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Abstract
The DLR Institute for Communication and Navigation is currently working on a new GNSS architecture that enables accurate 
autonomous inter-satellite synchronization at picosecond-level. Synchronization is achieved via time transfer techniques 
enabled by optical inter-satellite links (OISLs), paving the way for a system in which space (orbits) and time (synchroniza-
tion) can be effectively separated, leading to a high level of synchronization throughout the constellation, which in turn 
greatly improves accurate orbit determination. This is possible provided that relativistic effects are adequately taken into 
account. This work focuses on a two-way time transfer scheme based on the exchange of time stamps via optical signals, 
which allows the synchronization of a GNSS satellite system with respect to a defined coordinate time with picosecond-level 
accuracy. We analyse the impact of relativistic effects in clock offset estimation between optically linked clocks: results show 
that to achieve synchronization at this level of accuracy it is necessary to account for terrestrial geopotential harmonics up 
to the third order while the gravitational influence of additional celestial bodies can be neglected. Relativistic delays in the 
propagation of electromagnetic waves through spacetime are also evaluated. It is shown that for a two-way synchronization 
method, the Euclidean expression for the propagation of light is sufficient to achieve picosecond synchronization, provided 
m-level orbit determination of both satellites is available, and the hardware delays are well calibrated to the targeted accu-
racy. Also, we show how to practically achieve autonomous synchronization via a sequence of pair-wise synchronizations 
across all satellites of the constellation.

Keywords  Time transfer · Proper time rate · Intersatellite links · Relativistic propagation

1  Introduction

Position determination and time transfer in GNSS rely on a 
simple model. Consider four synchronized clocks located at 
positions �j , j = 1, 2, 3, 4 . The satellites transmit electromag-
netic pulses at times tj respectively. Suppose that these four 
signals are received at position � at instant t. The receiver 
records the reception event happening at t + �t where �t is 
the offset of the receiver clock with respect to the satel-
lite system time. From the principle of the constancy of the 
speed of light c we have [1]:

Having four independent equations, one can solve for the 
four unknowns �, �t . Such a solution is also called a “navi-
gation solution”. In principle the solution can be computed 
with information from any number of satellites greater than 
or equal to four. Timing errors of 1 ns will lead to position-
ing errors in the order of 30 cm. It is obvious that in order 
to minimize the estimation error, accurate knowledge of �j 
and tj is needed. The former parameter is nowadays broad-
cast to final users with an accuracy between few dm and a 
meter thanks to accurate orbit determination techniques, a 
topic not addressed in this work. The estimation accuracy 
of the latter parameter depends on the stability of the satel-
lite clocks and on their synchronization with respect to a 
common time scale (system time). In current GNSS pro-
cessing schemes is tightly coupled with the orbit determi-
nation problem. Currently, inter-satellite clock offsets and 
orbits are retrieved in a complex joint estimation process 

(1)c
(
t + �t − tj

)
=
|||� − �j

|||, j = 1, 2, 3, 4
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that requires a large ground network. The accuracy of the 
service provided at space segment level is usually charac-
terized in terms of Signal-in-Space Range Error (SiSRE), 
a parameter that factors in both orbit determination offsets 
and satellite clock errors and indicates the expected satellite-
to-user range error. This error characterizes the maximum 
ranging accuracy achievable by the system, which is then 
subsequently further impaired by propagation (atmospheric) 
and user local effects (e.g. multipath and receiver biases). 
Typical SiSRE values in modern GNSSs are in the order 
of a few tens of centimeters. The DLR Institute of Com-
munication and Navigation is currently working on a next 
generation satellite system (with codename Kepler) based on 
optical inter-satellite links (OISLs) providing autonomous 
synchronization with offsets below 1 ps [5, 6]. OISLs allow 
for a better separation of space (orbits) and time (synchro-
nization), leading to a much higher level of synchronization 
across the whole constellation than what is achievable in 
current architectures, which in turn largely enhances precise 
orbit determination. The SiSRE can potentially be reduced 
to below one cm [9, 10], offering a highly accurate naviga-
tion service to final users.

