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Exact solution of infection dynamics with gamma distribution of generation intervals
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Infectious disease outbreaks are expected to grow exponentially in time but their initial dynamics is less
known. Here I derive analytical expressions for the infectious disease dynamics with a gamma distribution of
generation intervals. Excluding the exponential distribution, the outbreak grows as a power law at short times.
At long times, the dynamics is exponential with a growth rate determined by the basic reproductive number and
the parameters of the generation interval distribution. These analytical expressions can be deployed to do better
estimates of infectious disease parameters.
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I. INTRODUCTION

Infectious diseases can spread to a significant fraction of
the population, causing an epidemic. The chance for that to
happen is determined by the infectious dynamics within each
individual and the disease transmission between individuals.
The within-individual dynamics is reflected on the generation
interval, the time interval between a primary case being in-
fected to the disease transmission to a secondary case. The
transmission between individuals is reflected in the repro-
ductive number, the average number of secondary infectious
caused by a primary case.

The networks underlying proximity and sexual transmis-
sion of infectious diseases have wide connectivity distribu-
tions and exhibit the small-world property [1,2]. In these
networks, the basic reproductive number is proportional to the
ratio between the second and first moments of the connectivity
distribution [3–6], which can be very large. Less attention has
been given to the shape of the generation interval distribution.

II. SIR MODEL

Before entering the main calculations, let us have a look
at standard models of infectious disease dynamics. In the
susceptible, infected, and removed (SIR) model, susceptible
individuals get infected at rate β and infected individuals get
removed at a rate γ . The basic reproductive number, the aver-
age number of new infections generated by a single infected
individual, is given by

RSIR = β

γ
. (1)

The dynamics of the infected individuals at the population
level is given by

İ = β
I

N
S − γ I, (2)
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where S and I are the number of susceptible and infected
individuals and N is the population size. For short times,
S ≈ N and I � N . In this limit, we can integrate Eq. (7),
obtaining

I (t ) ∼ e(PSIR−1)γ t , (3)

where

PSIR = RSIR (4)

is the population reproductive number of the SIR model.
According to the SIR model, the basic and population repro-
ductive numbers are identical.

III. SEIR MODEL

In the SEIR model, susceptible individuals get infected
at rate β without becoming infectious (exposed), exposed
individuals become infectious at a rate α, and infectious in-
dividuals get removed at a rate γ . The infected compartment
is split into exposed, with number E , and infectious, with
number I . Note that once an individual become infectious,
that individual behaves exactly as an infected individual in the
SIR model. Therefore, we obtain the same basic reproductive
number:

RSEIR = RSIR. (5)

The dynamics of exposed and infectious individuals reads

Ė = β
I

N
S − αE , (6)

İ = αE − γ I. (7)

For short times, S ≈ N and I � N . In this limit, we can
integrate Eq. (7) using an eigenvalue approach. Focusing on
the largest eigenvalue, we obtain

I (t ) ∼ e(PSEIR−1)γ t , (8)
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where

PSEIR = 1

2

⎡
⎣1 − α

γ
+

√(
1 − α

γ

)2

+ 4
α

γ
RSEIR

⎤
⎦ (9)

is the population reproductive number of the SEIR model.
The introduction of the exposed compartment carries as a
consequence a discrepancy between the local and population
reproductive numbers, as previously noted [7].

IV. BRANCHING PROCESS APPROACH

The SIR and SEIR models neglect key aspects of real
populations. First, there is a variable contact rate across the
population, which translates to a variable rate of disease
transmission across infectious individuals. Second, while the
SEIR model accounts for the incubation period of infec-
tious diseases, it is still too restrictive. Using well-established
mathematics from the theory of age-dependent branching pro-
cesses, I have previously calculated the expected number of
infected individuals of infectious disease outbreaks on hetero-
geneous populations and any given time interval distribution
[8,9]. However, the applications were limited to an expo-
nential distribution of generation intervals. Here I use this
formalism to calculate the population reproductive number for
a broader class of generation interval distributions.

