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Abstract—Terrestrial Internet access is gradually becoming the
norm across the globe. However, there is a growing demand for
Internet access of passenger airplanes. Hence, it is essential to
develop aeronautical networks above the clouds. Therefore the
conception of an aircraft mobility model is one of the prerequisite
for aeronautical network design and optimization. However, there
is a paucity of realistic aircraft mobility models capable of
generating large-scale flight data. To fill this knowledge-gap,
we develop a semi-stochastic aircraft mobility model based on
large-scale real historical Australian flights acquired both on
June 29th, 2018 and December 25th, 2018, which represent
the busiest day and the quietest day of 2018, respectively. The
semi-stochastic aircraft mobility model is capable of generating
an arbitrary number of flights, which can emulate the specific
features of aircraft mobility. The semi-stochastic aircraft mobility
model was then analysed and validated both by the physical
layer performance and network layer performance in the case
study of Australian aeronautical networks, demonstrating that it
is capable of reflecting the statistical characteristics of the real
historical flights.

I. INTRODUCTION

Although every successive wireless generation has improved

the attainable throughput, their focus has been on terrestrial

global coverage of specific areas, where the high teletraf-

fic holds the promise of lucrative revenues for the service

providers. Specifically, the terrestrial 5G wireless system is

capable of providing 20 Gigabits-per-second (Gbps) peak

data rates and 100+ Megabits-per-second (Mbps) average data

rates. By contrast, there is limited Internet access on passenger

airplanes, which is also quite costly.

Hence, the concept of aeronautical ad-hoc networks

(AANETs) has emerged for the provision Internet-Above-

the-Clouds [1]. Passenger airplanes can also be harnessed as

mobile base stations [2] for filling the large coverage holes in

sparsely populated areas, where it is challenging to deploy and

maintain the wireless infrastructure, as exemplified in Fig. 1

for Australia. However, the design, analysis, and optimization

of aeronautical networks critically hinge on the topology and

mobility of the aircraft. Hence, it is vital to develop a realistic

and reliable aircraft mobility model for the design, analysis

and optimization of aeronautical networks.

As one of the essential prerequisites, the mobility modeling

of roaming users and/or vehicles is a topic that has received
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Fig. 1. The 3G/4G/5G network coverages by Telstra, which are obtained
from https://www.nperf.com/en/map/AU/-/2445.Telstra/signal/ on February
21st, 2021. The network coverages by Optus and Vodafone are similar or
smaller than those covered by Telstra.

much attention due to its pivotal role in network characteri-

zation and network planning [3]. Hence, a methodical study

of the associated mobility models is imperative in support of

network development and optimization both in terms of the

routing/scheduling protocols in the network layer as well as the

associated signal processing algorithms of the physical layer.

Diverse mobility models have been conceived for mobile

ad hoc networks (MANETs) [4], vehicular ad hoc networks

(VANETs) [5], [6], and Flying ad hoc Networks (FANETs) [7]

in order to evaluate their network performance and to design

suitable networking protocols. The classical random direction

model and random waypoint model have been investigated

both in MANETs [8] and VANETs [9] as well as FANETs

[10], [11], since they are capable of capturing the mobility

characteristics of both users, as well as of manned and

unmanned aerial vehicles (UAVs). However, although these

ad hoc networks share the intrinsic feature agile mobility,

they also differ quite significantly in a range of specific

aspects, such as their velocity, direction pattern, network size,

and geographical coverage area as well as topology, which

require bespoke mobility modeling. Thus, the mobility models

developed for different ad hoc networks have to capture the

unique features of nodes.

Ad hoc networking between passenger airplanes was ini-

tially conceived by scientists at the German Aerospace Center

(DLR) [12] under the terminology of airborne mesh net-

working. The terminology of ‘airborne networks’ has also

been widely used in the context of UAVs and manned cargo

planes. Hence we will commence from characterizing the

mobility developed for airborne networks constituted both by

unmanned and manned aircraft (passenger airplanes).

Numerous contributions have been devoted to developing
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mobility models for airborne networks [13]–[17]. In order to

improve their mobility-aware routing protocol design, Tiwari

et al. [13] defined a trajectory-based mobility model for

airborne networks constituted by wide-body aircraft based on

the flight plans of all the aircraft participating in the airborne

network backbone. However, this mobility model highly relies

on the pre-defined flight plan recorded, hence it is not scalable

for network expansion. Furthermore, it only investigated four

nodes in a area upto 2500m × 2500m, which is unsuitable

for aeronautical networks constituted by commercial passenger

airplanes. As a further development, the authors of [14]

proposed a spiral line based mobility model for improving the

smoothness of the synthetic trajectory. However, the backbone

nodes in [14] are UAVs rather than the wide-body aircraft of

[13]. A 3-dimensional (3-D) Gauss-Markov mobility model

was proposed in [18] for modelling the mobility of aircraft

flying at different altitudes, which was also referred to as a

multi-tier mobility model [19]. Rohrer et al. [15] developed

a 3-dimensional Gauss-Markov mobility model. As a further

advance, Li et al. [20] improved the smoothness of a Markov-

like mobility model by incorporating three extra states, namely

the pre-decelerate, turn, and post-accelerate states. A semi-

random circular movement mobility model was developed in

[16] for simulating UAVs circling around a specific centre

in order to collect information in a particular target area.

Wan et al. [21] proposed a 2-D smooth turn based random

mobility model (2D-ST-RMM) by capturing the correlation of

the acceleration of airborne vehicles across both the temporal

and spatial coordinates, which is capable of reflecting the

characteristics of making smooth turns of different turn radii,

as well as capturing the tendency of aircraft travelling straight

and making turns of large radii. Five years later, Wan et al.

[22] developed a pair of realistic 3D-ST-RMMs for capturing

the diverse mobility patterns of fixed-wing aircraft, which

relied on coupling stochastic forces with the physical laws

that govern 3-D aerial maneuvers. In their 3D-ST-RMMs,

the model features were also introduced for determining the

movement of aerial vehicles, when they approach simulation

boundaries. Sharma et al. [17] conceived a mixed mobility

model for UAVs by combining the random waypoint based and

the uniform mobility models for characterizing the movements

of a UAV in vertical and horizontal directions, respectively.

The above mobility models may be classified as stochastic

mobility model, which is capable of reflecting the random-

ness well owning to their intrinsically random mechanism.

However, the capability of capturing randomness is attained at

the cost of degrading their capability of reproducing realistic

mobility patterns and the topology in emulating the flight-path

of commercial passenger airplanes, which are closely related

to the airport distribution over a given geographical area and

time period. Furthermore, none of the existing models has been

validated by real flight data.