The key to autonomous synchronization in space is the 
capability of remotely comparing satellite clock readings via 
OISLs. Two-Way Time Transfer techniques can be applied 
to retrieve relative clock offsets, but a careful modelling of 
spurious effects introducing estimation biases is necessary. 
To the targeted level of inter-satellite synchronization of 1 
ps, relativistic biases play a major role. These effects include 
second order Doppler shifts of clocks due to their veloc-
ity, gravitational shifts, and other relativistic delays on the 
propagation of light through spacetime. If such effects are 
not properly accounted for, the benefit of operating stable 
clocks and having a mean for accurate synchronization via 
OISLs will be masked [1]. Synchronization schemes for 
picosecond-level accuracy need to be addressed in a rela-
tivistic framework and this is the goal of this work.

The first objective in this paper is to present a synchroni-
zation method based on time transfer techniques. Satellites 
will exchange electromagnetic signals containing informa-
tion about times of emission and reception of reference bits 
which are taken in their proper time scale. The method pre-
sented will allow us to synchronize satellites pair-wise with 
respect to a defined coordinate time. The whole system can 
be synchronized via consecutive synchronizations between 
satellite couples.

The second objective is the characterization of the mag-
nitude of the relativistic effects in order for the time transfer 
scheme to reach picosecond-level accuracy. Since this level 
of accuracy is rather high, higher-order relativistic effects 
need to be considered. This means studying the effect of 
inclusion of Earth’s geopotential harmonics beyond the J2 
moment, and analysing the influence of additional celestial 

bodies. An analysis is carried out to obtain a model precise 
enough to satisfy the requirement of picosecond synchroni-
zation. For future use, this analysis also provides models for 
femtosecond-level synchronization and beyond.

Finally, the third goal is to define the requirements on 
satellite orbit accuracy for correct relativistic modelling with 
target performance of picosecond accuracy in synchroniza-
tion. This is done by analysing the magnitude of relativistic 
model errors induced by satellite orbit errors (sensitivity 
analysis).

2 � Simultaneity

The notion of synchronization is closely connected with 
the notion of simultaneity. Indeed, synchronized clocks 
must simultaneously produce the same time markers. The 
Newtonian theory of gravitation postulates the existence of 
absolute space and time, independent from each other. In the 
theory of relativity the refusal of the notions of absolute and 
independent space and time results in different time rates in 
different Reference Systems (RSs). As a consequence the 
notion of simultaneity loses its absolute and unique mean-
ing [7].

To address a problem in the framework of relativity it 
is first necessary to introduce some concepts, such as the 
concepts of proper and coordinate quantities [16]:

•	 Proper quantities are the direct results of observation 
without involving any information that is dependent on 
the choice of a spacetime reference frame. In our analysis 
the most fundamental quantity is proper time, which is 
the time measured by an observer in a frame of refer-
ence that is attached to the observer itself (proper to that 
observer).

•	 Coordinate quantities are dependent on choices of a 
spacetime coordinate system. An example is the coordi-
nate time difference between two events (the difference 
between the time coordinates of these events) or the rate 
of a clock with respect to the coordinate time of some 
spacetime reference system, which are both dependent 
on the chosen reference system.

For analysis of any process in the framework of relativity 
one must introduce four-dimensional RSs. Consider a time 
scale � (denoting the proper time of an observer) and three 
space coordinates � = (x, y, z) . In the relativistic context 
there are different proper time rates in different reference 
systems. The relativistic synchronization framework in this 
work follows the concepts presented in [7]. Consider the 
following events:

•	 Event E1 in RS1: (�10 , �1)
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•	 Event E2 in RS2: (�20 , �2)

In most cases, two different RSs refer to two different time 
scales �1 ≠ �2 . This implies that we cannot say anything 
about the simultaneity of the events E1 and E2. In order 
to determine if the two events are simultaneous we need 
to use the concept of coordinate time.

Consider a third reference frame RS3 with proper time t 
and position coordinates �̃ . For the other reference systems 
RS1 and RS2, this third reference frame can be used to 
define simultaneity.

