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ABSTRACT

Soft-in-plane rotor systems are susceptible to a self-induced vibration phenomenon called ground resonance. This
dynamic instability results from lag motions of the rotor blades coupling with airframe degrees of freedom while the
helicopter is in ground contact. As an addition to previous studies of nonlinear landing gear effects, this work presents
the Matrix Pencil Method as a useful additional tool for signal analysis of perturbed nonlinear systems. Contrary to
simple logarithmic decrements of decaying time-series, the Matrix Pencil Method allows additional insight into the
underlying structure. This makes the method interesting for ground resonance. Additionally, the Lyapunov Exponent
Method is introduced to highlight and analyze nonlinear effects in helicopter substitute models.

INTRODUCTION

Ground resonance is a self-induced vibration phenomenon
which causes aeroelastic instability. It occurs while the he-
licopter is in ground contact. It is a dynamic instability re-
sulting from lag motions of the rotor blades coupling with air-
frame degrees of freedom (Ref. 1). If the lead-lag motion of
the rotor blade is transformed from the rotating system into
the non-rotating system, it leads to two eigenfrequency com-
ponents. One is progressive with the absolute value |Q + a|
and the other one is a regressive component with the value
|Q — aw|. Q denotes the rotation velocity and @ as the lead-
lag frequency in the rotating system (Ref. 1). For soft-in-plane
rotor systems ground resonance is critical since the regres-
sive lead-lag frequency can be in a range close to the fuselage
eigenfrequencies. The collective and differential lead-lag mo-
tion {y and {y, the progressive lead-lag motion {,,, and the
regressive lead-lag motion in the non-rotating system (., are
shown in Figure 1. The critical coupling with two hub fre-
quencies in x and y directions are circled with a red-dotted
line. These frequencies overlap and the resulting vibrations
can cause large-scale damage to the helicopter.

Since the landing gear elasticity largely determines the dy-
namic behavior of helicopter airframes in the low-frequency
range, the study of landing gear properties was a main fo-
cus of ground resonance research. Additionally, the landing
gear’s contact to the ground during slope landings or in oper-
ational conditions with non-primed landing zones were stud-
ied (Ref. 2), (Ref. 3). In such landings only partial skid con-
tact can occur and influences the dynamic stability of the he-
licopter. This includes landings in rocky terrain or pits. The
large variability of ground properties and contact conditions
yields a wide range of friction or damping characteristics and,
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consequently, of system behaviors. While a full skid con-
tact increases the eigenfrequencies of the helicopter fuselage
and therefore leads to a larger stability margin (Ref. 4), soft
underground conditions can add additional damping to the
system. Based on the work in (Ref. 3) these counteracting
effects have to be studied in greater detail. If ground reso-
nance occurs, a pilot is advised to perform immediate take-off
and abort the landing, which can be unacceptable in certain
mission profiles like rescue operations. Contrary to classical
ground resonance, which has been an active research topic for
many years (Refs. [, 18), there has been considerably less fo-
cus on such more exotic landing conditions. This means, that,
in addition to suitable simulation models, analysis methods
have to be deployed to study ground resonance for such land-
ing scenarios. These methods need to be suited for nonlinear
dynamics and should be able to handle a variety of contact
definition and ground models while giving as much insight
into the helicopter-ground model as possible. Preferably these
methods should be able to be employed for simulation and for
practical tests as those necessary to ensure the safety of the
helicopter under all conditions as requested by the European
Aviation Safety Agency (Ref. 5). Previous studies of partial
ground contact showed the necessity for analysis methods that
can evaluate time simulation data of nonlinear models. There-
fore, the addition of the Matrix Pencil Method as a method for
ground resonance studies in combination with detailed mod-
els for partial skid gear contact, is the focus of the presented
paper. The method is suitable for large, complex and inher-
ently nonlinear systems (Ref. 6). The proposed work will
compare and combine the results of the Matrix Pencil Method
as given in (Ref. 7) with those derived by Lyapunov expo-
nents, a method suitable to determine the stability of nonlinear
dynamic systems as pointed out by (Ref. 12). As necessary,
the Matrix Pencil Method is adapted, meaning additional filter
functions are added to counter high-frequency interference.
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Figure 1: Eigenvalues in the nonrotating system dependent on
the rotation frequency; collective, differential blade motion &
and {y; regressive and progressive lead-lag motion s and
prog> hub motion in x and y directions.

