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Abstract

In trajectory tracking and interaction control of robots, two fundamentally different concepts define the boundaries
within which most nonlinear model-based approaches can be located. On the one hand controllers such as the PD+
preserve the natural inertia and avoid feedback of external forces and torques. On the other hand controllers based
on feedback linearization, as used in most inverse dynamics approaches, enforce linear closed-loop dynamics by means
of external force/torque feedback. Here, these two basic concepts of keeping and shaping of the natural inertia are
investigated and compared including aspects such as interaction behavior, tracking performance, tuning parameters,
influence of modeling errors, and effective feedback gains. Exemplary case studies on a standard torque-controlled robot
are performed. The understanding of these features and differences is of major importance for the proper selection and
deployment of interaction and tracking controllers in practice.

Keywords: Robotics, control, inertia shaping, PD+, feedback linearization

1. Introduction

When robots with joint torque interface are used both
for trajectory tracking and physical interaction, the so-
called computed-torque controller [1] is often the means of
choice. In fact, it is basically an application of the more
general concept of feedback linearization [2]. The major
advantage is the linear closed-loop dynamics which opens
the possibility to use any tools from linear control theory.
Moreover, by rendering the system linear one can spec-
ify desired impedance characteristics including the inertia,
damping, and stiffness parametrization [3]. Yet it is well
known that compensating for all naturally nonlinear dy-
namic effects requires both highly precise measurements
and accurate model knowledge. That, in turn, can come
at the cost of deteriorated performance in practice or even
instability if these requirements are not sufficiently met.

An alternative way is to reduce the feedback action to
a minimum by conserving the natural, nonlinear dynam-
ics as much as possible and still achieve proper trajec-
tory tracking and impedance behavior. The most obvi-
ous example is certainly the standard PD (proportional-
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Figure 1: A qualitative representation of the preservation and active
modification of the natural inertia in terms of the couplings related
to the control law and the closed-loop dynamics.

derivative) controller with feedforward of the desired joint-
space trajectory. However, lower bounds for the PD gains
are required in the stability analysis [4, 5], consequently
limiting the capabilities of the controller for physical in-
teraction with low impedance. The so-called PD+ [6, 5]
or augmented PD controller [1] features comparable prop-
erties in terms of preserving the natural dynamics, but
it imposes no restrictions on the control gains. In reg-
ulation control, the notation compliance control is often
used for such approaches where the natural inertia is de-
liberately kept [7]. In a PD+ implementation, the ‘PD’
part with constant control gains is augmented by a com-
pensation term ‘+’ that compensates for gravitational ef-
fects, and precompensates for expected inertial and Cori-
olis/centrifugal effects along a desired trajectory. In prac-
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tice the PD+ is known to be particularly robust. How-
ever, the closed-loop dynamics remain nonlinear, and con-
sequently, tools from linear control theory cannot be ap-
plied for the analysis of the closed-loop behavior.

1.1. State of the art and classification of controllers

Although the literature for tracking and interaction con-
trollers in robotics is vast, most model-based approaches
can be, more or less, placed in between these two fun-
damentally different concepts w. r. t. the treatment of the
inertial behavior: the complete active shaping of the iner-
tia (feedback linearization) versus the preservation of the
natural one (e. g., PD with feedforward or PD+). An il-
lustration is given in Fig. 1 which highlights the fact that
a decoupled closed-loop behavior requires significant cou-
plings in the control law, and vice versa. One example of
a passivity-based controller is the adaptive approach by
Slotine and Li [8], which exploits the structure of the nat-
ural nonlinear dynamics as classical PD+ control and can
avoid joint acceleration measurements and the inverse of
the inertia matrix. Either or both of these requirements
are typical in computed-torque-based schemes [9, 10, 11].
As the natural inertia is conserved, the passivity-based ap-
proach [8] is located on the left side of Fig. 1. Staying in
the figure, the path from the left to the right is taken in the
comparison [12] between down-scaling of the natural iner-
tia and its active diagonalization. In flexible-joint robots,
the feedback linearization [13] achieves a fourth-order lin-
ear and decoupled system by means of full cancellation
of the nonlinearities, while decoupling-based and back-
stepping approaches annihilate the couplings between the
link-side and motor-side dynamics through partial feed-
back linearization [14, 7]. However, these approaches gen-
erally require the feedback of link-side variables up to jerks
even for the regulation case. This restriction has been re-
moved in the backstepping strategies [15, 16] by replacing
the unavailable measurements with approximate differen-
tiation but at the cost of additional gain tuning efforts and
increased complexity of the control law. Passivity-based
approaches have been developed in [17, 18, 19] motivated
by an energetic point of view, resulting in improved ro-
bustness against model uncertainties [7]. Although the
closed-loop systems with backstepping and passivity-based
approaches can both be represented as interconnected pas-
sive subsystems [14], the motor-side subsystem in the case
of backstepping does not provide an energetic interpreta-
tion and it is similar to the artificial passive system im-
posed by a feedback linearization in rigid-joint robots [20].
Among recent works, an approach is developed in [21, 22]
on the basis of the classical feedback linearization [13], but
it exploits the intrinsic passivity properties of the link-side
dynamics to enhance the robustness; the control scheme
proposed in [23] feedforward-compensates the link-side dy-
namics and feedback-linearizes the motor-side one, making
it an extreme example from the right side of Fig. 1.

If the robot is controlled in task space such as in the
Cartesian coordinates of the end-effector, various adapta-

tions exist for both passivity-based and feedback lineariza-
tion based approaches. The Operational Space Formula-
tion (OSF) [24] is probably the most popular one in which
the system is feedback-linearized. Extensions of OSF to
multi-tasking control can be found in [25, 26, 27, 28],
among others. Interestingly, it has been shown that these
approaches are in fact equivalent to common inverse dy-
namics solutions [29]. In optimization-based control, the
realization of desired linear closed-loop dynamics is of-
ten aimed at [30, 31]. However, the preservation of the
natural, nonlinear inertial properties can also be found
in the state of the art [32], yielding high robustness due
to the passivity-based controller design. Task-space con-
trollers based on PD+ strategies are also widely adopted
in the literature [7] and commonly used on modern torque-
controlled lightweight robots nowadays, and they have re-
cently been extended to the hierarchical multi-tasking case
[33], for example. In task-space haptic teleoperation the
active reduction of the apparent inertia [34] is a standard
approach due to its advantages in terms of fidelity and user
transparency. In [12] a comparison between down-scaling
of the natural inertia and its active diagonalization has
been conducted. While the decoupling in the diagonal-
ization is beneficial for the teleoperator’s level of immer-
sion, the apparent inertia can only be reduced by about
50 %, while the down-scaling of the natural inertia allows
a reduction of about 67 %. In [26] the authors concluded
that the control performance of OSF approaches degrades
during fast motions if the identified inertia matrix is not
highly accurate. These results indicate the tendency that
the conservation of the natural inertia properties can be
advantageous in terms of control performance and stability
but it inevitably limits the options and possibilities during
the control design.

1.2. Basis for a representative comparison: PD+ and feed-
back linearization

Both the PD+ and the feedback linearization (FL) as
representatives for the keeping and shaping of the natural
inertia, respectively, have been extensively but separately
studied in the literature. Yet, no thorough comparison
of the numerous properties and characteristics has been
conducted so far. Furthermore, available analyses usu-
ally consider the pure motion control problem but neglect
the physical interaction case [5], which becomes increas-
ingly relevant for modern lightweight robots being oper-
ated close to or in contact with humans. Therefore, this
article addresses the comparison of these two fundamen-
tally different strategies and investigates the practical con-
sequences on interaction and tracking control in case stud-
ies on a common torque-controlled lightweight robot. Due
to the generality of the conclusions, the obtained insights
are crucial for the target-oriented design of new robot con-
trollers and the adequate choice of the appropriate control
approach depending on the application scenarios and sys-
tem conditions.
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1.3. Structure
The article is organized as follows: After the recapitula-

tion of the PD+ and FL controllers in Section 2, the theo-
retical comparison is conducted in Section 3. In Section 4,
experiments on a commercially available torque-controlled
lightweight robot verify the theory and complement the
analysis from a practitioner’s point of view. After the dis-
cussion in Section 5, the article is closed in Section 6.

2. Fundamentals

The rigid-body dynamics of a robot with n degrees of
freedom (DOF) can be written as

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext (1)

with q, q̇, q̈ ∈ Rn describing the joint positions, veloc-
ities, and accelerations, respectively. The symmet-
ric and positive definite inertia matrix is denoted by
M(q) ∈ Rn×n and the Coriolis/centrifugal matrix is de-
scribed by C(q, q̇) ∈ Rn×n. The term g(q) ∈ Rn repre-
sents the generalized gravity forces based on the gravity
potential Vg(q) through g(q) = (∂Vg(q)/∂q)T . The co-
vectors τ , τ ext ∈ Rn stand for the generalized forces and
external forces, respectively. The control input is τ . As of
now, the following assumptions will be made:

Assumption 1. The matrices M(q) and C(q, q̇) are
uniformly bounded for all q, and C(q, q̇) is linear in q̇.