The events E1 and E2 can be expressed in coordinates 
of this third common RS as:

•	 Event E1 in RS3: (t10 , �̃1)
•	 Event E2 in RS3: (t20 , �̃2)

We say E1 and E2 are simultaneous if the condition 
t10 = t20 is satisfied in this common reference frame. This 
third reference frame can be chosen freely, its choice 
depends on convenience and any RS can be used to define 
coordinate time. Luckily, in most cases we can find a trans-
formation that relates the proper time of an RS to the coor-
dinate time. The coordinate scale t can be expressed as a 
function of the proper time scale � of the RS of interest, 
i.e., t = t(�).

Using this notion, we can say that E1 and E2 are simul-
taneous if the condition t(�10) = t(�20 ) is satisfied in the RS 
where coordinate time is defined. This concept is what we 
define as coordinate simultaneity.

The key point is to find the relation linking the time scales 
�1 and �2 to the coordinate time scale t. If this relation is 
found it is possible to syntonize or, with an additional step, 
synchronize the clocks of two different reference systems 
with respect to the coordinate time. These two concepts need 
to be defined [20]:

•	 Coordinate syntonization: align the rate of clocks such 
that both run at same frequency. In the relativistic con-
text to syntonize means to find the rate of a clock in an 
RS with respect to another clock in a different RS. Syn-
tonizing a clock with proper time � with respect to the 
coordinate time t means finding the relation: 

 where f is a function that depends on the coordinate time 
t, the position �(t) and the velocity �(t) of the clock.

•	 Coordinate synchronization: this entails establishing 
a one-to-one transformation between coordinate time 
events t and proper time events � . By knowing the func-
tion f and assigning an initial condition �(t0) = �0 relating 

(2)
(
d�

dt

)
= f (t, �(t), �(t))

the coordinate instant t0 to the proper time instant �0 , we 
can then unambiguously solve the differential Eq. (2) for 
the proper time instant �(t) : 

Equation (3) can also be reversed: the coordinate time t 
can be expressed as a function of the proper time � as 
t = t(�) fixing a value for � . To have a solution we need to 
ascribe a coordinate instant t0 to some proper instant �0 and 
solve Eq. (3) for t(�).

In the present work, we consider two coordinate time 
scales t and t′ to be different even if they differ only by a 
constant term: t� = t + const . Consider two satellites A and 
B with proper times �A and �B.

•	 Setting an initial condition �A(t0) = �A0
 and using Eq. 

(3) for the specific case of A, it is possible to transform 
the readings of clock A to some coordinate time t.

•	 In an analogous way it is possible to transform the read-
ings of clock B to some coordinate time t′ using Eq. (3) 
for B and setting an initial condition �B(t�0) = �B0

.

The coordinate time scale t′ differs from t due to the fact 
that the initial conditions are arbitrary and generally dif-
ferent. The two coordinate time scales t and t′ are related 
via t = t� + �AB where �AB is a constant term that describes 
the coordinate time offset between the two clocks.

To synchronize clocks A and B is to find a suitable ini-
tial value �B(t0) = �B0

 for clock B enabling us to transform 
the readings of B to the same coordinate time scale t as the 

(3)�(t) = �0 +

t

∫
t0

f (t, �(t), �(t))dt

Fig. 1   Coordinate time offset. Both clocks transform their time events 
to the coordinate scale. Given two arbitrary initial conditions the two 
clocks transform the time of the event to two different scales, one 
shifted by �

AB
 with respect to the other. We can see that the same 

observed event “Ev” is not simultaneous in the coordinate time scale. 
Synchronizing the clocks means choosing well one of the initial con-
ditions such that �

AB
= 0 or such that �

AB
 is accurately known and 

can be removed in post-processing
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one that A transforms to, i.e. �AB = 0 and t� = t . A visual 
representation of these concepts is presented in Fig. 1.

The initial conditions that allow for synchronization can 
be found with time transfer methods. The event that allows 
us to ascribe t0 to �B0

 is called “the synchronizing event”.

