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Abstract 9 

Knowledge about the spatial and temporal distribution of exposed soils is necessary for e.g., 10 

soil erosion mitigation. Earth Observation (EO) is a valuable data source for detecting exposed 11 

soils on a large scale. In the last couple of years, the multitemporal compositing technique has 12 

been used for the generation of so-called exposed soil composites that overcome the limitation 13 

of temporarily coverage of the soils with vegetation as it is occurring at agricultural sites. The 14 

selection of exposed soil pixels from the stack of multispectral images is mainly done using 15 

spectral reflectance indices such as NDVI, NBR2 and others calculated on a per-pixel basis. 16 

The definition of the thresholds that are applicable to large areas such as regions, countries or 17 

continents is still a challenge and requires a reliable and robust sampling data base. In this 18 

study, the Soil Composite Mapping Processor (SCMaP) is used to build exposed soil masks 19 

containing all pixels in a given time period showing at least once exposed soil. For this purpose, 20 

a modified vegetation index (PV) based on the NDVI is used to separate the soils from other 21 

land cover (LC) classes by two PV thresholds. The overall goal of this study is to derive and 22 

validate exposed soil masks from multi-year Landsat data stacks for Germany from 1984 to 23 

2019. The first focus is set on the impact of a newly developed sampling approach of LC 24 

classes such as urban areas, deciduous forests and agricultural fields that are automatically 25 

derived from Corine Land Cover (CLC) data. The spectral-temporal behavior of these LC 26 

classes in PVmin/max index composites show larger variability of the PV values compared to a 27 

manual sampling for selective LC classes such as urban areas. It reveals that the threshold 28 

definition method previously developed by Rogge et al. (2018) is not robust enough and the 29 

percentile rule used to define the Tmax threshold had to be adapted from 0.995 to 0.900. On 30 

the other hand, the sampling data base has proven to be robust across time and region. The 31 

second focus of the paper is to validate all generated exposed soil masks covering Germany 32 

for seven time periods from 1984 to 2019. A linear correlation analysis was performed 33 

comparing the SCMaP data with surveys from the Federal Statistical Office (Destatis) and the 34 

CLC inventories. The comparison with both datasets showed high regression coefficients (R² 35 

= 0.79 to 0.90) with small regional deviations for areas in the Northern part of Germany. Strong 36 

correlation was found for time periods based on a higher number of cloud free Landsat images 37 

such as from 2000 to 2009. This demonstrates the high potential of SCMaP’s to generate 38 

exposed soil masks based on an automated sampling and a robust threshold derivation. To 39 

contribute to soil erosion studies that need information about where and when soils are bare, 40 

accurate exposed soil masks in suitable time periods can be of great value. 41 
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1. Introduction 1 

Soils provide numerous ecosystem services that are essential for human life on Earth (Adhikari 2 

and Hartemink 2016). Knowledge about the spatial and temporal distribution of exposed soils 3 

is very informative for assessing ecosystem processes and statistical analyses and can serve 4 

as a basis for further soil-related assessments (Lavelle et al. 2014). Natural or 5 

anthropogenically induced soil degradation and erosion affects the quality of ecosystem 6 

services (Demattè et al. 2018). In particular, exposed soils that are not covered by vegetation 7 

are prone to erosion (Virto et al. 2015), resulting in a notable amount of soil loss each year 8 

(Borelli et al. 2017, Borelli et al. 2018, Steinhoff-Knopp and Burkhard 2018). In addition to the 9 

location and exposition of uncovered soils (Panagos et al. 2014 b, Panagos et al. 2015 b), the 10 

duration of exposure indicates the vulnerability of an area (Cerdan et al. 2010, Panagos et al. 11 

2014 a) to different geofactors, such as wind (Borelli et al. 2015, Schmidt et al. 2017) or water 12 

(Gobin et al. 2004, Steinhoff-Knopp and Burkhard 2018). Thus, information on the spatial and 13 

temporal distribution of exposed soils enables estimations of the vulnerability of a region 14 

(Cerdan et al. 2010, Panagos 2015 a) and can support the assessment of the future availability 15 

of soil-derived ecosystem services (Baude et al. 2019). 16 

Earth Observation (EO) is a valuable data source for detecting exposed soils. Merging 17 

information from multiple images have been developed as a suitable technique for many 18 

purposes such as cloud-free images (Hermosilla et al. 2015), crop and land cover (LC) 19 

detection (White et al. 2014, Griffiths et al. 2019, Hansen et al. 2011) and for analyzing forests 20 

(Adams et al. 2020). In the last couple of years, the compositing technique has also been used 21 

for the generation of images containing reflectance values of exposed soils (Rogge et al. 2018, 22 

Demattè et al. 2018, Diek et al. 2017, Vaudour et al. 2021). This is an important step towards 23 

subsequent large-scale soil analyses that overcomes the temporarily coverage of soils by 24 

vegetation. The selection of exposed soil pixels from the multitemporal time stack is still a 25 

challenge and there are different solutions tested by previous studies. Loiseau et al. (2019) 26 

empirically defined a threshold based on the Normalized Difference Vegetation Index (NDVI) 27 

to select exposed soil pixels. Demattè et al. (2018) used field soil samples spectrally measured 28 

in the laboratory to define a suitable NBR2 threshold for exposed soil compositing. The 29 

methodology was developed for an area-wide automated processing to retrieve soil spectral 30 

reflectances (Geospatial Soil Sensing System (GEOS3)). Diek et al. (2017) used the Bare Soil 31 

Index (BSI) to build a bare Soil Composite for top-soil characterization of the agricultural areas 32 

in Switzerland. Different indices (NDVI, NBR2, BSI and soil surface moisture index (S2WI)), 33 

thresholds and regulations for creating composites were tested and compared by Vaudour et 34 

al. (2021) for two test sites in France. In all these cases, exposed soils can be successfully 35 

separated from photosynthetic active vegetation. Spectral index thresholds are used due to its 36 

simplicity and applicability.  37 

A lot of emphasis has been put to cope with the spectral similarity of soils with non-38 

photosynthetic active vegetation (NPV; Daughtry, 2006) such as grasslands (dry condition) or 39 

deciduous forests (leaf-off condition). But also crop residuals can have an impact on the soil 40 

pixel purity. The clear spectral separation of NPV and exposed soils is hampered by the limited 41 

spectral resolution of multispectral images in the SWIR region (Asner and Heidebrecht 2001, 42 

Okin 2007, Demattè et al. 2018, Malec et al. 2015). However, studies from Demattè et al. 43 

(2018) and Rogge et al. (2018) have shown that this influence can be minimized. Demattè et 44 

al. (2018) have tested different NBR2 values in order to minimize the influence of NPV in the 45 

soils spectra that especially are traced back to stubbles and crop residuals. They concluded 46 

that the results can be improved, if longer time ranges are considered that allows for a stricter 47 
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threshold and thus, purer bare soil pixels in the soil mask. Rogge et al. (2018) developments 1 

have focused on a clearer separation from grasslands and leaf-off conditions of deciduous 2 

forests. The developed technique uses the change of agricultural fields from soil exposure to 3 

vegetation coverage to derive two spectral index-based thresholds. The definition of these 4 

thresholds is based on LC classes derived from CORINE Land Cover (CLC) data sets that do 5 

not change in the observation period. Thus, the spectral-temporal behavior of urban areas, 6 

deciduous trees and agricultural fields are analyzed to set the thresholds. These thresholds 7 

are applied to first, separate exposed soils from permanently photosynthetic active vegetation 8 

and second, to distinguish between exposed soils and permanently non-vegetated areas such 9 

as urban areas, water and mine sites. In the result, only areas with a changing cover and an 10 

index value lower than a previously defined threshold are selected as exposed soils (exposed 11 

soil mask) and averaged (mean) into a soil reflectance composite. The advantage of this 12 

technique is that no further ancillary data is necessary to separate exposed soils from other 13 