Remark 1. A complete classification of robots that sat-
isfy Assumption 1 is presented in [35]. This classical condi-
tion applies, among others, to any robot with only revolute
joints or such systems with free-floating bases or mounted
on mobile platforms.

Assumption 2. The matrix C(q, q̇) fulfills the condition
Ṁ(q, q̇) = C(q, q̇) +C(q, q̇)T .

Remark 2. One can straightforwardly formulate C(q, q̇)
in a way such that Assumption 2 holds [1]. An interpreta-
tion of this condition is also given by the skew-symmetry
of Ṁ(q, q̇)− 2C(q, q̇) or the fact that the total energy
V (q, q̇) = 1

2 q̇
TM(q)q̇ + Vg(q) of the system (1) is con-

stant for τ = τ ext = 0, that is, V̇ = 0.

The control goals considered here are twofold:

• Trajectory tracking: realization of the desired tra-
jectory in joint space with continuous and bounded
functions qd(t), q̇d(t), q̈d(t) ∈ Rn in time t.

• Impedance behavior: realization of user-specified,
symmetric, positive definite interaction stiffness and
damping matrices K,D ∈ Rn×n.

Thus, the controller has to be capable of providing both
highly dynamic trajectory tracking and dedicated interac-
tion behavior at the same time. In the following analysis,
the joint-space errors

e = q − qd(t) (2)

and their time derivatives ė, ë will be used.

2.1. PD+ / augmented PD control

The well known PD+ control law [6, 1, 5] is given by

τ = M(q)q̈d +C(q, q̇)q̇d + g(q)︸ ︷︷ ︸
“+” part

−Ke−Dė︸ ︷︷ ︸
PD part

. (3)

The first two components in (3) cover the nominal joint
torque to implement the desired trajectory (precompen-
sation). The third element compensates for gravitational
effects, and the PD part realizes the specified stiffness and
damping. Strictly speaking, the “+” part in (3) is not a
feedforward term since it involves measured states q, q̇ be-
sides the desired trajectory profile, thus it should be rather
interpreted as a dynamics compensation action. Inserting
(3) into (1) yields the nonlinear closed-loop dynamics

M(q)ë+ (C(q, q̇) +D) ė+Ke = τ ext . (4)

One characteristic property of (3) is that the PD part is
largely decoupled w. r. t. the joints. No couplings related
to the control feedback of e and ė are present at all if
K and D are chosen diagonal. However, the closed-loop
dynamics (4) contain considerable couplings, cf. Fig. 1.

2.2. Feedback linearization with feedback of τ ext (FL1)

The control law for the complete feedback linearization
including feedback of τ ext is

τ = C(q, q̇)q̇ + g(q)− τ ext︸ ︷︷ ︸
Dynamics compensation

+ M(q)q̈d︸ ︷︷ ︸
Precompensation

+M(q)M−1
d (−Ke−Dė+ τ ext)︸ ︷︷ ︸

Enforcement of desired linear dynamics

(5)

which will be denoted by FL1 in the following. The first
three components in (5) annihilate the natural dynam-
ics from (1), while M(q)q̈d precompensates for the gen-
eralized inertial forces required in the desired trajectory.
The last term imposes the desired linear dynamic behav-
ior with the desired symmetric and constant inertia matrix
Md ∈ Rn×n. Consequently, the equations of motion of the
closed loop take the form

Mdë+Dė+Ke = τ ext (6)

and feature linear dynamics with constant coefficients. If
K, D, and Md are chosen diagonal, the joint dynamics
are completely decoupled. However, in contrast to the
PD+, the control law (5) features significant couplings
among the joints due to the involvement of the nonlinear,
configuration-dependent term M(q)M−1

d , cf. Fig. 1.

2.3. Feedback linearization without feedback of τ ext (FL2)

An alternative to (5) is to avoid feedback of the mea-
sured/estimated generalized external forces τ ext, that is,

τ = C(q, q̇)q̇ + g(q) +M(q)q̈d

+M(q)M−1
d (−Ke−Dė) . (7)
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In this case, the closed-loop dynamics will slightly differ
from (6) concerning the appearance of τ ext:

Mdë+Dė+Ke = MdM(q)−1τ ext . (8)

In the following, this type of feedback linearization will
be denoted by FL2. It features linear dynamics during
free motion (τ ext = 0) but it shows nonlinear dynamics
during interaction (τ ext 6= 0). The case (7)–(8) applies in
practice if external disturbances are ignored in the model
(1) to be feedback-linearized. The frequent occurrence of
this scenario in the literature [26] justifies the inclusion of
FL2 in the following comparison but it is well known that a
modified inertia perceived during physical interaction can
only be achieved through explicit feedback of τ ext [7, 36].

3. Theoretical Comparison

In this section, the three controllers (PD+, FL1, FL2)
will be briefly compared from a theoretical point of view.
A condensed overview of the main properties is presented
in Table 2 at the end of this section.

3.1. Tuning parameters in the control law

As the PD+ aims at the preservation of the natural
inertia, the design choice in (3) reduces to the constant PD
gains K and D. This choice can be obviously motivated
from a physical point of view, representing contact stiffness
and damping.

The closed-loop dynamics (6) of FL1 require the spec-
ification of K, D, and Md. While there exist various
ways to define these values, especially the following two
are common for interaction and tracking control.

• Motivated by interaction behavior: The stiffness K
and dampingD can be set analogous to the PD+ case.
Additionally, the constant desired inertia Md needs
to be specified. This physical motivation is particu-
larly useful in interaction control, where the contact
behavior and the inertial response are relevant.

• Motivated by tracking behavior: 2n constant poles1

of the closed loop can be placed according to the de-
sired oscillation frequencies and damping ratios. An
additional type of parameter can be specified in the
presence of external disturbances. For example, Md

can be set to obtain the desired inertial response to
τ ext where Md = I represents a common choice. It
has to be noted that this method implicitly results in
a fixed value for K. Alternatively, specifying K to
limit the motion range due to external disturbances
automatically assigns Md [37].

1or two poles per joint, if a complete decoupling in joint space is
desired.

In case of FL2 control, one can reformulate (8) to

ë+M−1
d Dė+M−1

d Ke = M(q)−1τ ext . (9)

Although the three termsMd,D,K can be set, there only
exist two independent effective gains to tune: M−1

d D and
M−1

d K. In other words, the effective tuning parameters
for FL2 control are merely the 2n constant poles, or equiv-
alently, the ratios M−1

d D and M−1
d K.

While the closed-loop poles for FL1 and FL2 are con-
stant, the local2 closed-loop poles in case of PD+ con-
trol are highly configuration-dependent. That is due to
the nonlinear nature of (4) originating from M(q) and
C(q, q̇). If that aspect is not considered in the gain design
of PD+, one may encounter large local closed-loop poles
which are infeasible due to practical limitations such as dis-
cretization effects, time delay, or limited torque dynamics.
Therefore, the PD+ gains K and D are usually chosen
in a way such that the robot shows a stable and effective
interaction and tracking behavior in the entire workspace.
In Section 4 (experiment #1c) it will be shown that in-
stability can result in the PD+ controlled robot if K and
D are naively taken from the pole placement approach of
FL1/FL2 without consideration of these aspects.

It has to be noted that the realization of the desired pole
placement and decoupling for FL1 and FL2 largely depend
on the accuracy of the identified model. In practice there
remain dynamic couplings especially when the system un-
dergoes fast motion that involves a high number of joints,
as will be shown in Section 4 (experiment #1d).

3.2. Passivity and stability

For physical interaction with the robot (τ ext 6= 0), pas-
sivity properties are of major importance. The notion of
passivity is classically defined for time-invariant systems
only [38]. Besides the analysis of this case (regulation
control), we will straightforwardly extend the definition
to the time-varying case (tracking control). More details
on passivity and the corresponding storage functions for
time-varying systems can be found in [20]. Although the
physical interpretation is not as intuitive as before since
the involved storage functions do not represent the me-
chanical energy anymore, the overall properties can be
transferred without loss of generality and give valuable
insights into the dynamics of physical interaction. In free
motion (τ ext = 0), the stability properties can be investi-
gated based on the same storage functions. Note that all
statements on passivity and stability made in the following
are globally valid.

As storage function for the PD+ controlled robot one
can make the intuitive choice

SPD+ =
1

2
ėTM(q)ė+

1

2
eTKe , (10)

ṠPD+ = ėT τ ext − ėTDė , (11)

2Local closed-loop poles mean the eigenvalues of the linearized
controlled robot dynamics at each time instant.
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using (4). For the regulation case (q̇d = q̈d = 0), (10) sim-
plifies to the real physical energy 1

2 q̇
TM(q)q̇ + 1

2e
TKe as

ė = q̇ holds, i. e., the storage function involves the kinetic
energy and the elastic potential described by the virtual
spring with stiffness K, similar to the task-space case de-
scribed in [7]. The corresponding power transfer is ex-
pressed by q̇T τ ext − q̇TDq̇ instead of (11). Note that the
component q̇T τ ext equals the real physical power trans-
mitted by the user during interaction. Consequently, both
for the time-invariant and for the time-varying case, one
can conclude passivity w. r. t. the storage function (10), the
input τ ext, and the output ė. In other words, (τ ext → ė)
describes a passive mapping. For the interaction-free case
(τ ext = 0), one can conclude stability of e = ė = 0 via
(10)–(11) and equivalently boundedness of the states q, q̇
for bounded desired profiles qd(t), q̇d(t). In order to prove
exponential stability of e = ė = 0 the modified storage
function

SPD+,ε = SPD+ + ε · ėTM(q)e (12)

with the small positive constant ε can be utilized. This
choice can be interpreted as skewing of the level sets w. r. t.
SPD+ [1]. One can show that there always exists an ε that
renders SPD+,ε a strict Lyapunov function [39] with its

time derivative ṠPD+,ε being negative definite in (e, ė),
thereby concluding exponential stability of e = ė = 0 [1].
However, it has to be noted that the decay rate obtained
here has limited significance in practice as it is, in general,
very conservative and depends on ε. Therefore, the prac-
tical interpretation of the above stability analysis is rather
global asymptotic stability of e = ė = 0 than global expo-
nential stability.

