Low Noise ATRA — Phased Array Measurements of
Jet Noise in Flight
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DLR performed flight tests with retro-fit modifications for noise reduction on its Airbus
A 320 research aircraft ATRA. Phased array measurements were performed in 2016 with the
baseline aircraft and in 2019 with the noise modified aircraft. The array data were processed
with acoustic source localisation methods based on the deconvoluton of beamforming maps
for moving sources. The resulting sound source maps show the distribution of the sound
sources on the aircraft for three emission angles, in the forward arc, overhead, and in the
rear arc. Frequency spectra for individual source regions like the engine inlet, the nozzle,
and the jet are averaged over all fly-overs in the same configuration for the baseline and
the modified aircraft. The comparison of the baseline with the modified aircraft data for
the engine nozzle and jet regions confirms that the modified nozzle reduces jet noise.

I. Introduction

In the DLR internal research project Low Noise ATRA (LNATRA), DLR performed acoustic fly-over
measurements with its research aircraft ATRA. The Airbus A320-232 with V2500 engines flew over a large
number of single microphones that were distributed over a wide area on both sides of the runway and over
a large phased array set up on the end of the runway during several campaigns at the Cochstedt airfield
near Magdeburg, Germany. The purpose of these experiments was to test different modifications for noise
reduction on the aircraft in flight. Single microphone and phased array measurements were performed for
a large number of fly-overs in different configurations with and without modifications for noise reduction
applied to the landing gear, the high-lift devices, and the engine nozzles. A companion paper by Pott-
Pollenske et al ' presents a more general analysis of the effects of the modifications for noise reduction based
on the far-field microphone data. This paper presents results of the phased array measurements with a focus
on the analysis of the jet-noise measured in flight and on the effect of a profiled trailing edge mounted on
the engine nozzles after the base line flight test.

II. Experimental set-up and procedure

The aircraft was flown in its baseline configuration in May 2016 and fly-over tests with the aircraft
modified for noise reduction were performed in September 2018 and July 2019. First results of the 2016
fly-over test have already been reported by Siller et al

The microphone array on the ground consisted of 238 microphones that were distributed over an area
of 35 by 40 m and were arranged in a logarithmic spiral that was stretched in the direction of flight. The
microphone data were synchronized with the flight log of the aircraft using a GPS time signal. An array of
laser distance meters on the ground was used to determine the basic aircraft trajectory parameters like the
ground speed, the vertical speed and the altitude as well as trigger times when the aircraft passed over the
array. The experimental procedure was similar to that described in Siller et al.’®
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Figure 1: a) The DLR ATRA in its base line configuration flying over the phased array at Cochstedt airfield
in May 2016, b) the ATRA in 2019 with the modified engine nozzles and high-lift devices, and c) the noise
modified engine nozzle with the profiled trailing edge mounted on the ATRA for the 2019 fly-over tests.

Figure 2: Set-up of the phased array on the runway for the 2019 fly-over tests.

III. Data processing

In a first pass of the analysis, the microphone array data were processed using the classical beamforming
algorithm for moving sources® The resulting source maps were used to iteratively adjust the trajectory in
order to properly center the aircraft on the interrogation grid that moves with the aircraft. Such corrections
are necessary in order to compensate uncertainties in the trajectory data and deviations from a straight
propagation path between the microphones and the aircraft due to the effects of wind or thermal stratification.
After the corrections of the aircraft position, the proper source localization was performed with the hybrid
deconvolution algorithm that is implemented in the DLR code ProSigMA B From the results of this analysis,
source maps were evaluated in one-third-octave bands at three emission angles in the forward arc, overhead,
and in the rear arc.

IV. Results

Figure [3] presents examples of sound source maps for a fly-over in the landing configuration with an
airspeed of about 170 kts, engines running in flight idle, fully deployed slats and flaps (27° and 40°), and
the landing gear extended. The maps shown here, for the 1 kHz and the 3.15 kHz one-third-octave bands,
were calculated for the time interval when the aircraft was directly above the array. The most prominent
sources are the nose and the main landing gear, but also the distributed sources along the high-lift system
on the wings.