By contrast, Graeupl created the Framework for Aeronau-

tical Communication System evaluation 2 (FACTS2) [23] to

support the development of new aeronautical data links for air

traffic guidance in Europe. As discussed in Graeupl’s paper,

the FACTS2 air traffic mobility model relies on the analysis of

the years 2007 and 2008. Two reference days of average air

traffic were analysed for hourly aircraft generation rates for

each pair of airports in the database. The aircraft generation

rates were then extrapolated into the future by applying growth

factors published by the European organisation for the safety

of air navigation referred to as EUROCONTROL. Flights

were then simulated to fly along certain routes between the

identified airport pairs with take-off times modelled as a

stationary Poisson process according to the hourly aircraft

generation rates. The results have been shown by Graeupl to

model European air traffic quite closely [24].
The mobility models of [14], [16], [17], [20]–[22] have been

developed for UAVs, which exhibit distinctly different features

from those of passenger and cargo aircraft. Hereinafter, the

term ‘aircraft’ will refer to passenger aircraft. However, at the

time of writing, there is a paucity of mobility model developed

for commercial passenger airplanes. Nevertheless, Graeupl et

al. [23], [24] targeted both passenger and cargo aircraft under

the so-called Instrument Flight (IFR) rules. Although their

model could also be used for air-to-air communications, it

has only been used so far for the simulation of air-to-ground

communication in support of air traffic guidance in part of

the European airspace, rather than for investigating AANETs

linking aircraft to airport and for investigating the network

performance.
In Table I we boldly and explicitly compare the main

contributions of [13], [15], [18], [23], [24] to ours in this

paper, because [13], [15], [18], [23], [24] have the most

similar features to those of the passenger aircraft targeted

by us. By observing Table I, we can see that the existing

mobility models have never been validated by real flight data

in the open literature. Last but no least, there is a paucity of

realistic aircraft mobility models capable of capturing the node

distribution over a given geographic area and over a given time

period. Against this background, we develop a semi-stochastic

aircraft mobility model for the Australian airspace that is

capable of generating an arbitrary number of flights capturing

the flight distribution over a period of 24 hours, reflecting both

the real topology and the mobility pattern. Explicitly, our main

contributions can be summarized as follows:

(1) For the first time, we characterize the mobility features

of passenger aircraft based on large-scale real historical

flight data gleaned from flights in Australia, which in-

cludes the top-5 airlines’ flights on two representative

dates.

(2) We develop a semi-stochastic mobility model for passen-

ger aircraft, which is capable of generating an arbitrary

number of flights over Australia. In contrast to fully

stochastic mobility models that cannot accurately capture

the features of real flight mobility, our semi-stochastic

aircraft mobility model inherits the capability of captur-

ing near-realistic aircraft mobility, topology as well as

distribution over a given geographic area and time period,

while exhibiting the required element of randomness.

(3) We proposed a single-source-to-multiple-destination rout-

ing optimization scheme based on Dijkstras algorithm,

which is capable of finding the best routing path either

in terms of the end-to-end delay quantified by the number

of hops, or in terms of the end-to-end throughput from

a target aircraft to multiple ground stations (GSs) as

destinations.

(4) For the first time, we investigated the Australian AANET

based on large-scale real flight data both in the physical

and network layers. Furthermore, we demonstrated that

our semi-stochastic aircraft mobility model is capable of
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TABLE I
COMPARISON THE MAIN CONTRIBUTION OF MOBILITY MODEL FOR AIRBORNE NETWORKS.

Analysis/Validation [13] [18] [15] [23], [24] Ours
Real flight data A & V A & V
Topology A & V
Distribution A & V A & V
Connection ratio A & V
Area SE A & V

Throughput A A & V 1 A & V
Latency A A & V
Link life time A & V
Packet delivery A
Node WBA Aircraft Aircraft IFR Aircraft Passenger Aircraft
Comments European

A2G ATC
networks

A: Analysis V: Validation A & V: Analysis and validation Blank : No related work

1 For the air-to-ground networks developed for air traffic control. For the LDACS network, the simulation results have also
been validated by measurements.

emulating the real flights over the Australian airspace.

Hence, the model-based and real data based networks

exhibit similar performance.

(5) Finally, our semi-stochastic methodology is also applica-

ble to generating flights in other airspaces, such as the

dense airspaces over populated areas represented by Eu-

rope, the United States (US) and China. Furthermore, our

methodology is also suitable for modelling the airspace

over unpopulated areas represented by the North-Atlantic

(NA) region. Hence some statistical characteristics of the

dense European and NA airspace are also presented.

The rest of this paper is organized as follows. Section II

presents the methodology of developing our semi-stochastic

aircraft mobility model. In Section III, we present a distance-

based adaptive coding and modulation scheme specifically

designed for quantifying the link quality between a pair of

aircraft. The single-source-to-multiple-destination routing op-

timization scheme based on Dijkstras algorithm is discussed in

Section IV. Section V is devoted to the analysis and validation

of the semi-stochastic aircraft mobility model both in the

physical and in the network layer. The applicability of our

semi-stochastic aircraft mobility model to other airspaces is

discussed in Section VI. Finally, in Section VII, we conclude

and briefly discuss our future research ideas.

II. THE METHODOLOGY OF AIRCRAFT MOBILITY MODEL

In this section, we present our methodology of generating

aircraft traffic based on large-scale historical flight data exem-

plified by the Australian scenario. Nevertheless, the method-

ology presented below is also applicable to other scenarios.

The international airlines only have routes flying from/to the

international airports in Australia to/from other countries’

international airports. Our methodology of generating near-

realistic aircraft mobility is detailed as follows:

1) Identify the flight designators.

– Identify the airlines having most flights. Intuitively,

each airline typically schedules a single international

flight each day connecting a pair of international

airports with one of them located in Australia, whilst

the other one being in other countries/continents.

Hence, the number of international flights of a single

airline is typically less than that of a domestic

airline’s flights.

– Identify the flight designators of the top-5 Australian

domestic airlines. By checking the flight schedules

of flights 0

47358 42374 186Number

Airlines

2018−06−29

2018−12−25 211243 61287

Fig. 2. The top-5 Australian airlines and their number of flights scheduled
on June 29th, 2018 and December 25th, 2018.

of the airlines’ official website and the Australian

airports’ website, the top-5 airlines in terms of the

number of flights scheduled on each day are Quantas,

Jetstar, Virgin Australia, Tigerair and Rex (Regional

Express). Explicitly, their number of flights sched-

uled on June 29th 2018 and December 25th 2018

are shown in Fig. 2, where Christmas day of 2018

represents the quietest day having the least flights in

2018, whilst the date of June 29th 2018 represents

the busiest day having the most flights in 2018.

2) Download historical flights on the quietest day and on

the busiest day.