METHOLOGY AND SIMULATION

Based on the study of partial ground contact during take-off
by Kessler and Reichert (Ref. 8) and slope landing studies by
Dieterich (Ref. 2), the partial skid contact was the focus of
previous ground resonance research. Dedicated models for
the investigation of the influence of contact area and different
contact models were elaborated in a previous CEAS publi-
cation by the authors (Ref. 3). These models allow the de-
tailed simulation of time-variant contact conditions, including
damping and friction effects.

Structural Model

In this work, two structural models are used. The first one is
used to validate the approach, the second to extrapolate it to
a detailed helicopter model. The first model is a simplified
two-degree-of-freedom landing gear model based on the one
presented in (Ref. 8). In this model, the helicopter is coupled
with a nonlinear landing gear and reduced to its heave and
pitching degrees of freedom. In this representation the heli-
copter is assumed rigid but excited by forces on the rotor hub.
It is schematically represented in Figure 2.

Mathematically spring-damper force can be expressed as

1
Fr=5kzpr+ezp,+d 2, (1)
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Figure 2: Simplified helicopter model with nonlinear landing
gear.

where the deflection at the front element is described by zy =
z—a®, with a being the horizontal distance to the airframe
center of gravity and O as the pitch angle of the airframe rela-
tive to the ground. The rear deflection is given by z, =z+a®.
The hardening and softening of the spring-damper element is
described by the cubic term. The factor € describes the non-
linear spring behavior, increasing or decreasing the stiffness
depending on the chosen parameter. The landing gear stift-
ness was chosen as k =3.7-10°N /m, the damper constant as
d=1.1-10°N-s/m and the airframe mass as m = 1906.4kg to
resemble a Bo103, since this helicopter model is well known.

The second is a Multibody Simulation Model (MBS model) of
an EC135 with a detailed FEM landing gear, complex contact
configurations, a rigid fuselage and rotor with four hinged,
rigid blades.

The helicopter MBS model on the left side in Figure 4 is used.
It consists of an elastic rotor model attached to a rigid fuse-
lage model. Each blade was modeled as a rigid blade with
spring elements at the blade hub connection to ensure a first
lag mode corresponding to the real EC135 blade. Instead of a
reduced lead-lag damper, calculations were conducted using
higher rotation frequencies. The overall elasticity of the en-
tire airframe mostly results from the landing gear flexibility.
The fuselage flexibility can be neglected. In the following,
the fuselage is considered rigid. Its properties like mass, in-
ertia and geometric dimensions are chosen in reference to the
EC135. The simulation of the landing gear model was based
upon a complete finite element model (Ref. 13). The multi-
body simulation uses a modal representation with a truncated
number of modes. Using component synthesis method, the
landing gear model was reduced to 20 significant modes. This
is a standard approach in multibody programs like SIMPACK
to include flexible bodies and shown in 3. It requires a clear
definition of markers on which contact laws and forces are ap-
plied. Connections to the fuselage were simulated by elastic
bushing elements to ensure that the modal representation of
the landing gear attached to a rigid fuselage shows the same
landing gear eigenfrequencies as the original model.

Contact to the ground is simulated by polygonal contact el-
ements (PCM-elements) in SIMPACK. They base body sur-
faces on polygon meshes derived from the underlying FE-
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Figure 3: Workflow to include complex flexible bodies into a
MBS simulation.

mesh or attached CAD-files. The contact force determina-
tion relies on the elastic foundation model. As described
in (Ref. 11) these elements can be deployed to model time-
variant, multi-point contact conditions. A use case is shown
on the right side of Figure 4. These contact elements are used
to improve the contact simulation in comparison to standard
spring-damper elements.

The structural model has been improved as the previous ver-
sion used a high value for the ground stiffness leading to a
large restorable force and a seemingly unnatural “bounce ””
of the helicopter. The new ground property represents con-
crete. For soft undergrounds, it is planned to use parameters
based upon crash tests. However, the right simulation of un-
derground characteristics is a topic for future studies.

The structural model has been improved to include the gear
motion of the helicopter during ground resonance, which was
previously modeled incorrectly.

