
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Robot Path - Bi-directional A-star Algorithm

Restricted Graph

(d) Robot path found using Bi-directional A-star Al-

gorithmon a restricted graph

Figure 5.4: Plot of robot path found by the following graph based algorithms on the restricted

graph: (a)Dijkstra’s Algorithm, (b)A-star Algorithm, (c)Bi-directional Dijkstra’s Algo-

rithm, (d)Bi-directional A-star Algorithm.
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for any graph size. Therefore, the algorithms were used to search for the shortest path

on the actual data. Figure 5.5 shows the robot path found using Dijkstra’s algorithm on a

collision matrix obtained by the simulation. The total number of robot jobs for robot 1
and robot 2 are n1 = 1761 and n2 = 1649 respectively. Here, the results of only Dijkstra’s

algorithm is shown. Any of the above algorithms can be used to find the shortest path.

The algorithm efficiently found the shortest path in around 23s. This time includes the

creation and querying of the graph. Finally, the comparison of the computational time

against different algorithms for this collision matrix is documented in the next section.
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Robot Path - Dijkstra Algorithm

Figure 5.5: Robot Path found using Dijkstra’s algorithm on the real data from simulation.
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5.3 Comparison
As seen above, all the methods used above were successful in finding an efficient path

from the source to the target. Now the task is to choose the best method among all the

discussed methods above. In production, we need a method that can search the shortest

path in the least possible time and computational effort. In this section, we compare the

results of various algorithms used in terms of the following metrics: average time taken,

accuracy, average steps taken to reach the goal, average edge weight or reward achieved

and the average number of vertices searched (for graph-based methods) for a fixed config-

uration. We not only compare the learning-based method with the graph-based method,

but we also compare the performance of the different algorithms used in graph-based

methods with each other. Although we used adjacency list representation, we also con-

sidered adjacency matrix representation to search using Dijkstra’s algorithm to compare

the execution time. The comparison is carried out by evaluating these algorithms on 100
random configuration of collision matrices with n1 = 37 and n2 = 40 and then averaging

the metrics. We first compare the reinforcement learning with Dijkstra’s algorithm with

adjacency matrix and Dijkstra’s algorithm with adjacency list representation based on the

following metrics: accuracy, average time taken, average steps taken and the average edge

weight or reward achieved. The comparison can be found in Table 5.1.

Metrics Reinforcement learning
Dijkstra with
adjacency matrix

Dijkstra with
adjacency list

Accuracy 98% 100% 100%

Average time taken 0.1984s 1.5423s 0.01652s

Average steps taken 41.15 39.44 39.44

Average edge weight or reward 48.45 43.32 43.32

Table 5.1: Comparison of Reinforcement learning, Dijkstra’s algorithm with adjacency matrix and

Dijkstra’s algorithm with adjacency list based on the evaluation metrics.

As discussed before, Dijkstra’s algorithm is correct and guarantees a shortest path as

long as a shortest path exists. Therefore, it is 100% accurate. The policy used at the in-

ference of RL was only 98% accurate which could be further improved by trying differ-

ent hyperparameters and random seeds. This makes the entire process computationally

expensive. However, it is remarkable that a learning-based algorithm learnt a complex

problem having different configurations of jobs and collision matrix just by visualizing

different datasets. It can also be seen that the reinforcement learning inference was con-

siderably faster than Dijkstra’s algorithm represented in terms of the adjacency matrix.

However, since we deal with sparse graphs, Dijkstra’s algorithm represented by the adja-

cency list gave the shortest path much faster than both RL and Dijkstra with adjacency

matrix representation. Also, on average, reinforcement learning found a path successfully

that was close enough to the shortest path. As we see in the table, the RL algorithm took
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a couple of more steps to find the target compared to the others. It is also reflected in the

average rewards achieved. Hence, it can be concluded that reinforcement learning per-

formed exceptionally well with an accuracy of 98% returning paths close enough to the

shortest paths. However, for our problem statement, Dijkstra’s algorithm with adjacency

list representation outperformed the rest. Another important factor to note is that Di-

jkstra’s algorithm is scalable and can be used to solve the n-robot system with any given

number of jobs. This is not the case for Reinforcement learning-based algorithms. The

only way to make it work for a higher number of job sets is by training the model with a

higher nmax. We now compare different Dijkstra’s algorithm and their speed up to choose

the best performing algorithm.