The historical flight data can be downloaded either man-

ually or automatically from Flightradar24 https://www.

flightradar24.com/. There are diverse sources available for

obtaining historical flight data, where commercial license

is required, such as Flightaware, Flightradar24, Flight

Tracker - OAG, Automatic Dependent Surveillance-

Broadcast (ADSB) -exchange, Aviation Edge, FlightStats,

Flightfinder and FlightView. All of them provide live

tracking functions for flights. However, historical flight

data are mainly provided by their so-called data service

at a fixed charge per query. Flightradar24 allows users to

customize their preferred historical flight data, hence we

opted for it as our source of the top-5 Australian domestic

airlines’ flight data on June 29th 2018 and December 25th

2018, respectively.

3) Harmonise the raw flight data.

The historical flight data downloaded from Flightradar24

is in raw format, which is based on a comma-separated

value (CSV) file containing floating point numbers, text

and special characters. It is not directly usable for anal-

ysis. The user has to first read and change the hybrid

format raw data to floating point number format, which

can be used for our following analysis. Furthermore, the

time intervals of raw data for each flight data are random,

which is unsuitable for analysis and validation. Hence, we

harmonised the flight data by employing a unified time

interval of ∆t = 10 seconds for each flight data.

Explicitly, given two time-data pairs (t0, y0) and (t1, y1),
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the linear interpolation [25] of (t, y) is given by

y − y0
t− t0

=
y1 − y0
t1 − t0

. (1)

Furthermore, the data value y for a particular time instant

t can be calculated as

y = y0 + (t− t0)
y1 − y0
t1 − t0

. (2)

With the aid of the linear interpolation operation of

Eq. (2), each data entry of altitude, latitude, longitude,

and speed can be interpolated at time intervals of ∆t = 10
s. To exemplify our interpolation, we present the flight

data of Jetstar’s JQ574 taking off from Melbourne and

heading to Brisbane on June 29th, 2018 as a specific

example. Explicitly, Fig. 3(a) - Fig. 3(d) present our com-

parison between the interpolated flight data of Jetstar’s

JQ574 and the real raw flight data of JQ574 in terms of

altitude, latitude, longitude and speed, respectively. There

are several typical phases of flight behaviours, such as

landing and taxiing, as well as climbing and en-route,

plus the potential holding phase encountered, when the

aircraft approaches the airport but has no clearance to

land. Our semi-stochastic aircraft mobility model exploits

a large scale dataset of real historical flights. Explicitly,

each flight data contains the entire flight path trajectory,

based-on the latitude, longitude, altitude, and speed seen

in Fig. 3 all of the above-mentioned flight-phases may be

readily recognized.

The timestamp on the x-axis is Unix Epoch time (UET),

which can be converted into a date and universal time

coordinated (UTC) format as follows:

UTC time =
(

(

(TUET /60) /60
)

/24
)

+ DATE (1970, 1, 1) , (3)

where TUET is a timestamp in UET format.

4) Archive the harmonised real flight data into a library.

The harmonised real flight data are entered into our

library, which are accessible as benchmarked flight data

for generating artificial flight data as required.

5) Characterise the distribution of take-off time.

We assume the take-off time of each flight to be the

instant of changing its speed from zero to non-zero.

Hence the resultant take-off time may be slightly dif-

ferent from the scheduled take-off time published by the

airport/airline, which is typically a little bit later than

the published take-off time. Nevertheless, our method

represents the ‘real’ take-off time, which provides more

accurate flight status and topology than simply relying

on the published take-off time. Moreover, flight delays

routinely occur in reality due to weather, Air Traffic

Control (ATC) restrictions, bird flocks, knock-on effects,

etc.

In possession of the extracted take-off times, the sta-

tistical characteristics can be analysed. Explicitly, the

probability density function (PDF) of take-off times on

June 29th 2018 and December 25th 2018 are depicted in

Fig. 4(a) and Fig. 4(b), respectively. The corresponding

cumulative distribution functions (CDFs) of the take-

off times on June 29th 2018 and December 25th 2018

are depicted in Fig. 4(c) and Fig. 4(d), respectively.

The histogram of take-off times was then approximated

by classical distribution functions, such as the Weibull,

Gamma, Normal, Poisson and Students-t distribution.

Furthermore, we have also included the Kernel density

estimation (Kernel distribution) as a benchmark. How-

ever, Kernel Density Estimation does not constitute a

convenient parametric technique of estimating the PDF

of a random variable. Hence we will not adopt it for

generating the artificial take-off time, regardless of its

goodness-of-fitting accuracy.

The accuracy of distribution fitting can be tested by a

suite of test methods, such as the classic Chi-squared test,

Kolmogorov-Smirnov test (KS-test), Hosmer-Lemeshow

test, and Kuiper’s test, etc. The Chi-squared test has

been widely used, but its accuracy depends on having

a sufficiently large sample size for the approximations

to be valid. By contrast, the KS-test does not rely on

the sample size for its inference to be valid and it does

not depend on the specific shape of the CDF under test.

Hence, we have adopted the KS-test for quantifying the

accuracy of distribution fitting. Given the CDF F (x) and

the empirical distribution function Fn for n independent

and identically distributed (i.i.d.) ordered observations,

the KS-test statistic is defined as [26]

Dn = sup
x
|Fn(x)− F (x)| , (4)

where supx is the supremum of the set of distances,

while Dn is also known as the goodness-of-fit, which

is typically used for evaluating the accuracy of a specific

fitting operation. For the KS-test, a smaller value of Dn

represents a better fit.

The goodness-of-fit values of the six hypothesis distri-

butions investigated are summarized in Table II. Again,

without considering the non-parametric Kernel density

estimation, the Normal and the Weibull distributions have

the best goodness-of-fit for the take-off times on June

29th 2018 and December 25th 2018, respectively. More

specially, the mean and variance of Normal distribution

are µJ = 14.18 and σJ = 4.97 for fitting the flight data

on June 29th, 2018, whilst the scale value and shape

value of the Weibull distribution are φJ = 15.80 and

ψJ = 3.16 for fitting the flight data on June 29th, 2018.

By contrast, the mean and variance of Normal distribution

are µD = 13.43 and σD = 4.47 for fitting the take-

off time of flights on December 25th, 2018, whilst the

scale value and shape value of the Weibull distribution

are φD = 14.98 and ψD = 3.36 for fitting the take-off

time of flights on December 25th, 2018.

6) Randomly generate take-off time according to the distri-

bution acquired in Step-5.

