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Abstract: Solving Linear Equation Systems (LESs) is a common problem in numerous fields of science.
Even though the problem is well studied and powerful solvers are available nowadays, solving LES is
still a bottleneck in many numerical applications concerning computation time. This issue especially
pertains to applications in mobile robotics constrained by real-time requirements, where on-top
power consumption and weight play an important role. This paper provides a general framework to
approximately solve large LESs by Gaussian Belief Propagation (GaBP), which is extremely suitable
for parallelization and implementation in hardware on a Field-Programmable Gate Array (FPGA).
We derive the simple update rules of the Message Passing Algorithm for GaBP and show how to
implement the approach efficiently on a System on a Programmable Chip (SoPC). In particular,
multiple dedicated co-processors take care of recurring computations in GaBP. Exploiting multiple
Direct Memory Access (DMA) controllers in scatter-gather mode and available arithmetic logic slices
for numerical calculations accelerate the algorithm. Presented evaluations demonstrate that the
approach does not only provide an accurate approximative solution of the LES. It also outperforms
traditional solvers with respect to computation time for certain LESs.

Keywords: field-programmable gate array; solver for linear equation system; Gaussian belief propa-
gation; factor graph; message passing; hardware acceleration

1. Introduction

In all fields of science, solving Linear Equation System (LES) is a common task. For
example: in medicine for computer-tomography, in Machine Learning for parameter
estimation, in physics for Computational Fluid Dynamics in particular, and for solving
Partial Differential Equations (PDEs), in general, just to mention a few. Although itis a
common problem, it often turns out to be the main bottleneck in data processing with
respect to computation time and memory consumption. Especially, for high dimensional
problems, i.e., where the number of equations and unknowns is large, solving LESs may
be impossible on a underperforming computer. In this paper, we investigate an approach
to approximately solve LESs by making use of programmable logic on a FPGA. More
precisely, we propose to use a System on a Programmable Chip (SoPC). Our motivation is
to speed up the process of solving a LES and also relieve the Central Processing Unit (CPU).
While our approach applies to a wide variety of applications, we are in particular motivated
and inspired by autonomous robotic exploration tasks. In this field, exploration strategies
can be found that rely on models of the environment obtained from physics in form of
PDEs. For example, in robotics for gas source localization or gas distribution mapping,
the gas dispersion process can be modeled by a PDE [1]. A numerical approximation
of a PDE by Finite Element Method (FEM) results in large LESs that need to be solved
online, on-board the robot. In addition, autonomous robotic platforms, like mobile robots
or drones, are further constrained by their maximal payload and power consumption. Such
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an application favors our proposal of dedicated hardware implemented on a FPGA in
comparison to, for example, an approach based on a heavy graphical processing unit with
high power consumption.

To approximately solve a LES fast, in this paper we make use of Belief Propagation [2].
Belief Propagation is an inference technique from information theory. It delivers marginal
distributions of a Probability Density Function (PDF) by a Message Passing Algorithm
based on a graphical model. Mostly, it is applied in the field of decoding [3]. It is popular for
Low-Density-Parity-Check codes [4], turbo codes, and polar codes [5]. In these applications,
an efficient implementation on a FPGA platform is also a topic of high interest to speed
up the decoding process [5]. Moreover, Belief Propagation is used in image processing for
stereo matching [6]. Again, a hardware implementation on a FPGA has shown to speed
up Belief Propagation and the matching process as in [7]. Also, in the field of compressed
sensing Message Passing Algorithm similar to Belief Propagation and designed for FPGAs
can be found [8,9]. They are used to recover sparse signals from noisy measurements for
example for audio restoration [8].

In our approach, we make use of Gaussian Belief Propagation (GaBP) [10]. GaBP is a
specific variant of Belief Propagation where the PDFs are Gaussian distributions. It has been
shown that GaBP can be applied to solve LES [11], also in the context of LESs arising from
numerical approximations of PDEs [12]. Empirical studies have shown that a GaBP can be
even faster compared to state-of-the-art LES solvers like the Gauss-Seidel method [13] or
conjugate gradient [12]. However, the convergence of GaBP is not guaranteed in general
for LESs. A sufficient convergence criterion is the walk-summability condition [14,15].
Fortunately, symmetric positive-definite diagonally dominant LESs, like the ones arising
from FEM, fulfill this condition [12]. Due to the fact that we have this particular application
in mind, we believe that GaBP is a good choice for solving LESs. In addition, the underlying
Message Passing Algorithm is suitable for a parallel implementation.

The outline of this paper is as follows: In Section 2, we explain in a tutorial-style
fashion how to make use of GaBP to solve a LES. Therefore, we first formulate our
mathematical problem in detail. Then, we show how to model it by a Factor Graph (FG),
which is the foundation of the GaBP Message Passing Algorithm. In Section 2.2, we
explain in detail the Message Passing Algorithm itself and the update rules of the messages.
The main contribution of this paper is Section 3 and the hardware implementation of
the Message Passing Algorithm on the FPGA. We designed specialized co-processors
implemented on the programmable logic. The co-processors are dedicated to calculating
the message updates without CPU intervention. Further, we explain in Section 3 how
data are streamed to and from the co-processors and the used protocol. Last but not least,
Section 4 evaluates the performance of our approach in comparison to a state-of-the-art
linear solver.

2. Gaussian Belief Propagation

During the paper, we consider the following LES:
AX =1, )

where A is an NxN matrix and ¥ and b are vectors in RN. While b is considered to
be given, we are looking for the unknown vector X. In this paper, we assume that the
matrix A has full rank so that its inverse A~! exists and the LES can be solved without
additional regularization. In addition, our approach focuses on cases where A is sparse
and diagonal-dominant.