Aerodynamics

For the aerodynamic simulation, the multibody structural
model in SIMPACK is coupled with the rotor airloads model
of the rotor dynamics code (Ref. 14). Aerodynamic forces are
calculated with twenty elements for each main rotor blade in
linear aerodynamics description and distributed as a constant
ring area. For trimmed conditions the SIMPACK trim mode
is activated.

Contact Simulation

The helicopter landing and the initialization of a ground res-
onance condition is simulated in five steps that correspond to
the sequence of events of a typical landing. First, the heli-
copter is hovering close to the ground in a trimmed condi-
tion. Then the helicopter is lowered to the ground and contact

—

Detailed CAD-based model using modal reduction

(a) Helicopter model EC135

(b) EC135 with skid contact at four areas

Figure 4: Helicopter model EC135 with sub-models and con-
tact configuration

is initiated. Since contact conditions and the behavior dur-
ing contact can vary the end of the first phase is not defined
based on the presence of contact or contact forces exceeding
a certain threshold, but rather with a fixed duration of 20 sec-
onds after the initiation of this phase. At the end of the 20
seconds, the time responses of the helicopter are analyzed to
determine whether the model shows increasing divergent be-
havior. In that case, then the simulation is not pursued fur-
ther as the desired ground resonance was already successfully
triggered. Should the system remain stable two counteract-
ing 500 N tip loads are applied to the first and third blades
for the duration of 0.2 seconds, making it an impulse like ex-
citation. The estimation for the force values is an engineer’s
guess, based on expected forces at the rotor hub for hard land-
ings. It has to be said, that this is a significant simplification
that is made to keep the simulation effort manageable, since
this model and its time signals will mainly be used to illus-
trate the analysis approach of its time signals. As pointed out
in section (Ref. 20), the excitation amplitude can affect the
system behavior, which is—to certain extend—in accordance
with previous studies. It was shown in (Ref. 3) that two effects
counteract each other in regard to ground resonance. On the
one hand the shift of nacelle frequencies due to ground con-
tact and on the other hand the influence of soft underground,
which leads to additional damping. Speaking in terms of the
simplified model, this is corresponding to a reduced excita-
tion amplitude. After the impulse excitation a second twenty-



second simulation phase is performed. The dynamic response
of the helicopter to the applied perturbation exhibits its inter-
nal dynamics and should capture the oscillatory character of
the system.

The delay time followed by an artificial external impulse aim-
ing to excite the lead-lag motion is a simplification of real
landing conditions, where chaotic behavior, an uplifting land-
ing gear and loss of ground contact could occur. If ground
contact is lost at any time during the simulation, the results
obtained after the loss of ground contact must be discarded
for all further analyses, since this is a true chaotic behavior.
The detection of such a condition and the acquisition of criti-
cal system parameters leading to it, would be the end result of
such a simulation run. For the contact conditions itself, this
work is limited to standard full contact. However, the con-
tact representation itself is the same as for patch-like contacts
in previous publications (Ref. 3). Such limitations of landing
configurations and the selection of a subset of possible land-
ing conditions are necessary to limit the simulation effort, but
is not a restriction for the analysis approach itself. More in-
depth studies of contact varieties with these methods are left
for future work.

Analysis Methods

As will be shown in the next section, some excited nonlin-
ear systems show sudden, different behavior depending on
the current frequency and amplitude of the excitation. For
the analysis of varying excitation amplitudes, Lyapunov ex-
ponents are used. For the sweep over the excitation frequency
the Matrix Pencil Method is used, which can be categorized
as a type of perturbation method. This “grid-type” " analysis
suite is tested in this work for exemplary test cases.

Matrix Pencil Method

To account for nonlinear behavior due to partial ground con-
tact and to better analyze time simulation data the Matrix Pen-
cil Method is used. The helicopter model is set in a given
landing configuration like a full contact as seen on the right
of Figure 4. As described in the previous paragraph, once
the system has “settled in“ after 20 seconds, a sudden exci-
tation impulse is applied. With the rotation of the rotor, this
causes a circular motion of the rotor center. The time signal
response of dedicated markers at the nacelle, the tail boom
and the landing gear can be processed. The markers were
chosen to capture the dominant fuselage modes. The mea-
surement duration of 20 seconds was chosen, since no change
in system behavior was observed for the conducted tests. The
was verified by examining said marker signals. The simula-
tion duration was not extended, although theoretically non-
linear effect might appear at far-off times (Ref. 8), as it was
deemed unpractical. Landings are followed up by additional
actions. The marker selected is in the non-rotating hub frame,
which is acceptable due to the rigid helicopter nacelle. This
marker showed the most “clean‘ signals. The distance over
the rigid nacelle working as a lever to the center of gravity and