For a proper comparison of the microphone array deconvolution maps obtained from different fly-overs,
a scaling of the flight altitude to a reference altitude, and a compensation of the atmospheric absorption of
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Figure 3: Sound source maps for a fly-over in the simulated landing configuration with the aircraft directly
above the array in the 1 kHz (left) and the 3.15 kHz (right) one-third-octave bands, the dynamic range of

the maps is 16 dB.
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Figure 4: Dedopplerized Spectra from the baseline and the modified aircraft for a take-off configuration with
engine speeds of N1 = 90 % and flight speeds of Ugighy = 73 m/s. The bold lines: averaged levels, thin,

dotted lines: individual flyovers.
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Figure 5: Sound source maps in the f = 200Hz and f = 315Hz one-third-octave bands from the 2016
baseline test for a take-off with an engine speed of N1 = 90 % and a flight speed of Ugight = 73 m/s in the
forward arc (a,d), overhead (b,e), and in the rear arc (c,f)
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Figure 6: Sound source maps in one-third-octave bands that contain tonal components of the fan and turbine
from the 2016 baseline test for a take-off with an engine speed of N1 =90 % and a flight speed of Ugight = 73
m/s in the forward arc (a,d), overhead (b,e), and in the rear arc (c,f)
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Figure 7: Source integration areas for different aircraft components and the area outside the aircraft.

sound have to be performed. Also, the sound powers in the jet need to be scaled with the difference between
the flight speed and the jet speed Ujer — Unigne scaled with the speed of sound a. The jet velocities are
not available from the flight log data and were calculated using the simulation code of the DLR institute
of propulsion technology® based on the the altitude, static and total pressures, and temperature from the
flight recorder data at the time when the aircraft passed over the microphone array. For practical purposes,
the jet noise contribution can be scaled with the relative jet speed normalized with the speed of sound
(Ujet — Uﬂight) /a to a power of eight or by using the more elaborate method proposed by Michel? After
applying these normalisations, the deconvolution results can be compared between different fly-overs and
averaged over similar fly-overs in the same configuration.

In the following, we concentrate on the analysis of data from fly-overs in a take-off configuration with
an engine speed of N1 = 90 % and a flight speed of Ugijghy = 73 m/s. In this configuration, six fly-overs
were recorded in the 2016 baseline configuration flight test and five fly-overs with the modified aircraft were
recorded in 2019.

Figure [f] presents the Doppler compensated far-field spectra which were calculated for each of the array
microphones individually and then averaged over all microphones in the array. The spectra are presented for
three emisson angles 8 = 60°, 90°, and 120°, when the aircraft is approaching, above the array, and flying
away, respectively. The emisson angle 6 is the angle between the aircraft velocity vector and a line from the
aircraft center to the array center. The data segments used for each emission angles are centered around the
nominal angle with an interval size of § & 10°. In figure [4 the individual frequency spectra of the fly-overs
in the baseline and in the modified configuration are shown as thin dotted lines and the spectra averaged
over all fly-overs in the baseline or the modified configuration as bold solid lines. The results show a relative
good repeatability of the source levels for fly-overs in the same configuration.

The sound source maps for the take-off in the baseline configuration are presented in figures [ and [6]
Figure (a-c) shows the maps in the 200 Hz one-third octave band. Here, the Rayleigh limit which determines
the capability of an array to separate sources, is at 9.3 m source separation at 200 Hz for the array with
a diameter of 40 m. The maps show that the deconvolution method is able to resolve sources in the jet,
where the classical beamforming maps would just show one large central source. The resolution improves
for higher frequencies (see figure [5| (d-f) with the 315 Hz maps).

The deconvolution algorithm in the DLR ProSigMA code is based on a model of broadband sources™
However, the method is also able to localize tonal sources: figure [6] presents the maps in the 2 kHz band that
contains the blade passing frequency of the fan and the maps in the 6.3 kHz band with the turbine tones.

In the post-processing of the results, the interrogation grid for the calculation was divided into source
regions, which are indicated in the source maps with dashed lines (see figure [3). For the analysis of the
engine noise contribution, source regions were defined that cover the engine inlets, the nozzles (figure ,
and the free-jet regions downstream of the nozzles (see figure . Further regions included the sources of
the fuselage and wings. All sources not associated with any region are shown in figure [7d and called Rest,
whereas the sum of all regions is labeled Total Aircraft. The source powers in these regions can be integrated
in order to obtain the total contribution of a specific source region. The resulting source region powers can
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Figure 8: Comparison of the source integration spectra of the TotalMap, the TotalAircraft and the Rest
regions.
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Figure 9: Comparison of the source integration spectra of the Jets

[ [ s = [ = (=] =] (=] = [ [
8 88582 8 8 88 8¢2¢g¢8
MNom. TOB-Frequency in Hz
=l

160
200
250
35
400
500
630
0o
1000
1250
1600
350

8 =
S
Nom. TOB-Frequency in Hz

[ [ s [ = (=] =] (=] = [ [

8 R R s 88 8 8 88 8¢8¢g 8
MNom. TOB-Frequency in Hz

= Baseline - Jets = Low Moize - Jets

=== Baseline - Mozzles === Low MNoise - Mozzles

7 of @

American Institute of Aeronautics and Astronautics

4000
3000
8300
8000
10000

4000
3000
8300
000
10000

4000
000
6300
B0oa
10000

and Nozzles regions.