LC classes such as forests and urban areas (e.g. Diek et al. 2017). 14 

CLC are selected for the derivation of thresholds because it is European-wide available and 15 

thus, has the potential to derive thresholds suitable for continental processing. However, 16 

sampling of CLC pixels in Rogge et al. (2018) has been done manually, which is very time 17 

consuming and a pixel selection might not represent the spectral and spatial variability of the 18 

LC. For country-wide and continental mappings of exposed soils, automated sampling 19 

strategies are needed that first, can help to handle regional differences of LC dynamics (Ying 20 

et al. 2017) represented in multispectral satellite data and second, allows for repeated 21 

derivation of thresholds in order to analyze their stability across time. The influence of these 22 

parameters is not yet fully understood or analyzed. For operational processors such as SCMaP 23 

and GEOS3, it is important to know the effect of different threshold settings to optimize 24 

operational processors and find the best solution for the regions of interest. 25 

The overall goal of this study is to derive and validate masks that contain exposed soil pixels 26 

from multi-year Landsat data stacks for Germany from 1984 to 2019. For the exposed soil 27 

masks, it is important to clearly separate grasslands in dry conditions and deciduous trees as 28 

examples for NPV from exposed soils. The first focus is set on the impact of the sampling 29 

strategy to derive spectral index thresholds. We use SCMaP for the detection of exposed soils 30 

that require two spectral index thresholds and we also used the concept of threshold definition 31 

based on percentile rules. For the definition of the threshold, this paper presents a new and 32 

fully automated sampling strategy. In order to analyze the impact of the sampling scheme, we 33 

compared the results of the automated sampling with the manual sampling (Rogge et al. 2018) 34 

by comparing the spatial-temporal behavior of the LC classes. Further, selection criteria such 35 

as the number of samples and the repeatability of the results are analyzed. We also tested, if 36 

the threshold definition rule that is used in Rogge et al. (2018) is still applicable. Therefore, the 37 

impact of the new sampling data base on the resulting exposed soil masks is analyzed. We 38 

select the best approach for deriving seven exposed soil masks for entire Germany for different 39 

time periods ranging between 1984 and 2019. 40 

The second focus of the paper is to validate all exposed soil masks covering Germany for all 41 

time periods. For this objective, the selection of suitable and independent data sets that contain 42 

country-wide repeated statistics is essential. In Germany and regions with similar climate 43 

conditions, exposed soils are rare and occur predominantly in agricultural areas. The pixels 44 

that SCMaP is collecting for the exposed soil masks are characterized by a change from 45 

vegetated to non-vegetated condition. The majority of these pixels are occurring on agricultural 46 
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sites. All other permanently vegetated and permanently non-vegetated areas are neglected. 1 

Therefore, we used two independent data sets that contain information on the coverage of 2 

agricultural areas at different time steps. The Federal Statistical Office (Destatis) collects 3 

statistical data regarding agricultural areas and crop types in Germany on a regular basis 4 

(Destatis 2017). However, determining the methods used for the data collection is in the 5 

responsibility of each federal state and might result in regional differences. For that purpose 6 

and for future continental processing, we additionally used the agricultural classes of the CLC 7 

surveys for the validation of exposed soil masks. Both data sets have their pros and cons and 8 

validation results are shown. 9 

 10 

2. Study Area 11 

Germany stretches over an area of 357,095.89 km², of which 47% is used for agricultural 12 

purposes (Destatis 2020 a). These areas are split into permanent grassland (14%) and 13 

cropland (33%). In order to discuss the regional differences of the developments in this study, 14 

a brief introduction to the characteristics of the federal states of Germany is necessary. 15 

Intensively used arable land is the dominant land use in the federal states of Schleswig-16 

Holstein (41%), Lower Saxony (39%), North Rhine Westphalia (31%), Brandenburg (35%), 17 

Mecklenburg Western Pomerania (47%), Saxony (39%), Saxony-Anhalt (49%) and Thuringia 18 

(38%) (Destatis 2020 a, Destatis 2020 b). The federal states of Schleswig Holstein (22%), 19 

Lower Saxony (15%), Bremen (17%) and Saarland (16%) show a higher portion of permanent 20 

grasslands compared to the areas in the state. In particular, northern Germany is primarily 21 

covered by permanent grasslands. 22 

The investigation area of Germany is covered by three bio-geographical regions (EEA 2016). 23 

These bio-geographical regions were developed by the European Environmental Agency 24 

(EEA) and represent similar biodiversity and biological structures based on comparable 25 

vegetation and climatic conditions (EEA 2016). All of Europe consists of eleven regions, which 26 

are defined geographical reference units for characterizing the habitat types and species 27 

present in different countries (EEA 2020). Germany is mainly covered by the continental bio-28 

geographical region (Figure 1). Small portions in northwestern Germany are associated with 29 

the atlantic bio-geographical region, whereas the high mountainous areas in southern 30 

Germany are classified as an alpine bio-geographical region (EEA 2016). 31 

Multiple analyses on the influence of thresholding on the derivation of the exposed soil masks 32 

shown in this study are performed for five subportions of the study area (Figure 1). The test 33 

areas were selected to cover all three bio-geographical regions and land cover/land use types 34 

in Germany. 35 
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 1 

Figure 1: Coverage of the three bio-geographical regions in Germany and the location of the five test 2 
areas (BRE – Bremen, BRA – Brandenburg, HAL – Halle, MAI – Mainz, BAV – Bavaria). 3 

 4 

3. Methods and Data 5 

3.1 Using SCMaP for mapping soil exposure 6 

SCMaP is used to build exposed soil masks containing all pixels in a given time period showing 7 

at least once exposed soil. For this purpose, a modified vegetation index (PV) (Rogge et al. 8 

2018), based on the NDVI (Rouse et al. 1974), is used to separate the soils from other LC 9 

classes: PV = ((NIR - RED)/(NIR + RED)/((NIR - BLUE)/(NIR + BLUE)). Although authors have 10 

tested different indices for detecting bare soils such as BSI (e.g. Diek et al. 2017), combinations 11 

of NDVI + NBR2 (Demattè et al. 2018, Demattè et al. 2020), NBR2 and soil moisture indices 12 

(Vaudour et al. 2021) or NDVI and NDBI (Ying et al. 2017), we retain the PV index for this 13 

study in order to compare the results of the manual sampling with the automated sampling 14 

strategy. It is further important to remark that for the purpose of this study, the focus is not on 15 

selecting the purest soil pixels, but on creating an exposed soil mask that correspond to 16 

agricultural areas with changing covers and excludes all grasslands and deciduous forests.  17 
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To extract the exposed soil pixels, two composites containing the minimum (PVmin) and the 1 

maximum PV index (PVmax) per pixel are generated for a given time frame. Using the spatial 2 

and temporal behavior of the PV index values, two thresholds (Tmin and Tmax) are defined to 3 

distinguish the exposed soil areas from all other LC classes (Figure 2) to build the exposed 4 

soil mask. The determination of the thresholds is based on different LC classes (Figure 2a). 5 

Exposed soils (referred to as fields) and urban surfaces show the lowest PV values in the PVmin 6 

composite but also overlap with non-photosynthetic active vegetation (e.g., stubble on fields), 7 

dry grassland and deciduous forests. In the PVmax composite, soils are covered with vegetation, 8 

showing an overlap with forests and grasslands, and can be clearly separated from urban 9 

surfaces and areas showing permanent low vegetation indices, such as water. Therefore, the 10 

minimum threshold (Tmin) is to separate urban surfaces and exposed soils from grassland, 11 

deciduous forests, coniferous forests and water. The maximum threshold (Tmax) is set to 12 

distinguish the soils covered by vegetation from urban materials and water. By applying Tmin 13 

and Tmax thresholds to the PVmin and PVmax composites, two masks are generated. The 14 

intersection of the two masks results in the exposed soil mask. 15 

As Rogge et al. (2018) demonstrated in detail, the lower 0.005 percentile of the deciduous 16 

forests defining Tmin (Figure 2b) and the upper 0.995 percentile of the class urban are used to 17 

separate soils from all other LC classes (Figure 2c). These points are selected to avoid as 18 

many false positives as possible.  19 

 20 

Figure 2: PVmin and PVmax characteristics of a) six LC types for the study area, b) the behavior of exposed 21 
soils (referred to as the LC class fields) and the LC class deciduous trees to define Tmin and c) the 22 
behavior of fields and urban areas to define Tmax. 23 