Remark: Such matrices typically arise for numerical approximations of PDEs by,
for example, FEM or Finite Difference Method (FDM).
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To apply GaBP, we have to reformulate our problem, slightly. Instead of determining
% = A~1b, we formulate the optimization problem:

max p(X), 2)
with I
p(f) = [xe*%HAx*bH , 3)

where o € R is an arbitrary scalar value and 7; € R4 a precision-like, predefined constant.
Note that, finding the maximum of p(¥) with respect to ¥ is equivalent to solving the
LES (1). By further reformulation of the /;-norm in (3)

N
|AY — B> =Y (AZ - b)?, 4)

1

where A; denotes the i-th row of matrix A and Ei the i-th element of b, we can nicely
factorize our objective function p(X):

N T (AR-B)
p(X) = a e TATN 5)
1

The reformulated problem, namely p(X), can be also interpreted as a multi-variant
Gaussian PDF with mean A5 (i.e., the maximum) and covariance matrix (ATA)" L
In what follows, we will derive a Message Passing Algorithm according to GaBP that
approximately calculates the marginal distributions of p(X):

Pi(ﬁ') = ///p(f)dfl,...,dfi_l, dfi+1,..., di, i= 1,...,N. (6)

It is well known that the marginals of a multi-variant Gaussian distribution are again
Gaussian distributions. Moreover, the maxima (i.e., means) of the individual marginal
distributions p;(¥;) coincide with the maximum of our global PDF p(%):

arg max p;(X;) = [arg max p(f)] , (7)

X X

where [...]; denotes the i-th element of the parenthetical expression. In other words, by find-
ing the location ¥; of the individual maximum of all marginal distributions, we automat-
ically find our solution ¥ of the LES (1). For proof, we refer the interested reader to [11],
for example. In the next step, we will express our factorized objective function p(X) by
a graphical model, a so-called Factor Graph (FG). The FG is going to be the foundation
for deriving the Message Passing Algorithm that efficiently provides us with the marginal
distributions later on.

2.1. Factor Graph Representation of a Linear Equation System

A Factor Graph (FG) is an undirected bipartite Bayesian network being composed
of variable nodes, which represent random variables, and factor nodes, which model
functional dependencies between them [16]. In our case, we make use of a FG to model the
objective function p(¥) in (5) which can be interpreted as a PDF. Here, ¥;,i = 1,...,, N play
the role of random variables as well as the elements of vector b. The linear equations ex-
pressed by rows of matrix A represent functional dependencies of these variables. Because
of the nicely factorized form of p(X) in (5), the construction of the FG is straightforward.

Our FG G = (N, €) is defined by its set of nodes A and its set of edges €. The set
of nodes N' = F UV can be decomposed into a set of factor nodes F = {ay,ay,...an}
and a set of variable nodes V = {x1, x, ..., xn, b1, by, ..., by } with cardinality |F| = N and
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|V| = 2N. Note that every element ¥; basically corresponds to a variable node x; and every
element b; to b;, respectively. Every factor node a; can be associated with the ith row of
matrix A, i.e., the ith equation of our LES.

The connectivity of G and its edges £ heavily depends on the structure of matrix A.
Note that in general edges in an FG are undirected [16]. Nevertheless, here we consider
the edges to possess a direction, and therefore, we define for every connection between
two nodes in the FG two edges—one for each direction. This notation will pay off later on
when deriving the Message Passing Algorithm.

The set of edges £ = &, U £4 can be decomposed into a set £, with edges independent
of A and a set £4 dependent on A. Due to the fact that every ith equation of the LES
contains the ith element of vector b, there is always a connection between b; and a; forming
the set:

E ={(by,a;)|Vie {1,..,N}} U{(a;, b;)|Vie {1,..,N}}. ®)

The other edges in £4 depend on A in the form:

(‘:A = {(xl,ll]>|\V/l € {1, vy N},V] € {1, ey N}, A]',i 75 O}U (9)
{(ﬂ]', xi) ‘VZ S {1, ey N},V] S {1, ey N}, Aj,i 7é 0}

For a better understanding, let us construct the graph for a simplified example. Here,
matrix A and vector b are arbitrarily chosen as following with resulting ¥ for N = 4:

210 3 6 7
0200 - |2 R

A=1o 0 4 20" "= |2 7% |1 (10)
100 2 1 -3

The corresponding FG for the example is shown in Figure 1.

) () ()

X1 X5 X3 Xy

Figure 1. Factor Graph corresponding to example LES in Equation (10).

2.2. Message Passing Algorithm

The purpose of the FG defined in the previous section is to derive a Message Passing
Algorithm that delivers the marginal distributions p;(¥;). Note again: as soon as we find
the maximum of each marginal distribution, we found the vector ¥ that solves the LES.
We make use of Belief Propagation [2], sometimes called Sum-Product Algorithm. The
algorithm computes marginal distributions of variable nodes x; by exchanging messages
between the nodes along the graph’s edges. In our case of GaBP, all messages in the
graph are Gaussian-shaped PDFs [10]. As such messages (in the graph) are always fully
defined by their mean and precision (i.e., inverse variance). In cases, where a factor graph
is loop-free, all messages have to be sent only once in order to calculate the exact marginal
distributions [16]. Unfortunately for a general LES, it is not guaranteed that no loops exist.
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For example, in the graph in Figure 1, the edges (a1, x4), (x4, a4), (a4, x1), (x1,a1) form a
closed loop. So, it is not ensured that the algorithm provides the true marginal distributions.
Nevertheless, in many practical cases, it is known that loopy Belief Propagation [17], where
messages are transmitted several times in the graph, does converge to an approximate
solution [18].

Now, let’s have a look at the algorithm in more detail. In the graph, there are two
types of messages: (i) messages sent from a factor node to a variable node m fi; and
(ii) messages from a variable node to a factor node m,, _, £ with f; € 7 and v; € V. The
Sum-Product Algorithm provides us with general update rules on how to calculate these
messages [4]:

Il,k
My, f, = Hmf]-—wi/ (11)
fj

with the set Z;, = {f;[V], (fj,vi) € £,j # k}. In other words: The outgoing message from a
variable node to a factor node f; is the product of all incoming messages to variable node
v; except the message coming from f.