Similar to (10) one can define a storage function

SFL1 =
1

2
ėTMdė+

1

2
eTKe , (13)

ṠFL1 = ėT τ ext − ėTDė , (14)

for FL1 using (6). Note that the inertiaMd is used in (13)
instead of M(q) as done in (4). Yet, the powers (11) and
(14) are identical. Consequently, one can conclude similar
passivity properties as for the PD+ controller. Both for
the time-invariant and for the time-varying case one can
conclude passivity of FL1 w. r. t. the storage function (13),
the input τ ext, and the output ė. As above, (τ ext → ė)
describes a passive mapping. Although this strong and
beneficial statement on passivity can be made for FL1, it
has to be noted that this theoretical result can have lim-
ited applicability and validity in practice. As analyzed in
[40], “when a controller attempts to emulate dynamics that
differ significantly from the intrinsic hardware dynamics,
an increased risk of coupled or contact instability arises”.
That effect has been explained by means of passivity in
[41], showing that when the desired inertia significantly
differs from the natural one, a non-passive behavior can be
obtained in practice as a result of resonant modes between
the sensor and actuator [42]. Furthermore, differences be-
tween the theory and implementation on hardware can also

be traced back to discretization, time delays, actuator and
sensor limitations, and unmodeled dynamics [40]. In the
interaction-free case (τ ext = 0), the closed-loop dynamics
(6) for FL1 reduce to

Mdë+Dė+Ke = 0 . (15)

Due to the constant coefficients Md,D,K, one can
straightforwardly conclude exponential stability of the
equilibrium e = ė = 0 [2].

To analyze the passivity properties of FL2, one can pro-
ceed analogously as in (14) to obtain

SFL2 =
1

2
ėTMdė+

1

2
eTKe , (16)

ṠFL2 = ėTMdM(q)−1τ ext − ėTDė , (17)

using (8). One can observe that the conclusion of passivity
properties cannot be straightforwardly made due to the
distortion of τ ext by the configuration-dependent factor
MdM(q)−1 originating from (8). Consequently, ėT τ ext

(or q̇T τ ext in the regulation case) transmitted by the user
or the environment during physical interaction is not iden-
tical to the power entering the closed-loop dynamics dur-
ing interaction when considering the physically motivated,
intuitive storage function (16). The interaction-free case
for FL2 is identical to the one of FL1 since (6) equals (8)
for τ ext = 0. Therefore, exponential stability of the equi-
librium e = ė = 0 can be stated for FL2.

It is important to mention that a passive closed-loop
behavior can be safety-critical during physical contact.
The environment can be usually represented as a pas-
sive mapping (q̇ → −τ ext) [3, 18]. When (feedback-
inter)connecting a controlled robot with passive mapping
(τ ext → q̇) with the environment, another passive system
results. In other words, the controlled robot will not gener-
ate energy in the physical contact. For the regulation case
of PD+ and FL1 that holds true. However, this statement,
in turn, requires that (11) and (14) are actually achieved.
For FL1 in practical settings, that is often not the case,
e. g., an infeasible choice of Md may render (14) invalid in
reality, leading to a loss of passivity and the consequence
of contact instability [40], as described above.

3.3. Contact stiffness and perceived inertia

On the one hand, the stiffness is essential for physical
interaction with humans or the environment as it defines
the contact behavior. This property can be analyzed via
the static deviation as a result of an interaction through
τ ext. On the other hand, the perceived inertia also has
significant influence on the physical interaction behavior.
One can identify the latter by means of the instantaneous
inertial response to τ ext out of a static equilibrium. The
conditions for these two cases are defined as follows:

• Conditions for static deviation to analyse the contact
stiffness: q̇ = q̈ = q̇d = q̈d = 0.
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• Conditions for inertial response to analyse the per-
ceived inertia: e = ė = q̇d = q̈d = 0.

The closed-loop dynamics with PD+ control simplify to

Contact stiffness (PD+): Ke = τ ext (18)

Perceived inertia (PD+): M(q)q̈ = τ ext (19)

and reveal the contact stiffness K and the perceived nat-
ural inertia M(q). For FL1 control, the closed-loop dy-
namics simplify to

Contact stiffness (FL1): Ke = τ ext (20)

Perceived inertia (FL1): Mdq̈ = τ ext (21)

and show that the stiffness K and the inertia Md will
be perceived during physical interaction with the robot.
However, controlling the robot via FL2 leads to

Contact stiffness (FL2): M(q)M−1
d Ke = τ ext (22)

Perceived inertia (FL2): M(q)q̈ = τ ext . (23)

The effective stiffness M(q)M−1
d K obtained in (22) is a

distorted version of the user-specified term K. Due to the
occurrence of M(q) it is highly configuration-dependent.
Moreover, K � 0 does not imply M(q)M−1

d K � 0.
Therefore, inertia shaping without feedback of τ ext can
lead to a negative contact stiffness and ultimately to con-
tact instability in practice. The fact that the perceived
inertia in (23) is M(q) instead of Md is not surprising,
since it is well known that inertia shaping under physical
interaction strictly requires feedback of τ ext [7, 36].

3.4. Influence of modeling uncertainties

A practically relevant aspect in the controlled robot is
how non-parametric model uncertainties, such as neglected
joint frictions, motor dynamics, or measurement noise, will
influence the closed-loop behavior. Therefore, we assume
an additional term τ nonpar ∈ Rn appearing on the right-
hand side of (1) which represents a generic unknown joint
torque caused by non-parametric model uncertainties:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext + τ nonpar . (24)

As a result, the nominal closed-loop dynamics are affected
by the disturbance terms

γPD+,nonpar = τ nonpar , (25)

γFL1,nonpar = MdM(q)−1τ nonpar , (26)

γFL2,nonpar = MdM(q)−1τ nonpar , (27)

appearing on the right-hand sides of (4), (6), and (8), re-
spectively. The effect of τ nonpar is conserved in the case of
PD+ as it appears unchanged, but the pre-multiplication
of τ nonpar by the coefficient MdM(q)−1 changes its orig-
inal effect in the closed-loop dynamics of FL1 and FL2.

In the following, unmodeled viscous joint friction shall
serve as an example of τ nonpar, that is τ nonpar = −Dfricq̇

with the positive definite matrix Dfric ∈ Rn×n containing
the friction coefficients. The analysis of the time deriva-
tives ṠPD+ and ṠFL1 of the respective physically motivated
storage functions for the regulation case provides an intu-
itive interpretation of the practical effect of τ nonpar:

ṠPD+ = q̇T τ ext − q̇T (D +Dfric) q̇ , (28)

ṠFL1 = q̇T τ ext − q̇TDq̇ − q̇TMdM(q)−1Dfricq̇ . (29)

Equation (28) shows that the term −q̇TDfricq̇ supports
the passivity properties of PD+ and leads to additional
dissipation, as also described by the dissipative nature of
joint friction itself. That does not apply to (29) because
the matrix MdM(q)−1Dfric is not necessarily positive
definite. It can potentially even destabilize the closed-
loop dynamics as discussed in [33]. One can proceed anal-
ogously for FL2 as done for FL1 to obtain similar impli-
cations. In general, all unmodeled parasitic effects are al-
tered by the nonlinear, configuration-dependent coefficient
MdM(q)−1 in case of FL1 and FL2.

On the other hand, one can account for paramet-
ric model uncertainties in the analysis of the closed-
loop behavior by using the estimated dynamic quantities3

M̂(q), Ĉ(q, q̇), and ĝ(q) in the control laws (3), (5), and
(7). The parametric modeling errors can be formulated as:

M̃(q) = M̂(q)−M(q) , (30)

C̃(q, q̇) = Ĉ(q, q̇)−C(q, q̇) , (31)

g̃(q) = ĝ(q)− g(q) . (32)

In the following, dependencies on q, q̇ are omitted in the
notations for the sake of clarity. The nominal closed-loop
dynamics are influenced by disturbance terms appearing
on the right-hand sides of (4), (6), and (8), respectively:4

γPD+,par = M̃q̈d + C̃q̇d + g̃ , (33)

γFL1,par = γFL2,par +MdM
−1M̃M−1

d τ ext , (34)

γFL2,par = MdM
−1(M̃q̈d + C̃q̇ + g̃)

+MdM
−1M̃M−1

d (−Ke−Dė) . (35)

Note that the influence of γPD+,par is rather limited in
practice. Although the first two terms in (33) depend on
the actual states q, q̇, they basically describe the common
influence of feedforward errors in combination with mod-
eling uncertainties. If the regulation case is considered,
for example, then (33) boils down to inaccurate gravity
compensation. The feedback linearizations FL1 and FL2
show a potentially more critical influence of modeling er-
rors. Similar to the previous discussion of non-parametric
uncertainties, the impact of modeling errors in FL1 and

3Without loss of generality we only consider uncertainties of dy-
namic parameters in this work.