Given the distribution of take-off times acquired by

comparing the goodness-of-fit Dn, we can now artificially

generate a set of take-off times. In order to provide

further insights concerning the artificially generated flight

data, we consider both the best fitting and the second

best fitting distributions, hence both the Normal and the

Weibull distributions will be considered for generating

artificial flight data in our investigations. As shown in

Fig. 5(a) and Fig. 5(b), the take-off times generated by the
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Fig. 3. Comparison between the harmonised and the real raw flight data for the Jetstar JQ574 taking off from Melbourne and heading to Brisbane on June
29th, 2018. The raw flight data is directly obtained from Flightradar24.
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Fig. 4. Characterizing the distribution of take-off time for the top-5 Australian airlines’ flights. The total number of flights on June 29th, 2018 (December
25th, 2018) is given here by the sum of the top-5 Australian airlines’ flights.
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TABLE II
GOODNESS-OF-FIT Dn FOR DIFFERENT STATISTICAL MODELS OF THE DISTRIBUTION OF TAKE-OFF TIMES

Distributions Weibull Gamma Kernel Normal Poisson Student-t
June 29th,2018 0.0848 0.1131 0.0339 0.0782 0.1504 0.0783
December 25th, 2018 0.0680 0.0818 0.0460 0.0691 0.1266 0.0694
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Fig. 5. Comparing the artificially generated take-off times to the Normal and Weibull distributions

Normal and Weibull distribution are capable of accurately

matching the take-off time of the real historical flights

both on June 29th, 2018 and on December 25th, 2018.

7) Shift the real historical take-off to “randomly generated

take-off time”. A set of randomly selected real historical

flight data extracted from our database will be used as

baseline flight data. The associated take-off time is first

extracted by selecting the first non-zero speed value and

its corresponding timestamp. Let us denote the take-off

time of the randomly selected real historical flight data

by Tr. Furthermore, given a randomly generated take-off

time Tg obeying either the Normal or the Weibull dis-

tribution, the artificially generated flight data associated

with the speed interval of vg is given by

vg=







[0Ns
, vr,1, vr,2, · · · , vr,N−Ns

] , if Tg > Tr
[vr,Ns+1, vr,2, · · · , vr,N ,0Ns

] , if Tg < Tr
vr, if Tg = Tr

(5)

where vr is a randomly selected real historical flight data

velocity, vr,i is the i-th element of vr, N is the length of

vector vr, 0Ns
is a row vector of length of Ns having 0

elements, which is calculated as:

Ns =
F (Tg − Tr)

∆t
. (6)

Again, recalling the operation in Step-3, the time interval

between data samples is ∆t = 10 s. In Eq. (6), F(·)
is the operation converting the time difference between

Tg and Tr into seconds. Similarly, we can obtain the

artificially generated flight data of latitude θg , longitude

ϕg , and altitude Lg following the methodology of Eq. (5).

In a nustshell, the flight trajectory of the artificially

generated flight data (θg,ϕg,Lg,vg) follows a same

route as the historical flight data (θr,ϕr,Lr,vr), but they

have different takeoff time and landing time.

III. DISTANCE-BASED ADAPTIVE CODING AND

MODULATION

In mesh networks of aircraft, the ground stations (GSs) are

typically located at the airport, which allows the aircraft to

directly communicate with Air traffic control for delivering

vital control messages. Apart from being either the source or

destination, the aircraft also provide relaying services during

their landing/take-off, taxiing and holding patterns [1], [27],

where these phases are associated with rather diverse channel

characteristics, especially the air-to-ground (A2G) or air-to-

air (A2A) links [28]. The A2G communications and A2A

communications rely on the same channel model for their

data transmission, but they have different maximum delay.

In the following, we present our distance-based ACM regime

used for both A2G and A2A communications, nevertheless,

the A2G data transmission relying on distance-based ACM

follows the same methodology.

Intuitively, there is a line-of-sight (LOS) path in A2A

communications, where the power ratio between the LOS path

and the diffuse components is given by [27]

KRice =
α2

β2
, (7)

where α ∈ R is the amplitude of the LOS path and β ∈ R
is the variance of the diffuse component having zero-mean

quadrature components.

Hence, given the Rician factor KRice, we have [27], [29]

α =

√

KRice

1 +KRice

, (8)

β =

√

1

1 +KRice

. (9)

In the aeronautical channel, the Doppler power spectrum

and delay power spectrum is dependent on the specific phase

of flight. The Doppler power spectral density function of the

A2A aeronautical channel can be modelled by Clarke’s [30]

formula given by

p (fD) =

{

1

πfDmax

√
1−(fD/fDmax )

2
, |fD| < fDmax

,

0, else,
(10)

where fDmax
is the maximum Doppler shift. In the worst case,

the direction of the LOS path coincides with the heading of the

aircraft, hence resulting in a carrier shift of fDLOS
= fDmax

for
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the LOS path, whereas the scattered components arrive from

behind.

Furthermore, the pathloss of the A2A aeronautical channel

can be modeled as [29]

Lpath loss [dB] = −154.06 + 20 log10 (f) + 20 log10 (d) , (11)

where f [Hz] is the carrier frequency and d [m] is the distance

between the transmit antenna (TA) and receive antenna (RA).

The small-scale fading is characterized by the diffuse com-

ponents of the multi-path radio channels, which can be written

as [31]

hNLOS (τ, t)= lim
N→∞

1√
N

N
∑

n=1

ejθn · ej2πfDn
t · δ (τ − τn) , (12)

where τ is the excess delay, t is the absolute time, N is the

number of echos, θn represents the phase of the n-th echo,

and fDn
is the Doppler shift of the n-th echo.

By contrast, the line-of-sight (LOS) component is given by

[31]

hLOS (t) = ej2πfDLOS
t · δ (τ − τLOS) , (13)

where fDLOS
is the Doppler frequency of the LOS path, and

we have τLOS = 0 after time synchronization at the receiver

side.

Hence, recalling Eq. (12) and Eq. (13), the time-domain

channel impulse response (CIR) h (τ, t) can be formulated as

h (τ, t) = α · hLOS (t) + β · hNLOS (t) ,

= α · ej2πfDLOS
t · δ (τ − τLOS)

+ β · lim
N→∞

1√
N

N
∑

n=1

ejθn · ej2πfDn
t · δ (τ − τn) . (14)

We employ the distance-based adaptive coding and mod-

ulation (ACM) scheme developed in [29], [32]. Explicitly,

the distance-based ACM aeronautical communication system

can switch its ACM mode based on the distance between the

desired pair of communicating aircraft.

Given the position of a pair of aircraft, say the transmit

aircraft a and the receive aircraft b, we can calculate their 3D

separation according to Eq. (15) - Eq.(17). Explicitly, having

the altitude, latitude and longitude (La, θa, ϕa) of aircraft a,

its Cartesian coordinates px,a, py,a and pz,a are defined by

px,a =(RE + La) cos(θa) cos(ϕa), (15)

py,a =(RE + La) cos(θa) sin(ϕa), (16)

pz,a =(RE + La) sin(θa). (17)

The 3D separation between aircraft a and aircraft b is calcu-

lated as

da,b=
√

|px,a − px,b|2+|py,a − py,b|2+|pz,a − pz,b|2, (18)

where da,b is in [m]. In (4), px,a, py,a and pz,a are the 3D

Cartesian coordinates of aircraft a, while px,b, py,b and pz,b
are those of aircraft b.