The second update rule is:

Kik
Me oy, = ///gk(’Ci,k, vi) [ T, dKik, (12)
vj

with the set ;= {v;|V], (v}, fy) € £,j # i}. Here, g is a function that describes the
relation of all variables of variable nodes in K; and v; according to the factor node f;.
Further, the notation dC; x indicates the integral over all variables of the variable nodes
in ,Ci,k'

Let’s apply these update rules to our problem of a LES. In our GaBP case, the update
in Equation (11) turns out to be a simple multiplication of Gaussian functions, which is a
Gaussian again. In our case, there exist two different types of variable nodes: x; and b; with
the following update rules for x;:

mxi%ak & G(fl‘|yxi*>ak’T7;1*>ak)/

Iz k
Txi—>ak = ZT(Z]‘%X,'/
aj

(13)
1 Lik
ﬂxi—mk i Zyﬂjﬁxi’rﬂj—)x,’/
Tx;—ray aj

with Z;, = {a}|Vj, (a;,x;) € £, # k} for this particular case. Here G denotes a Gaussian
function and all i denote means and all T precisions, respectively.

For messages from b;, there is no update rule, since bis given. Actually, the graph
described in the previous section contains additional factor nodes that constrain the variable
nodes b; as depicted in Figure 2. However, commonly in literature, these additional factor
nodes are neglected [4] for simplicity. The outgoing messages from b; boil down to:

mbi—mk x G(BZ“;U Tb_l)r (14)

with the actual scalar values b; of the given vector biand a predefined precision 7, 1 We
set this precision to a high value (10°) modeling our trust in the correctness of vector b;.
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a;

Figure 2. Actual graph structure constraining b;.

Applying update rule (12) to our problem is a little bit more involved. Let’s first con-
sider message m,, _,;,- While it is possible to formally define this message, it is practically
irrelevant for the algorithm. Therefore, we are not going to derive it. The messages to x;
are required and, after some algebra, result in:

mak—>xi &3 G(fi“/lak—)x,» Tg;l)xi>/

72 —1
Tak—ml Akl kab + Z Ak] X]—Hlk ’ (15)

’Ci,k

1 .
_bk + 2 Ak,jﬂx]-—mk)/
X

Vﬂk—)x,‘ - _Akl'(

7

with set iy = {xj|V], (xj,ax) € &,j # i} for this particular case. (Note: here we used
Ty — 00)

As can be seen from the equations, outgoing messages from a node are always func-
tions of the incoming messages to the specific node. In one iteration of our Message Passing
algorithm, each message in the graph is calculated once in a specific order. The order we
are going to describe later on. If for an update, a message is required, that has not been
calculated for the current iteration, we make use of the results from the previous iteration.
This approach requires the initialization of messages for the first iteration. We choose a
random mean py; 4, and yig .y, from a uniform distribution [—1, 1]. The precision of a
message can be interpreted as the certainty of the corresponding variable. Therefore, we
initialize Ty;—q, and T, —x, With low values accounting for the fact that we do not know
the variables at the beginning. Thus, the initial messages essentially correspond to wide
Gaussian distributions. Note that the messages m;,,,_ are always the same for every
iteration. As such they are calculated once at the beginning but do not require any update
or initialization.

The actual marginals we are looking for are given as:

i
pi(%) = [ [ma;n; < G(Filpi, 771,

aj

Ji
T = ZTaj*)xi, (16)
aj

1 i
- ?l Z ,uajﬁxiTaj%xi/
aj

with the set J; = {a;|V], (a;,x;) € £}. Once again, note that y; are the maxima of the
marginals and the solution to our LES. Since our graph contains loops, these marginals are
only approximations of the actual distributions. By iteratively exchanging all messages
in the graph the approximations converge to the true marginals under certain conditions,
which we are going to evaluate in the result Section 4.
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As a last ingredient of the algorithm, we need a schedule to calculate the messages. A
common approach is to calculate the messages in random order [16]. However, this might
not be the most efficient way. For example, in [19] a more efficient scheduler is proposed
taking into account the information flow in the graph. However, scheduling is not the
main focus of this paper and we stick to the common, yet less efficient, random order for
calculating the messages. In our case the scheduler is asynchronous, and it updates all
existing messages in one iteration before updating the same message in the next iteration.
For updating a message in a certain iteration, we make use of an already updated version
of the required messages.

Finally, at this point let us remark that a termination or convergence criterion of the
algorithm is required. The decision on that is up to the particular application. In our studies
in Section 4, we use a fix number of Message Passing iterations.

3. Hardware Implementation in a FPGA

The main motivation of our paper is to speed up GaBP and thereby solving the LES
by implementing the algorithm in hardware on a FPGA. We achieve this by the design of
specialized co-processors, taking care of the most intensive, recurring computations. In
particular, we outsource the computation of the messages in Equations (13) and (15) to
two types of dedicated co-processors. Multiple co-processors of these types can calculate
messages in parallel and speed up the algorithm while at the same time relieving the CPU.

Our implementation is designed for a SoPC. The SoPC combines a standalone pro-
cessing system integrated with programmable logic on a single die. The programmable
logic, which is basically a FPGA, consists mostly of configurable logic fabric. On this
fabric, the digital hardware defined by a Hardware Description Language can be physically
implemented. For our evaluation, we have chosen SoPCs running chip-sets based on the
Zyng-architecture by Xilinx [20]. Here the processing system is an ARM processor with all
components required for an independent, CPU-driven system. The programmable logic
and processing system are connected via a set of interconnecting bus systems, allowing data
transfer between hardware implementations in the logic fabric and the CPU system [21].

In the next two subsections, we are going to describe the design of the co-processors
and explain their interfaces and memory access.

3.1. Dedicated Co-Processors for Message Passing

We employ two different types of co-processors in our hardware design: One is taking
care of calculating messages mi,;_,, according to Equation (13). Therefore, we label this
type of co-processor Cy_s;. The other co-processors labeled C,—,x calculates messages
Mg, —x; according to Equation (15), respectively. More precisely, the co-processors calculate
the mean and precision of corresponding messages simultaneously. Recap that a message
is fully defined by its mean and precision.

3.1.1. Co-Processor Cy_; 4

Co-processor Cy_s,; is shown in Figure 3a. As can be seen, the mean and precision
of incoming messages propagate through floating-point computation hardware blocks in
order to calculate the outgoing message according to Equation (13).