4under the assumption of ideal feedback of τ ext. The analysis of
error propagations related to τ ext is conducted in Section 3.5.
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FL2 can be amplified through MdM(q)−1. Furthermore,
even in the regulation case, the ideal closed-loop dynamics
can be affected by disturbances that depend on q̇. In view
of (34), the feedback of τ ext in case of FL1 can also be dis-
torted due to modeling errors. That acts as an additional
disturbance term even with ideal feedback of τ ext.

3.5. Propagation of errors in the feedback of τ ext

It is well known that the feedback of external forces and
torques (FL1) can be problematic regarding availability
and accuracy of these quantities. Therefore, it is highly
relevant in practice how inaccuracies affect the closed-loop
dynamics. To analyze the propagation of errors in these
terms, one can analyze (5) for the case that the term τ ext

is actually only an estimate τ̂ ext which invovles the real
disturbance τ ext and the error τ̃ ext:

τ̂ ext = τ ext + τ̃ ext . (36)

Applying the FL1 control law in consideration of (36)
yields

Mdë+Dė+Ke = τ ext +
(
I −MdM(q)−1

)
τ̃ ext︸ ︷︷ ︸

Effective error

. (37)

Now one can observe the propagation of errors originat-
ing from the feedback of the measured/estimated exter-
nal forces and torques. The “closer” the desired inertia
Md and the natural one M(q) are, the smaller the in-
fluence of τ̃ ext is. If Md = M(q), the term τ̃ ext will
have no effect in (37) at all.5 Since the desired inertia in
FL1 is kept constant, significant differences between Md

and M(q) can arise in the workspace of the robot which
can amplify the effect of τ̃ ext. An example is shown in
Fig. 2. The constant joint positions q∗ which determine
Md = M(q∗) are illustrated in the left picture. This con-
figuration describes an exemplary standard pose in the
workspace of the robot where it is usually operated since
the Jacobian matrix w. r. t. the six Cartesian end-effector
coordinates has proper singular values and manipulabil-
ity measure [43]. For the following analysis, an error of
τ̃ ext = (1, 0, 0, 0, 0, 0, 0)T Nm is assumed. To investigate
the effect of τ̃ ext in FL1, its instantaneous influence on
the accelerations is analyzed, that is, (37) is rewritten as

ë = (M−1
d −M(q)−1)τ̃ ext +M−1

d (τ ext−Dė−Ke) (38)

and the mapping from τ̃ ext to ë is examined by means of
the corresponding amplification factor (M−1

d −M(q)−1).
While the effect is, by definition, zero in the left con-
figuration, the other two configurations on the right re-
sult in large accelerations up to almost 90 rad/s2 in two
joints. This excessive actuation in the first and third
joint can be intuitively traced back to the small inertia

5Note that Md = M(q) implies that no feedback of external
torques is present in (5). Thus, no errors can be propagated.

0
0
0
0
0
0
0

1.7
-0.1
-2.9
0.4
1.1
0.9
-0.7

-89.0
0.1
88.1
0.6
1.2
0.9
-0.7

*

e rad
s2

Figure 2: Error acceleration with FL1 due to inaccuracies in the
feedback of τ ext at the example of τ̃ ext = (1, 0, 0, 0, 0, 0, 0)T Nm.
The configuration q∗ (marked by *) corresponds to the desired in-
ertia Md = M(q∗).

of the second link in the “upright” configuration of the
manipulator or the inversion of M(q) in (38), respec-
tively. Note that in the joint configuration on the right-
hand side in Fig. 2, the single estimation error of 1 Nm
in the first joint leads to a resulting effective error torque
of (−88,−13,−27, 14,−1, 0, 0)T Nm. Without feedback of
τ ext, as in the PD+ and FL2 cases, there is no such effect
at all.

3.6. Configuration-dependent scaling of the control gains
for feedback quantities

All three control laws (3), (5), and (7) can be rewritten
in a form where the effective control gains for e and ė are
separated, as summarized in the first two columns of Ta-
ble 1. While the gains in case of PD+ control are constant
and represent the stiffness and damping parametrization,
both FL1 and FL2 involve configuration-dependent terms.
Similar to the discussion in Section 3.3, M(q)M−1

d can
have a large influence in practice. In [26] it is stated that
one of the main reasons for the degraded control perfor-
mance of OSF approaches during highly dynamic motions
is an imprecise model of M(q) and its “pre-multiplication
of negative feedback terms”. The latter also applies to the
control laws of FL1 and FL2.

The feedback action w. r. t. the tracking errors might
be significantly increased or reduced in the case of
FL1/FL2, depending on the eigenvectors and eigenvalues
of M(q)M−1

d . In the experimental part (Section 4), an
example will be shown wherein the gains in specific di-
rections are increased by more than 340 %. Although the
closed-loop dynamics (6) and (8) exhibit an ideal behavior
in theory, an excessive scaling can be problematic in prac-
tice (reaching of torque limits, for example) and might
ultimately destabilize the closed loop as it will also be
demonstrated in the experiments. Moreover, the reduc-
tion of the feedback control gains in other directions (e. g.,
90 % reduction in the experiments) can render the system
insensitive to particular error combinations.
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Table 1: Effective control gains for feedback quantities

e ė τ ext

PD+ −K −D
FL1 −M(q)M−1

d K −M(q)M−1
d D M(q)M−1

d − I
FL2 −M(q)M−1

d K −M(q)M−1
d D

Large inertiaSmall inertia

(a) (b)

Figure 3: Comparison of different inertias w. r. t. the first joint. (a)
configuration q∗ with inertia Md = M(q∗); (b) configuration q(T )
with inertia M(q(T )) at time t = T .

One can isolate the feedback control gain for τ ext in the
FL1 control law (5), as shown in Table 1. Even in case
of accurate feedback of τ ext, which implies τ̃ ext = 0, the
active scaling of the apparent inertia can lead to infeasible
commanded joint torques. An intuitive example is illus-
trated in Fig. 3 utilizing the first two configurations from
Fig. 2. Analogously, (a) depicts the configuration q∗ that
determines Md = M(q∗), while (b) shows the configura-
tion q(T ) at the current time instant T to be investigated.
One can intuitively see that the inertia about the axis of
the first joint (vertical) is larger in q(T ) than in q∗. Hence,
when interacting with the robot in (b), the physical inertia
has to be actively reduced in case of FL1 to achieve the
same inertial response as in (a). In the example at hand,
the eigenvalues of this gain matrix M(q(T ))M(q∗)−1 − I
are in the range between -0.5 and 6.4. Assuming an iso-
lated external interaction of 20 Nm exerted on the first
joint, for example, one obtains

(
M(q(T ))M(q∗)−1 − I

)


20
0
0
0
0
0
0

Nm ≈


123.7
−15.2
−1.4
7.4
−0.9
−0.1
−0.5

Nm .

(39)
Besides the cross-couplings in the other joints, the exces-
sive amplification from 20 Nm (measured/estimated) to
almost 124 Nm (fed back) in the first joint can lead to
problems concerning feasibility of the commanded joint
torques. Two common examples are:

• The model (1) assumes an unrestricted torque range
for the commanded torque τ . Joint torque limits exist
in practice.

• The model (1) assumes an ideal torque source τ . If an
underlying joint torque controller is utilized to provide

this control input, such as in most torque-controlled
lightweight robots [18], a limited bandwidth has to be
considered.

Both exemplary cases can lead to large deviations between
the dynamic model (1) and the hardware, jeopardizing the
performance or the stability of the closed loop.

Note that there exist quadratic programming (QP)
based control methods which explicitly consider actuation
limits, e. g., in [44, 32]. However, such constraint-aware
QP formulations usually jeopardize passivity considera-
tions and guarantees, if applicable at all.

4. Experimental Comparison

The experiments are conducted on a commercially avail-
able KUKA LWR IV+ robot [45] with seven revolute DOF
as shown in Fig. 17. Although (1) is commonly used on
such systems, they actually belong to the class of elastic-
joint robots where an underlying torque controller is em-
ployed to actively scale down the apparent motor inertia,
reduce the effect of motor friction, and provide the torque
interface τ to be accessed in (1). No additional friction
identification and compensation algorithm is used since the
downscaling of the apparent joint motor inertias by factors
in the range of 4.5–8.2 implicitly results in the reduction
of motor friction effects by the same amount [46]. More-
over, as justified in [47], joint damping and link-side fric-
tion can be neglected for robots such as the one used here.
This underlying controller [18, 46] runs in a 3 kHz loop
and requires feedback of the measured joint torques. The
controller parameters are set by the manufacturer KUKA
and describe the default setup. The rigid-body outer loop
to control (1) via PD+/FL1/FL2 runs at 1 kHz. It has
to be noted that motor-side positions/velocities instead
of the link-side coordinates are used in the outer loop in
practice. The assumption of (1) can be justified with the
large stiffness in the joints of the considered KUKA LWR
IV+. The dynamic model is based on the data provided
by the manufacturer and internal CAD data. Moreover,
both the model of the inertia matrix and the gravity terms
have been empirically updated to better match the specific
characteristics of this particular system. For more infor-
mation on the dynamic parameters of such manipulators
the reader is referred to [48].