2.1 � Choice of Coordinate Time

In general relativity every frame is equivalent so any RS 
can be chosen to be the coordinate RS. Almost all users of 
GNSS are at fixed locations on the rotating Earth, or else are 
moving very slowly over Earth’s surface and the clocks are 
ticking according to a terrestrial time scale, typically UTC. 
This leads to the natural idea of using an Earth-centered, 
Earth-fixed, reference frame (ECEF frame) as a coordinate 
RS. In this model the Earth rotates about a fixed axis with a 
rotation rate of about �E = 7.3 × 10−5 rad/s. Typically this 
reference frame is the World Geodetic System (WGS-84) 
[1]. The fact that this frame is rotating implies directly that 
the frame is non-inertial. However if the purpose is coor-
dinate synchronization of multiple clocks the choice of the 
coordinate frame must be addressed carefully. In fact when 
a non-inertial RS is chosen to define coordinate time there 
is an absence of transitivity: if clock A is synchronized with 
clock B, and B with C, then A is not necessarily synchro-
nized with C. This gives rise to fundamental problems in the 
synchronization of a GNSS. In order to overcome this diffi-
culty one must construct in the neighbourhood of the Earth a 
local inertial RS, in which the gravitational field of external 
bodies can be represented in the form of tidal terms only 
[7]. For GNSS it means that synchronization of the entire 
system of ground-based and orbiting clocks is performed in 
the local inertial frame, or Earth Center Inertial (ECI) coor-
dinate system [2]. The coordinate time t of the ECI frame 
is defined at infinity, outside Earth’s gravity well [1]. If we 
synchronize with respect to t = tECI , we are synchronizing 
with respect to the coordinate time of an inertial RS, so that 
the validity of transitivity can be assumed.

3 � The Proper Time Rate

The relationship between the proper time � of a clock in the 
vicinity of Earth and some coordinate time t is defined by 
the spacetime metric, which is derived from the metric ten-
sor, the solution of the Einstein Field Equation. The metric 
tensor completely characterizes the spacetime metric which 
describes the relation between spatial and time coordinates. 
When Earth is modelled as a non-rotating spherical mass, 
the solution of such an equation leads to the Schwarzschild 
metric. The Schwarzschild metric describes the region sur-
rounding a non-rotating spherical mass [17, 19].

The Schwarzschild metric in isotropic coordinates 
( r, �,� ) is [11]:

Expanding the parentheses and keeping only c−2 terms we 
get:

where V(r) = −
GME

r
 is the Earth’s monopole potential and 

v2 ∶=
dr2+r2d�2+r2 sin2 �d�2

dt2
 is the square of the velocity of the 

clock.
The spacetime metric is related to the proper time � of a 

clock via:

With this, we can obtain the proper time rate of a clock with 
respect to ECI coordinate time as:

The proper time rate in Eq. (7) is expressed with respect to 
coordinate time t = tECI.

The rate of coordinate time used in GNSS, however, is 
closely related to International Atomic Time (TAI), defined 
as the coordinate time at a surface of a constant effective 
gravitational equipotential at mean sea level in the ECEF.

It is advantageous to exploit the fact that all clocks on the 
reference surface tick at the same rate to redefine the rate of 
coordinate time by standard clocks at rest on Earth’s geoid. 
This is done by adopting the following coordinate change:

where tGeoid is the new coordinate time for clocks at rest on 
Earth’s geoid and �0 is the effective gravitational potential 
at the surface of the geoid (that also includes the Doppler 
term due to its rotation ) [2]. When this time scale change is 
made, the proper time rate of Eq. (7) becomes:

We should remark here that in Eq. (9) we are comparing the 
rate of a clock in the vicinity of Earth with respect to the 
time of a clock at rest on the surface of the geoid but with 

(4)
−ds2 = −

⎛⎜⎜⎝
1 −

GME

2rc2

1 +
GME

2rc2

⎞⎟⎟⎠

2

c2dt2

+

�
1 +

GME

2rc2

�4�
dr2 + r2d�2 + r2 sin2 �d�2

�

(5)ds2 ≈

(
1 +

V

c2
−

v2

2c2

)2

c2dt2

(6)ds = cd�

(7)
d�

dt
=

(
1 +

V

c2
−

v2

2c2

)
.