The branching process approach maps contact processes
mediating disease transmission into causal trees of disease
transmission. The average reproductive number of patient
zero, the expected number of secondary cases generated by
patient zero, is given by

R0 = 〈β〉
γ

, (10)

where 〈β〉 is the average infectious contact rate in the pop-
ulation and γ is the rate of recovery from the infection. For
infected cases other than patient zero, one needs to take into
account that the disease spreading biases the disease transmis-
sion to individuals with a higher contact rate. The patient zero
can be thought as an individual selected at random from the
population. Any other infected individual will not be selected
at random, but it will be found with a probability proportional
to its contact rate: β/N〈β〉, where N is the population size.
Once infected, the individual found by contact will engage in
new contacts at a rate β. Therefore, the average reproductive
number of patients other than patient zero is

R = 〈β2〉
〈β〉γ . (11)

A similar distinction of reproductive numbers is made when
considering spreading dynamics in static networks [3,4]. In a
static network, the connectivity between agents is fixed, but
agents have a variable number of neighbors, also known as
degree and denoted by k. In that case, the reproductive num-
ber of patient zero is proportional to the average degree 〈k〉.
Furthermore, under the annealed or mean-field network ap-
proximation, the reproductive number of any agent other than
patient zero is proportional to 〈k2〉/〈k〉 [3] or 〈k(k − 1)〉/〈k〉
[4], depending on the infectious model.

R0 gives the average number of infectious at the first gener-
ation, those generated by patient zero. R0R gives the average
number of infections at the second generation and R0Rd−1

gives the average number of infections at the d generation.
The actual time when an infected case at generation d be-
comes infected equals the sum of d generation intervals and
it has a probability density function g�d (t ), where the symbol
� denotes convolution. Therefore, the average number of new
infected individuals at time t is given by

İ (t ) = N0R0

D∑
d=1

Rd−1g�d (t ), (12)

where N0 is the number of patients zero and D is the maximum
generation, when the disease transmission ends. When D is
small, due to lockdown, for example, the spreading dynamics
follows a polynomial or power-law growth [8,10]. Here, I
focus on the case D → ∞, or more precisely t � D

∫
dtg(t )t .

In this limit,

İ (t ) = N0R0

∞∑
d=1

Rd−1g�d (t ). (13)

V. GENERATION INTERVAL DISTRIBUTION

Now we will focus on the shape of the generation interval
distribution. In the SIR model, an infected individual is infec-
tious right from the time that individual becomes infected until
removed. Let tR be a specific realization of the removal time.
Since removal takes place at a rate γ , tR has the exponential
probability density function γ e−γ t . Assuming that each in-
dividual has a time-independent contact rate, the generation
intervals will be uniformly distributed between 0 and the
recovery time, resulting in the same exponential distribution
of generation intervals

gSIR(t ) = γ e−γ t . (14)

In the SEIR model, the generation interval is decomposed
into the sum tS = tI + tR, where tI is the time interval from
exposed to infectious and tR is the removal time. Since the
transition from exposed to infectious takes place at a constant
rate α, then tI has the exponential probability density function
αe−αt . Therefore,

gSEIR(t ) = αe−αt � γ e−γ t

=
{
γ 2te−γ t α = γ
αγ

α−γ
(e−γ t − e−αt ) α 	= γ

. (15)

There are two key differences between the generation interval
distributions for the SIR and SEIR model. First, the mode for
gSIR(t ) is zero and that for gSEIR(t ) is nonzero. Second, around
t = 0, gSIR(t ) ∼ γ , while gSEIR(t ) ∼ αγ t . Both differences
are a consequence of introducing an incubation state between
being infected and becoming infectious.

The case α 	= γ in (15) makes the calculation of convolu-
tions difficult. A more suitable functional form is the gamma
distribution

g(t, s) = γ

�(s)
(γ t )s−1e−γ t , (16)
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FIG. 1. Gamma distribution with shape parameters s.

where s � 1 is a shape parameter quantifying the convexity
around t = 0 (Fig. 1). The case g(t, 1) corresponds with an
exponential distribution, as in the SIR model (14). For s = 2,
we obtain the case α = γ of the SEIR model (15). More
generally, the values of s and γ could be derived from the
fitting to empirical data. For example, for COVID-19, the
inspection of inferred generation interval distributions suggest
γ > 1 [11] and a fitting to a gamma distribution results in
γ = 2.5 [12]. Besides covering many possible scenarios, the
gamma distribution is amenable to convolution. Using the
Laplace transform method, one obtains

g�d (t, s) = γ

�(ds)
(γ t )ds−1e−γ t . (17)

The convolution of a gamma distribution is itself a gamma
distribution, with the exponent scaled by the order of the
convolution (d → ds).