As we have already seen before, all the algorithms are guaranteed to return the short-

est path. Also, even though the shortest paths returned by these algorithms might differ,

all the graph-based algorithms return the shortest path with the same edge weight and

total steps. Therefore, the average steps, average edge weight and accuracy metrics can

be dropped from the comparison. Hence, we only compare these algorithms based on

the average execution time and the average number of vertices scanned by them. Since

the execution time is too low for a small scale regime, and because these algorithms are

scalable, we chose a higher collision matrix configuration of n1 = 500, n2 = 480. Similar

to the previous case, the algorithms were evaluated on 100 randomly generated samples

and then the considered metrics were averaged and compared. Table 5.2 compares the

metrics, namely, average execution time and the average number of visited vertices, for all

four algorithms considered in our study. Moreover, the metrics are also compared with

the speed up techniques used. For the restricted graph case, c = 10 was chosen. Hence

2 × (|480 − 500| + 10)) = 60 vertices were chosen around the diagonal such that the

diagonal passes through the center. On average, the graph-based algorithms found the

shortest path from source to the target by taking 500 steps with a total edge weight of 520.

It can be inferred from the Table 5.2 that the A-star or Goal-directed Dijkstra’s algo-

rithm outperformed all the other algorithms based on the considered metrics. The bi-

directional A-star takes double the time as compared to the unidirectional case, as the al-

gorithm doesn’t terminate in the middle. Bi-directional search can be tweaked such that

it meets in the middle but doing so does not improve the computational speed compared

to A-star as explained in Section 4.6.2. Therefore, in our case, the bi-directional A-star can

be at most as fast as the A-star algorithm. In certain cases, the total scanned vertices could

be slightly lower in the bi-directional case when the scan meets in the middle. However,

this does not significantly reduce the execution time of the algorithm. Moreover, since

we deal with a unidirectional graph, the graph needs to be reversed before searching in

the backward direction. This operation takes additional time, making the whole process

time-consuming.
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The execution time mentioned here depends on the performance of the computer and

therefore might vary depending on the machine used. The computational efforts can be

expressed better based on the number of vertices scanned by the algorithms to find the

shortest path. The bi-directional Dijkstra’s algorithm scanned 28.5% of the total vertices

to return the shortest path in the original graph. On the other hand, the A-star algo-

rithm only scanned 0.73% of the total vertices to return the shortest path. In other words,

it only scanned 1262 extra vertices other than those already considered for the shortest

path. Therefore, A-star would be the right choice for finding the shortest path in the least

possible time.

Original Graph

Metrics Dijkstra A-star
Bi-directional

Dijkstra
Bi-directional

A-star
Average

execution time

3.1386s 1.1856s 2.6395s 2.1213s

Average

vertices visited

239938 1762 68615 3359

Graph without collision weights

Metrics Dijkstra A-star
Bi-directional

Dijkstra
Bi-directional

A-star
Average

execution time

3.1096s 1.1770s 2.5885s 2.1075s

Average

vertices visited

238666 1743 68145 3321

Restricted Graph

Metrics Dijkstra A-star
Bi-directional

Dijkstra
Bi-directional

A-star
Average

execution time

0.3661s 0.1968s 0.3657s 0.3228s

Average

vertices visited

28315 1762 26996 3359

Table 5.2: Comparison of different graph-based algorithms for the original graph, graph without

collision weights and the restricted graph based on the evaluation metrics.

We now discuss the speed up techniques used. For the graph constructed without the

collision points, only slight improvements in the execution time were seen compared to

the original graph. It is because we considered a limited number of collision points in the

collision matrix. For a collision matrix with much higher collision points, a significant

reduction in the execution time can be witnessed. The reason behind the speed-up is due

to the reduced effort to create the graph and the reduced number of vertices considered
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for the search. Therefore, this approach becomes useful for the collision matrix having a

significantly large number of collision points. An example of such a data set can be seen

in Figure 5.5. We discuss the execution time for this graph later in this section.