Furthermore, the distance-based ACM scheme conceived

for aeronautical communications using K = 7 modes is

given in Table III, which can be designed according to our

investigations in [29]. Note that the default system parameters

in Table IV have been used in designing the distance-based

TABLE III
DISTANCE-BASED ADAPTIVE CODING AND MODULATION SCHEME FOR

AERONAUTICAL COMMUNICATIONS.

Mode k Mode color Throughput
(bps/Hz)

Threshold dk
(km)

0 None < 0.459 > 740.8
1 Red 0.459 500
2 Orange 1.000 350
3 Yellow 1.322 200
4 Green 1.809 110
5 Blue 2.197 40
6 Magenta 2.747 25
7 Purple 3.197 5.56

ACM of Table III. The transmit aircraft, say aircraft a∗, selects

an ACM mode to transmit its data according to the adaptive

reconfiguration regime of

If dk ≤ da
∗

b∗ < dk−1 : choose mode k, (19)

where aircraft b∗ is the receive aircraft, k ∈ {0, 1, 2, · · · ,K},
and we assume d0 = DA2A

max. When da
∗

b∗ ≥ DA2A
max, there exists

no adequate communication link, since the two aircraft are

beyond each others’ communication range. Since the minimum

flight safe separation must be obeyed, we do not consider the

scenario of da
∗

b∗ ≤ Dmin. Explicitly, Dmin = 5.56 km is used

as the minimum safe separation distance, and DA2A
max = 740.8

km is the maximum communication distance having a non-

zero throughput in A2A communication. When the distance

exceeds DA2A
max, there is no adequate communication link.

The distance-based ACM designed in Table III is also

suitable for A2G communications, but the maximum A2G

communication distance is given by DA2G
max = 370.4 km as

limited by the radio horizon [1]. Hence, only the orange,

yellow, green, blue magenta and purple ACM modes are

available for A2G communication.

IV. SINGLE-SOURCE-TO-MULTIPLE-DESTINATION

ROUTING OPTIMIZATION BASED ON DIJKSTRAS SHORTEST

PATH FIRST ALGORITHM

Given the multihop nature of airborne mesh networks, the

packets have to be delivered through multiple wireless hops to

arrive at their final destination, such as a GS for accessing the

Internet. Hence, a seamless source to destination path must

be established in an aeronautical ad-hoc network (AANET)

to enable an aircraft to access the Internet [33], which is

the task of routing protocols. However, having an appropriate

address allocation is essential for facilitating reliable packet

exchange between airborne mesh network nodes. Airborne

mesh networks are self-configuring networks consisting of air-

craft nodes interconnected by wireless links, where an efficient

routing strategy has to be conceived for avoiding congestion

and for achieving the maximum throughput per aircraft. In-

tensive efforts have been devoted to routing protocol design

and routing optimization [34]–[38]. However, the choice of

routing protocols critically hinges on the specific topology and

mobility. The routing problem of the Australian aeronautical

network - similar to other AANETs - typically has multiple

destinations, because an aircraft may potentially direct its

packets to any of the ground stations in order to access the

Internet. Hence, the above-mentioned routing algorithms may

be invoked for validating our semi-stochastic aircraft mobility

model in terms of its network layer performance. However,

further research efforts are required for optimizing the routing
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algorithms for the multiple-destination Australian aeronautical

network, which is set aside for our future research. To expound

further Dijkstra’s algorithm [39] is capable of finding the

shortest distance or maximum end-to-end throughput to all

other nodes from that node of origin. In our investigations,

we will invoke Dijkstra’s algorithm to find the shortest path

from an aircraft to any GS as well as to find the best path

maximizing the end-to-end throughput, which will be used

both for characterizing our mobility model in terms of the

number of hops imposed, the end-to-end throughput and the

area spectral efficiency.

Dijkstra’s algorithm [39] is a powerful search technique,

which was specifically designed for finding the shortest path

between a pair of nodes quantified in terms of the number of

hops, each of which may of course have a different length in

Km. When A = 6 aircraft and B = 2 ground stations are

considered, we may construct the C × C throughput matrix

WWW shown in Fig. 7, where C = A+B. Explicitly, the number

in each grid position represents the throughput in bps/Hz

conveyed between a pair of nodes using the ACM modes of

Table III. Once this hop-count or throughput matrix has been

constructed, Dijkstra’s search algorithm can be used for finding

the minimum number of hops from a certain aircraft to the

GSs. It also allows us to determine the maximum achievable

throughput for a certain aircraft at a complexity order of

O(C2) [39]. It is worth noting that the max throughput of

a specific route is limited by that of the lowest-throughput

hop.

In the following, we will further augment Dijkstra’s algo-

rithm by the quantitative example of Fig. 6. Explicitly, we

illustrate both the links between different aircraft and the links

between the aircraft as well as the ground station, relying

on the corresponding throughput matrix shown in Fig. 7. For

example, aircraft-5 is three hops away from GS-2 and in this

route, it has a connection to aircraft 2 and the throughput of

this link is 1.000 [bps/Hz], as seen in the throughput matrix

of Fig. 7 and Fig. 6 as well as in the ACM mode of Table III.

Similarly, the only aircraft connected to aircraft 2 in its route to

GS-2 is aircraft 1, with the corresponding throughput of 2.197
[bps/Hz] stored in the throughput matrix, as seen in Fig. 6 and

Fig. 7 as well as in the ACM mode of Table III. The throughput

of the link between aircraft 1 and the GS-2 is also shown

in Fig. 6 and again the throughput matrix of Fig. 7. Hence,

then end-to-end throughput of the routing path ‘aircraft-5 →
aircraft-2 → aircraft-1 → GS-2’ is 1.000 [bps/Hz], which is

limited by the gold ACM mode of Table III. Alternatively,

there is another routing path for aircraft-5 accessing GS-1,

namely the routing path ‘aircraft-5 → aircraft-4 → aircraft-3
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Fig. 6. An example topology showing the links of the aircraft and ground
station. The corresponding throughput matrix is shown in Fig. 7.
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Fig. 7. A stylized throughput matrix of six aircraft and two ground stations for
a hypothetical example network. Explicitly, the number in each grid position
represents the throughput in bps/Hz conveyed between a pair of nodes using
the ACM modes of Table III.