The incoming messages required to calculate the outgoing messages 1y;_,,, are fed
to the co-processor in the form of 64-bit packages via an AXI4-stream slave interface [21].
Here, the upper 32 bits of a package encode the mean in form of 32-bit floating-point
numbers, where the lower 32 bits encode the precision, respectively. Figure 4a illustrates
this protocol. The co-processor puts out the resulting messages in a similar format.



Electronics 2021, 10, 1695

8 of 22

AXI stream slave interface

broadcaster

Taj-x;

| accumulator

finalize
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| mutiplication | | squaring | | multiplication | | squaring |
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division negative
accumulator
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o]

Hxi—ay

1
1
1
1
|
1
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1
1
|
1
1
1
1
|
1
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1
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1
1
1
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|
1
1
1
1
! T
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|
1
1
1
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1
1
1
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1
1
1
1
|
1
1
1
1
|
1
1
1
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com

AXI stream master interface

(

biner

a)

§ Haj-x; Taj-x;

AXI stream slave interface

accumulator

accumulator

l

l

final

accumulation

lize

—

2 -1
Z Ak,j Tosay

division

AXI stream master interface

finalize

accumulation

Z Ak,j Uosay

Tay-x;

combiner

(b)

Figure 3. The two diagrams show the data flow within the two co-processors. The function blocks are implemented in

hardware on the FPGA. In (a) the co-processor Cy_,, is shown, in (b) the co-processor Cy— .

input stream for

My,—a,

input for next message

—~—

Haz—x, | Taz—x,

Ha,—x,

Ta,—x,

32-bit  32-bit

\H/_/H/_/

1. package

2. package

()

Aq | Aqp |.ux1—>a1

TX1—>(11

A | Au

|.“x4—>a1

TX4—>G.1

Ay | aa | B | o |1 |

32-bit  32-bit

H/_H_M/_H_H_H_/H/_/
1. package 2. package 3. package

4. package

(b)

Figure 4. The diagrams illustrate the designed protocol of the AXI input stream to both co-processors through an example.

5. package

6. package

7. package

In (a), the stream towards processor Cy_;, is shown, whereas (b) depicts the input of processor C;—x. The chosen examples

correspond to messages of the factor graph in Figure 1 and LES (10).
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First, a broadcaster block at the slave port of Cy_,, splits the 64-bit incoming packages
into a 32-bit floating-point mean y and a 32-bit floating-point precision 7. Another broad-
caster doubles the precision T. One path of T is accumulated in a floating-point accumulator
block. These blocks are automatically reset after receiving input with a flag indicating
the final package of the stream. The accumulated result is basically the precision of our
outgoing message according to (13). It is extracted by the finalize-accumulation block and
again doubled, where one path already goes to the combiner block for assembling the final
package for the outgoing message.

Let’s go back to the second T path. It joins the y path in a floating-point multiplication
block, where the precision T and p are multiplied as required by Equation (13) for the
calculation of the outgoing mean. These products are accumulated in another floating-point
accumulator block, and a finalize-accumulation block extracts the result. The accumulated
products join the accumulated precisions in a floating-point division block, where finally
the mean of the outgoing message is calculated. The 32-bit mean and the 32-bit precision
are assembled in the combiner block to a 64-bit package, representing the message my;_,,,
to which the co-processor is dedicated.

Remark: The broadcasters, floating-point accumulators, and floating-point multipli-
cation as well as divisions are Intellectual Propertys (IPs) provided by Vivado [22]. They
allow fast floating-point operations in hardware, making use of specialized hardware for
floating-point arithmetic available on the PL and optimized for latency and speed [22].

3.1.2. Co-Processor C,_, «

The second type of co-processor, C;—,y, calculates the messages m,, —,x, according to
Equation (15). The co-processor is illustrated in Figure 3b. The messages, more precisely
the precision 7, —,»; and mean ji,, .y, are calculated based on incoming messages to factor
node a;. However, they do not only depend on the incoming messages, but also on the linear
function represented by factor node gy, i.e., the k-th equation of our LES (1). Essentially,
the co-processor needs to know all non-zero elements of the k-th row of A as well as the
k-th entry in vector b of Equation (1). To feed all required information to the co-processor
Cu—x, we deploy the protocol shown in Figure 4b for the AXI input stream. Here again, we
are constrained by the 64-bit package size.

In the co-processor, first, a switch routes all incoming packages as shown in Figure 3b
according to the order of arrival. The first package, containing A ; two times as 32-bit
floating-point values, goes to path 1. Every even package is routed to path 2. They contain
the mean (upper 32 bits) and precision (lower 32 bits) of the incoming message to factor
node 4y from variable nodes x; and node by. The odd packages except the first one go
to path 3 and contain the non-zero coefficient of the linear equation k, i.e., Ay ;. Again,
the value is contained two times as a 32-bit floating-point value to match the 64-bit package
size. Note that the coefficient for b is actually —1, as also illustrated in the example in
Figure 4b.

Further, in the co-processor, the inputs are propagated and processed as follows: From
path 1, Ay ; is extracted by a broadcaster block twice, where one is squared, and one is
negated (multiplied by —1) in dedicated blocks. In path 2, means p_,,;, and precisions 7_,,,
are separated by a broadcaster. The means are multiplied by the coefficients Ay ; extracted
from path 3. The resulting products are summed up by an accumulator block, and the final
sum is extracted by a finalize-accumulation block. The sum is divided by the negative Ay ;
in a division block, which already provides us the mean i, ., of the outgoing message.

Simultaneously the co-processor calculates the precision 7,, ;. Therefore, all Ay j are
squared and divided by all 7_,,. Again, these values are summed up by an accumulator
and finalize-accumulation block. Dividing the sum by squared Ay ; provides the final
precision Ty, —,x;, which is combined with the mean pi4, —», to a 64-bit package in a combiner
block before it is sent out to the AXI stream.