Emission Angle = 60°

TotalAircraft Nozzles Jets MozzlesAndets

110

105

1

OASPL in dB
8 s

[ts]
=]

85

Emission Angle = 90°

TotalAircraft Nozzles Jets MozzlesAndets

110

105

1

OASPL in dB
8 2

[ta]
=]

85

Emission Angle = 120°

TotalAircraft Nozzles Jets MozzlesAndets
Region of Integration

110

105

1

OASPL in dB
8 s

[ts]
=]

Figure 10: Comparison of the Overall Sound Pressure Levels (OASPL) of the baseline (blue) and the modified
aircraft (orange) in the frequency range from 160 Hz to 4 kHz.

be averaged over several fly-overs in the same flight configuration in order to improve the statistics of the
analysis. In most configurations flown for the LNATRA flight test, up to six repeated fly-overs are available
per configuration.

The resulting spectra where converted from narrow bands to third octave bands and plotted. Figure
shows the total acoustic energy of the source map and the components areas Total Aircraft, i.e. the sum over
all integration regions on the aircraft and Rest, the area inside the map but outside the aircraft, see figure
[l We can see that most energy is localized within close proximity to the aircraft or its Jets. The dynamic
range between the source power in the total map area and the Rest region is between 6 and 10 dB.

The source integration results for the jet and nozzle regions (defined in figures and repectively)
are compared in figure[d] The baseline configuration features louder low-frequency jet noise, compared with
the modified nozzle configuration. For both the baseline and the low noise modified configurations, the low
frequency noise in the Jets regions is strongest in the rear arc, at § = 120°. The Nozzles regions show higher
source levels than the Jets regions at higher frequencies in the forward arc and overhead (i.e. for § = 60° and
0 = 90°. The cross-over frequency between stronger contributions from the jet or the nozzle is around 1 kHz.
The nozzle edge modification incurs a high frequency noise penalty in the Jets regions in the forward arc at
# = 60°. Contrary to expectation, this excess high frequency noise occurs in the jet region downstream of
the nozzle and not in the area close to the nozzles.

In order to further concentrate the data, the power in source regions was integrated from 160 Hz to 4
kHz (excluding turbine tone frequencies at 6.3 and 8 kHz) in order to obtain overall sound pressure levels
(OASPL). Figure compares the OASPL of the Total Aircraft region with the OASPL in the Jets, the
Nozzles, and the combined jet and nozzle areas between the baseline and the noise modified configurations.
There is a small noise benefit of the modified nozzle at all emission angles. The difference is greater in the
jets and nozzles regions than at full aircraft level. A proper appraisal of the noise benefit of the modified
nozzle would require a more detailed analysis over the full range of emission angles between 30° < 6 < 150°.
Pott-Pollenske et al ¥l have performed a proper analysis based on far-field microphones and calculated a total
noise benefit of the low noise nozzle of about 0.5 EPNdB.
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V. Conclusions and outlook

The DLR research aicraft ATRA was flown in two flight tests in the baseline and in a configuration with
modifications for noise reduction. For fly-overs in the take-off configuration, the phased array were processed
with the DLR beamforming and deconvolution code ProSigMA. Noise source maps were calculated and the
source powers were integrated over source regions in the areas covering the engine jets, nozzles, and inlets.
This process yields frequency spectra of the sound source levels of the specific source regions. The dynamic
range of the integration results is between 6 and 10 dB between the source power calculated over the whole
area of the source map compared to the source regions on the aircraft. The analysis of the integration
areas for the engine jets and nozzles provides more detailed information on the effects of the trailing edge
modification of the engine nozzle than an analysis based on farfield microphone data. The source integration
allows to directly compare the sound powers in different source regions for different configurations. The jet
noise in the frequencies in the 400 Hz one-third-octave band and below is reduced by the nozzle modification.
As it can be expected, the sound power in the jet region is stronger than near the engine nozzle in the low
frequency range. Above a cross-over frequency between 1000 and 1250 Hz, the source power in the nozzle
region is stronger than further downstream in the jets.

A high-frequency noise penalty induced by the nozzle trailing edge is observed in the forward radiation
arc in the one-third-octave bands from 1250 Hz to 5 kHz. These results are a first attempt in trying to
understand the effect and the noise reduction mechanism of the profiled nozzle. A more detailed analyis over
the full range of emission angles from 30° to 150° with a more elaborate cut of integration regions, e.g. a
nozzle region that is only one or two nozzle diameters long and a separation of the jet area in to slices based
on the relative distance to the nozzle could provide more valuable results.
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