In the following experiments, the external torques are
estimated through the widely used momentum-based dis-
turbance observer [49] with an observer gain of 40 s−1.6

The case studies contain several parts. First, the control
performance for trajectory tracking in free motion is inves-
tigated (experiments #1a - #1e). Afterwards, the contact
behavior is analyzed during interaction between the robot
and its environment (experiments #2a - #2c). For the sake
of overview, Table 3 briefly describes all experiments.

6As analyzed in [47], typical and practical values of the observer
gain in such torque-controlled robots are between 25 s−1 and 75 s−1.
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Figure 4: Experiment #1a: Comparison of the control performance in free-motion trajectory tracking. The feedback linearizations FL1 and
FL2 are evaluated with Md = M(q∗) and Md = I each. The joint stiffness and damping values are set to K = diag(150, . . . , 150) Nm/rad,
D = diag(15, . . . , 15) Nms/rad (diagrams 2, 3) and set to K = diag(300, . . . , 300) Nm/rad, D = diag(20, . . . , 20) Nms/rad (diagrams 4 and 5).
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Table 2: Comparison of the theoretical properties of PD+ control and feedback linearization control (FL1 & FL2)

Property PD+ FL1 (w/ τ ext feedback) FL2 (w/o τ ext feedback)

Control feedback variables e, ė e, ė, τ ext e, ė

Tuning parameters K,D K,D,Md; poles and Md or K poles; M−1
d K,M−1

d D

Passivity and stability Passive, asymptotic Passive, exponential Not passive, exponential

Perceived stiffness and inertia K, M(q) K, Md M(q)M−1
d K, M(q)

Effective control gains for e, ė −K,−D −M(q)M−1
d K,−M(q)M−1

d D −M(q)M−1
d K,−M(q)M−1

d D

Effective control gains for τ ext - M(q)M−1
d − I -

Influence of τnonpar, see (24) Not altered Distorted by MdM(q)−1 Distorted by MdM(q)−1

Influence of M̃(q), see (30) Depending on q̈d, Depending on e, ė, q̈d, τ ext, Depending on e, ė, q̈d,

not altered distorted by MdM(q)−1 distorted by MdM(q)−1

Influence of C̃(q, q̇), see (31) Depending on q̇d, Depending on q̇, Depending on q̇,

not altered distorted by MdM(q)−1 distorted by MdM(q)−1

Influence of g̃(q), see (32) Not altered Distorted by MdM(q)−1 Distorted by MdM(q)−1

Table 3: Overview of the experiments

Exp. Description

#1a Tracking, fast motion, setting of stiffness/damping/(inertia)

#1b Tracking, moderate motion, instability with FL1 and FL2

#1c Tracking, moderate motion, instability with PD+

#1d Tracking, fast motion, maximum control gains

#1e Step response, moderate control gains

#2a Slow interaction, application of (virtual) external torque

#2b Slow interaction, physical contact

#2c Perceived inertia, application of (virtual) external torque

4.1. Experiment #1a (tracking, fast motion, setting of
stiffness/damping/(inertia))

In experiment #1a, highly dynamic desired joint-space
trajectories are executed as shown in Fig. 4 (top dia-
gram), yielding maximum velocities at the end-effector
of up to 1.52 m/s. The implementation covers the PD+
and both considered types of feedback linearizations. For
both FL1 and FL2, two desired inertia parametrizations
are used: Md is set to M(q∗) (see Fig. 2, left pic-
ture) and I. While the first inertia distribution is cer-
tainly closer to the natural one, the identity matrix is
often used in robotics and especially in the field of in-
verse dynamics [26, 50, 30]. Initially, the stiffness and
damping values are set toK = diag(150, . . . , 150) Nm/rad,
D = diag(15, . . . , 15) Nms/rad. The results are depicted
in the diagrams 2 and 3 of Fig. 4. Therein, the Euclidean
norms of the joint position and velocity errors are plot-
ted, respectively. One can observe that the PD+ features
the smallest maximum errors and performs slightly better
than FL1 and FL2 for Md = M(q∗). However, the de-
sired inertia of Md = I leads to significantly larger errors
in the positions and velocities which reflects the theoretical
findings obtained in Section 3. Due to deviations between
the natural, configuration-dependent inertiaM(q) and the
desired inertia Md, the feedback control gains for stiff-
ness and damping are scaled through pre-multiplication

Table 4: Minimum and maximum scaling coefficients in the feedback
control gains in FL1/FL2 during experiment #1a

Scaling of control gains
Md = M(q∗) Md = Ivia eigenvalues of

M(q)M−1
d , (5) and (7)

Maximum reduction
0.22 0.09

(red. by 78%) (red. by 91%)

Maximum amplification
1.43 4.41

(incr. by 43%) (incr. by 341%)

by M(q)M−1
d , see (5) and (7). In Table 4, the mini-

mum and maximum eigenvalues of M(q)M−1
d during ex-

periment #1a are listed to get an insight into this scal-
ing action. For Md = M(q∗), the scaling ranges from
a reduction by 78 % up to an increase by 43 %. In other
words, depending on the current configuration q, the nom-
inal feedback gains for e and ė may be reduced or in-
creased. Selecting Md = I can lead to a potentially even
more conservative but also more aggressive control action.
In some joint configurations, the feedback gains for po-
sition and velocity errors are reduced by 91 %, while the
gains are increased by up to 341 % in other cases. Depend-
ing on the selected nominal values for stiffness and damp-
ing, such a scaling may cause instability in practice as will
be shown later. A similar behavior as the one in the dia-
grams 2 and 3 can be obtained for higher impedance spec-
ifications, namely K = diag(300, . . . , 300) Nm/rad and
D = diag(20, . . . , 20) Nms/rad. The results are depicted
the diagrams 4 and 5 of Fig. 4. One can see that the
errors in all approaches are reduced but the relative dif-
ferences between the controllers remain. That similarity
can also be observed in Fig. 5 where the root mean square
(RMS) and maximum values of all error norms in Fig. 4
are condensed. As expected, higher values for K (with
proper choice of D) tendentially yield smaller tracking er-
rors. Yet, one can summarize that the PD+ features the
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best performance in all cases, and Md = M(q∗) is su-
perior to Md = I in both FL1 and FL2. Nevertheless,
it must be noted that by choosing a specific Md to en-
sure large but feasible eigenvalues of M(q)M−1

d , FL1 and
FL2 can potentially feature an even higher tracking per-
formance than PD+ control. However, such a case can be
intuitively interpreted as an increased effective value of K
and D for PD+ control. Therefore, an obvious and simple
alternative for FL1/FL2 is to directly increase K and D
instead of achieving this effect by shaping Md.

4.2. Experiment #1b (tracking, moderate motion, insta-
bility with FL1/FL2)

In experiment #1b the stability problems of the feed-
back linearizations are experimentally verified which have
been identified in Section 3.6 and originate from the po-
tentially problematic scaling of the feedback gains for e
and ė through the coefficient M(q)M−1

d . Instead of the
forward-backward-forward-backward motion from experi-
ment #1a, only one forward-backward motion is executed
as desired joint-space trajectory in experiment #1b. More-
over, this reference trajectory is slowed down for the sake
of safety. The control gains are modified as follows:

K = diag(1500, 1500, 150, 150, 150, 150, 150) Nm/rad ,

D = diag(90, 90, 15, 15, 7, 7, 7) Nms/rad .

Thus, the stiffness and damping values for the largest
joints (1 and 2) are increased, where the values for the
other joints are kept constant or get reduced. In the fol-
lowing, the behaviors in FL1 and FL2 with the common
choice Md = I are investigated. As a basis for the com-
parison, the PD+ is also considered with the same param-
eters for K and D.
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illustrated through the commanded joint torques

In Fig. 6, the position errors in the joints 2 and 4 are
depicted because they indicate problems in terms of sta-
bility in case of FL1 and FL2 control. While the PD+
yields a stiff but stable behavior, both feedback lineariza-
tions lead to significant oscillations during the transient,
especially in joint 2.7 These vibrations can also be seen in
the commanded joint torques, see Fig. 7. While the PD+
shows proper torques in all joints, high-frequency oscilla-
tions occur in both FL1 and FL2. The reason for these
problems can be found in the right column of Table 4,

7The other five joint position errors (1, 3, 5, 6, and 7) are not
depicted here since no noteworthy oscillations occur in these signals.
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which can also be consulted here due to the comparable
desired joint-space trajectories. The maximum eigenvalue
of M(q)M−1

d reaches 4.41 at about 2.5 s, meaning that
in one specific direction, the feedback gain is increased by
about 341 %. Consulting the respective eigenvector reveals
the distribution

(0.03,0.94, 0.03, -0.33, 0.01, 0.02,−0.01)T .