the landing gear. Additionally, the vibration duration was ac-
ceptably long for signal analysis. The Matrix Pencil Method
promises to derive an approximated model of the helicopter
with an output-only approach and further information about
frequencies and eigenvalue compared to simple decay ratios.

The basic idea of the Matrix Pencil Method is to extract modal
information from the system’s response to a perturbation to fit
the actual waveform to a predefined waveform of the follow-

ing type:
M
() =x(t) +n(t) = ZR,-e‘Y"'Z +n(t) )
i=1

with y(¢) as the observed time response, x(¢) as the signal and
n(t) as noise in the system. The formulation of the waveform
contains the Pencil Parameter M, the residues of complex am-
plitudes R and the complex eigenvalue s; defined as

Si=—0i+j 0, 3)

with the damping factors ¢; and the angular frequencies ®;.
For discrete time data this can be written as

M
y(kTy) = x(KTy) + n(kTy) ~ Y R; - 2f (4)
i

This equation is formulated for k& sampling points, the sam-
pling period T; and the roots z; as:

= i — (=0t ) Ty (5)

In detail the algorithm for the Matrix Pencil Methods consists
of the following steps.

1. After an external excitation, the free decay linear re-
sponse of the system is sampled to form a discrete pat-
tern data set. Then the discrete data sets are organized in
a form of a Hankel matrix.

2. The Hankel matrix undergoes a Singular Value Decom-
position (SVD). Singular values and vectors correspond-
ing to the noise subspace are discarded, basically filtering
the given signal. The threshold determining, if a singu-
lar values o, will be discarded, can be determined based
on the largest singular value o, and a given accuracy
value pyccy. This definition, given as:

Oc

< 1QPaceu (6)
Gmax

leads to M significant singular values or poles, with
M being called the Pencil Parameter. As described by
(Ref. 10) varying the number of poles around the deter-
mined one and comparing them, reveals the actual, char-
acteristic poles of the signal. In praxis this means that
despite a good overall fit, the result for frequency or am-
plitude will only be good for those singular values.

3. The SVD leaves a truncated Matrix ¥;. From the trun-
cated matrix two sub-matrices, defined as ?a and f’b,
are generated, leading to an eigenvalue problem from
which eigenfrequencies and damping values are calcu-
lated. From the eigenvalue problem the eigenfrequencies
and damping values are calculated.



4. In an additional step, once the pencil parameter M and
the roots z; are known the complex residues R; can be
determined.

In order to improve the signal analysis and as an addition for
practical applications a fourth-order low-pass Butterworth-
Filter was added to the analysis routine. One advantage
of the Matrix Pencil Method is, that it not only gives an
estimation for the frequency but also for the amplitude.
So, it can be linked to all parameters affecting the system
behavior. This method was selected because it offers a more
comprehensive way of system analysis with its simplification
of the given system. Its approximation of frequencies,
amplitudes and damping provides deeper insights into the
system. The marker whose time signals were analyzed were
chosen to capture the dominant fuselage eigenmodes. For
decreasing damping values of these signals, it indicates that
the energy of the overall response becomes strongly domi-
nated by another mode, instead of just detecting a decrease
of the overall response as this was the case for logarithmic
decrements. It can be used in conjunction with other methods.

