Remote Raman detection of chlorine gas

German Aerospace Center, Institute of Technical Physics

Emanuela C.A. Gallo

Knowledge for Tomorrow

OSA - Optical Sensors and Sensing Congress

Motivation

- Remote measurements to detect chlorine gas
- Chlorine gas exposure:

Industrial

manufacturing storage handling

Changzhou, China 2021

 \triangleright

OSA - Optical Sensors and Sensing Congress

Motivation

- Chlorine gas exposure:
- Warfare agent chlorine, mustard gas, bromine and phosgene

Lethal doses:

Chlorine Mustard gas Tear gasses Phosgene 6000 [mg min /m³] - 2070 ppm min 900 [mg min /m³] - 230 ppm min 30 mins temporary effect 3000 [mg min /m³] - 740 ppm min

Introduction

- Remote detection set up optimized (distance of 60 cm)
- Changed excitation WL in the deep UV => To maximize Cl₂ signal
- Detection limits in acquisition times
- Solution for background interference => Lab test: Cl₂ must be enclosed
- SYSTEM SETUP
- SAMPLE SETUP
- RESULTS
- CONCLUSION AND FUTURE DEVELOPMENTS

System setup

- Nd:YAG laser
- dye laser
- mixing unit
- 190-900 nm,
 1 mJ/pulse, 10Hz
- Liq. N₂ cooled spectr. 2400 grooves/mm
- 60 cm remote distance detection
- Laser filter
- Cl₂ 35.94%

- Edinburgh Instruments FS5 Spectrofluorometer
- 1nm step, 0.5 s sample time per wavelength
- max at 330 nm, FWHM 60 nm
- molar extinction coefficient, path length:
 [Cl₂] = 36%

Fluorescence vs wavelength

- standard UV laser sources
- negligible fluorescence

Quartz background signal

empty quartz glass cell as ref. background

- laser energy density below 6 mJ/cm²
- 224, 232, 235 nm tested to maximize signal
- broad peak 410 cm⁻¹ + sharp one 490 cm⁻¹, in agreement with literature

• Special CaF₂ background signal

New windows material, new cell

VS

- quartz cell material overlapping with chlorine Raman signal
- Cl₂ sharp peak at 554 cm⁻¹ (15 cm⁻¹ FWHM)
- expected for Cl_2 at 554, 547, and 539 cm⁻¹

New windows material, new cell

- broad peak quartz residual, in agreement with literature
- hard to separate the two
- remove cell not possible => change material

Cl₂ signal (- CaF₂ bknd)

OSA - Optical Sensors and Sensing Congress

224 nm

٠

Results

- Avoid cell material interference around region of interest => Raman grade CaF₂, diamond •
- detection limit lowered to 5s (instead of 50 s) •
- Raman peak interference removed changing material •
- not intensified camera => possible to lower concentrations ٠ and detection limits (< 1 s)

Conclusions & Future Developments

- Chlorine gas was detected in a remote Raman configuration: not standard setup
- Collimated configuration, 60 cm detection distance, laser energy density < 6 mJ/cm², acquisition time 5 s
- Solved quartz interference around region of interest (Raman peaks overlapping) => special Raman grade CaF₂ windows
- acquisition time reduced from 50 s to 5s changing windows to CaF₂
- Excitation wavelengths (224, 235, 244, 248, 257, 266, 355 nm) at 1mJ
- Reduce acquisition time using an ICCD detector
- Concentration limits

Remote Raman detection of chlorine gas

Emanuela C.A. Gallo

emanuela.gallo@dlr.de

OSA - Optical Sensors and Sensing Congress, 19 July 2021

Knowledge for Tomorrow