 24 

3.2 Data preparation 25 

3.2.1 Landsat data base preparation 26 

The Landsat database used in this study is built from reprocessed Landsat-4 TM, Landsat 27 

ETM 5, Landsat-7 ETM+, and Landsat-8 OLI collection data sets provided by the USGS 28 

(Dwyer e al. 2018) for all path/row combinations covering Germany (Paths 192 to 197, Rows 29 

22 to 27) between 1984 and 2019. The images were downloaded from the Google Archive in 30 

2018 and 2019. All scenes available in the Level-1C processing state flagged with the highest 31 

correction level L1TP (calibration and orthorectification based on ground control points and 32 

digital elevation model data to correct for relief displacements (USGS 2020)) were 33 

downloaded. A total of 17,852 pre-processed Landsat images are used in this study (Table 1). 34 

SCMaP is applied to seven time periods from 1984 to 2019 each making use of five years of 35 

data. However, the first time period contains six years (1984-89). 36 
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Table 1: Overview of the number of pre-processed Landsat scenes available for all five-year time periods 1 
in the investigation area between 1984 and 2019. 2 

time period Landsat-4 TM Landsat-5 ETM Landsat-7 ETM+ Landsat-8 OLI total 

1984-89 
1990-94 
1995-99 
2000-04 
2005-09 
2010-14 
2015-19 

85 
143 

- 
- 
- 
- 
- 

1,772 
2,030 
1,986 
1,612 
1,946 

644 
- 

- 
- 

211 
1,421 
1,154 
1,547 
1,319 

- 
- 
- 
- 
- 

490 
1,982 

1,857 
2,173 
2,197 
3,033 
3,100 
2,191 
3,301 

1984-2019 228 9,990 5,652 2,472 17,852 

 3 

For the seven composite periods, all available scenes per time period of the different sensors 4 

are combined. The merging of Landsat-4 TM, -5 ETM and -7 ETM+ images is a well-5 

established method (Claverie et al. 2015, Kovalskyy and Roy 2015, Teillet et al. 2001). For the 6 

time period of 2015-19, scenes from Landsat-7 ETM+ and -8 OLI were combined, even though 7 

the equivalent bands for the calculation of the PV index of the two sensors contained slightly 8 

different wavelength ranges (Chastain et al. 2019). However, several studies have shown a 9 

minor to negligible influence resulting from merging the different wavelength ranges of 10 

Landsat-7 ETM+ and -8 OLI bands (Langford 2015, Xu and Guo 2014, Zhu et al. 2016, Roy et 11 

al. 2016, Holden and Woodcock 2016, Flood 2014). Based on these findings, the Landsat-7 12 

ETM+ and Landsat-8 OLI data were merged as input to the SCMaP processing chain and were 13 

not separated for the generation of the 2015-19 composite. 14 

For this study, Landsat collection data were used instead of the former Landsat pre-collection 15 

data, as the Landsat re-processed data sets provided a higher data quality (Li et al. 2019, 16 

Wulder et al. 2019) and showed fewer artifacts in direct comparison. 17 

Several pre-processing steps were applied to the Landsat path/row scenes. The FMask 18 

algorithm (Zhu and Woodcock 2012, Zhu et al. 2015) detected and removed clouds, cloud 19 

shadows and pixels that were covered by snow. An atmospheric correction was applied to all 20 

scenes using Atmospheric Topographic Correction (ATCOR) software for satellite imagery 21 

(Richter and Schläpfer 2013, Richter 2010, Richter et al. 2006). Saturated pixels in urban areas 22 

and water bodies were identified and eliminated. Furthermore, manual filtering was performed 23 

to identify large-scale data artifacts as detector striping effects. The manually flagged path/row 24 

scenes (approximately 330 scenes) were excluded from the database. In particular, large 25 

artifacts covering a whole scene can substantially affect the SCMaP output, as the processor 26 

occasionally includes affected pixels in the exposed soil mask. Finally, the database was 27 

reorganized in 1° by 1° geographical tiles. For this purpose, lists of all intersecting path/row 28 

scenes per tile were generated and used by SCMaP for achieving efficient data handling and 29 

processing benefits. 30 

 31 

3.2.2 Data preparation for automated sampling 32 

Threshold determination requires the identification of known regions with no LC change over 33 

the observed time frame. For this purpose, temporarily stable LC areas without transition to 34 

other LC classes, preferably for the total investigation period (since 1984), are needed. The 35 

CORINE Land Cover (CLC) data set (EEA 2007) is a European data set containing repeated 36 

LC surveys that is provided by the EEA. To identify the stable areas, all available CLC layers 37 
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and CLC change layers in vector format were downloaded (https://land.copernicus.eu/pan-1 

european/corine-land-cover) and underwent several pre-processing steps (Figure 3b). 2 

In a first step, the CLC classes that also contain land use components are reorganized and 3 

generalized to ensure that the resulting areas can be clearly assigned to a specific LC. The 4 

CLC data set consist of classes with different levels of detail. Figure 3a shows the summarized 5 

CLC subclasses for the subsequent threshold derivation (section 3.3). In addition, the CLC 6 

change layers containing the information regarding the transition of one LC class to another 7 

between two classification periods was subtracted from the data set. The reclassified and 8 

cleaned data sets were rasterized to the Landsat spatial resolution of 30 m. The removal of 9 

single pixels as well as a reduction of direct border pixels of individual class clusters was 10 

performed twice in order to exclude edge effects. To remove them, a three by three pixel 11 

moving window was used to analyze the relationships in a pixel neighborhood following von 12 

Neumann criteria (Toffoli and Margolus 1987). Finally, the resulting stable and cleaned data 13 

set contains LC pixels that did not change between 1990 and 2018 and are therefore called 14 

stable. 15 

The threshold determination is built on randomly selected, automatically extracted stable CLC 16 

pixels based on different regional settings (Figure 3c), and is described in section 3.3. 17 

 18 

Figure 3: Workflow for the preparation of the LC data for the required threshold determination for 19 
SCMaP: a) summarized CLC classes used to build the nine LC classes for the automated selection of 20 
stable LC pixels; b) deviation of randomly selected stable CLC pixels; and c) subsequent threshold 21 
determination using regional settings per processing area (described in section 3.3). 22 

 23 

3.2.3 Validation data sets 24 

For the validation of the exposed soil masks for Germany generated by SCMaP, a country-25 

wide data set is needed that can be assigned to exposed soils. Following the philosophy of 26 

SCMaP that is only extracting those exposed soil pixels that additionally show a change to 27 

vegetated condition in the observation time, a data set containing agricultural areas is needed. 28 
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For Germany, the statistical federal agency Destatis provides several surveys containing, for 1 

instance, the spatial size of agricultural areas in Germany per federal state and per county. 2 

These data sets are available for the years 1999, 2001, 2003, 2007, 2005, 2010 and 2016 3 

(Destatis 2020 a, Destatis 2020 b). The general agricultural structure survey and agricultural 4 

census data sets were downloaded from the regional statistical database provided online by 5 

Destatis (https://www.regionalstatistik.de/genesis/online/logon). The surveys contain the 6 

number of farms and combined of agricultural area of common crop types, including grasslands 7 

in Germany per federal state and county. Because SCMaP is applied to an optical multispectral 8 

remote sensing database itis not possible to detect soils underneath permanent vegetation, 9 

the proportion of grasslands was excluded from the Destatis agriculture statistical analysis. All 10 

spatial information was converted to the percent coverage of agricultural area per federal state 11 

and per county using the size of each state and county provided by Destatis (Destatis 2018). 12 

As the SCMaP time periods of 2000-04 and 2005-09 contain two Destatis data sets each, the 13 

two respective statistics were averaged. For the states Berlin, Bremen, Hamburg and 14 

Mecklenburg Western Pomerania (Figure 1), no statistical data were available for any given 15 

time step. For the federal state of Saxony, data for a subset of the administrative districts were 16 

available. 17 

The second validation data set used was the CLC inventories of 1990, 2000, 2006, 2012 and 18 