VI. EXPECTED NUMBER OF INFECTIONS

Coming back to the outbreak dynamics, by substituting
(17) into (13) we obtain

İ (t, s) = γ N0R0

R1−1/s
e−γ t f (R1/sγ t, s), (18)

f (x, s) =
∞∑

d=1

xds−1

�(ds)
. (19)

Equations (18) and (19) provide a series representation for the
expected number of new infections. For short times, neglect-
ing d > 1 terms, we obtain (R1/sγ t � 1)

İ (t, s) = γ N0R0

�(s)
(γ t )s−1. (20)

The case s = 1 is not representative. For s = 1, we have
İ (t, s) ∼ 1, while İ (t, s) ∼ t s−1 for s > 1. That is, except for
the exponential distribution, the outbreak grows as a power
law t s−1 for short times.
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FIG. 2. Shape of f (x, s) for different values of s.

For s = 1, Eq. (19) is the series expansion of the exponen-
tial

f (x, 1) =
∞∑

d=1

xs−1

(s − 1)!
= ex. (21)

For s = 2, the series expansion of the hyperbolic sine

f (x, 2) =
∞∑

d=1

x2s−1

(2s − 1)!
= sinh(x). (22)

For s = 4, the series of sinh(x) minus sin(x)

f (x, 4) = x3

3!
+ x7

7!
+ x11

11!
+ · · ·

= 1

2

[(
x1

1!
+ x3

3!
+ x5

5!
+ x7

7!
+ · · ·

)

−
(

x1

1!
− x3

3!
+ x5

5!
− x7

7!
+ · · ·

)]

= 1

2
[sinh(x) − sin(x)]. (23)

Using these analytical representations, we uncover the full
impact of the time generation distribution on the infection
dynamics (Fig. 2). With increasing s, there is an increase in
the convexity of f (x, s) around x = 0 and the curves shift to
the right. In contrast, the asymptotic behavior for x 
 1 seems
to be the same. In the following, I show that this is indeed the
case.

When s is a natural number,

f (x, s) =
∞∑

d=1

xds−1

(ds − 1)!
(24)

is a subseries of the exponential function. This series has been
calculated [13,14], resulting in

f (x, s) = 1

s

s−1∑
n=0

exωn

ωn(s−1)
, (25)
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FIG. 3. Population reproductive number P as a function of s for
R > 1 (solid line) and R < 1 (dashed line).

where ω = e2π i/s. For x 
 1, since Re(ωn) < 1 for all n =
1, . . . , s − 1, we obtain

f (x, s) ≈ 1

s
ex. (26)

Based on this asymptotic behavior, for R1/sγ t 
 1 Eq. (18) is
approximated by

İ (t, s) ≈ γ N0R0

R1−1/s

1

s
e[P−1]γ t , (27)

where

P = R1/s (28)

is the population reproductive number. Equation (28) coin-
cides with the result from Wallinga and Lipsitch based on the
Lotka-Euler equation [15].

The equation for the population reproductive number (28)
is a tool to estimate the basic reproductive number from em-
pirical data for the generation interval distribution and the
doubling time. According to Eq. (27), the disease doubling
time is given by

tD = ln 2

(P − 1)γ
. (29)

tD is estimated from the plot of the number of new cases as
a function of time. s and γ are estimated from a fit to the
generation interval data. Then, using Eqs. (28) and (29), we
can estimate P and R.

Equation (28) is definitive proof that the shape of the gener-
ation interval distribution determines the relationship between
the basic (R) and population (P) reproductive numbers. For
s = 1, we recover the SIR model Eq. (4), when the individual
and population reproductive numbers coincide. For s = 2,
we recover the case α = β of the SEIR model in Eq. (9).
Figure 3 shows the population reproductive number as a func-
tion of s for two different local reproductive numbers. When
R > 1, P decreases monotonically with increasing s. When
R < 1, P increases monotonically with increasing s. In either
case, P approaches 1 for large s. Note, however, that the shape

(a)

(b)

FIG. 4. Numerical simulations of disease transmission in a vir-
tual city. (a) Average number of new infectious as a function of time
for different number of intermediate states (symbols). The lines are
fits to the exponential function in Eq. (27), providing an estimate
of P. (b) Population reproductive number P as a function of s, as
obtained from the fitting to the numerical data (symbols) and from
the expected theoretical line (28) (line).

parameter s does not change the fact that if R > 1 then İ (t )
grows exponentially, while I (t ) decays exponentially when
R < 1.

The gamma distribution of generation intervals has a sim-
ilar effect in the context of heterogenous mixing patterns
between individuals according to types [16,17]. The outcome
is similar to Eq. (28), replacing R by the largest eigenvalue
ρ of the mixing matrix of reproductive numbers (Eq. (12) in
Ref. [17]). After making this substitution, we obtain the pop-
ulation reproductive number for the multitype generalization

P = (R
1
2 · · · )1/s, (30)

where 
i is the largest eigenvalue of the ith mixing matrix
(e.g., age, mask use, etc.) [17].