One can clearly see that the dominating parts relate to
joint 2 (0.94) and joint 4 (-0.33). For that reason the
largest oscillations appear in joint 2, followed by joint 4,
as also observed in Fig. 7. These vibrations are not due
to torque saturations but limitations in the torque band-
width. Interestingly, the aggressive scaling of the feedback
gains leads to the opposite effect in other directions at the
same time. Simultaneously, that is, at about 2.5 s, the in-
stantaneous minimum eigenvalue of M(q)M−1

d is about
0.09 with the corresponding eigenvector

(0.01, 0, 0.1,−0.03, -0.76,−0.02,0.64)T .

Herein the joints 5 and 7 dominate. As a result, the feed-
back control gains in this direction are significantly re-
duced. While that does not necessarily jeopardize the sta-
bility of the closed loop, it can lead to large deviations
between desired and actual behavior in practice.

4.3. Experiment #1c (tracking, moderate motion, insta-
bility with PD+)

In experiment #1c the stability problems of the PD+
controller (Section 3.1) are experimentally verified. The
desired trajectories from experiment #1b are executed.
One of the main advantages of the feedback linearization
is the possibility to assign constant, desired closed-loop
poles. These are set to−25 in all seven joints withMd = I
in the following. Such eigenvalues represent a practical
choice for the considered type of lightweight robots [44].

The top diagram of Fig. 8 shows the results of both feed-
back linearizations FL1/FL2. Moreover, the results for the
PD+ controlled robot are shown wherein the constant val-
ues for K and D, taken from the feedback linearizations,
are directly used. The constant desired closed-loop poles
cannot be realized in case of the PD+ by definition since
the required constant inertia Md is not implemented but
the variable, natural one M(q) is conserved. One can
see that the PD+ controlled system shows oscillations in
the Euclidean norm of all joint position errors. These vi-
brations are primarily due to the fact that the effective
feedback gains in the joints close to the end-effector are
too high for the respective joint torque controllers. As
depicted in the second diagram, all effective gains are set
to 625 Nm/rad, exceeding the limits of some of the joints.
That leads to at least one aggressive local pole that at-
tains values of about -544 as can be observed in the third
diagram.8 The eigenvectors which correspond to these ag-

8For PD+ control the closed-loop poles are locally approximated
via the quasi-static, interaction-free version of (4) in 25 ms steps,
i. e., only based on M(q),D,K, with C(q,0) = 0 and τ ext = 0.

Table 5: Maximum controller gains (experiment #1d), empirically
chosen, with Md = I for FL1/FL2

Joint PD+ FL1/FL2

number (stiffness, damping†) (stiffness, damping ratio, poles)

1 1500 Nm/rad, 0.5-0.7 1500 Nm/rad, 0.71, -27.5±27.3i

2 1500 Nm/rad, 0.5-0.7 900 Nm/rad, 0.50, -15.0±26.0i

3 1000 Nm/rad, 0.5-0.7 1225 Nm/rad, 0.57, -20.0±28.7i

4 1000 Nm/rad, 0.5-0.7 900 Nm/rad, 0.50, -15.0±26.0i

5 300 Nm/rad, 0.5-0.7 1225 Nm/rad, 0.71, -25.0±24.5i

6 300 Nm/rad, 0.5-0.7 1225 Nm/rad, 0.71, -25.0±24.5i

7 300 Nm/rad, 0.5-0.7 1225 Nm/rad, 0.71, -25.0±24.5i

† The damping refers to the damping ratios in the modal directions
of the coupled dynamics. That includes the damping ratios: 3× 0.5,
4× 0.7.

gressive local PD+ poles are primarily related to the men-
tioned joints close to the end-effector, which have to ac-
celerate significantly lower inertias than the first joints of
the manipulator. These joints can be directly identified
when investigating the resulting commanded joint torques
(fourth diagram), indicating that the critical signals relate
to the fifth and sixth joint.

In case of FL1 and FL2, the constant closed-loop poles
lead to variable and largely different effective feedback
gains between 56 Nm/rad and 2753 Nm/rad. Even the
largest gain does not jeopardize stability since the cor-
responding eigenvector mainly relates to the first joints of
the manipulator, which can handle such high values bet-
ter. The latter can also be observed in the fifth and sixth
diagram of Fig. 8 that features proper joint torque com-
mands. This experiment demonstrates one of the major
benefits of FL1/FL2 control. The feedback linearization
implicitly chooses adequate effective gains in the joints by
incorporating the current inertia distribution to implement
desired closed-loop poles.

4.4. Experiment #1d (tracking, fast motion, maximum
control gains)

While both experiments #1b and #1c highlighted the
occurrence of destabilization due to inappropriate gain de-
sign, a comparison of the individually best tracking perfor-
mances of the investigated methods is still missing. For the
following experiment #1d, the controller gains for PD+
and FL1/FL2 control have been chosen by their individu-
ally most appropriate gain selection procedure. In Table 5,
these respective values are listed. In case of the PD+,
the stiffness values have been empirically chosen according
to the capabilities of the hardware (motors in the joints,
gear ratios, inertias to accelerate). Therefore, the first
joints can handle larger stiffness values, whereas the gains
in the last joints are significantly smaller. The damping
has been implemented based on the double diagonalization
method [51] which realizes damping ratios in the modal
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Figure 8: Exp. #1c: Instability with PD+ due to direct adoption
of K,D from FL1/FL2. The feedback linearizations have been
parametrized with Md = I and all closed-loop poles set to −25.
The approximated (local) closed-loop poles computed and displayed
in 25 ms steps are shown in the third plots. The commanded joint
torques for PD+ control indicate instability, particularly due to the
signals in the joints 5 and 6.

directions of the nonlinear dynamics9. It has to be noted
that these damping ratios (3× 0.5, 4× 0.7) do not directly
correspond to the separate joint motions due to the nat-
ural coupling in the inertia matrix. In case of FL1/FL2

9computed for the quasi-static, interaction-free version of the
equations of motion (C(q,0) = 0, τ ext = 0) and updated with 1 kHz.

control, the closed-loop poles of the decoupled dynamics
have been empirically specified and Md = I has been set.
The corresponding damping ratios have been chosen such
that the poles lie as far away from the real axis as pos-
sible without inducing vibrations. The resulting stiffness
values and damping ratios of (6) and (8) are listed in Ta-
ble 5 and supplemented by the locations of the poles. The
same, highly dynamic desired joint-space trajectory as in
experiment #1a (Fig. 4, top diagram) is applied.

In Fig. 9 all position errors are compared. The PD+ con-
troller appears to perform best in most of the joints. Note
that in the first joint, the maximum velocities are reached
four times, at about ±2.09 rad/s at t ≈ 1, 2.5, 4, 5.5 s,
marked by the shaded areas in the top diagram of Fig. 9.10

That results in the corresponding position errors in joint
1. One can analyze the influence on the remaining six joint
position errors in the diagrams 2–7 of Fig. 9. While the
errors in the first joint do not lead to noticeable actions
and effects on the other joints with the PD+, both FL1
and FL2 show direct reactions. Especially in the joints 3
and 4, one can identify errors in the joint positions which
are induced by the errors in the first joint. This is a di-
rect consequence of the cross-couplings of the feedback of
the signals e, ė in the control laws (5) and (7) through the
coefficient M(q)M−1

d . Although the theory demands a
nominal decoupling for the trajectory tracking case, the
FL1/FL2 control laws lead to dynamic couplings in the
presence of unmodeled effects in practice (here: velocity
saturations).

A more concise overview of the tracking performance
is provided in Fig. 10, wherein the Euclidean norms of
all joint position and velocity errors are plotted, respec-
tively. While the differences in the joint velocity errors
are rather small, the tracking performance in terms of the
position errors shows a better behavior with PD+ con-
trol. In the third plot of Fig. 10, the control input power
q̇T τ is depicted. One can observe that most of the time
the power exchanges for PD+ and FL1/FL2 are almost
identical. However, during the times of joint velocity sat-
uration in joint 1 (Fig. 10, shaded areas in top diagram at
t ≈ 1, 2.5, 4, 5.5 s), the control action in case of FL1/FL2
requires more control input power and still yields an infe-
rior tracking performance. The bottom diagram in Fig. 10
shows the minimum and maximum real parts of the closed-
loop poles for FL1/FL2 and PD+, respectively. Interest-
ingly, at least one PD+ pole has a real part of about -45.
However, it has to be noted that the eigenvectors corre-
sponding to the respective poles are different for FL1/FL2
and PD+. Furthermore, the PD+ poles are only local
approximations indicating a tendency, but they do not ac-
curately represent the nonlinear dynamics.