2018 provided by the EEA (EEA 2007). The data sets were downloaded as vector files for 19 

Europe (https://land.copernicus.eu/pan-european/corine-land-cover), clipped to the extent of 20 

Germany, re-projected, resampled to the spatial resolution of the soil mask (30 m by 30 m) 21 

and saved as raster files. For validating the spatial distribution of the exposed soil masks in 22 

Germany extracted by SCMaP, the agricultural classes were of interest. The LC classes non-23 

irrigated arable land (2.1.1) and permanently irrigated land (2.1.2) were extracted from the 24 

whole data set and summarized as the input for validation. For better comparability of the 25 

validation results to the Destatis survey, the percent coverage of the agricultural areas in the 26 

CLC data sets was also calculated per county and federal state. 27 

 28 

3.3 Automated sampling and threshold derivation 29 

Thresholds are necessary to separate exposed soils from all other LC classes. The objective 30 

is to derive thresholds that are applicable to the entire area of Germany. Therefore, a training 31 

data set that can be derived from the CLC mapping is needed, as described in 3.2.2. For this 32 

purpose, a new technique was developed that randomly selects CLC pixels that are stable 33 

over a long time period (section 3.2.2) and then applied to the Landsat database (section 34 

3.2.1). 35 

Originally, the threshold determination was based on the behavior of PVmin and PVmax of the 36 

manually selected LC pixels for the five test areas covering the spatial differences across 37 

Germany (see Rogge et al. 2018). The manual selection of LC pixels is a time-consuming step, 38 

which needs to be repeated for every processed region. Furthermore, the manual selection 39 

process can be influenced by the user. To overcome these limitations, an automated and 40 

random selection of LC pixels based on stable CLC pixels was developed. The stability of the 41 

new approach was tested via an in-depth comparison with the manual determination approach, 42 

and an analysis of the influence of the randomized selection procedure on the derivation of the 43 

thresholds was performed. 44 
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Due to the automated nature of the pixel selection procedure, several settings were tested to 1 

assess the performance of the new technique (Figure 3c). In this method, the area (tiles, 2 

countries, geographic regions, etc.), the LC classes (different amounts and composition of LC 3 

classes), the time steps, and the number of pixels per class can be selected individually, and 4 

enabling the assessment of the influence of these settings on the thresholds and the resulting 5 

exposed soil masks. To compare the random selection method with the manual selection 6 

method, the same regional settings were chosen. For this purpose, pixels were selected from 7 

the same five tiles covering Germany (Figure 1). A total of 5,000 stable CLC pixels per class 8 

and tile were selected using a random selection approach to avoid biased manual selection 9 

and a clustered distribution to ensure that all expressions of a land use class were recorded 10 

per region. 11 

To determine the influence of the random selection approach on the thresholds, the temporal 12 

behavior of the LC classes needed to be analyzed in the first step. Therefore, the randomly 13 

selected PVmin/max pixel values for the LC classes urban, deciduous trees and fields 14 

(presumably exposed soils), which are used to determine the thresholds, are shown in a 15 

histogram and compared to the PVmin/max values derived from the manual selection approach. 16 

Based on the PVmin/max pixel values, the thresholds were defined. The defined thresholds based 17 

on manually selected LC pixels are referred to as TMmin/max and were compared with the 18 

thresholds derived from the random selection approach (TAmin/max). In the first step, the 19 

applicability of the established percentiles for defining TAmin/max was investigated. Furthermore, 20 

TAmin/max were compared to the original sets of TMmin/max for all tiles (2000-04; period with the 21 

largest overlap of data between Landsat-5 TM and -7 ETM+ and a minimum SCL failure of 22 

Landsat-7 ETM+) and all time steps of the Bavarian tile to investigate the spatial and temporal 23 

stability of the random selection approach. To estimate the influence of the random selection 24 

approach, ten sets of stable pixels per LC class (5,000 per LC class) for all tiles (2000-04) were 25 

selected. The influence of the TAmin/max on the different sets of randomly selected pixels was 26 

investigated. Additionally, the absolute number of random stable pixels per class was altered. 27 

The influence of fewer (2,500) and more (10,000) stable pixels per class was investigated. 28 

Therefore, the TAmin/max of ten sets of different numbers of randomly stable pixels per class for 29 

the Bavarian test tile (2000-04) were derived and compared. 30 

 31 

3.4 Validation of the exposed soil masks in Germany 32 

The processing of the SCMaP exposed soil masks (section 3.1) was performed by applying 33 

the averaged TAmin/max of all five test areas (2000-04) (section 3.3) to all tiles in Germany for 34 

the seven time periods. The validation of the spatial and temporal distribution of the extracted 35 

exposed soil masks was performed using the two data sets described in section 3.2.3. The five 36 

prepared Destatis and CLC data sets were compared to the exposed soil masks for the time 37 

period containing the year in which each survey was conducted. To compare the validation 38 

data set and the mask, the coverage of the exposed soils extracted by SCMaP, expressed as 39 

percent, was calculated per federal state and county for each time step. To validate the spatial 40 

distribution of the exposed soil masks provided by SCMaP, a linear correlation analysis 41 

between the coverages of the exposed soil masks extracted by SCMaP and the agricultural 42 

areas provided by the Destatis statistics as well as the CLC data sets was explored for all 16 43 

German federal states and at the county level. The comparison was evaluated by calculating 44 

the correlation coefficients (R²) and root mean squared errors (RMSE) for each comparison to 45 
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estimate the potential of SCMaP to build exposed soil masks for Germany based on the new 1 

thresholding method. 2 

4. Results 3 

4.1 Index thresholding 4 

In Figure 4, the frequencies of the summarized PVmin/max pixel values for the LC classes urban, 5 

fields and deciduous trees from all tiles comparing the manual and random pixel selection 6 

approaches are visualized, as these classes are relevant for the derivation of thresholds. For 7 

PVmin, the distributions are similar, excluding the LC class urban. Here, a clear shift of the 8 

maximum and a higher variability of PVmin values are visible. However, the shift of the class 9 

does not influence the determination of the TAmin as the LC class urban is not used to determine 10 

TAmin. Comparing the PVmax, the LC class shows a shifted and diversified distribution of values. 11 

The distribution of the LC classes deciduous trees and fields are less extreme and narrower 12 

than that of the manually selected pixels. Excluding the LC class urban, the PVmin/max of the 13 

automated selected pixels shows a higher variance and standard deviation, whereas the 14 

median is similar. The shift and differing distribution of the PVmax of the LC class urban indicates 15 

an adaption of the point at which the TAmax has to be set to realize the separation between 16 

soils and other LC classes. 17 

 18 

Figure 4: Histogram of the PVmin/max frequencies summarized for all five test tiles comparing manual 19 
(dashed line) and random, automated (solid line) selected LC class pixels for the time step 2000-04. 20 

The behavior of the LC classes urban and deciduous trees is used for the determination of 21 

TAmin/max (Rogge et al. 2018). Comparing the scatterplots of the PVmin/max values of the manually 22 

(Figure 5a) and randomly (Figure 5b) selected LC pixels, a lower clustering tendency of the 23 

data is visible. Mainly, the randomly selected pixel cluster of the LC class urban is not as 24 

selective compared to the manually selected pixel cluster. As mentioned, originally, the 0.995 25 

percentile of the class urban was used to define the TMmax. Applying the 0.995 percentile to 26 

the automatically sampled pixels excludes almost half of the data cloud from fields and this, 27 

seems to be too high. Figure 5b shows that in the resulting exposed soil mask, a significant 28 

number of pixels is missing compared to the original exposed soil mask generated based on 29 

the manual sampling (Figure 5a). Therefore, an adjustment of the percentile to set the TAmax 30 

is required due to the less clustered distribution and the less selective behavior of the LC class 31 

urban (Figure 5b). For this purpose, a test has been designed by varying the TAmax from 0.995 32 

to 0.89 for the exposed soil mask building. 33 
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 1 