Lyapunov Exponents Method

An alternative to the usage of time simulation in combination
with the Matrix Pencil Method are Lyapunov exponents. As
pointed out by Tamer and Maserati (Ref. 15), the Lyapunov
Characteristic Exponents can be applied without the need for
a steady-state or the assumption of a periodic system for rotor-
craft aeroelastic stability. Lyapunov Characteristic Exponents
were already applied to ground resonance studies of dissim-
ilar lead-lag dampers and helicopters with nonlinear lead-lag
dampers. They are defined as a logarithmic growth rate of a
perturbation of the original system. For a time-continuous dy-
namical system, consider the behavior around a point x(¢) in
phase space and a nearby trajectory x(¢) 4+ 6(¢), where d() is
a small deviation of the trajectory. Tracking how & (¢) changes
over time the Lyapunov exponent can be defined as

| 6 (l) | ~ | 6 (0) |eA‘Lya]mm7v (7)

Similar to the largest eigenvalue of a matrix, the largest Lya-
punov exponent dominates the behavior of a system. An expo-
nent larger zero indicates that the corresponding trajectory di-
verges exponentially, meaning it is unstable. For periodic mo-
tion the largest Lyapunov exponent is zero. If it is smaller than
zero, the trajectory converges to zero. For the calculation of
Lyapunov Characteristic Exponent in calculations with con-
stant time step see (Ref. 12). The Lyapunov Exponent Method
extended for time series by Wolf and Rosenstein (Ref. 19) is
used to determine the Lyapunov Exponent map for the sim-
plified landing gear model. This extension to the classical
method is accepted in the scientific community but needs to
be validated for the use case at hand. This method is a more
practical application of Lyapunov Exponents as advised for
helicopter stability analysis (Ref. 12).

NONLINEAR EFFECTS IN GROUND
RESONANCE

In order to simplify the analysis of nonlinear ground res-
onance substitute models based on harmonic excited lag-
damper models were used in previous studies (Refs. 3, 8).
Since self-induced, nonlinear systems can in principle be
compared to the Duffing equation as given in Equation 8§,
some basic characteristics of nonlinear systems can be show-
cased, which can then be extrapolated to the simplified land-
ing gear model. The first three terms on the left side and the
drive term on the right side represent a harmonic oscillator.
The left side is modified by a nonlinear cubic term, which
is used in this example as a placeholder for nonlinear terms
stemming from the contact conditions. In case of o > 0 and
B > 0 this system shows a hardening of the spring damper
thus resembling the landing on soft soil which provides expo-
nentially more resistance, the deeper the skid sinks in. The
softening case appears during take-off and landing as pointed
out by Kessler (Ref. 8).

K+ yx+ Bx® = Qpepcos(ot) (8)

The Duffing Equation is a standard example for systems of
nonlinear dynamics. Its basic mathematical formulation was
used as a prototype for the usage of different methods aiming
to understand the behavior of nonlinear systems. Here the
Duffing Equation is adapted for the simplified simulation of a
landing gear in ground contact.

In the case of ground resonance, the equivalent to harmonic
excitation is the imbalanced rotor head and the nonlinear
terms are corresponding to nonlinearity from the ground con-
tact conditions in combination with landing gear flexibility.
Extrapolating from this substitute equation to the simplified
landing gear can showcase some basic characteristics of non-
linear systems, which are of high interest for studies of self-
induced vibration systems and can be used to list the require-
ments and test the analysis methods for ground resonance be-
yond the classical approach. It is used as additional examples
to validate the methods presented in this paper.

To visualize a qualitative change of state in nonlinear systems
under the influence of selected system parameters like excita-
tion amplitude, bifurcation diagrams can be used. Bifurcation
is a transition in the dynamic states abruptly as a result of a
system or control parameter change. The system undergoing
bifurcation changes its dynamic behavior affecting the stabil-
ity of the system. There are several classes of bifurcation from
which the supercritical pitchfork bifurcation and the Hopf Bi-
furcation shall be mentioned here. A supercritical pitchfork
bifurcation splits a stable equilibrium condition into two sta-
ble and one unstable equilibrium. A behavior which was wit-
nessed in landing and take-off conditions with increased lift
to mass ratios (Ref. 8). Another type is the Hopf Bifurcation
which just describes the appearance of limit cycles.

In Figure 5 the nonlinear term of the Duffing equation was sin-
gled out and plotted in a bifurcation diagram. The blue line
shows the calculated Lyapunov exponents. The purple line de-
picts the approximation based purely on time simulation data.



As can be seen, the value depicts the unstable condition while
the slope towards the zero value is a measure for the deterio-
rating system stability margin.

At Y= 1.5 and y = 2.2 the cubic term runs into a pitchfork
bifurcation. The Lyapunov Exponents indicate such a change
in dynamic behavior. After the second bifurcation, the system
becomes unstable, no equilibrium point can be reached and
chaos ensues.