VII. NUMERICAL SIMULATIONS

I have performed agent-based simulations to test the re-
lationship between the population and agent reproductive
numbers [Eq. (28)]. The simulation steps were reported in
Ref. [17]. Here, I present a concise description. The simula-
tions take place in a virtual city. The virtual city is composed
of a place-to-place network and the mobility of individuals
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(agents) through the network. Most of the city parameters are
inspired by numerical simulation for the city of Portland [2],
containing of the order of na = 1 000 000 individuals (agents)
and np = 100 000 places.

A. Place-to-place network

The place-to-place network is modeled by a Barabási-
Albert network [18]. Specifically, starting from a complete
graph of m + 1 nodes, new nodes are added one at a time
up to np nodes. Each time a node is added, it is connected
to m nodes in the pre-existing graph. The node to which each
of the m edges is attached to is selected with a probability
proportional to the node degree. The degree distribution of the
Barabási-Albert network has a power-law tail with power-law
exponent −3 [18].

B. Agent mobility

Agents switch location at a rate ωi, i = 1, . . . , na, where
the ωi are random variables with a gamma distribution
Prob(ωi = ω) ∼ ωsp−1e−ω/ω∗

, where ω∗ and sp are the lo-
cation and shape parameters, respectively. I will set ω∗ = 1
switch per day and sp = 2, which gives a mode at one switch
per day. This means that individuals will be in about two
places per day, one where they started the day and the other
where they switch to, as observed for the Portland simulation.
Furthermore, the number of visitors at a given place is pro-
portional to the number of neighbors, i.e., the degree in the
place-to-place network. Since the degree distribution of the
Barabási-Albert network has a power law tail with exponent
−3, the number of visitors to a place also has a power law tail
with an exponent −3 [17], which is roughly what observed for
Portland [2].

C. Disease transmission

An infectious disease model is simulated in the virtual
city introducing a patient zero and constraining the disease
transmission to individuals at the same place. To model the
disease dynamics within an individual, I introduce s − 1 in-
termediate states and an infectious state. At a given place, I
assume homogenous mixing and infected agents transmit the
disease to susceptible agents at rate ξ . When a susceptible
agent becomes infected, that agent transits over s − 1 exposed
states, the infectious state, and the removed state. The tran-
sition between these states is assumed state independent and
at rate γ . s = 1 corresponds with the SIR model. For s = 2,

the intermediate state is the exposed state and we recover
the SEIR model with α = γ . For all s, we obtain the gamma
distribution of generation intervals (16). Here I will use ξ = 4
transmission attempts per day and γ = 1/3 per day. By trans-
mission attempt I mean that there is an attempt of transmission
from an infectious primary case to a potential secondary case
at the location of the primary case, the potential secondary
case is selected with uniform probability among all other
agents at that location, but the transmission will happen if and
only if the potential secondary case is in the susceptible state.

D. Realizations

At each realization, I generate a new place-to-place net-
work, assign new switching rates to agents, and run the disease
transmission model. Averages are calculated over time inter-
vals of 1 day and 100 realizations.

Figure 4(a) reports the average number of new infections
as a function of time. The lines are fits to the exponential
function in Eq. (27). The fit is restricted to the initial growth
phase, selecting data points in the time interval 0 < t < 0.8t0,
where t0 is the time when İ (t ) is maximum. Given that γ

is known, from the fit to Eq. (28) we obtain an estimate of
P, reported in Fig. 4(b). The case s = 1 corresponds with
the SIR model and P = R. In the fully mixed scenario, i.e.,
only one place, we would expect a reproductive number R =
ξ/γ = 12. However, the network structure of the virtual city
limits the homogeneous mixing to individuals within the same
location. We obtain the smaller value R ≈ 7 < 12 [Fig. 4(b),
s = 1]. Once R is known, we can use (28) to obtain a theo-
retical estimate of P for s > 1, which corresponds with the
theoretical line in Fig. 4(b). The agreement between the simu-
lation symbols and the theoretical line is very good, validating
the analytical calculations.

VIII. CONCLUSIONS

In conclusion, the branching process formalism allows for
a flexible description of infectious disease outbreaks that can
be fully based on empirical distributions. At short times the
outbreak grows as a power law, t s−1, where the exponent is
determined by the shape parameter of the gamma distribution.
Therefore, a power law growth is not incompatible with the
homogeneous mixing approximation as previously claimed
[19]. Furthermore, this power law should not be confused
with the long-time power law induced by the truncation of the
disease transmission at a maximum generation, as expected
from an imposed lockdown, for example [8,10].
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