Figure 5: PVmin/max pixel values for different LC classes comparing a) manual and b) randomly selected 2 
LC pixels and the derivation of TMmax and TAmax using the 0.995 percentile of the manually and randomly 3 
selected pixels of the LC class urban. 4 

Figure 6 shows the result of this test for an area surrounding Aschersleben (within the test 5 

region HAL) in which different percentiles for the derivation of TAmax have been applied to the 6 

PVmin/max composites (time period 2000-04). Based on CLC, approximately 78% of the land 7 

surface is covered by agricultural fields in the selected region. When using the TMmax value, 8 

71% of the area is included in the exposed soil mask. Setting the TAmax at 0.995 results in a 9 

coverage of 36.6% in the same area. Using different TAmax values based on varying percentiles, 10 

the reduction in the percentiles used for setting the TAmax value resulted in an increase in the 11 

soil exposure mask saturating at the 0.94 percentile (TAmax = 1.723) (Figure 7Figure 7). As 12 

Figure 6 shows, a percentile of 0.90 for the LC class urban is used to define TAmax, and the 13 

resulting soil exposure is 71.3%, which is comparable to the soil exposure (71%) defined by 14 

TMmax.  15 
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 1 

Figure 6: Influence of different percentiles on TAmax and the percentage coverage of the exposed soil 2 
mask in comparison to TMmax shown for the time period 2000-04 for an area near Aschersleben. 3 

 4 

Figure 7: Varying soil exposure [%] determined for different percentiles to set the TAmax for an area 5 
around Aschersleben. 6 

Following the selection of the percentile to be used in the definition of TAmin/max, Table 2 displays 7 

all TAmin/max values and comparisons them to the TMmin/max used across the different test areas 8 

for the time period of 2000-04 and for all time steps in the Bavarian tile. The TAmin/max values 9 

for all areas are similar to the TMmin/max values. Additionally, the averaged thresholds across 10 
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the test areas fall within a similar range. The standard deviations across the test areas of 1 

TAmin/max in comparison to TMmin/max are slightly lower. For the different time steps of the 2 

Bavarian tile, the TAmin/max values are also similar to the TMmin/max values, reporting low standard 3 

deviations (STDs). 4 

Table 2: TAmin/max in comparison to TMmin/max for all investigation areas (2000-04) and across time (only 5 
for Bavaria). 6 

tile (time step) TMmin TMmax TAmin TAmax 

BRE (2000-04) 
MAI (2000-04) 
HAL (2000-04) 
BRA (2000-04) 
BAV (2000-04) 

0.896 
0.803 
0.836 
0.861 
0.758 

1.831 
1.675 
1.762 
1.467 
1.749 

0.866 
0.823 
0.844 
0.827 
0.744 

1.795 
1.635 
1.666 
1.701 
1.685 

average (areas – 2000-04) 0.831 1.697 0.821 1.696 

STD (areas – 2000-04) 0.053 0.140 0.046 0.060 

     
BAV (1984-89) 
BAV (1990-94) 
BAV (1995-99) 
BAV (2005-09) 
BAV (2010-14) 
BAV (2015-19) 

0.758 
0.722 
0.744 
0.741 
0.794 
0.818 

1.738 
1.757 
1.741 
1.795 
1.763 
1.741 

0.762 
0.748 
0.767 
0.779 
0.756 
0.815 

1.733 
1.724 
1.724 
1.713 
1.702 
1.709 

average (BAV – time) 0.762 1.755 0.767 1.713 

STD (BAV – time) 0.033 0.020 0.024 0.016 

 7 

Additionally, the reliability of the automated random selection of the stable LC pixels was 8 

investigated. The influence of the spatial distribution of the 5,000 randomly selected pixels was 9 

found to be minor though a comparison of ten sets of derived thresholds based on different 10 

sets of random stable pixels across the five test areas (Figures 8a and 8b). The ten sets of 11 

thresholds of each test area show few differences, which are evidenced by low standard 12 

deviations (0.002 to 0.005). 13 

In addition to the spatial distribution of the random stable pixels, the influence of the total 14 

number of selected pixels on the determination of the thresholds was analyzed. Hence, ten 15 

sets of determined thresholds based on 5,000 randomly selected stable pixels per LC class 16 

were investigated and further compared to ten sets of 2,500 and 10,000 randomly selected 17 

stable pixels in the test area of Bavaria (Figures 8c and 8d). Overall, low standard deviations 18 

are observed (0.02 to 0.003), and the determined TAmax varies slightly (Figure 8c). 19 

Due to the temporal and spatial stability of the defined thresholds and the statistically significant 20 

small influence of the location and number of random stable pixels, the presented derivation 21 

of the thresholds was found to be suitable for further processing steps. 22 
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 1 

Figure 8: TAmin/max variability across ten sets of randomly selected stable pixels for all test areas (2000-2 
04) (a, b) and based on a different number of randomly selected stable pixels per LC class, extracted 3 
for the Bavarian tile (2000-04) (c, d). 4 

 5 

4.2 Application of the new thresholds 6 

The five sets of thresholds derived for the five test areas are averaged to one set of global 7 

thresholds, resulting in a TAmin of 0.831 and a TAmax of 1.697. Both thresholds were applied to 8 

all tiles in Germany to produce the exposed soil masks for all seven time periods. 9 

These soil exposure masks contain pixels that show at least once exposed soil in the given 10 

time period. In addition, SCMaP provides two further binary masks per period containing the 11 

areas showing permanently low PV indices, which comprise urban areas, infrastructure, bare 12 

rocks and water bodies. In addition, a mask is generated in areas that show permanently high 13 

PV indices representing areas with permanent vegetation (e.g., grassland or coniferous trees). 14 

The combination of the three masks generates a generic LC classification of the investigation 15 

area (Figure 9). 16 
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 1 

Figure 9: Generic LC classification for the study area showing pixels with soil exposure (yellow), 2 
permanent vegetation (green) and permanent no vegetation (gray) derived from 2000-04. The five test 3 
areas are marked. 4 

Since the soil mask is available for several time steps between 1984 and 2019, changes in the 5 

spatial soil cover can be detected. Figure 10 (upper row) shows the temporal development of 6 

an area in western Munich (within the test region BAV). Here, areas with permanently low 7 

vegetation indices, which include the expansion of the city of Munich and the expansion of 8 

infrastructure, are increasing. Due to the expansion of Munich, a decrease in the area with 9 

exposed soils in the shown region is observed. Most agricultural areas have been transformed 10 

into settlement areas. The southern part is dominated by forests, where, in the early 1990s, a 11 

thunderstorm event deforested large portions, mainly in the southwest of Munich. The 12 

deforestation shows recovery in the subsequent time periods up until 2014. Here, the exposed 13 

soil areas gradually fill with permanent vegetation. 14 

The bottom row of Figure 10 shows the development of two mining areas (Etzweiler and 15 

Garzweiler) near the city of Juelich in northeastern Germany. A spatial shift in the mining areas 16 

to different local regions can be seen. In addition to the spatial shift, a spatial expansion of the 17 

mining sites had resulted in a decreasing agricultural area around the sites. 18 
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 1 

Figure 10: Detail of the generic land use classification showing the temporal development between 1984 2 
and 2014 of a mainly urbanized area in the west of the city of Munich within BAV (upper row) and the 3 
temporal development of two mining areas (Etzweiler and Garzweiler) near Juelich (bottom row). 4 

 5 

4.3 Validation of the exposed soil masks determined by SCMaP 6 

The spatial and temporal distribution of exposed soil masks across Germany at several time 7 

steps is first validated according to Destatis statistics. The correlation coefficients (R²) of the 8 

comparison for all 16 German federal states are shown in Table 3. Overall, high R² for all time 9 

steps and states can be derived. The lowest R² values are detected in the Lower Saxony state 10 

(0.59 to 0.78). Here, the agricultural area covers 37.95% of the total state. The highest R² 11 

values are reported in the states of Baden-Wuerttemberg (0.85 to 0.97), North Rhine-12 