2.0

—— true lyap. exponent
1.5{ —— estimation using lyap_Rosenstein

bifurcation plot
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Figure 5: Cubic-term bifurcation map and Lyapunov expo-
nent.

As can be seen in the above plot, a bifurcation (in the orange
map) is indicated when the Lyapunov exponent (blue) ap-
proaches zero (green line). The onset of deterministic chaos,
i.e. the danger of rapid divergence of two initially close dy-
namics, is indicated by the Lyapunov exponent becoming pos-
itive (crossing the zero line). This happens after a double
supercritical pitchfork bifurcation. In contrast to that loca-
tions in the plot, where the Lyapunov exponent diverges to
deep negative values (at times even infinite values) indicate
extremely stable equilibrium points in the system.

A phenomenon encounter in previous studies (Ref. 8) was
limit cycles. For harmonically excited systems or self-induced
ones, this means that a system does not respond with the har-
monic frequency, like linear systems but can fall into stable
oscillation with sub-harmonic components. In the results sec-
tion the simplified landing gear model was modified to exhibit
such oscillations in order to test the Matrix Pencil Method.

In its most extreme form, the system can exhibit deterministic
chaos. For such a system similar initial values do not lead
to similar effects in the long run. The system itself is clearly
defined with known initial values and deterministic dynamics
but the long-term behavior is still unpredictable. According to
the Poincare-Bendixson theorem, finite-state, linear systems
can never show chaos. But for the problem at hand, this can
be the case. Should a system transform to deterministic chaos,
then that is the result of the test case. In a chaotic system no
meaningful information can be derived from the system.

The Matrix Pencil Method uses sinusoid functions as an esti-
mate for system behavior. While a combination of sinusoidal

functions stay stable and do not show chaotic states, they at
least can encapsulate basic changes in system behavior due to
parameter changes i.e. bifurcations. To showcase this, Figure
6 contains a bifurcation map and Laypunov Exponents of the
following form, with the varying system parameter r, indicat-
ing that the chosen approach is sensible within the limits of
practical applications.

X1 = r-sin(x,) ©)

3.0

Sinusoid map
2.5 = Lyapunov exponent

2.0
15

1.0

x-value

2.0 2.2 2.4 2.6 2.8 3.0
r—value

Figure 6: Sinusoid-term bifurcation map and Lyapunov expo-
nent.

The next section shows that additionally, a system approxi-
mation as a sum of sinusoid functions exhibits a more stable
behavior than when using logarithmic decrements.

RESULTS

Preliminary studies were conducted with synthetic signals re-
sembling the time simulation data given in previous studies.
The left side of Figure 7 shows the unfiltered phase plot of a
particular solution for a system in a stable configuration. The
corresponding data is shown in Table 1. The figure shows the
synthetic sinusoidal test signal with known amplitudes, fre-
quencies, damping and added noise level as a blue line. It is
composed of four overlapping sinusoidal signals and given in
the form

4
¥(t) = Y Rie0) - cos (27 (1)) 10
i=1

with amplitudes R; = (0.4,1.0,0.89,0.65), frequencies f; =
(80,120,250,560) and damping values d; = (70,50,90,80)
and a randomly generated noise values of 3 dB. The generated
noise aims to test the robustness of the method.
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Figure 7: Time simulation data example; characteristics of
test signal and its reconstruction

Applying the Matrix Pencil Method with an accuracy level
of 1073 leads to a Pencil Parameter of M = 8. The approxi-
mated signal using the amplitude, frequency and phase values
from the analysis is given as the green, continuous curve in
Figure 7. The corresponding data is shown in Table 2. This
“restored** signal reproduces the filtered basic characteristic
of the given test signal. Since previous studies showed that
limit cycles can occur (Ref. 17), synthetic periodic signals
with constant amplitude were generated by forcing the substi-
tute structural model into a limit cycle condition. The signal
in Figure 7 functions as a representation of these tests.

For the Limit Cycle Test case, despite the large differences in

Table 1: Comparison of original test signal and approximated
signal for time simulation data example.