Algorithm 1 Dijkstra’s Max-throughput search algorithm

Input
WWW , the starting aircraft index st, and the ground station
index e;

Output
the max throughput from aircraft index st to the ground
station index e

Require:
Initialise throughput vector CCC with the st column of WWW ;
Initialise i = 0;
Initialise a flag n-length vector, visitvisitvisit, to check whether
the aircraft or ground station has been visited before;

1: while i < n− 1 do
2: temptemptemp = 000; //Initialise a n-legnth zero vector
3: j = 0;
4: while j < n do
5: if visit[j] == 1 then
6: temp[j] = C[j];
7: end if
8: j = j + 1;
9: end while

10: (value, index) ← max(temptemptemp); //Pick the neighbour
aircraft that has the max capacity.

11: visit[index] = 0;
12: j = 0;
13: while j < n do
14: if C[j] < min(C[index],W [index, j]) then
15: C[j] = min(C[index],W [index, j]); //Update the

current max-throughput C[j]
16: end if
17: j = j + 1;
18: end while
19: i = i+ 1;
20: end while
21: return C[e];

→ GS-1’. However, its achievable throughput is limited by

the red ACM mode between aircraft-5 and aircraft-4. Thus,

the end-to-end throughput is 0.459 [bps/Hz], which will not

be selected owing to its low throughput.

More generally, Dijkstra’s max-throughput search algorithm

operates using the following steps:
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TABLE IV
PARAMETERS USED IN VALIDATING THE SEMI-STOCHASTIC AIRCRAFT MOBILITY

Scenario related parameters

Airspace Australian airspace

Top-5 domestic airlines
Quantas, Jetstar, Tigerair,
Virgin Australia and Rex

Number of GSs 15

Representative dates considered
December 25th, 2018
June 29th, 2018

Time period considered 00:00 ∼ 24:00
Total number of flights on December 25th, 2018 802
Total number of flights on June 29th, 2018 1007
Latitude Determined by each aircraft
Longitude Determined by each aircraft
Altitude Determined by each aircraft

Physical layer parameters

Carrier frequency fc 5 GHz
Bandwidth B 6 MHz
Number of CPs 32
Number of subcarrier 512
factor KRice 5 dB
ACM As detailed in Table III
Minimum separation distance Dmin 5.56 km

Maximum A2A communication distance DA2A
max 740.8 km

Maximum A2G communication distance DA2G
max 370.4 km

Semi-stochastic mobility model based
on Normal distribution

Total number of flights on June 29th, 2018 1007
Mean µJ on June 29th, 2018 14.18
Variance σJ on June 29th, 2018 4.97
Total number of flights on December 25th, 2018 802
Mean µJ on December 25th, 2018 13.43
Variance σJ on December 25th, 2018 4.47

Semi-stochastic mobility model based
on Weibull distribution

Total number of flights on June 29th, 2018 1007
Scale value φJ on June 29th, 2018 15.80
Shape value ψJ on June 29th, 2018 3.16
Total number of flights on December 25th, 2018 802
Scale value φJ on December 25th, 2018 14.98
Shape value ψJ on December 25th, 2018 3.36

1) Initialise the max-throughput vector as CCC =WWW st, where

CCC is a column of WWW .

2) Pick the source aircraft st and calculate the throughput

of the link leading to the adjacent aircraft and to the

ground stations.

3) Pick the next aircraft ui having the max throughput, and

if the capacity is higher upon visiting ui, then update the

current max-throughput C.

4) Repeat the adjacent aircraft throughput calculations until

all the aircraft have been visited.

Dijkstra modified max-capacity search procedure is sum-

marized in Algorithm 1, which is capable of achieving the

maximum end-to-end capacity. Similarly, the minimum latency

imposed by the end-to-end transmission can be acquired upon

replacing the throughput by the delay quantified in terms of

the number of hops. For example, when using a typical 5G-

style transmit frame-structure, each node may add 10 ms of

relaying delay upon additionally taking into account the node-

distance in Km and the speed of light, the actual propagation

delay in seconds may be readily found.

V. VALIDATING THE AIRCRAFT MOBILITY MODEL

In this section, we will analyse both the achievable physical

layer link performance and the network layer performance in

terms of the number of hops, latency and link life time in end-

to-end transmission. Again, the dataset used for our analysis

and validation is based on the top-5 domestic airlines’ flights

on June 29th, 2018 and December 25th, 2018, namely on

Quantas, Jetstar, Tigerair, Virgin Australia and Rex (Regional

Express). The aircraft mobility model developed will also be

characterized in terms of its achievable link quality both in

the physical and network layer.
The default system parameters used for our analysis and

simulations are summarised in Table IV. Explicitly, this has a

bandwidth of B = 6 MHz and a carrier frequency of fc = 5
GHz. Orthogonal frequency-division multiplexing (OFDM) is

used and the transmit power is set to 1 watt per antennas. A

typical Rician factor of KRice = 5 dB is considered for the

aeronautical channel, as seen in Table. IV. Again, the default

system parameters of Table IV have been used in designing

the distance-based ACM of Table III.

In the following, ‘Real’ in the legend represents the real

historical flights. Furthermore, ‘Normal’ represents the flights

generated by our aircraft mobility model developed by relying

on the Normal distribution for the take-off time, which rep-

resents ‘the flights generated by the Normal distribution’. By

contrast, the label ‘Weibull’ represents the flights generated by

our aircraft mobility model relying on the Weibull distribution

for the take-off time, which represents ‘the flights generated by

the Weibull distribution’. The semi-stochastic aircraft mobility

model developed in this paper is capable of generating an

arbitrary number of aircraft scheduled on a date required for

the Australian aeronautical networks. However, in order to

validate its capability of capturing the trends of in the air over

24 hours and the network topology as well as all the other

key network characteristics, we generate the same number of

flights as the real number of historical flights in our following

investigation. Again, the aircraft mobility model developed is

capable of generating any number of flights in line with the

request of the designers.

A. The Number of Flights in The Air

In this subsection, we first informally characterize the

aircraft mobility model developed. The number of flights in

the air over a period of 24 hours is shown in Fig. 8 on

December 25th, 2018 and June 29th, 2018. The total number

of real flights is given here by the sum of the Top-5 Australian
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airlines’ historical flights on June 29th, 2018 and December

25th, 2018, respectively. In order to validate our mobility

model, we artificially generate the same number of flights as

the real historical flights on June 29th, 2018 and December

25th, 2018, respectively.
Explicitly, the number of real flights is represented by solid

black lines, the flights generated by the Normal distribution

are represented by red dotted line, whilst the flights generated

by the Weibull distribution are marked by red dashed line. The

numbers of flights seen in the figure was generated based on

a single realization of a Normal or Weibull process. Observe

from Fig. 8(a) and Fig. 8(b) that the sky is quiet before 04:00

on December 25th, 2018 and on June 29th, 2018, respectively.

However, there are more and more flights in the air during

the daytime. The number of flights reaches its peak between

12:00 and 16:00 for both the real historical flights and for the

flights generated by our aircraft mobility model. Furthermore,

the number of flights generated by our aircraft mobility model

tends to follow the broad trend of the real historical flights.