Westphalia (0.90 to 0.95) and Rhineland-Palatinate (0.90 to 0.94). For the states with a high 13 

amount of used agricultural area (Brandenburg, Saxony, Schleswig Holstein and Thuringia), 14 

the correlation coefficients are higher than 0.82 (Schleswig Holstein – SCMaP: 1995-99 / 15 

Destatis: 1999) per time step. As described above, the Destatis survey does not include all 16 

federal states as it does for the city states; no data are available for Mecklenburg-Western 17 

Pomerania and parts of Saxony. 18 

 19 

 20 

 21 

 22 

 23 

 24 
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Table 3: Correlation coefficients comparing the exposed soil masks determined by SCMaP to the 1 
agricultural areas provided by the statistical surveys by Destatis for all 16 federal states of Germany. 2 
However, some states were not included in the statistical survey due to missing data. 3 

federal state agricultural 
area [%] 

1995-99 
/ 1999 

2000-04 / 
2001/03 

2005-09 / 
20005/07 

2010-14 
/ 2010 

2015-19 
/ 2019 

Baden-Wuerttemberg 
Bavaria 
Berlin 
Brandenburg 
Bremen 
Hamburg 
Hesse 
Mecklenburg-Western Pomerania 
Lower Saxony 
North Rhine-Westphalia 
Rhineland-Palatinate 
Saarland 
Saxony 
Saxony-Anhalt 
Schleswig-Holstein 
Thuringia 

22.69 
30.70 

8.58 
39.02 

8.62 
6.61 

22.78 
62.43 
37.95 
27.39 
27.27 
14.30 
49.23 
60.26 
36.39 
48.75 

0.85 
0.93 

- 
0.88 

- 
- 

0.82 
- 

0.68 
0.90 
0.93 
0.80 
0.81 
0.84 
0.82 
0.93 

0.97 
0.94 

- 
0.95 

- 
- 

0.92 
- 

0.78 
0.95 
0.94 
0.91 

- 
0.88 
0.86 
0.93 

0.95 
0.92 

- 
0.92 

- 
- 

0.92 
- 

0.66 
0.94 
0.93 
0.86 

- 
0.92 
0.90 
0.93 

0.94 
0.88 

- 
0.85 

- 
- 

0.87 
- 

0.70 
0.93 
0.90 
0.82 

- 
0.91 
0.90 
0.91 

0.96 
0.93 

- 
0.95 

- 
- 

0.95 
0.94 
0.59 
0.92 
0.91 
0.94 

- 
0.94 
0.91 
0.94 

 4 

Additionally, the comparison between the exposed soil masks determined by SCMaP and the 5 

agricultural areas provided by CLC data sets show high R² values for each time step (Table 6 

4). Comparing all federal states, the lowest correlation coefficients are reported for the state 7 

of Lower Saxony (0.61 to 0.86), as described for the validation with the Destatis data, whereas 8 

the highest correlation coefficients can be found for Baden-Wuerttemberg (0.91 to 0.97), 9 

Mecklenburg-Western Pomerania (0.91 to 0.97) and Rhineland-Palatinate (0.90 to 0.95). In 10 

contrast to the correlation of the exposed soil masks provided by SCMaP and the Destatis 11 

data, the state North Rhine Westphalia shows lower R² (0.84 to 0.92) comparing SCMaP and 12 

CLC. Overall, the states show similar R² when comparing to the correlation of the SCMaP and 13 

Destatis data. For the states with a large amount of agricultural area (i.e., the states of 14 

Brandenburg, Mecklenburg-Western Pomerania, Saxony, Schleswig Holstein and Thuringia), 15 

the correlation coefficients are higher than 0.80 (Schleswig Holstein – SCMaP: 1995-99 / 16 

Destatis: 1990) for all compared time steps. The high R² indicate high potential for the 17 

determination of exposed soil masks over time in agricultural areas. 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 
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Table 4: R² based on a comparison between the exposed soil masks derived by SCMaP and agricultural 1 
areas of the CLC data in comparison to the total amount of agricultural areas per state. 2 

federal state agricultural 
area [%] 

1990-94 
/ 1990 

2000-04 
/ 2000 

2005-09 
/ 2006 

2010-14 
/ 2012 

2015-19 
/ 2018 

Baden-Wuerttemberg 
Bavaria 
Berlin 
Brandenburg 
Bremen 
Hamburg 
Hesse 
Mecklenburg-Western Pomerania 
Lower Saxony 
North Rhine-Westphalia 
Rhineland-Palatinate 
Saarland 
Saxony 
Saxony-Anhalt 
Schleswig-Holstein 
Thuringia 

22.69 
30.70 

8.58 
39.02 

8.62 
6.61 

22.78 
62.43 
37.95 
27.39 
27.27 
14.30 
49.23 
60.26 
36.39 
48.75 

0.91 
0.85 

- 
0.80 

- 
- 

0.82 
0.91 
0.68 
0.84 
0.90 
0.85 
0.90 
0.86 
0.90 
0.91 

0.92 
0.90 

- 
0.92 

- 
- 

0.95 
0.96 
0.86 
0.92 
0.95 
0.88 
0.95 
0.95 
0.65 
0.96 

0.91 
0.86 

- 
0.94 

- 
- 

0.93 
0.94 
0.79 
0.91 
0.92 
0.90 
0.96 
0.96 
0.94 
0.96 

0.94 
0.90 

- 
0.91 

- 
- 

0.92 
0.92 
0.75 
0.91 
0.94 
0.95 
0.93 
0.97 
0.92 
0.96 

0.97 
0.84 

- 
0.97 

- 
- 

0.97 
0.99 
0.61 
0.90 
0.93 
0.99 
0.84 
0.95 
0.80 
0.94 

 3 

In addition to the correlation per federal state, a comparison at the county level was conducted. 4 

High R² values and low RMSE values (Figure 11) demonstrate that SCMaP captures the 5 

exposed soil masks in Germany well. For all time periods, high correlations between the 6 

percentage proportion of SCMaP exposed soil masks and the agricultural areas provided by 7 

statistical surveys of Destatis are identified. The highest correlation can be found for the 8 

SCMaP time period 2000-04 (R² = 0.88) compared to the respective averaged Destatis data 9 

sets of 2001/03, whereas the SCMaP time period 1995-99 shows the lowest correlation (R² = 10 

0.82) compared to the corresponding Destatis data set from 1999. Although the general 11 

correlation is high, there is a minor systematic underestimation of the higher soil exposure 12 

values in all analyzed time periods (Figure 11). 13 
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 1 

Figure 11: Regression between exposed soil masks identified by SCMaP and the agricultural areas 2 
based on Destatis at the county level for Germany. 3 

Moreover, a linear correlation analysis comparing the percentage of exposed soil masks per 4 

county derived by SCMaP to the percentage of agricultural areas provided by the CLC data 5 

sets was performed. The results show a strong correlation between the tested data sets (Figure 6 

12). The highest correlation is reported for the SCMaP periods of 2000-04 and 2005-09 to the 7 

CLC data sets of 2000 (R² = 0.89) and 2006 (R² = 0.88), respectively. The weakest correlation 8 

can be found for the SCMaP time period of 1990-94 when compared with the CLC data set 9 

from 1990 (R² = 0.80). Overall, low RMSE values are observed. 10 
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 1 

Figure 12: Regression between exposed soil masks extracted by SCMaP and the agricultural used 2 
areas based on CLC data for all counties in Germany. 3 

Figure 13 shows the variability between the differences in the percentages of exposed soil 4 

masks extracted by SCMaP and the portion of agricultural areas provided by the validation 5 

data sets for all counties and compared time steps. Comparing the exposed soil masks 6 

extracted by SCMaP to the agricultural areas based on the Destatis surveys, a deviation to the 7 

mean, ranging on average between -1.46% (SCMaP: 2005-09 / Destatis: 2007) and +1.43% 8 

(SCMaP: 2000-04 / Destatis: 2001/03), is detected. However, the range of 50% of the counties 9 

varies between ±5.04% (SCMaP: 2005-09 / Destatis: 2007) and ±7.38% (SCMaP: 1995-99 / 10 