It is important to note that all hardware blocks in both kinds of co-processors, and there-
fore the co-processors themselves are designed for maximal latency. This means that it
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takes multiple clock cycles after receiving a valid input until a valid output is ready at the
hardware block. Yet, at every clock cycle, a new set of input data can be accepted by such
hardware block. Further, floating-point blocks with two inputs work in a blocking manner.
So, they require a pair of valid input data. Due to different propagation path lengths in the
co-processor, this could lead to congestion. We avoid this by FIFO-buffer blocks that can
store data until the second input is valid, too. These blocks are not displayed in Figure 3
for the sake of readability.

3.2. Interfaces and Memory Access of the Co-Processors

As we have seen in the previous subsection, the co-processors need input data pro-
vided by an AXI stream. This subsection is going to explain how the data are streamed to
the co-processors and how the co-processors are connected to the processing system of the
SoPC. It is also illustrated in Figure 5.

programmable logic processing system

slave stream mma2s
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co-processor 1 | DMA1
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master stream s2mm

CPU

i

slave stream mm2s

CO-processor 2 DMA 2
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&
<
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<
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descriptor memory
1

Figure 5. The block diagram depicts the connections between the programmable logic and the
processing system. DMAs possess access to system memory via a high-performance interface. They
stream data from the message memory to the co-processors and vise versa according to a set of
descriptors. DMAs are started by the CPU.

Every co-processor, either of type C,—x or Cx—;; is implemented in the programmable
logic of the SoPC and equipped with a separate DMA module. DMAs are able to read and
write data from the processing system’s memory via a high-performance interface [23].
In addition, they are directly connected to the CPU by a general-purpose interface that
allows to start and configure the DMAs. Apart from that, in our setup they are working
independently of the CPU in a so-called scatter-gather mode [23]. In this configuration,
each DMA requires two sets of descriptors stored in the processing system’s memory:

*  Memory Mapped to Stream (mm2s) descriptors contain the addresses in memory
where to fetch data from as well as the number of bytes to fetch. The fetched data is
streamed to the hardware co-processor connected with an AXI4-Stream interface to
the DMA.

e  Stream to Memory Mapped (s2mm) descriptors on the other hand contain the ad-
dresses in memory where to write data to and the data length. The data is coming to
the DMA also via an AXI4-Stream interface.

In other words, both types of descriptors are basically lists of addresses where to read
from or where to write to. Note that both transmissions mm2s and s2mm are handled
independently from each other by the DMA.
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In our proposed design all messages, i.e., their mean and precision, are stored in
allocated memory (message memory) on the processing system along with the entries of
matrix A and vector b. The descriptors of the DMA are compiled by the CPU and stored
in dedicated memory (descriptor memory) of the processing system accessible by the
DMASs’ scatter-gather engines. These descriptors define the order in which mean, precision,
and coefficients are streamed to the co-processors. As such, they have to match our chosen
protocol described by Figure 4 of the input streams. With the input data in the right order,
the co-processor computes a new message, i.e., mean and precision. The connected DMA
receives this message from the master interface of the co-processor and writes it back to the
appropriate location in message memory according to its current s2mm descriptor. In this
way, all messages stored in the processing system’s memory are subsequently updated by
the co-processors and DMAs without CPU interventions.

Remark: In general, a DMA processes the descriptors once and stops. After that,
the DMA would need to be restarted by the CPU. However, DMAs can also operate in
a “cyclic mode” [23]. In this mode, the DMA loops through the descriptors once and
starts again from the beginning ad infinitum. This mode is especially interesting for
the computation in our algorithm since messages have to be computed multiple times
until convergence.

4. Evaluation

In this section we are going to evaluate our proposed approach for solving LES on
dedicated hardware. We first present the evaluation boards used in our experiments,
then we explain how we generated different LESs for our evaluation purpose. Finally, we
show the results of our evaluation and compare the performance of our approach to a
state-of-the-art solver.

4.1. Deployed SoPC Boards

In our evaluation we make use of two different SOPC boards: one being the PYNQ-
Z1 [24] and the other one the Zynq UltraScale+ ZCU104 [21] (pictured in Figure 6). Both
boards share the same architectural foundation. They are equipped with chipsets based on
the Zyng-architecture [20]. On both SoPC boards, the development environment “Python
Productivity for Zynq” is available. This allows executing python code on the processor and
making use of existing libraries. Furthermore, programmable hardware that is synthesized
in the programmable logic can be incorporated in the execution [24]. The two evaluation
boards differ in computational power and in the available hardware resources. The more
affordably priced PYNQ-Z1’s processing system is equipped with a 650 MHz dual core
ARM processor and 512 MB of DDR3 RAM. The programmable hardware is connected to
the processing system with four high performance ports. The Zynq UltraScale+ ZCU104
on the other hand comes with a processing system driven by a 1.3 GHz quad core ARM
processor and 4 GB of fast DDR4 RAM [21]. The Zynq UltraScale+ ZCU104 has a larger
amount of programmable hardware resources available in comparison to the PYNQ Z1.
It can be accessed through a total of six high performance ports. So, it can host six co-
processors for message passing in contrast to only four on the PYNQ-Z1.

The utilization of available hardware on the programmable logic is illustrated in
Figure 7. The figure shows the required space of the implementation of the co-processor on
the FPGA for both boards in (a) and (b). Note that the regions marked as “other” are mostly
used by the DMAs. As can be seen, also from the quantitative utilization in (c) and (d),
the available hardware resources are not completely exploited. Therefore, we would like to
remark that the limiting factor in our approach is the number of available high-performance
interfaces (and their bandwidth).