In the last case where we use a restricted graph, a huge reduction in the execution time

could be seen. The reduced execution time is because of two main reasons: one, fewer

efforts are put to create the graph, and two, fewer vertices are considered while searching.

As explained before, the major part of the execution time depends on the creation of the

graph. Hence, considering a smaller graph helps in producing quicker results. Apart from

that, the trend of the evaluation metrics is similar to that of the original graph. One im-

portant point to note is that the A-star algorithm found the shortest path by scanning the

exact same number of vertices as that of the original graph. This is because of the fact that

the A-star algorithm with an admissible potential, such as ours, finds the shortest path by

scanning as few vertices as possible. Hence considering a smaller section does not affect

the speed or vertices scanned by the A-star algorithm. The two considered speed-up tech-

niques can be further combined to achieve quicker results. Since we have considered a

limited number of collision points in the random configuration, no significant improve-

ments in execution time could be seen. Therefore, the comparison on the collision matrix

of the small scale regime is not documented in the thesis. However, later in this section,

we discuss the effect of combining the two speed-up techniques for querying the actual

data having a significantly large number of collision points. All in all, it can be concluded

that the A-star algorithm on the restricted graph with no collision weights produces the

most promising results provided that a good heuristic estimate is used.

Finally, we also compare the computational time for finding the shortest path using

different graph-based algorithms on the actual data discussed in the previous section (see

Figure 5.5). Here we document the evaluation metrics for one single collision matrix. For

the restricted graph, c = 100 was chosen. That is, 424 vertices were considered around the

diagonal such that the diagonal passes through the center of the graph. As seen in Figure

5.5, around 50% of the vertices are collision points. Therefore, the effect of eliminating

the collision weights could be clearly observed. The comparisons with different speed-up

techniques can be seen in Table 5.3. The reduction in the execution time and the number

of vertices visited could be clearly observed in the speed-up techniques used. The overall

trend of the Table 5.3 is similar to that of the Table 5.2. In the table, we see that the bi-

directional search required more execution time compared to its uni-directional variant.

This is however not because of the search algorithm itself. Reversing the graph for the

background search is computationally expensive because of the large number of vertices

present in the graph. Therefore, the execution speed can be better compared based on the

number of vertices scanned. As claimed before, the A-star algorithm with the combined

speed up gave the most promising results. In very few cases, such as this, the bi-directional

A-star outperforms its uni-directional variant. The bi-directional A-star gives the best
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result only when it meets in the middle of the graph. Even so, the bi-directional variant

only scanned 404 fewer vertices as compared to the other. Moreover, an extra effort must

be put to reverse the graph which takes the same effort as creating a new graph. Therefore,

for our problem, using a unidirectional A-star with the combined speed up would be the

optimal choice to solve the shortest path problem. This shortest-path can be used in

production to schedule the two robots efficiently. Moreover, due to its scalable property,

it can be further used to schedule any n-robot system irrespective of the number of jobs.

Original Graph

Metrics Dijkstra A-star
Bi-directional

Dijkstra
Bi-directional

A-star
Execution time 23.5191s 13.1491s 27.1244s 24.2478s

Vertices visited 1056917 10891 288855 11269

Graph without collision weights

Metrics Dijkstra A-star
Bi-directional

Dijkstra
Bi-directional

A-star
Execution time 17.0112s 7.2813s 15.3152s 12.0255s

Vertices visited 1039276 10049 278114 9645

Restricted Graph

Metrics Dijkstra A-star
Bi-directional

Dijkstra
Bi-directional

A-star
Execution time 5.4040s 3.6583s 7.1745s 6.2175s

Vertices visited 244744 10891 148329 11269

Combined speed-up: Restricted Graph without collision weights

Metrics Dijkstra A-star
Bi-directional

Dijkstra
Bi-directional

A-star
Execution time 4.1924s 2.5746s 4.5573s 3.7477s

Vertices visited 239186 10049 141556 9645

Table 5.3: Comparison of different graph-based algorithms queried on the actual data for the orig-

inal graph, graph without collision weights, restricted graph and the restricted graph

without collision weights based on the evaluation metrics.