Destatis: 1999). Excluding the outliers, there is a small absolute difference between the 11 

percentage of agricultural areas documented by the Destatis surveys and the exposed soil 12 

masks derived by SCMaP. The differences between the percentages of exposed soil masks 13 

extracted by SCMaP and the CLC-derived agricultural areas show a slightly stronger 14 

underestimation, ranging between -5.61% (SCMaP: 2005 / CLC: 2006) and -2.90% (SCMaP: 15 

2000-04 / CLC: 2000). Excluding the outliers, the range of 50% of the counties varies between 16 

±5.63% (SCMaP: 2005-09 / CLC: 2006) and ±3.42% (2000-04 / CLC: 2000). 17 
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 1 

Figure 13: Variability of the differences in exposed soil masks extracted by SCMaP compared to the 2 
validation data sets of Destatis and CLC based on all counties in Germany for all time periods. 3 

Overall, the comparison between both validation data sets indicates a high consistency across 4 

all time periods. In particular, the time periods of 2000-04 and 2005-09 show the highest 5 

correlation coefficients and lowest RMS errors for both validation data sets compared at the 6 

state (Tables 3 and 4) and county level (Figures 11 and 12). 7 

 8 

5. Discussion 9 

5.1 Sampling and threshold definition 10 

Section 4.1 shows the results of the different settings used to derive the TAmin/max thresholds. 11 

The random selection of stable CLC pixels demonstrates an overall minor influence on the 12 

frequency distribution of LC classes, such as deciduous trees and fields, comparing the 13 

PVmin/max behaviors in relation to the manually selected LC pixels. The main differences were 14 

found for the class urban (Figures 4 and 5). The manual selection of the land cover class urban 15 

was concentrated in the downtown areas of metropolitan regions (e.g., central Munich in the 16 

Bavarian test tile), the random selection of stable CLC pixels resulted in an even distribution 17 

across the complete tile. This better captures the variability associated with urban structures 18 

(e.g., densely to less densely populated areas, industry, infrastructure, etc.) and can also 19 

include vegetated pixels from parks or trees and lawns along streets. The less clustered 20 

selection influences the frequency distribution of the PV indices for the land cover class urban 21 

and thus, more pixels have higher PVmax values (Figure 4). 22 

To account for the differences in the distribution of the LC classes in the PVmax composite, an 23 

adaptation of the percentile used for the determination of the TAmax was necessary. Figure 6 24 

and 7 show the influence of the modified percentile rule depending on the spatial-temporal 25 

behavior of the analyzed LC. However, we observed a gradual decrease (TAmax = 0.89 – 0.98) 26 

followed by a rapid decrease (TAmax > 0.99) of the resulting soil exposure. A decrease of the 27 

percentile (0.995 to 0.900) for the definition of the TAmax enabled the generation of an exposed 28 

soil mask (Figure 6) comparable to the coverage of agricultural area provided by the reference 29 
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data set and comparable to the soil exposure mask based on the manual derived TMmax for an 1 

example area in the Halle test tile.  2 

The adapted percentiles were the basis for further analyses. In this way, thresholds have been 3 

derived separately for the five different regions across Germany (Figure 8). In particular, the 4 

TAmax of Bremen is higher than the four other TAmax values (Figure 8a). Although the TAmin/max 5 

values of the individual test sites are comparable to the averaged TMmin/max of all five areas, 6 

the derivation of exposed soil masks could be affected, especially for the region near Bremen. 7 

A varying TAmin/max value may impact the classification of exposed soil masks, so it might be 8 

more feasible to process all of Germany not only using one set of TAmin/max. A scheme 9 

summarizing comparable areas should be established. This could include replacing political 10 

borders with larger geographically homogenous units. For this purpose, the biogeographical 11 

regions (section 2 and Figure 1) (EEA 2016) could provide a valuable baseline for the definition 12 

of the thresholds. Germany is covered mainly by the continental biogeographical region (the 13 

test areas Bavaria, Mainz, Brandenburg and Halle), whereas the areas near Bremen, as the 14 

northwestern part of Germany, are covered by the atlantic bio-geographical region. Applying 15 

SCMaP with TAmin/max adapted to the different regions could reduce the local effects on the 16 

thresholds and improve the extraction of exposed soil masks. 17 

Finally, we tested the influence of the number of pixels per class selected for the threshold 18 

determination and found almost no influence. This suggests that regardless of the number of 19 

selected pixels, the thresholds are very stable when they are equally distributed over the area 20 

of interest. 21 

In summary, the new automated sampling is a very flexible and robust method to provide the 22 

data base for the threshold derivation, whereas the threshold definition based on percentile 23 

seemed not as the best method although its simplicity (Lobell et al. 2007, Zhao et al. 2012, 24 

Avisse et al. 2017, Thonfeld et al. 2020, Zhuo et al. 2019). In this study, an adaption of the 25 

percentile rule was necessary for the changed sample data set and it is very likely that the 26 

percentile rule need to be changed again if a different area is explored. Therefore, in the future, 27 

alternative methods to extract exposed soil pixels should be tested for instance regression and 28 

classification methods such as logistic regression (Kleinbaum et al. 2002), Random Forests 29 

(Breiman 2001) or maximum likelihood classification (Richards 1993) or any other machine 30 

learning approaches. For this study, it was important to use the same methodology as for the 31 

manual sampling to obtain the highest possible comparability to the method of Rogge et al. 32 

(2018).  33 

 34 

5.2 Validation of the exposed soil masks across Germany 35 

We have chosen TAmin of 0.831 and TAmax of 1.697 as the best results and used them for the 36 

generation of exposed soil masks for several time periods. We validated the extraction of 37 

exposed soil masks per selected time periods at the federal state and county level by using 38 

the Destatis and CLC data sets (see section 4.3). The comparison of the soil exposure with 39 

both validation datasets showed overall high correlation results (R² > 0.80 on county level for) 40 

for all time periods (Tables 3 and 4, Figures 11 and 12).  41 

In particular the five-year periods of 2000-04 (R² = 0.88 for Destatis; R² = 0.89 for CLC) and 42 

2005-09 (R² = 0.87 for Destatis; R² = 0.88 for CLC) show the overall highest R², and the periods 43 

of 1990-94 (R² = 0.80 for for CLC) and 1995-99 (R² = 0.82 for Destatis) show the weakest R² 44 
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comparing the exposed soil masks to the agricultural areas of the validation datasets on county 1 

level. These results are similar at the state levels based on both validation datasets. The high 2 

R² in the periods of 2000-04 and 2005-09 might correlate to the high availability of input data. 3 

In 2000-04 and 2005-09; even though the scan line correction failure of Landsat-7 ETM+ 4 

appeared in 2002 (Markham et al. 2004), over 3,000 pre-processed input images were 5 

available (2000-04: 1946 Landsat-5 TM, 1154 Landsat-7 ETM+; 2005-04: 1946 Landsat-5 TM, 6 

1154 Landsat-7 ETM+). In comparison to the 1990-94 and 1995-99 periods with lower R² 7 

values, less than 3,000 images per composite were available (1990-94: 1857, 1995-99: 2681 8 

pre-processed scenes). This availability of scenes resulted in a large number of cloudless 9 

scenes per pixel (Table 5). On average, 56.0 ± 18.6 (2000-04) and 59.0 ± 17.6 (2005-09) 10 

cloudless scenes per pixel were included in the database for the extraction of exposed soil 11 

masks for Germany. In contrast, there were 44.3 ± 15.0 and 41.7 ± 14.2 cloudless scenes that 12 

built the database for the time periods of 1990-94 and 1995-99, respectively. For the time 13 

periods showing weaker R² values, fewer cloudless input scenes are available per pixel, which 14 

could indicate a higher deviation from the validation data. Here, too few data are available to 15 

capture the exposed soil masks with high accuracy compared to the following periods. 16 

Table 5: Average cloudless scenes per pixel for Germany and R² at the county level per time period. 17 

time 
period 

average cloudless 
scenes per pixel 

(Germany) 

STD 
(Germany) 

maximum cloudless 
scenes per pixel 

(Germany) 

R² 
(SCMaP – 
Destatis) 