Amplitudes
original 04 0.65 0.89 1.0
reconstructed 04 0.65 0.89 1.0
Ang. Freq. (rad/s)
original 560.0 250.0 120.0 80.0
reconstructed 562.25 | 251.00 | 120.48 | 80.32
Damping (Ns/m)
original 80.0 90.0 50.0 70.0
reconstructed 80.32 90.36 50.20 | 70.28

Table 2: Comparison of original test signal and approximated
signal for limit cylcle data example.

‘ Amplitude | Angular Freq. ‘
original reconstructed original reconstructed
1.0 - 2.5133 -
-0.5 0.9974 1.8849 1.8853
- 0.8234 - 1.6098
0.2 0.2898 1.2566 1.2568
-0.3 0.0278 0.6283 0.6283

the amplitude, the characteristics of the signal could be kept
and the R2-value = 0.994 indicates is good fit. However, one
has to keep in mind, that the goal is not to completely repro-
duce the signal, but to find a suitable substitution. Compared
to the restored signal, higher frequency components are elim-
inated. As described by (Ref. 10) the varying number of poles
which are expected for the signal and comparing them, reveals
the actual, characteristic poles of the signal.

In the next section the Matrix Pencil Method is used for the
complex helicopter model to determine its damping charac-
teristics, which are compared with the ones determined by
Multiblade Coordinate Transformation and eigenvalue anal-
ysis.

Results of the EC135 model

One of the main goals for the investigations with the complex
helicopter model is to improve the computation of decay ratios
after sudden lead-lag excitation of the rotor system. Previous
attempts to analyze the resulting system from a sudden pertur-
bation were based on the calculation of the logarithmic decre-
ment. However, this method proved to be prone to errors and
has the significant disadvantage of assigning one decay ratio
to the complete system, although the underlying influences of
the system reaction to perturbation can be multiple modes or
coupling modes. An example of such a behavior can be seen
in Figure 8, which shows the non-rotated hub position time
signal in y-direction. This is corresponding to the lateral heli-
copter direction. The Figure shows two time signals. The first
one, colored red in the background shows the signal at 105%
nominal rotation speed. It is a clear exponential decaying sig-
nal as is expected. The second, gray line shows the system’s
reaction to excitation at 112%. At a rotation speed near one of
the lower frequencies of the nacelle, which were determined



to be at 113.5% and 117% of the nominal rotation speed by
Multiblade Coordinate Transformation and eigenvalue analy-
sis for this model. This signal shows a larger reaction ampli-
tude. The gray line starts with a higher amplitude and from 7.5
seconds onwards its amplitude is very slightly smaller than the
one of the red curve. This shows the increased influence of an
underlying frequency. Such effects on the damping behavior
and the underlying frequencies can hardly be described by a
single parameter like the overall logarithmic decrement.

— 105% reference rotation speed——112% reference rotation speed
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time after excitation, s

Figure 8: Time signal after excitation for different rotational
velocities.

Contrary to that, using the Matrix Pencil Method, decay ratios
of corresponding sums of sinusoid functions were determined
over a system sweep. In Figure 9 the decay ratio sweep for
the complex helicopter model in full ground contact is shown.
The resulting dips in the damping curves fit quite reasonably
to those expected at the coupling frequencies of the helicopter
model.
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Figure 9: Decay ratios over rotation frequency for helicopter
in full contact.

However, one has to consider that the damping values them-
selves are those of the approximated models. Only the char-
acteristic of the damping behavior is approximated.

To illustrate the fitting of actual signals, Figure 10 shows two

examples. On the left side the vibration response for the nom-
inal rotation speed is shown. Even for such a standard test
case, the determination of the decay ratios using the logarith-
mic decrement can be difficult or require manual adjustments.
The Matrix Pencil Method produces better results.
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Figure 10: Characteristics of test signal and its reconstruction

The restoration system almost perfectly fits the original sig-
nal. For systems near conditions of coupling frequencies, the
fit quality decreases but still captures the overall characteris-
tics. A meaningful logarithmic decrement could only be de-
termined as the signal envelope. Further statements about the
underlying system could not be made.

In combination with the Lyapunov Exponent method the in-
fluence of restoring forces of the ground contact configuration
and the influence of ground damping and hardening during
contact and its capacity to dissipate energy from the excited



system can be studied. When encountering external influences
like hardening or softening underground a basic stability test
can be conducted with the Lyapunov Exponents. Addition-
ally, the Matrix Pencil Method allows a complex helicopter
model approximation with a simplified sum of sinusoids. The
method itself showed robustness and adaptability to nonlinear
effects like limit cycles of noised signals.