(8)dtGeoid =

(
1 +

�0

c2

)
dtECI

(9)
d�

dtGeoid
=

(
1 +

V −�0

c2
−

v2

2c2

)
.
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the understanding that synchronization is established in an 
underlying, locally inertial, reference frame (the ECI frame) 
[2]. The numerical value of the parameters and quantities 
presented in the preceding sections are given in Table 1.

4 � Autonomous Synchronization

Some natural event, as an observation of occultation of a 
star by a planet for instance, may be considered as a syn-
chronizing event. Both observers may chose an arbitrary 
initial condition linking their proper time to the coordinate 
time, transform their proper time readings of observation of 
the natural event into coordinate times tEv and t′

Ev
 and then 

determine the coordinate offset �AB . A faster and more reli-
able manner of synchronization is the artificial creation of 
a synchronizing event on the world line of the observer B 
via exchange of signals. This method of synchronization is 
called “autonomous” or “independent” synchronization. In 
the system that we are considering, optical communication 
enables the exchange of data with timestamps. This allows 
for time transfer between remote references [7].

4.1 � Two‑Way Synchronization

Let’s consider a Two-Way Time Transfer (TWTT) scheme 
as presented in [7]: satellite A, located at �A , transmits at 
coordinate time t0 a message with proper time stamp �A0

 . 
Satellite B receives it at coordinate time t1 , stamps it with 
proper time stamp �B1

 . After a delay satellite B re-transmits 
it back stamping it with the proper time of re-transmission 
�B2

 . The signal is finally received at coordinate time t3 from 
Satellite A that stamps it at �A3

 . The coordinate propagation 
times for the round trip are respectively TAB = t1 − t0 and 
TBA = t3 − t2 . Assume that we have additional delays �R

N
 and 

�T
N

 which denote the hardware delays relative to the reception 
(R) and transmission (T), with N = A,B . Figure 2 shows a 
model of this two-way exchange.

Suppose we have an initial condition �A(t0) = �A0
 . Clock A 

can transform its reading of any event happening at �A solving 

the following equation for the corresponding coordinate time 
t(�A):

Satellite A is thus able to transform its proper time of recep-
tion �A3

 into the coordinate time instant t3 . If the trajectories 
of A and B are known with high accuracy, it is possible to 
determine the parameters �A(t), vA(t) and �B(t), vB(t) in the 
form of functions of the coordinate time scale t. Our goal is 
to retrieve the coordinate time of reception t1 so that we are 
able to ascribe it to the reading �B1

 . The coordinate instant 
t1 can be retrieved with the following iterative method [7]:

where:

(10)�A − �A0
=

t(�A)

∫
t0

(
1 +

V(�A(t
�)) −�0

c2
−

vA(t
�)2

2c2

)
dt�

(11)t
(0)

1
= t0 +

1

2

(
t3 − t0 − �Int

)
+ �

(0)

Prop
+ �hw

(12)t
(n)

1
= t0 +

1

2

(
t3 − t0 − �Int

)
+ �

(n−1)

Prop
+ �hw

(13)t1 = lim
n→∞

t
(n)

1
, n = 1, 2, 3,…

(14)�Int =

�B2

∫
�B1

(
1 −

V(�B(�)) −�0

c2
+

vB(�)
2

2c2

)
d�

Table 1   Values of used parameters [15]

Parameter Notation Value

Earth angular velocity �
E 7.2921159 ×10−5 rad s −1

Universal gravitational 
constant

G 6.67428 × 10
−11 m 3 kg−1 s −2

Speed of light c 299792458 m s −1

Earth mass M
E 5.972 × 10

24 kg
WGS84 geoid semi-major 

axis
a⊕ 6378136.6 m

WGS84 effective potential �
0 62636856.0 m 2 s −2

Fig. 2   Timing events: depicted are the trajectories of Satellite A and 
Satellite B with corresponding proper and coordinate times at signal 
transmission and reception in both directions of the communication
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Here, �Int is the integral of the proper time rate over the path 
of clock B between reception from A and transmission from 
B, which in coordinate time corresponds to t2 − t1 . The term 
�Prop is the half difference of propagation time during the 
round trip between A and B (expressed with TAB and TBA 
respectively). The initial �(0)