R² 
(SCMaP 
– CLC) 

1984-89 
1990-94 
1995-99 
2000-04 
2005-09 
2010-14 
2015-19 

35.0 
44.3 
41.7 
56.0 
59.0 
41.6 
49.7 

12.1 
15.0 
14.2 
18.6 
17.6 
12.3 
19.4 

112 
112 
134 
102 
140 
104 
146 

- 
- 

0.82 
0.88 
0.87 
0.86 
0.87 

- 
0.80 

- 
0.89 
0.88 
0.86 
0.85 

 18 

The correlation analysis showed an overall high R² for Germany on the state and county levels 19 

(Tables 3 and 4, Figure 11Figures 11 and 12). The federal state of Lower Saxony shows a lower 20 

R² for all time periods for both scenarios compared. An in-depth review of the input data has 21 

shown no data artifacts or comparable data quality limitations for the federal state or the entire 22 

region in northwestern Germany. A possible source of the low accuracy of the soil mask in 23 

Lower Saxony could be the lower number of cloudless scenes per pixel in comparison to all of 24 

Germany. The number of maximum cloudless scenes per pixel for the Lower Saxony state is 25 

lower than the cloudless scenes available for all of Germany (section 5.1). In Germany, a 26 

maximum number of 102 (2000-04) to 140 (2005-09) are available for the extraction of exposed 27 

soil masks. For the state of Lower Saxony, a maximum number of 70 (1984-89) to 110 (1995-28 

99) cloudless scenes are available. This difference could have been driving the deviation in 29 

accuracy, as a certain number of scenes should be available for the extraction of exposed 30 

soils. 31 

Furthermore, as described in section 4.2, all of Germany was processed using the averaged 32 

TAmin/max of the five test tiles. However, as discussed above, the TAmin/max value of Bremen, 33 

situated in the center of Lower Saxony, varies more relative to the other four sets of TAs. 34 

Considering that the different thresholds have an influence on the extraction of the soil pixels, 35 

the use of the bio-geographical region as the definition of thresholds in Germany could result 36 

in better adjustment to the natural conditions present in the northwestern parts of the country. 37 
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However, it should be mentioned that a possible source of inaccuracy could have resulted from 1 

the comparison of a multiyear composite with a validation data set collected in one year. In all 2 

five-year composites, areas that show at least one exposed soil in the observed time period 3 

are included in the exposed soil mask. The selection of the longer time period was performed 4 

based on previous experience as it guaranteed the capture of all agricultural exposed soils. As 5 

the five-year periods are compared to one reference data set, changes in land use could have 6 

had an influence on the accuracy analysis. For instance, if a transition of permanent grassland 7 

to exposed soils occurred early within an observed period, the possibility of obtaining a 8 

sufficient number of available scenes showing exposed soils is high. SCMaP would then 9 

classify these areas correctly as exposed soils. For validation purposes, a comparison to a 10 

data set recorded early in the five-year period would then result in an erroneous identification 11 

of the area by SCMaP. As the five-year composites contain two LC types; grassland and 12 

exposed soils; however, the classification by SCMaP for exposed soils is correct. A reduction 13 

in the time for compositing could enable a decrease in the occurrence of such cases. 14 

For validation purpose of the SCMaP exposed soil masks two different data sets were chosen. 15 

The Federal Statistical Office (Destatis) collects statistical data regarding agricultural areas in 16 

Germany on a regular basis since 1999. However, determining the methods used for the data 17 

collection is in the responsibility of each federal state and might result in regional differences. 18 

Additionally, the lowest available spatial resolution is on county level. For that purpose and for 19 

future continental processing, we additionally used the agricultural classes of the CLC surveys 20 

for the validation of exposed soil masks as the data sets are available since 1990. Although 21 

the CLC inventories are derived from a pixel-based classification, the data also shows a lower 22 

spatial resolution than the SCMaP exposed soil masks. This demonstrates that both data sets 23 

have their advantages and disadvantages for the validation of the exposed soil masks, since 24 

both comparisons showed systematic differences with respect to lower correlations of the 25 

earlier periods and regarding to lower R² for the federal state Lower Saxony. However, since 26 

both validation results are similar and in the same order of magnitude, we believe that they 27 

represent realistic accuracy values. Both datasets seem to be suitable for large scale accuracy 28 

analyses, whereas CLC has the potential for a European-wide validation of the detection of 29 

exposed soils.   30 

 31 

6. Conclusion and Outlook 32 

In this study, we analyzed the influence of the new automated sampling strategy on 33 

thresholding and the derivation of exposed soil masks. Further, we provided a Germany-wide 34 

validation for several time periods in order to show the accuracy of the resulting exposed soil 35 

masks across time. An automatized random sampling of stable CLC pixels required for the 36 

determination of two thresholds (TAmin/max) to separate exposed soils from all other LC classes 37 

was developed and implemented in the SCMaP processing chain. The automatization of the 38 

thresholding process is necessary for operational processors to ensure the fast and correct 39 

adaption of the thresholds to regions of interest and to provide regionalize thresholds for the 40 

processing of large areas, such as countries and continents. Our results demonstrated the 41 

large dependencies that the vegetation index approach has on environmental conditions. 42 

Thus, we suggest regionalizing the parameter setting by using e.g., bio-geographical regions 43 

instead of counties or countries. Furthermore, the rules to derive thresholds need to be 44 

evaluated depending on the sample database. In this study, we used CLC information; 45 
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however, we would not suggest applying a fixed percentile rule since it needs to be adapted 1 

according to the sampling scheme. A more robust method that accounts for the minimal 2 

overlap of spectral similar LC classes would be more suitable.  Additionally, the nature of fixed 3 

thresholds for large regions are not suggested. A flexible method to derive region-specific 4 

thresholds or the use of dynamic thresholds using machine learning techniques or artificial 5 

intelligence approaches could be a valuable topic for future developments. The implementation 6 

of such approaches in operational processors is important for future studies. For this purpose, 7 

the automated and robust sampling such as developed in this study is of high importance. 8 

The validation using two independent reference data sets again shows the need to account for 9 

the regional differentiation of the thresholds. For both data sets (CLC and Destatis) we selected 10 

agricultural classes that can be assigned to exposed soils. Areas in northwestern Germany 11 

have shown a systematic underestimation of exposed soils compared to both reference data. 12 

Additionally, there is a difference in R² based on the number of available input scenes per time 13 

step. We could show that the more scenes per time period are available, the higher the 14 

percentage of cloudless scenes and thus, the higher the R². The implementation of Sentinel-2 15 

data could potentially shorten the recent composite time length of five years. This is also in line 16 

with the findings of Demattè et al. (2018). Sentinel-2 delivers data from two twin satellites with 17 

a combined revisit time of less than five days (Lacroix et al. 2018, Ienco et al. 2019). The use 18 

of Sentinel-2 data could therefore result in the increased accuracy in the building of exposed 19 

soil masks and the shortening of the compositing time period. Additionally, the current 20 

developed “Harmonized Landsat and Sentinel-2 surface reflectance data set” (Claverie et al. 21 

2018) should be considered. Since both data sets have been pre-processed following the same 22 

protocols and methods, this data set could be a highly valuable input regarding the large 23 

number of available scenes and needs to be analyzed in the future. This could enable 24 

monitoring of soil properties more frequently than every five years. 25 

In summary, the automated and random sampling of LC pixels for the determination of 26 

thresholds is a stable and reliable workflow that enables the identification of the spatial and 27 

temporal distribution of exposed soils with high accuracy. Thus, it can be a valuable data 28 

source for statistical surveys of agricultural areas in Germany. SCMaP is additionally used to 29 

generate information about how frequently soils are exposed and how often these areas shift 30 

from exposure to vegetation. To contribute to soil erosion studies that need information about 31 

where and when soils are bare, accurate exposed soil masks in suitable time period can be of 32 

great help for these studies (Pimentel and Burgess 2013, Labriere et al. 2015, Ayalew et al. 33 

2020). The exposed soil masks derived from SCMaP can additionally offer a new remote 34 

sensing database for retrospective erosion and LC analysis. 35 
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