The clock speed for the programmable logic has been set to 100 MHz for both boards
in our implementation. Presumably, the clock speed could be increased. (Current Worst
Pulse Width Slack: 3.75 ns PYNQ-Z1 and 3.50 ns Zynq UltraScale). A higher frequency
would also speed up the algorithm.
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Figure 6. The two deployed evaluation boards: on the left PYNQ-Z1 [24] and on the right Zynq
UltraScale+ ZCU104 [21].
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Figure 7. The charts in (a,b) illustrate the space required by the hardware implementation of the co-processors on the
programmable logic. The chart in (a) shows the PYNQ-Z1 board and the chart in (b) the Zynq UltraScale+ ZCU104 board.
The quantitative utilization of available hardware on both boards is depicted in (c) for the PYNQ-Z1 board and in (d) for
the Zynq UltraScale+ board (LUT: lookup tables; FF: flip-flops; BRAM: block random-access memory; DSP: digital signal
processors; BUFG: global clock buffers).
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4.2. Evaluation Data Sets

In order to evaluate our approach, we generated different sets of LESs. We solved
these LESs with our GaBP algorithm on the hardware mentioned above. In our studies, we
analyze the quality of the solution and the time it took to compute the solution with respect
to different properties of the LES. The first property is the density of matrix A, which is the
number of elements in A that are not zero. Second, we have a look at the condition number
of A. We would expect that a LES with a condition number closer to 1 would be easier to
solve. Last but not least, we consider the so-called walk-summability condition [14,15].
Unfortunately, it is not guaranteed that the GaBP converges for an arbitrary LES. However,
it has been shown that the algorithm converges for w < 1 [15] with

W — p(‘l _D-1/2Ap-1/2

) a7)

and p being the spectral radius and D the diagonal matrix of A [12]. In the following,
we refer to w as the “walk-summability” of A. We make sure that for all our LESs the
walk-summability is below 1. Note that this is a sufficient condition, but it is not a necessary
condition for convergence.

We investigate four different sets of LESs with different matrices A and vectors b that
we designed in the following way:

1. Random LESs: We generate A and b for different dimensions N, i.e., number of
equations. Here N covers the whole list [100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000]. The entries in the vector
b are sampled from a random uniform distribution between —1 and 1. Matrix A is
designed in a way so that it is sparse and diagonal dominant. The density, i.e., the
number of elements that are not zeros, is chosen to be 10N, where the location of
non-zero elements is random (Here we make use of the scipy library [25], namely
the function “scipy.sparse.random”). The non-zero entries are also sampled from a
random uniform distribution between —1 and 1. In addition, we add the value 8 to
all diagonal elements of the random sparse matrix to get our final matrix A. The main
properties of the matrices in this set of LESs are depicted in Figure 8a, where each
dot on a line represents one matrix. As can be seen, the condition number, as well as
the walk-summability is roughly constant, while the density increases linearly with
dimension N. This set contains in total 19 LESs.

2.  Finite Element Method (FEM) LESs: For the second set, we consider the Poisson
PDE Ax(t) = b(t) with t € Q and the domain QO = [0,1]x[0,1] with boundary
condition x(f) = 0, € I' on border I' of domain (). We numerically approximate this
variational problem by FEM and Lagrange elements of order one. FEM turns our
problem into a LES AX = b. However, this approach requires discretizing the domain
Q) by a finite number of elements spanning a mesh. The number of nodes of this
mesh defines dimension N of our LES. A higher number of nodes and thus a better
resolution of the numerical approximation results in a higher dimension N. Before
we solve the LES on our hardware, we use an incomplete LU preconditioner [26].
The preconditioner is parameterized in a sub-optimal way. This is on purpose to
challenge our solver and to make sure that we do not accidentally solve a linear
system where the matrix A is the identity matrix, or very close to it. (This would be a
trivial problem.) Preconditioning is also a common approach for standard numerical
solvers of LES [26]. The main properties of the matrices in this set are depicted in
Figure 8b. We parametrize the preconditioner so that the condition number and
walk-summability are roughly constant. Nevertheless, there is some variation. We
used different meshes in the FEM with different resolutions. Thus, the set contains
in total 23 LESs with different dimensions N. All entries in vector b are set to zero,
except the one entry corresponding to the point in the middle of the domain. This
entry is set to 1.
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Constant density LESs: This set of LESs is generated in a similar way as the Random
LESs, however, only for dimensions N € {300, 1000, 3000}. The density of matrix
A is again 10N. In contrast to the Random LESs, we add different values to the
diagonal elements of the randomly generated sparse matrices (5.1, 6, 10, 15, 20, 50).
The properties of matrices are shown in Figure 9a. As can be seen, in this set, for a
given dimension N, the density is constant for different condition numbers. Entries
in vector b are again sampled from a random uniform distribution between —1 and 1.
Constant condition number LESs: Again this set is generated similar to the Random
LESs, but only for dimensions N € {300, 1000, 3000}. This time, we generate matrices
A with different densities, namely YN, with v € {6, 10, 15, 20, 50}. We also add v to
the diagonal elements of A resulting in approximately constant condition numbers
for different densities. This dependency is also depicted in Figure 9b. Entries in vector
b are again sampled from a random uniform distribution between —1 and 1.
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Figure 8. The two plots depict the main properties of the matrices in the Random LESs-set in (a) and
FEM LESs-set in (b). Each dot on a curve represents one matrix (in total: 18 in (a) and 23 in (b)).
The plots show the density, i.e. the number of elements that are not zero in A, the condition number
of A, and the walk-summability (see Equation (17)) dependent on the matrix dimension N.
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Figure 9. The two plots illustrate the main properties of the matrices in the LESs-set with constant
density in (a) and the LESs-set with constant condition number in (b). Both sets contain LESs with
dimensions 300, 1000, and 3000. For each dimension the set in (a) contains 6 LESs and in (b) 5 LESs.
Each dot corresponds to one matrix.

4.3. Performance of GaBP on a SoPC

In order to evaluate the performance of our approach, we need a benchmark that
we can compare to. Here, we make use of the sparse linear solver of the scipy python
library [25] (namely the function “scipy.sparse.linalg.spsolve”). We use this solver to solve
our different LESs, and its solution we denote as Xs;;. The quality of our approach we
measure as the discrepancy (or error) between our solution ¥ and X4 as

e = Hx*xslsHLl‘ (18)

| X5l L1

Apart from that we also measure the time it took the state-of-the-art solver and our
approach to solve the LES.

