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A VOIDING rail surface defects 
such as corrugation, squats 
and defects at welded joints 

is critical in maintaining track safety 
and reliability. These issues are major 
contributors to railway rolling noise 
and demand specific maintenance 
actions, such as track inspection and 
rail grinding with dedicated railway 
vehicles and machines. 

To reduce maintenance costs, various 
industry groups and research institutes 
from around the world are investigating 
condition-based and predictive 
maintenance strategies. Among the key 
developments is the use of in-service 
trains for quasi-continuous monitoring 
of track conditions. These vehicles are 
equipped with dedicated telematic 
devices and require the use of specific 
data analysis algorithms to transform 
sensor data into health status information. 

To date, the focus of this work has 
been on high-capacity mainline 
networks, where efforts to implement 
predictive maintenance strategies are 
intensifying. Small to midsize railways 
such as those at ports typically employ 
visual inspections at periodic time 
intervals sometimes with the aid of 
hand-held devices or trolleys. This is 
very labour intensive and requires track 
closures, causing disruption to operations.
The result is often significant intervals 
between two inspections with the 
subjective nature of manual evaluations 
hindering the monitoring of deterioration
trends and limiting the early detection 
of track defects. 

The acceleration of digitisation, 
specifically the development of low-cost 
sensors that can be fitted to in-service 
rail vehicles to monitor track conditions, 
is opening enhanced approaches to 
track maintenance for small industrial 
rail networks. 

At the German Aerospace Center 
(DLR), modular multi-sensor systems 
have been developed for on-board 
positioning and the acquisition of geo-
referenced track monitoring data for 
different operational environments. 
Such a system has been installed on a 
shunter used at the Braunschweig 
inland port railway in Germany since 
2015. The data is used to develop data-
driven algorithms and to demonstrate 
the potential of in-service track 
condition monitoring for small 
industrial railways.

The modular multi-sensor systems 
developed at DLR comprise several 
units fulfilling different use-case-
specific tasks.

The onboard positioning unit is based 
on global navigation satellite systems 
(GNSS) such as GPS and Galileo, which 
are used to retrieve global position and 
speed information. An Inertial 
measurement unit (IMU), which 
measure three-dimensional acceleration 
and turn rates, supplies complementary 
position and speed information at a 
higher sampling rate such as 100Hz. 
This is necessary to provide sub-metre 
position intervals and to bridge areas 
where GNSS signal reception is 
compromised such as under bridges, in 

tunnels and when encountering other 
obstacles in the vicinity of the track. 

Condition monitoring of the track is 
carried out by using analogue 
broadband three-component 
accelerometers with a working 
frequency band of 0.8-8000Hz. The 
accelerometers are mounted on the axle 
boxes on the left and right side of the 
shunter’s front axle. The resulting six 
axlebox acceleration (ABA) channels are 
digitised by an analogue-to-digital 
converter and sampled with 20.625Hz. 
A central data processing unit is used to 
collect and process the data and the 
popular software framework Robot 
Operating System (ROS) is used to 
acquire and process sensor data. 
Communication devices using LTE or 
upcoming 5G mobile networks enable 
remote maintenance and control of the 
system as well as status information 
and position retrieval. 

Selective track position information 
with high spatial resolution is critical 
for the analysis of onboard track 
monitoring data. However, in 
environments such as marshalling 
yards or port railways, achieving 
accurate selective track positioning is a 
challenge. Here, several tracks often run 
in parallel and the high number of 
switches can result in numerous track 
combinations in a single train operation. 
Furthermore, GNSS reception in the 
industrial environment is often 
impacted by bridges, tall buildings, 
cranes and container stacks.  

To fulfil the positioning requirements, 
the GNSS and IMU data are 
systematically fused with railway 
network topology information retrieved 
from a digital map. The combination of 
the different data sources employs 
statistical sensor fusion methods, 
meaning it is possible to assign 
monitoring data with a track identifier, 
the distance of a specific track, and the 
vehicle speed.

Processing of the ABA data itself 
must compensate for several factors 
affecting the dynamic vehicle-track 
interaction. The main influencing 
factors are the vehicle speed and abrupt 
acceleration, deceleration, and stopping 
of the train, which often occurs during 
shunting operation on industrial 
railways. Weather conditions and dirt 
on the track can also influence the 
wheel rail contact mechanism while 
noise from locomotive engines can 
affect signals recorded by the ABA 
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sensors mounted on the shunting 
locomotive’s axle. In addition, shunting 
operations cause impacts that result in 
unwanted acceleration peaks. 

For these reasons, appropriate data 
processing is indispensable and is the 
subject of current research at DLR. 
Several model-based, data-driven or 
hybrid algorithms can be used to extract 
information about track condition. A 
simple yet effective approach is the 
double integration of the ABA data.

Revealing track geometry is the 
approach used when deploying this 
technique on high-speed lines. It can be 
expanded to industrial railways to 
extract the longitudinal rail profile for 
wavelengths below 0.1m due to regular 
speeds of less than 10m/s. This 
wavelength band is characteristic of 
short rail irregularities such as 
corrugations and squats. The data can 
also be investigated in the time-
frequency domain, where the frequency 
response of vehicle components such as 
wheels and axle bearings can be 
removed from the data. The resulting 

representation reflects the spectral 
components of the track roughness that 
will require further investigation. 

For instance, vehicle speed can be 
used to convert frequencies into wave 
numbers (spatial frequencies). In the 
wave number domain, track roughness 
levels for specific wavelength bands can 
be extracted. In Figure 1, the rail 
roughness level for wavelength 
between 0.01 and 1m extracted from the 
ABA data of a single train run is shown. 
The image section on the right side of 
Figure 2 highlights rail segments with 
known corrugation. This kind of defect 
is clearly visible in the roughness level. 

Data-driven approaches mainly rely 
on machine learning methodologies. If 
reference data such as those retrieved 
from manual inspections are available, 
supervised machine learning can be 
used to classify track irregularities or to 
extract physical parameters such as 
track decay rate, wheel-rail roughness 
and geometrical parameters via 
regression. 

This contrasts with unsupervised 

learning methods. These algorithms 
generate purely data-based statistical 
models that make it possible to 
recognise patterns, categories and 
correlations in data without having to 
rely on annotated (labelled) data. 

Prominent representations of such 
methods include clustering, which 
divide data into several categories that 
are distinguished from each other by 
characteristic patterns. The idea is that 
once clusters are found in a set of 
identified track irregularities, only 
representative examples of each cluster 
need to be manually inspected by the 
asset manager. In the best case, the 
results of this inspection can be 
generalised to all members of a cluster 
and would drastically reduce the effort 
required for visual inspection. Other 
unsupervised methods aim to translate 
the observed data into a simpler 
representation without losing relevant 
information. The resulting features can 
then be used as track health indicators.

Interest is growing in applying deep 
learning methods for sensor data 
analysis. Convolutional neuronal 
networks (CNN) have become standard 
tools in image classification and 
segmentation. However, the application 
of deep learning to the analysis of time-
series data such as ABA is relatively 
new and not yet widely used. 
Nevertheless, new technical 
developments can be expected in the 
future and associated advances in 
hardware, software and algorithms will 
help us to increase the safety, reliability 
and efficiency of all rail sectors, 
including industrial railways. IRJ

Figure 1: Rail roughness level (wavelength band of 0.01-1m) extracted from ABA data. A
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