6 Conclusion and Outlook
A Multi-robot system (MRS) refers to any process where several robots coordinate among

themselves to achieve a definite goal. GRoFi is a multi-robot system operated by the Cen-

ter for Lightweight-Production-Technology in German Aerospace Center (DLR), Stade for

fibre placement where reinforcing fibers are placed along a predetermined path on any

component. The problem statement in this thesis was to find the optimal paths in this

multi-robot system and to schedule the robots to execute their tasks as early as possible

without any collisions. The challenge was to ensure that these robots coordinate among

themselves efficiently and take the optimal path with the least time. The data used in

the research was created in a small-scale collision control environment that randomly

generated the data set with collision points similar to the actual simulation data from

a simulation software VNCK provided by Siemens. This simulation software simulated

the working of multiple robots to check for possible collisions when they function si-

multaneously. But as this software had limited data set from the real world at the time

of conducting this research, we generated the data randomly. The data set was called a

collision matrix. We then applied deep Q learning, a type of model-free reinforcement

learning to find the fastest path of robots through the collision matrix. The performance

of this method was validated using several metrics of evaluation for a random collision

matrix configuration. The reinforcement learning model was successful in finding an ef-

ficient path by learning through various random generated data in the small scale regime.

A job completion accuracy of 98% was recorded when evaluated on the best-saved policy.

An advantage of reinforcement learning is that it can be used to solve diverse tasks which

might not be related to each other. Moreover, it learns from its previous experiences and

hence can be improved over time. However, it is data-hungry and requires a lot of training

with optimal hyperparameters to achieve superior results. These models are not scalable

due to the use of neural networks and hence can only be used to solve tasks similar to the

ones it has already seen before.

After that, for the same collision matrix, we represented the robot scheduling task as a

graph and consequently queried it with various algorithms to find the shortest path from

the source to the target. All the graph based algorithms were successful in finding the

optimal paths. The most important task in these methods was to represent the task effi-

cient as a graph. We further investigated various speed up techniques to obtain quicker

results. Although all the algorithms found the shortest path, the goal directed Dijkstra’s

algorithm queried on the restricted graph without the collision weights gave the best re-

sults in terms of the execution time. Furthermore, we evaluated the graph-based method

by applying it on the data generated by VNCK software. As these algorithms were scalable
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and similar results were achieved.

The results of all these different algorithms in graph-based methods were then com-

pared against each other and also against the results from reinforcement learning. For a

fair comparison and for validating all of the previously mentioned approaches, we consid-

ered only two robot systems in a small scale regime. The reinforcement learning at infer-

ence was significantly faster than Dijkstra’s algorithm queried on the graph represented

by the adjacency matrix. However, as we deal with a sparse graph, Dijkstra’s algorithm on

adjacency list representation outperformed the latter two. This thesis serves as a Proof

of Concept (POC) for reinforcement learning. RL can be used to solve various tasks just

by visualizing the data and gives a state of the art results. The RL agent was successful in

finding a path close to the shortest path in a time much slower than the adjacency ma-

trix representation. Among the graph-based methods, the A-star algorithm was observed

to return the shortest path in the least possible time. After using further speed up tech-

niques on the graph-based methods, the A-star algorithm used on the restricted graph

without the collision points showed the best performance in terms of execution time. In

the production, as we need an algorithm that schedules robots in the least possible time,

an A-star algorithm with an admissible potential (Manhattan distance to the target) can

be used to schedule the robots in the least time. The advantage of graph-based methods

over reinforcement learning is that these algorithms are scalable and hence can be used

to schedule any n-robot system irrespective of the job size. Moreover, these algorithms

are complete and guarantee a shortest path. They also do not require extensive training

before finding the shortest path as in the case of reinforcement learning.

Further studies can be done by applying all these algorithms to the real data generated

by the simulation software VNCK which were unavailable at the time of research. We can

check if we will observe any difference in the performance of all the algorithms on the

actual data. We can also do further research exclusively on addressing the problem of

catastrophic forgetting that we observed in the course of this research to further improve

the learning. The proposed solutions can be further scaled to multi robot systems involv-

ing many more robots for both RL and graph based methods. Further research could be

carried out on using machine learning to speed up the graph based approaches.
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