Let us remark that for direct comparison, we run the state-of-the-art solver on the
ARM processing system of the respective SoPC board. Therefore, the times on the PYNQ-Z1
are much higher due to the less powerful CPU. Also, the 512 MB RAM on the PYNQ-Z1
constrains us to only solve LESs with dimension N < 8000. In addition, we also measured
the time that the standard sparse solver required to solve the LES on a Workstation (Intel(R)
Core(TM) i7-3820 CPU @ 3.60 GHz with 32 GiB DDR3 System Memory). Of course, this
power-full device requires expectably less time to solve the LES. However, in our focused
applications in mobile robotics, it is often impossible to equip a robot with a heavy, high-
power consuming workstation.

Let us first look at the result for the set of Random LESs. The results for the Zynq
UltraScale board are shown in Figure 10 and the result for the PYNQ-Z1 in Figure 11. As
can be seen from Figures 10a and 11a, the message passing algorithm achieves a very
good approximation of X after only a few iterations. On both boards, an error below
10~° is already reached after approximately 10 to 15 iterations. Remarkably, the number
of iterations is independent of the dimension N of the LES. As expected, the error and
convergence of the algorithm are very similar on both boards, since the algorithm is
implemented in the same way on both boards; despite the fact that on the Zynq UltraScale
six co-processors are running in parallel, where on the PYNQ-Z1 only four.
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Figure 10. The plots compare the performance of our approach when solving the Random LESs on

the Zynq UltraScale board to a standard solver (ones running on a workstation and ones running

on-board on the ARM processing system). In (a), the error of our approximated solution after a

certain number of Message Passing iterations is shown for different dimensions of the LES. In (b),

the time of the standard solver is compared to the total time our Message Passing Algorithm requires

to archive a solution better than 10~°. In addition, the time of a single iteration is plotted as well as
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Figure 11. The plots show the same results as Figure 10. However, this time for the PYNQ-Z1

board. Due to less memory, only LESs with dimension N less than 8000 are evaluated. The plots in

(a) illustrate the convergence, where (b) shows the required computation times.
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The required times to solve the LES are depicted in Figures 10b and 11b. The orange
curves show the time the standard scipy solver required to solve the equation. The solid
line represents the standard solver running onboard on the ARM processing system. The
dotted line shows the times required by the workstation for comparison. The solid black
lines indicate the time our approach needed to achieve an approximation of ¥ with an error
below 10~°. The dashed lines represent the time of a single Message Passing iteration. For
our evaluation purpose, we start and stop the DMAs for every message passing iteration,
in order to calculate intermediate results and analyze convergence. This overhead of
starting and stopping DMAs is represented by the dotted lines. This time can be saved in
case the DM As operate in a scatter-gather “cyclic mode”. As can be seen from both plots,
our approach scales better than the standard solver with respect to dimension N on both
boards. Thus, for LESs with N > 400, our approach outperforms the standard solver. The
benefit gets bigger with increasing dimension N. Even compared to the workstation, our
approach is faster for N > 1000. For the required time of the Message Passing Algorithm,
the two boards differ. For example, the LES with N = 1000 took 0.426 s on the PYNQ-Z1
with four co-processors and 0.185 s on the Zynq UltraScale with six co-processors. This
indicates that hardware, allowing us to employ more co-processors, may further speed up
our approach.

Next, let’s look at the set of FEM LESs. The results are shown in Figure 12 for the Zynq
UltraScale board and in Figure 13 for the PYNQ-Z1 board. Again the plots in (a) show the
errors of the Message Passing solutions compared to the standard solver’s solutions for dif-
ferent numbers of message passing iterations. As can be seen, the convergence is quite fast,
similar to the set of Random LES. Within 20 iterations the algorithm accomplishes results
with errors below 10~ for both boards. However, it is noticeable that for LESs between
dimension 400 and 1000 the error curves show irregularities. We blame our preconditioner
for this effect. The condition number for the FEM LESs shows some variation (see Figure 8)
with respect to the different LESs. This seems to affect the convergence of our algorithm.
(We are going to investigate this effect further down.)
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Figure 12. The plots show the performance of our approach when solving the FEM LESs on the Zynq
UltraScale board. In (a), the error of our approximated solution after a certain number of Message
Passing iterations is shown. In (b), the times of the standard solver (running on the ARM processing
system and the workstation) are compared to the total time our Message Passing Algorithm requires
to archive a solution better than 10~°. In addition, the time of a single iteration is plotted as well as
the DMA overhead.
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Figure 13. The plots show the same results as Figure 12. However, this time for the PYNQ-Z1
board. Due to less memory, only LESs with dimension N less than 8000 are evaluated. The plots in
(a) illustrate the convergence, where (b) shows the required computation times.

The time of our approach compared to the state-of-the-art solver is depicted in
Figures 12b and 13b for the FEM LESs. The solid black line again shows the time the
algorithm needs to get a solution better than 10~°. The dashed line indicates the time
of one message passing iteration and the dotted line the DMA overhead. It appears that
for this type of LES the standard solver is almost always faster. However, the Message
Passing Algorithm scales better so that for a LES with dimension N > 15,000 our approach
is faster compared to the standard solver on the Zynq UltraScale ARM processing system.
Unfortunately, the memory (4 GB on the Zynq UltraScale and 512 MB on the PYNQ-Z1)
limits the maximum dimension we can solve on the chosen boards so that we cannot profit
from the better performance on higher dimensions. Thus, our approach never outperforms
the workstation for the FEM LESs set. Hopefully, in the future affordable boards with more
memory become available. Then, our approach can pay off for larger LESs of this type.
It is also notable that the irregularities in the convergence plots in (a) are reflected by the
time our approach needs to solve the LES, but also in the times of the standard solver. As
mentioned, this may indicate a bad condition of certain LESs in this set.

A full convergence analysis of GaBP is not in the scope of this paper. (see for exam-
ple [15,27,28] on this topic) Nevertheless, we would like to give the reader some insight
what are favorable properties of a LES in order to be solved efficiently by our Message
Passing Algorithm. To this end, Figures 14 and 15 show the performance of our approach
for the sets of LESs with a constant condition number and a constant density. While
Figure 14 shows the required time to solve the LES in comparison to the standard solver
for different dimensions, Figure 15 shows exemplarily the convergence of the algorithm
only for dimension N = 1000.
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Figure 14. The plots show the required time of our Message Passing Algorithm to achieve a result
for the LESs better than 10~°. The times are compared to the time of a standard solver. The standard
solver and the Message Passing Algorithm were running on the Zynq UltraScale board. In (a),
the times are shown for the set of LESs with constant density. In (b), the times are shown for LESs
with constant condition number. Both sets of LESs contain matrices with dimensions 300, 1000,
and 3000. The computation times are plotted with respect to the condition number in (a) and with
respect to the density in (b).