Prop
 can be estimated thanks to the 

approximate knowledge of the positions of the satellites. 
Finally, �hw identifies the residual hardware delay in a TWTT 
exchange. This may be largely mitigated if the transmit and 
receive delays at either side of the communication are simi-
lar. Satellite B observes the signal reception happening at 
�B1

 . Thus, we can ascribe the calculated moment t1 to the 
observed moment �B1

 and, thereby synchronize clock B with 
clock A. We found the initial condition �B(t1) = �B1

 that 
allows clock B to transform all events seen in its timescale 
�B to the same coordinate time t as the one that clock A 
transforms to.

4.2 � Comparison with a One‑Way Synchronization

For completeness, we could consider a One-Way Time 
Transfer (OWTT), where we have a unidirectional 
exchange of signals from Satellite A to Satellite B. In 
Fig. 2 the communication would end at the signal recep-
tion from Satellite B at coordinate time instant t1 . In this 
case t1 can be determined with the following iterative 
method:

where:

(15)�
(n)

Prop
=

1

2

(
T
(n)

AB
− T

(n)

BA

)

(16)T
(n)

AB
=

R
(n)

AB

c
, T

(n)

BA
=

R
(n)

BA

c

(17)R
(n)

AB
= ‖�B(t(n)1

) − �A(t0)‖

(18)R
(n)

BA
= ‖�A(t3) − �B(t

(n)

1
+ �Int)‖

(19)�hw =
1

2

(
�T
A
− �R

A

)
+

1

2

(
�R
B
− �T

B

)

(20)t
(0)

1
= t0 + T

(0)

AB

(21)t
(n)

1
= t0 + T

(n−1)

AB

(22)t1 = lim
n→∞

t
(n)

1
, n = 1, 2, 3,…

Here, T (0)

AB
 is the roughly estimated propagation time that can 

be computed thanks to the approximate knowledge of the 
positions of the satellites.

The first term on the right-hand side of Eq. (23) is the 
classical Euclidean time that light takes to go from point A 
to point B. The second and third terms are delays resulting 
from the time dilation experienced by light when travel-
ling through a gravitational field and are purely relativistic 
effects. The third term is called the Shapiro delay. This 
expression for the propagation of light can be found by 
setting the spacetime element ds = 0 , solving for dt and 
integrating it on the path from A to B. The two relativistic 
terms are of the order of tens of picoseconds and therefore 
have to be taken into account to achieve picosecond-level 
synchronization with an OWTT. Note also that reception 
event t1 is determined with the knowledge of the trajecto-
ries �A(t), �B(t) . In an OWTT, inaccurate knowledge of the 
positions and trajectories would directly result in an offset 
due to errors in the calculation of TAB . This is one of the 
main limitations of this method: before synchronization, 
even assuming that the satellite positions are known with 
cm accuracy, the resulting modelling errors are in the order 
of hundreds of picoseconds in the determination of t1 (and 
thus in a corresponding synchronization offset). Moreover, 
in an OWTT we can only achieve clock synchronization 
if spurious terms, such as hardware delays in the optical 
terminals used to establish the link, can be modelled and 
removed. This may prove difficult: a characterisation of 
these delays in a relevant operational environment would 
be difficult to achieve for picosecond-level accuracy.

Due to the quasi-symmetry of the communication, a 
TWTT is preferred because it mitigates all the problems 
of the OWTT mentioned above. Positioning errors, hard-
ware delays and additional relativistic offsets mitigate or 
cancel out in the expressions for determining t1 . Indeed, 
in a TWTT we are interested in characterizing the differ-
ence of propagation times during the round trip and not 
their absolute magnitude. If we compute Eq. (15) using the 
expression for the one-way propagation times (23) we can 
see that the difference of the additional relativistic terms 
is of the order of femtoseconds and is therefore negligible. 
In fact in Eq. (16) the expression for the propagation time 
is simpler and only includes the Euclidean term. It will be 
shown in a dedicated section (Sect. 6.2.2) that positioning 
errors are also mitigated in a TWTT.