The simulation results for the simplified model show that the
Lyapunov Exponent method can detect a change in the fre-
quencies and damping values at the rotation frequencies at
which we expect a coupling between rotor modes and fuse-
lage modes (near (113.5% and 117%) of the nominal rotation
speed. Lyapunov Exponent maps and bifurcations diagrams,
which are well-known tools for the analysis of nonlinear sys-
tems were shown to be a useful addition to the analysis of
ground resonance. For the simplified model the Lyapunov
Exponent method extended for time series analysis was em-
ployed.

The results for the full model show that the Matrix Pencil
Method is a useful addition to the simulation of ground res-
onance with Multi-Body-Systems. The method works with
the signals from time simulations of perturbed rotor systems,
with contact conditions and detects changes in the damping
of the dominant modes. In combination with a drop in the fit
quality, this is a measurement for instability. The analysis tool
set shown in this paper adds more flexibility for ground res-
onance analysis and is ready to be used for advanced contact
simulations.

CONCLUSION

Two helicopter models for ground resonance stability analy-
sis have been developed. One is a simplified helicopter model
with spring-damper elements to showcase basic nonlinear ef-
fects and constitutes a testbed for analysis methods, the other
is a more complex helicopter model with flexible landing gear
and a real contact model with realistic contact conditions. The
Matrix Pencil Method for the analysis of nonlinear systems,
tested and verified with examples from the literature was ap-
plied to the helicopter models for the analysis of ground reso-
nance. First tests with a simplified landing gear model and a
full helicopter model show promising results.

One of the advantages of the Matrix Pencil Method and the
Lyapunov Exponent method is that the basic information
about nonlinearity in the system is kept. In the calculation
of a fitting sinusoid estimate one assumes a periodic solution
similar to Floquet theory. It is just a fitting of time series data.
The original nonlinear information is still available, allow-
ing further analysis or combinations of additional methods.
In combination with the quality of the fit, the awareness of
this assumption is always given and any configuration not fit-
ting this assumption is clearly visible. Since the Matrix Pencil
Method is not restricted to approximating only one parameter
as it is the case with decay ratios, it was found more suitable
to determine stability margins and give an indication of un-
derlying eigenmodes responsible for ground resonance. The
Lyapunov exponent method described in this paper does in

general not require the assumption of a linear time-invariant
or linear time-periodic solution. It is a true measure of the
stability margin of the given system. The Lyapunov Expo-
nent trajectory allows predicting of chaotic behavior to a cer-
tain extent. The Lyapunov exponent method for time series
presented here is an extension of the classical Lyapunov Ex-
ponent Method, which uses directly the mathematical time
derivative of the system instead of calculating it from the
given time series data. The first results look promising, but
this fact should be kept in mind. Nevertheless, considering
the complexity of nonlinear systems and the fact that there is
no absolute a priori determinable stability factor for all ini-
tial conditions, the methods presented in this work are valu-
able tools. The Lyapunov Exponents from time series and
the Matrix Pencil Method for time series allows system eval-
uations without setting up a dedicated mathematical model
and the a priori assumption going into them. The usability of
both methods for simulations and practical tests alike, allow
an easier comparison between simulation data and practical
tests. This, in return, allows the development of improved
simulations for ground contact simulations.

OUTLOOK

It is planned to combine the simulations and analysis meth-
ods in this paper with shake test of a EC135 landing gear in
low configuration. To check the vibration behavior the land-
ing gear will be attached to a frame of a fuselage dummy.
The helicopter nacelle will be replaced by a support frame at-
tached to the landing gear. This dummy will contain weights
to approximate the inertia properties of a real helicopter simi-
larly as done in the numerical simulations. The construct will
be softly suspended in a rig and excited. For various force
and moment excitations the structural response will be mea-
sured. The dynamic response signals of the measurement sen-
sors will be analyzed through vectormeters and will be com-
pared to the results of the numerical simulation.

Special focus will be given to the attachment stiffness,
since preliminary modal analysis with a finite element model
showed its major influence on the overall eigenfrequencies.
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