However, there is a drop in the number of real flights at 11:00

both on December 25th, 2018 and on June 29th, 2018.

B. Physical Layer Performance

In order to analyse and validate our aircraft mobility model

at the physical layer, we select 12:00 as a specific representa-

tive time. The analysis and validation at other times of the day

follow the same methodology. Explicitly, let us take a glimpse

of the topology and link connection quality at 12:00 both on

December 25th, 2018 and on June 29th, 2018, respectively.

The link quality is closely tracked by the ACM models shown

in Table III. Explicitly, if the distance between a pair of

communicating aircraft is higher than 740.8 km, we say there

is no available ACM mode; if the distance is longer than

500 km but shorter than or equal to 740.8 km, the ACM mode

has a throughput = 0.459 [bps/Hz]; if it is longer than 350 km

but shorter than or equal to 500 km, the throughput is 1.000

[bps/Hz]; if it is longer than 200 km but shorter than or equal

to 350 km, the throughput is 1.322 [bps/Hz]; if the distance

is longer than 110 km but shorter than or equal to 200 km,

the throughput is 1.809 [bps/Hz]; if it is longer than 40 km

but shorter than or equal to 110 km, the throughput is 2.197

[bps/Hz]; if it is longer than 25 km but shorter than or equal

to 40 km, the throughput is 2.747 [bps/Hz]; if it is longer than

5.56 km but shorter than or equal to 25 km, the throughput

is 3.197 [bps/Hz]. Here we use 5.56 km as the minimum safe

distance between two aircraft.
As a specific example at 12:00 both on December 25th,

2018 and on June 29th, 2018, the network topology can be

readily illustrated by extracting each flight’s latitude, longitude

and altitude. To provide a glimpse of the location distribution

over Australia, we plot the associated 2D topology in Fig. 9 by

exploiting the latitude and longitude of each flight. By looking

at Fig. 9, we can see that most of the flights cluster near

the Eastern coast’s airspace both for the real historical flights

and for the flights generated by our aircraft mobility model

using both the Normal and the Weibull distribution. Note that

a slight topology difference can be observed by comparing the

real historical flights and the flights generated by our aircraft

mobility model, since there is some randomness both in the

number of flights generated at a specific time and in their

location distribution over the airspace. Nevertheless, the flights

generated by both distributions exhibit visual similarity to the

real historical flights in terms of topology.
Furthermore, the histograms of the ACM modes at 12:00 on

December 25th, 2018 and on June 29th, 2018 are shown in

Fig. 10(a) and Fig. 10(b), respectively, which provide a more

quantitative comparison between our aircraft mobility model

and the real historical flights. We can see from Fig. 10(a)

and Fig. 10(b) that most links use ACM mode 1 of Table III,

both on December 25th, 2018 and on June 29th, 2018. The

number of high-throughput links becomes less and less upon

increasing the ACM mode index.

C. Network Layer Performance

In this subsection, we investigate the achievable network

layer performance in terms of the ratio of successful connec-

tions to a GS, the number of accessible GSs, the minimum

number of hops leading to a GS, the area SE defined in

bps/Hz/million km2 [40] and link life-time. In our investi-

gations, there are 15 GSs placed at 15 airports distributed

over Queensland, New Southwales, Victoria, South Australia,

Western Australia and Northern Territory. By jointly con-

sidering their geographical distribution and the busiest of

airports, the 15 GSs are placed at Sydney Airport, Melbourne
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Fig. 8. The number of flights in air over 24 hours in the Australian airspace
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Weibull flights at 12:00 of Jun. 29th, 2018
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Fig. 9. The topology with link connection quality on December 25th, 2018 and on June 29th, 2018, respectively. The subfigures (a)-(c) are topologies with
link connection quality on December 25th, 2018. The subfigures (d)-(f) are topologies with link connection quality on December 25th, 2018.

(a) Dec. 25th, 2018 (b) Jun. 29th, 2018

Fig. 10. The histograms of the ACM modes at 12:00 on December 25th, 2018 and on June 29th, 2018, respectively, where the topology of the flights is
shown in Fig. 9.

Airport, Brisbane Airport, Perth Airport, Adelaide Airport,

Gold Coast Airport, Cairns Airport, Collarenebri Airport,

Hobart International Airport, Darwin International Airport,

Karratha Airport, Port Hedland International Airport, Ballina

Byron Gateway Airport, Coffs Harbour Airport and Ayers

Rock Airport (Connellan Airport).

First of all, we investigate whether a specific aircraft in

the air is capable of connecting to a GS, which means that

it is capable of accessing the Global Internet. The successful

connection ratio Rcon is defined as

Rcon =
Ncon

Nall

, (20)

where Ncon is the number of aircraft that is capable of

connecting to at least one GS and Nall represents the total

number of aircraft in the air.

The successful connection ratios over 24 hours on December

25th, 2018 and on June 29th, 2018 are shown in Fig. 11(a)

and Fig. 11(b), respectively. Observe from Fig. 11(a) that the

successful connection ratios are typically above 90% from
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Fig. 11. The ratio of having a connection with any of the ground stations
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Fig. 12. The average number of hops to a ground station

08:00 to 17:00 on December 25th, 2018, when there are more

flights in air during that period of the day. By contrast, the

successful connection ratios are typically above 96% from

08:00 to 20:00 on June 29th, 2018, since there are more

flights during that period of the day. Furthermore, we conclude

that the successful connection ratios have been significantly

improved compared to December 25th, 2018, again because

there are more flights on June 29th, 2018. We can also observe

that the successful connection ratio of the flights generated is

capable of closely tracking that of the real historical flights.

Furthermore, the averaged number of hops required by an

aircraft for accessing any of the GS is depicted in Fig. 13.

Explicitly, Fig. 13(a) depicts the result on December 25th,

2018, while Fig. 13(b) on June 29th, 2018, respectively.

Typically, an aircraft is capable of accessing a GS by a single

hop both on December 25th, 2018 and on June 29th, 2018,

especially during the period between 5:00 and 20:00, which

indicates that our placement of the 15 GSs across Australia

provides a good coverage for the flights in the Australian

airspace.

The achievable maximum area spectral efficiency (ASE)

defined by Alouini and Goldsmith [40] is investigated in

Fig. 14, whilst the corresponding averaged number of hops

is investigated in Fig. 16. Explicitly, the ASE is defined as

the total achievable end-to-end spectral efficiency of all links

divided by the total area of Australia. The achievable end-

to-end throughput of an aircraft is defined as the spectral

efficiency of an aircraft accessing any of the GSs. The area of

Australia is given by 7.692 million km2. By recalling Fig. 8(a)

and Fig. 8(b), we can see that the area spectral efficiency is

higher, when there are more flights in the air both on December

25th, 2018 and on June 29th, 2018, respectively. The flights

generated both by the Normal and by the Weibull distributions

are capable of approximating the maximum ASE achieved by

the real historical flights.