(23)
T
(n)

AB
=

R
(n)

AB

c
+

�0

c2

R
(n)

AB

c

+
2GME

c3
ln

�‖�A(t0)‖ + ‖�B(t(n)1
)‖ + RAB

‖�A(t0)‖ + ‖�B(t(n)1
)‖ − RAB

�



Relativistic Modelling for Accurate Time Transfer via Optical Inter‑Satellite Links﻿	

1 3

4.3 � System Synchronization

One can synchronize any arbitrary number of other satellites 
using a cascaded approach, i.e. Satellite A gets synchronized 
with B via a time transfer, B gets synchronized with C and 
so on until all satellites are synchronized to the same coor-
dinate scale. However, this implies that at least one clock 
exchanges signals with a clock keeping the coordinate time. 
In a GNSS this last clock would be on Earth. Essentially, 
only one ground station would be sufficient to guarantee the 
link with the terrestrial time scale. The presented synchro-
nization method allows for a significant degree of auton-
omy of the satellite system. In the extreme case, lacking 
even the ground station, the satellite clocks realize a “space 
clock” whose time scale definition is not affected by the 
poor knowledge of the geopotential on the surface of Earth 
[20]. Such a clock, moving in an unperturbed orbit and well-
defined coordinate system, would bring significant value and 
new capabilities to time and frequency transfer worldwide, 
to precision geodesy and terrestrial reference frames, to 
earth-environmental science and to navigation systems [3].

5 � Picosecond Synchronization Models

In both time transfer methods presented, in order to reach 
picosecond precision it is necessary to have precise models 
of the proper time rate 

(
d�

dt

)
 and of the propagation time TAB 

(or the difference of propagation times in a TWTT).

5.1 � The proper Time Integral

We recall here the expression of the proper time rate of a 
clock in Earth’s vicinity with respect to TAI coordinate time 
t:

Integrating Eq. (24) it is possible to transform any reading of 
the clock � to events of coordinate time scale t. This integral 
has to be solved analytically or numerically in order to relate 
instants of the two scales. The complexity of finding a solu-
tion depends on the model of the potential. The gravitational 
potential V in Eq. (24) is the sum of the Earth’s gravitational 
potential VE and the one created by the cumulative contribute 
of other celestial planets, VSC.

The Earth’s gravitational potential VE is defined through 
a summation of spherical harmonics [14]:

(24)
d�(t)

dt
=

(
1 +

V(�(t)) −�0

c2
−

v(t)2

2c2

)

where:

•	 a⊕ is the semi-major axis of the WGS 84 Ellipsoid;
•	 C̄nm and S̄nm are the normalized gravitational coefficients 

contained in EGM2008;1

•	 P̄nm is the normalized associated Legendre function of 
degree n and order m;

•	 � and � are respectively the longitude and latitude of the 
satellite position in an ECEF frame.

Not all terms in the summation are significant: the model 
should only retain nmax terms, sufficient to guarantee that the 
model inaccuracies remain below ps-level. The term VSC is 
the gravitational contribution of body C (mass MC ) situated 
at �

�
 on satellite S situated at � . This is expressed as [20]:

where �
��

= �
�
− � and r = ‖�‖.

The relation between the rate of a clock in the near Earth 
region (proper time � ) with respect to coordinate time on 
Earth’s geoid becomes:

5.2 � Evaluation of Proper Time Rate Terms for Kepler 
Satellites

In this section, we are interested in determining the number 
of terms to be included in the proper time rate expression (
d�

dt

)
 to be integrated in order for the integral terms to meet 

the requirement of picosecond-level accuracy. We need to 
characterize which effects play a role within the time of a 
signal exchange, which in the case of typical GNSS satellites 
in Medium Earth Orbit (MEO) is always within a second. 
The Kepler constellation consists of two segments: a set of 
navigation satellites in MEO, assigned approximately to the 
same orbital slots of the current Galileo constellation, and a 
smaller set of satellites in upper Low Earth Orbit (LEO). The 
relevant orbital parameters are summarized in Table 2.