.\“ﬂ\._. P o—o—o—° 1w
‘= 10° 1 z
100 4 - § —o—o0—0—0 ﬁ
1072 i .)'./.__"'___. 10 Eﬂ 1072 b .-\.—.—\.\. 10 %D
5 g 5 g
5 E 5. E
10-4 ] c 2107 c
5 .9 5 .9
© ©
107 g 107 2
Ho—o———=0é c—0—0—0—0
] ] 0 B 0 BiS
1 2 3 10* 10°
condition number (N=1000) density (N=1000)
(a) (b)

Figure 15. The plots show the error after a certain number of Message Passing iterations for the LESs
analyzed in Figure 14, but only for LESs with N = 1000. In (a), the errors are shown for the set of
LESs with constant density. In (b), the errors are shown for LESs with constant condition number.

As can be seen from Figure 15a, the error of a solution after a particular number of
iterations increases with increasing condition number. Also, a higher condition number
causes a slightly higher computation time as shown in Figure 14a. Even though this effect is
quite low for the considered range of condition numbers, one can say that a better condition
number, i.e., closer to 1, is of advantage for our approach.

In contrast, the impact of a higher matrix density on the computation time is much
higher as can be seen from Figure 14a. The computation time increases not only for our
approach but also for the standard solver. If we in addition look at the convergence for
dimension N = 1000 and different densities in Figure 15b, we can see that convergence,
however, is even slightly better for higher densities. This indicates that the Message
Passing Algorithm does not need more iterations to converge for higher densities. Thus,
the increasing computation time is solely attributable to the higher number of messages
that need to be calculated within one iteration. Recap that the number of messages is
proportional to the number of entries in matrix A, i.e., the density. It is also notable in
Figure 14b that the computation time of the standard solver jumps for increasing dimension
N of the LES. This is not the case for GaBP. Surprisingly, the time of the Message Passing
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Algorithm to converge is lower for higher dimensions N compared to LESs with lower
dimensions but the same density. Here, the effect may be caused by a convergence within
fewer iterations, which we already observed in Figure 15b.

5. Conclusions and Remarks

To sum up: In this paper, we make use of GaBP to solve LESs. More precisely, we
reformulate our LESs as Gaussian PDFs, which we model by a Factor Graph (FG). The
FG is the foundation of a Message Passing Algorithm we derived according to GaBP.
The algorithm provides us with approximations of the marginal distributions of the PDF.
Essentially, the maxima of these marginals are the solutions to our LESs. The algorithm
requires to compute messages according to simple update rules. Even though, the updates
are simple algebraic computations, a lot of messages need to be calculated. We make use of
a SoPC, where we designed dedicated co-processors for the programmable logic taking
care of the message updates. By outsourcing the message updates, the CPU is relieved. In
this paper, we have shown that this approach achieves good approximations of the solution
for certain LESs. In addition, the performance with respect to the computation time of our
approach has turned out to scale better compared to a state-of-the-art sparse linear solver.

Here, we would like to remark that even for LESs, where the Message Passing Algo-
rithm shows similar speed compared to a standard solver, our approach is of advantage,
since the CPU is not occupied and can be used for other tasks.

It is also worth mentioning that the Message Passing Algorithm delivers the variances
of the marginals as a side product for free. These variances are of interest in some appli-
cations like uncertainty-driven robotic exploration strategies [1,29]. A classical approach
would require calculating the inverse of matrix A to obtain these variances. The calculation
of the inverse, however, is much more computationally expensive compared to just solving
the LES. This can be considered as another advantage of the GaBP approach.

Further, GaBP can be easily extended to a Bayesian framework, which allows the
introduction of prior assumptions that can act as a kind of regularization on the LES. For
example, in [30], a similar Message Passing Algorithm has been employed with a sparsity
inducing prior based on Sparse Bayesian Learning techniques [31].

We would also like to remark that the limiting factor in our evaluation was the low
amount of memory on the deployed evaluation boards (4 GB on the Zynq UltraScale). The
memory limits the number of messages and DMA descriptors, and thus, the maximum
dimension of LESs, which can be handled. In the future, there might come up more
powerful, low-priced SoPCs allowing us to solve even larger LES with our approach.

The second limiting factor in our approach is the number of high-performance in-
terfaces between programmable logic and the processing system. In our design, each
co-processor requires one DMA that is attached to a single high-performance interface to
get memory access. In general, it would be possible to attach multiple DMAs to a single
high-performance interface; or to attach multiple co-processors to each DMA. The latter
would require us to change our protocol in Section 3.1. However, the high-performance
interfaces provide a theoretical bandwidth of 1200 MB/s [32] at a clock frequency of
150 MHz (in both directions). This equals a theoretical bandwidth of 800 MB/s at the
clock frequency of 100 MHz in our design. Each of the co-processors is able to process
input data with the same bandwidth of 64 bit x 100 MHz = 800 MB/s. Thus, there is no
improvement by running multiple co-processors per high-performance interface, since
the bottleneck is the limited bandwidth of the interface. With increased clock frequency,
however, both the bandwidth of the high-performance interfaces and the co-processors can
be increased. In addition, more high-performance interfaces between programmable logic
and the processing system would enable more co-processors to run in parallel.

At this point, it is also important to remark the main drawback of GaBP for solving
LESs: For general LESs, it is not guaranteed that the algorithm converges. In this paper,
we only investigated diagonal dominant matrices that fulfill the walk-summability con-
dition [14,15]. In general, our approach cannot be applied to all types of LES. However,
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for some applications, like LESs arising from numerical approximations of PDEs, it is
suitable. Thus, it may support model-based robotic exploration strategies in the future.
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