The control input power from the third diagram in
Fig. 10 is divided in two components in Fig. 11, namely

10The maximum velocities are due to back electromotive forces. To
avoid reaching these limits, one can use conservative values for the
trajectory design, for example ±{1.9, 1.9, 2.2, 2.2, 3.6, 3.2, 3.2} rad/s.
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Figure 9: Exp. #1d (tracking comparison): The maximum control
gains have been empirically chosen for PD+ and FL1/FL2. The
position errors in all joints are depicted.

one related to the compensation/‘+’ action and one re-
lated to the pure PD control part.11. When comparing
PD+ and FL2 one can see that the compensation action
in FL2 and the ‘+’ part in the PD+ are almost identical.
Only FL1 reveals deviations which can be traced back to
the feedback of τ ext. Note that the whole motion in ex-
periment #1d is performed in free motion. Therefore, τ ext

should ideally be zero. Consequently, the following con-
clusions are based on the sole comparison between PD+
and FL2.12 The main differences are due to the PD parts

11The feedback of τ ext in FL1 is contained in the compensation
action to obtain an isolated signal for the PD part (related to the
feedback of e, ė) in the bottom diagram of Fig. 11.

12In practice, the erroneous compensation of τ ext in FL1 is coun-
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Figure 10: Exp. #1d (tracking comparison): The maximum control
gains have been empirically chosen for PD+ and FL1/FL2, and the
Euclidean error norms in the positions and velocities are compared.
The control input power in the third diagram is given by q̇T τ . The
bottom diagram shows the (approximated, local) closed-loop poles
computed and displayed in 25 ms steps.

(Fig. 11, bottom diagram), that is, the feedback of the po-
sition and velocity errors, respectively. Therefore, one can
conclude that the PD control components in (3) and (7)
are primarily responsible for the differences in the track-
ing performance and the control input powers. Moreover,
the bottom diagram in Fig. 11 confirms the justification
presented above that the cross-coupling via M(q)M−1

d

in the FL2 control law leads to the deterioration and the
higher power consumption. Although FL2 should be the-
oretically superior, the desired dynamic decoupling of the
closed-loop dynamics (8) for τ ext = 0 cannot be achieved
to a sufficient degree. Lastly, Figure 12 shows the com-
manded torques for three exemplary joints with identical,
larger, and smaller joint stiffnesses of PD+ and FL1/FL2
control. While a large joint stiffness in the PD+ con-
troller tendentially leads to increased control actions in

terbalanced by control actions in the PD component to achieve com-
parable tracking performance as FL2 during free motion, cf. Fig. 10
(top plot).
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in joint 6 it is smaller.

this very joint (cf. experiment #1c), that effect does not
apply to FL1/FL2 as can be observed in Fig. 12 (bottom
diagram). That is again due to the scaling and inter-joint
cross-couplings of the feedback control gains via the coeffi-
cient M(q)M−1

d in FL1/FL2, as discussed in Section 3.6.
Therefore, a comparatively large stiffness of 1225 Nm/rad
as present in the last joint (Fig. 12, bottom plots) does not
necessarily result in a severe control action there.

4.5. Experiment #1e (step response, moderate control
gains)

In addition to the trajectory tracking scenarios in the
previous experiments, step responses are applied in exper-

Table 6: Controller gains for experiment #1e, empirically chosen,
with Md = I for FL1/FL2

Joint PD+ FL1/FL2

number (stiffness, damping†) (stiffness, damping ratio, poles)

1 275 Nm/rad, 1.0 100 Nm/rad, 1.0, -10.0

2 275 Nm/rad, 1.0 100 Nm/rad, 1.0, -10.0

3 100 Nm/rad, 1.0 100 Nm/rad, 1.0, -10.0

4 100 Nm/rad, 1.0 100 Nm/rad, 1.0, -10.0

5 15 Nm/rad, 1.0 100 Nm/rad, 1.0, -10.0

6 15 Nm/rad, 1.0 100 Nm/rad, 1.0, -10.0

7 15 Nm/rad, 1.0 100 Nm/rad, 1.0, -10.0

† The damping refers to the damping ratios in the modal directions
of the coupled dynamics.

iment #1e to investigate the quality of the dynamic de-
coupling achieved by FL1/FL2. The controller gains are
shown in Table 6 and have been chosen smaller than in
experiment #1d so that the commanded torques are fea-
sible after the steps without reaching the torque limits. In
FL1 and FL2, the desired inertia is set to Md = I. Af-
ter specification of the poles in both feedback linearization
approaches (right column in Table 6), the gains for PD+
(left column) have been determined in a way such that
the commanded torques in the joints of the steps are sim-
ilarly high. The initial configuration for the experiment
is again described by M(q∗), i. e., the starting configura-
tion in Fig. 4. The three applied steps are shown in the
top diagram of Fig. 13 and cover the following scenarios
to provide a fair comparison. In joint 1, the natural in-
ertia in the initial configuration M(q∗) is larger than the
one specified for FL1/FL2 (2.75 vs. 1 kg m2). In joint 2,
the values are similar (0.89 vs. 1 kg m2), and in joint 5,
the natural inertia is smaller (0.15 vs. 1 kg m2).13 The
diagrams 2–4 in Fig. 13 show the Euclidean norms of all
position and velocity errors as well as the overall control
input powers. In contrast to the tracking case in the pre-
vious experiments, the PD+ leads to larger input pow-
ers after the steps. That can be examined more closely
on the basis of the individual joint response in Fig. 14.
The blue shaded areas illustrate the steps, while the areas
shaded in yellow demonstrate the influence in the other
joints. Especially after the first step, one can clearly ob-
serve a successful decoupling in the joints 3 and 4 with
both feedback linearizations. In Fig. 15 one can identify
the corresponding joint torque commands that lead to this
decoupling action. After the steps, both FL1 and FL2 re-
act faster in the other joints than PD+ control, in order
to prevent the naturally induced couplings (mainly due to
the couplings in M(q)) to affect the other joints. This
control action in FL1/FL2 leads to reduced control input
powers as already shown in the bottom diagram of Fig. 13.
Summarized, these step responses show that the diagonal-
ization of the inertia matrix and its corresponding joint

13The (1,1), (3,3), and (5,5) elements ofM(q∗) are consulted here.
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Figure 13: Exp. #1e (step responses): Three steps are applied in the
joints 1, 3, and 5. In joint 1, FL1/FL2 scale down the inertia (from
2.75 to 1 kg m2), in joint 3 it is more or less preserved (from 0.89 to
1 kg m2), and in joint 5 it is scaled up (from 0.15 to 1 kg m2).

decoupling can be successfully accomplished by the feed-
back linearizations. Interestingly, the decoupling appears
to be rather effective in step responses (experiment #1e)
but it deteriorates the control performance during highly
dynamic trajectory tracking (experiment #1d). The rea-
son might be traced back to the fact that the dynamic
model (1) is less precise during fast motions where various
joints are involved simultaneously.

4.6. Experiment #2a (Slow interaction, application of
(virtual) external torque)

In the experiments #2a and #2b the effective con-
tact stiffness is investigated. In experiment #2a a “vir-
tual” external torque is added to the nominal com-
manded control torque leading to errors in the joint
positions, while in experiment #2b a physical contact
is enforced and the assessment of the effective stiff-
ness is conducted by relying on the estimated exter-
nal torque. In both scenarios, the controllers are
parametrized as follows: K = diag(150, . . . , 150) Nm/rad,
D = diag(15, . . . , 15) Nms/rad, andMd = M(q∗) for FL1
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Figure 14: Exp. #1e (step responses): The individual joint responses
show that FL1 and FL2 largely succeed in dynamically decoupling
the joints. In case of the preservation of the natural inertia (PD+),
the application of the steps leads to larger cross-couplings seen as
position errors in the other joints.

and FL2, analogous to experiment #1a. Figure 16 de-
picts the results for experiment #2a with a virtual ex-
ternal torque of -15 Nm exerted on joint 1. The distur-
bance observer output in Fig. 16 (bottom diagram) reflects
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Figure 15: Exp. #1e (step responses): The torque commands shown
here correspond to the joint behaviors depicted in Fig. 14.

that. The error in the position of joint 1 (top diagram)
shows that the PD+ and FL1 adequately implement the
desired stiffness of 150 Nm/rad. However, as analyzed in
Section 3.3, FL2 control leads to a wrong contact stiff-
ness due to the missing feedback of the estimated external
torque. In the considered case, the error in the stiffness
amounts to about 48 %. Moreover, small position errors
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Figure 16: Exp. #2a (contact stiffness): Ideally, the external torque
of −15 Nm applied on joint 1 and the corresponding stiffness of
150 Nm

rad
should lead to an error of −0.1 rad in joint 1 and zero error

in joint 2.

also occur in joint 2. Here, the PD+ performs best but
also leads to minor steady-state errors. Nevertheless, both
feedback linearizations show larger errors, while the ones
in case of FL2 originate from the external torque building
up until about 3 s. In fact, that is not surprising as the
distorted contact stiffness of M(q)M−1

d K from (22) leads
to cross-couplings.

4.7. Experiment #2b (Slow interaction, physical contact)

In experiment #2b the manipulator is driven into con-
tact as illustrated in Fig. 17. As the largest external torque
is exerted in joint 1, the evaluation of the effective stiffness
is conducted in this joint.14 In Fig. 18, the position errors
in joint 1 and the respective estimated external torques
are plotted. The effective contact stiffness is evaluated
under static conditions at t ≈ 4 s. Taking into account the
desired joint stiffness of 150 Nm/rad, the PD+ and FL1
approaches perform well with ≈147 Nm/rad (≈2% error)
and ≈155 Nm/rad (≈3% error), respectively. As expected,
FL2 is not able to realize the desired stiffness and shows
an effective value of 183 Nm/rad (≈22% error).