The average end-to-end throughput was investigated in

Fig. 15. Explicitly, Dijkstra’s algorithm described in Section IV

is invoked for finding the routing path of a targeted aircraft

with the objective of achieving maximum end-to-end through-

put. The end-to-end throughput is limited by the specific

link in the routing path that has the minimum link through-

put. Furthermore, the distance-based ACM scheme presented

Section III is also invoked for quantifying the achievable

throughput of each link. We can see from Fig. 15(a) that

the flights generated by the Normal and Weibull distributions

are capable of closely approaching the end-to-end throughput
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Fig. 13. The average number of hops to a ground station
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Fig. 14. The area spectral efficiency attained, when having the minimum number of hops to any GS
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Fig. 15. The average throughput of routing paths aiming for achieving maximum end-to-end throughput.
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Fig. 16. The average number of hops, when aiming for achieving maximal end-to-end throughput

achieved by the real historical flights between 8:00 and 21:00

on December 25th, 2018, when there are more flights in

air by recalling Fig. 8(a). Similarly, the flights generated by

the Normal and Weibull distributions are also capable of

approaching the end-to-end throughput attained by the real

flights from 5:00 to 17:00 on June 29th, 2018 by observing

Fig. 15(b).

The corresponding average number of hops associated

with achieving maximal end-to-end throughput on December

25th, 2018 and June 29th, 2018 are portrayed in Fig. 16(a)

Fig. 16(b), respectively. We can see that an aircraft may need

more hops for achieving a higher end-to-end throughput than

in Fig. 13, which depicts the averaged number of hops required

for accessing any of the GSs. Furthermore, by observing

Fig. 16(a) Fig. 16(b), we can also see that the flights generated

by the semi-stochastic aircraft mobility model is capable of

tracking the trend of the number of hops imposed over 24

hours.

The link life-time is defined as the duration of time for

a link to be maintained between a pair of aircraft, which

is one of the most important metrics in ad-hoc networks.

These results recorded for the real historical flights and for

the flights generated by our aircraft mobility model are shown

in Fig. 17. Explicitly, Fig. 17 portrays the histogram of link

life-time at intervals of 1/2 hour, whilst Fig. 17 portrays

their complementary cumulative distribution function (CCDF)

statistics. Observe from Fig. 17 that most of the links have a

link life-time of 3/4 hour and/or 1 1
4 hours both for the real

historical flights and the flights generated by the Normal and

Weibull distributions. There are almost no flights having a 2-

hour link life-time.

Furthermore, the link life-time may be improved by con-

ceiving sophisticated routing protocols. Intuitively, a pair of

aircraft having the same flying direction and similar speed

will have a long-lasting link connectivity, where the estimated

level-crossing rate of the link can be invoked as a metric for

finding long-lasting routing paths.

VI. DISCUSSIONS ABOUT THE APPLICABILITY TO OTHER

SCENARIOS

The methodology presented in Section II for our devel-

oping semi-stochastic aircraft mobility model is exemplified

by the Australian scenario and its performance is validated

by Australian flight data. However, it is also applicable to

other scenarios, such as Europe, the North-Atlantic (NA), the

United States (US) and China, provided that their historical

flight data is available. Having said that, naturally, the best

fitting distribution used for artificially generating new flights

is scenario-dependent. To elaborate, there are three typical

airspaces, namely sparse airspaces over populated areas, dense

airspaces over populated areas and trans-ocean airspaces. The

sparse airspaces over populated areas may be represented by

the Australian airspace, the dense airspaces over populated

areas are typical for Europe, US and China, whilst the trans-

ocean airspace may be represented by the NA airspace or

Trans-Pacific airspace. In the following, we will briefly high-

light the application of our semi-stochastic aircraft mobility

model both to the European scenario and to the NA scenario,

which represent the dense airspace over populated areas and

the trans-ocean airspace, respectively.

Explicitly, the Top-5 airlines transatlantic flights were ex-

ploited for our investigation of the NA scenario, which are

Delta Airlines, United Airlines, American Airlines, British

Airways and Lufthansa. Because there is significant time

difference between flights taking off from Europe and the US,

we investigate their statistical characteristics separately. Since

there are too many airlines in Europe, if we only consider top-5

airlines’ flights, they cannot cover all flight route paths across

Europe. Hence, we choose all of the departure and arrival

flights of the top-5 busiest airports for European scenario.

The top-5 busiest airports selected are Heathrow Airport, UK;

Charles de Gaulle Airport, France; Amsterdam’s Schiphol Air-

port, Netherlands; Istanbul’s Ataturk Airport, Turkey; Frank-

furt Airport, Germany. The goodness-of-fit values of the six

representative hypothesis distributions investigated are sum-

marized in Table V.

Again, without considering the non-parametric Kernel den-

sity estimation, the Gamma distribution has the best the best
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Fig. 17. The histogram of link life time in Australia

goodness-of-fit for the NA-EU side both on June 29th 2018

and on December 25th 2018, whilst the Student-t distribution

has the best goodness-of-fit for the NA-US side both on June

29th 2018 and on December 25th 2018. By contrast, the

Normal distribution has the best goodness-of-fit for Europe

scenario both on June 29th 2018 and on December 25th

2018. Furthermore, the best fitting parameters of the Gamma

distribution, Student-t distribution and Normal distribution are

summarised in Table VI, which can be used for generating

near-realistic flight data for both the NA scenario and Euro-

pean scenario by recalling the semi-stochastic aircraft mobility

models, respectively.

VII. CONCLUSIONS

Since there is a paucity of literature on aircraft mobility

models for generating near-realistic flight data for investigating

aeronautical networks, we developed a semi-stochastic aircraft

mobility model based on large-scale real historical flights

acquired on the quietest day and busiest day of 2018. The

proposed aircraft mobility model is capable of generating near-

realistic mobility that captures the statistical features of the

number of aircraft in air, their motion trajectory, topology, link

quality as well as network layer performance. The achievable

link quality of the physical layer was investigated by relying

on our distance-based ACM that is specifically designed

for aeronautical communications. In order to investigate the

network layer performance, we developed a single-source-

to-multiple-destination routing optimization scheme based on

Dijkstras algorithm. Furthermore, we analysed and validated

our aircraft mobility model by investigating and comparing the

statistical link quality, end-to-end -throughput, link connection

ratio to any ground station, the number of hops as well as

the link life-time. Finally, the key statistical parameters of

the distribution used for generating artificial flight data for

dense airspaces represented by European airspace and for

trans-ocean airspaces represented by the NA airspace were

characterized. Our future research will consider the multi-

component Pareto-optimization of similar networks.
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