In Table 7 the minimum and maximum eigenvalues of
M(q)M−1

d K are listed for both experiments #2a and
#2b in order to analyze the resulting stiffness for FL2.
One can see that, depending on the joint configuration and
the particular distribution in e, the perceived stiffness can
be significantly smaller or larger in fact.

14Note that the external torques estimated in all other joints are
smaller than ±7 Nm, leading to high imprecisions when assessing the
corresponding joint-specific stiffnesses during the experiment.
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Contact with
wall after joint 6

Figure 17: Setup for experiment #2b: After the sixth joint, a phys-
ical contact between the robot and its environment is enforced.
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Figure 18: Exp. #2b (contact stiffness): An external force is exerted
through physical interaction close to the end-effector. Due to the
involvement of all joints, the static joint positions are different in all
controllers. The evaluation of the effective stiffness is conducted by
means of the first joint at t ≈ 4 s, due to the sufficiently large acting
external torque.

Note that both experiments #2a and #2b refer to the
external torque observer to assess the achieved contact
stiffness. Thus, FL1 is preferred in this assessment by def-
inition as it uses the observer output in (5), in contrast to
the PD+ in (3). In practice the observer itself is prone to
modeling errors such that the “ground truth” can be rather
found in the results of the PD+ control because in quasi-
static situations (e. g., at t ≈ 4 s in both experiments) only
the gravity compensation and the stiffness implementation
are active, cf. (3). Nevertheless, even then the desired stiff-
ness cannot be accurately achieved in general due to static
modeling errors such as static friction or inaccurate grav-
ity compensation. However, these effects are usually minor
in practice, e. g., if high-precision joint-torque sensors are
used as done in the considered KUKA LWR IV+ or com-
parable modern torque-controlled lightweight robots.

Table 7: Minimum and maximum stiffness with FL2 during static
interaction in the experiments #2a and #2b for the desired/nominal
stiffness of 150 Nm/rad

Stiffness via eigenvalues
Exp. #2a Exp. #2b

of M(q)M−1
d K, (22)

Minimum stiffness
79 Nm/rad 74 Nm/rad

(error: -47%) (error: -51%)

Maximum stiffness
264 Nm/rad 268 Nm/rad

(error: 76%) (error: 79%)

4.8. Experiment #2c (Perceived inertia, application of
(virtual) external torque)

In experiment #2c, a virtual external torque is applied
analogous to experiment #2a to provide comparable in-
teractions. The focus of this study is to investigate the
closed-loop inertial behavior to τ ext out of a static equi-
librium (as described in Section 3.3) and during the in-
duced motion. In order to reduce the effects of K and
D in the analysis of the inertial behavior, the correspond-
ing gains are set very low in all joints: 10 Nm/rad (stiff-
ness), 2 Nms/rad (damping). Only PD+ and FL1 control
are compared in the following since this experiment shall
demonstrate the practical consequences of a reduced ap-
parent inertia (FL1) in contrast to the natural one (PD+).
The initial configuration of the robot is shown in the right
illustration in Fig. 2. An external torque of -5 Nm is com-
manded to the torque controller in the first and third joint,
to represent a horizontally applied interaction force at the
end-effector. In case of FL1, Md is given by 50 % of the di-
agonal elements of the natural inertia matrix in the initial
configuration, that is, the inertias are actively decoupled
and additionally reduced by a factor of 2.

The two top diagrams in Fig. 19 depict the virtual ref-
erence torque and the corresponding estimations obtained
from the momentum-based disturbance observer. While
the estimations for PD+ and FL1 are comparable, the
joint motions largely differ, as can be observed in the two
bottom diagrams. One can clearly see that the joints start
to move earlier and accelerate more in case of FL1 con-
trol. That confirms the theoretical claim and advantage
that the feedback linearization with feedback of external
torques is able to reduce the perceived inertia in practice.

5. Discussion

The entire analysis so far was performed in the joint
space of the robot. In general, most of the statements
and conclusions can be straightforwardly extended to task-
space PD+ [7] and task-space feedback linearization con-
trollers [24], and thus to the comparison between keeping
and shaping of the natural inertia in task space. However,
due to singularities existing in most task spaces, such as
the ones related to the Cartesian coordinates at the end-
effectors of manipulators, the globally valid statements
made here will then be restricted to their local counter-
parts. Moreover, the configuration dependencies in the

18



Time [s]
1 2 3 4 5 6 70 8 9

Time [s]
1 2 3 4 5 6 70 8 9

PD+
FL1

PD+
FL1

PD+ FL1
Reference torque

Time [s]
1 2 3 4 5 6 70 8 9

Time [s]
1 2 3 4 5 6 70 8 9

-6

-4

-2

0

2

-6

-4

-2

0

2

0.2

0

-0.2

-0.4

-0.6

0

-0.2

-0.4

-0.6

0.2

E
st

im
at

ed
 e

xt
er

na
l t

or
qu

e
in

 jo
in

t 1
 [

N
m

]
E

st
im

at
ed

 e
xt

er
na

l t
or

qu
e

in
 jo

in
t 3

 [
N

m
]

P
os

it
io

n 
er

ro
r 

in
 jo

in
t 1

 [
ra

d]
P

os
it

io
n 

er
ro

r 
in

 jo
in

t 3
 [

ra
d]

PD+ FL1
Reference torque

Faster reaction for FL1

Higher
acceleration

Lower
acceleration

Higher
acceleration

Lower
acceleration

Faster reaction for FL1

Figure 19: Exp. #2c (inertial response): The reduced appar-
ent/perceived inertia in case of FL1 leads to faster reactions and
higher accelerations when external torques are applied.

Jacobian matrices lead to additional couplings that will
affect the closed-loop dynamics.

While the experiments have been conducted on one spe-
cific robot only, the universality of the conclusions can be
extended to a large number of systems. That particu-
larly includes the class of serial-chain, fixed-based, torque-
controlled robots. Beyond that, the underlying principles
of inertia conservation and shaping also apply to kinemat-
ically more complex robots such as humanoids or many
free-floating systems.

In case of lacking measurement of τ ext required to close
the loop in FL1, one can deploy well established and widely
used approaches to estimate these signals. For exam-
ple, by means of momentum-based disturbance observers
[49, 47] or various modifications of the latter. Yet, the feed-
back of τ ext (or τ̂ ext, respectively,) inevitably introduces
additional complexity in hardware integration/controller-

Table 8: Summary of the advantages of the preservation of the nat-
ural inertia and active inertia shaping

• No feedback of external torques required

• Robust against modeling uncertainties

Natural • Interaction behavior intuitive to specify

inertia • Close to natural dynamics

• Focus on passivity

• Predestined for physical interaction

• Dynamic decoupling

• High design freedom (e. g., pole placement)

Inertia • Downscaling of the perceived inertia possible

shaping • Linear dynamics, tools from linear control applicable

• Superior performance for high model accuracy

• Predestined for trajectory tracking

observer design, which can be completely avoided when
choosing a control type that does not necessitate its feed-
back (e. g., PD with feedforward, PD+, FL2). Moreover,
the observer itself has limited bandwidth which, in turn,
limits the performance of FL1. A practical example has
been presented in experiment #2c, where the external
torque has not been abruptly applied but continuously in-
creased (see Fig. 19, top diagrams) to remain in the band-
width of the observer.

While both the keeping and the shaping of the natu-
ral dynamics are proven approaches and widely adopted
in robotics nowadays, the insights and direct comparisons
provided in this article by means of the PD+ and the feed-
back linearization as representatives, respectively, appear
to be crucial for the development of new trajectory track-
ing and interaction controllers. Since both strategies bring
along advantages and disadvantages which affect the the-
oretical analyses and the practical implementations in dif-
ferent ways, one should be aware of these aspects before
making the choice between the preservation of the natu-
ral inertia and its active modification by control. Finally,
Table 8 serves as a brief summary of the main benefits of
both choices.

6. Conclusions

Since many modern robotic systems are required to be
both highly accurate and compliant at the same time, an
adequate tradeoff between motion tracking performance
and physical interaction behavior becomes more and more
important. Most model-based controllers can be located
between two fundamentally different concepts: the keep-
ing/conservation and the active shaping/modification of
the natural inertia. In this article, the consequences and
implications of these two border cases have been theoreti-
cally and experimentally compared by means of the classi-
cal PD+ controller (keeping/conservation) and the clas-
sical feedback-linearization/inverse-dynamics/eigenvalue-
related design approach (shaping/modification). Practice-
oriented analyses have been conducted in terms of gain
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tuning procedures, stability and passivity properties, per-
ceived contact stiffness and inertia, influence of modeling
uncertainties and imperfect external force feedback, and
active scaling of the feedback gains. Several tracking and
interaction experiments have been performed to demon-
strate the practical relevance of these aspects. Although
these two exemplary approaches have been known and es-
tablished for decades, the understanding of their implica-
tions and consequences on physical interaction and tra-
jectory tracking in practice are essential for the develop-
ment and proper application-driven use of controllers in
robotics.
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