(25)
VE(r, 𝛼, 𝛽) = −

GME

r

[
1 +

nmax∑
n=2

n∑
m=0

(a⊕
r

)n

P̄nm(sin 𝛽)

×
(
C̄nm cos(m𝛼) + S̄nm sin(m𝛼)

)]

(26)VSC = −GMC

[
1

rSC
−

1

rC
−

�
�
⋅ �

r3
C

]

(27)
(
d�

dt

)
≈ 1 +

VE

c2
−

�0

c2
−

v2

2c2
+
∑
C≠E

VSC

c2

1  A list of coefficients, degrees and orders, with up to 2190 degrees, 
can be found at [13].
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The satellites of both segments are homogeneously dis-
tributed over their orbital planes, i.e. 45◦ difference in mean 
anomaly for MEO and 60◦ for LEO neighbour satellites. 
The planes are also homogeneously distributed around the 
globe with a 120◦ separation in the right ascension of the 
ascending node (RAAN) for MEO planes and 90◦ for LEO 
planes. The argument of perigee is 0◦ for both segments. 
Since the communication time is always shorter than 1 s we 
can directly look for terms in the proper time rate that are 
smaller than the threshold of 10−12 s/s. For completeness 
and future use we evaluate all terms of the proper time rate 
for different satellites against 3 thresholds: 10−12 , 10−15 and 
10−18 s/s. The satellites’ orbits are simulated using the open 
source software General Mission Analysis Tool (GMAT), 
available from NASA [12]. The simulation interval is chosen 
to be the 10 days and the integration step to propagate the 
orbits is 30 s.

We have presented in Eq. (27) the terms to consider for 
a full model of the proper time rate for a clock located at 
�(t) in the vicinity of the Earth with respect to TAI coordi-
nate time. As presented in Eq. (25), the “geopotential” VE 
(gravitational potential of Earth) is defined through a sum-
mation of spherical harmonics. We name each term of the 
geopotential Vn.

Figure 3 shows the maximal contribution of the single 
geopotential terms Vn

c2
 of degree n manifested during the 

simulated 10 days.

We can see in Fig. 3 that only two terms (quadrupole 
formulation of the potential) are sufficient to describe the 
proper time rate of satellites in both constellations at the 
order of 10−12 . From the third term the information apported 
can be considered negligible. In any case it is clearly visible 
that the geopotential term of order n = 2 for LEO satellites is 
very close to this threshold. In order to keep some margin it 
is advisable to consider a potential expansion with nmax = 3 
for the LEO constellation. As expected more terms in the 
potential expansion are needed for stricter thresholds. A 
summary of the results is presented in Table 3.

Using the orbital simulation data from GMAT each term 
of Eq. (27) for every single satellite has been computed and 
the maximal contribution of each term has been recorded. 
The orbital parameters of the sun, moon and other planets 
have been artificially modified to simulate the case where 
every other body considered is at its closest approach during 
the whole simulation. This is an extreme case that is very 
unlikely to happen but it gives an upper bound to the shift 
caused by each one of those bodies.

Figure 4 shows the magnitude of the maximal contribu-
tions of the terms in Eq. (27) for MEO and LEO satellites 
in the constellation. For picosecond accuracy only the geo-
potential term and the second order Doppler term need to be 
considered. Gravitational effects of external bodies need to 
be taken into account for the stricter thresholds of 10−15 s/s 
(Moon influence on MEO satellites) and 10−18 s/s (Moon and 
Sun for both MEO and LEO satellites). Table 4 summarizes 
all the terms to be taken into account for a given constella-
tion and threshold.

6 � Impact of Orbit Parameter Errors

We are now interested in the sensitivity of the derived mod-
els to orbit parameter errors. To analyse it we evaluate the 
resulting errors in proper time rate and in the difference of 
propagation times arising from errors in position, range and 

Table 2   Summary of main Kepler parameters

Segment Type Inclination Semi-major axis

MEO Walker 24/3/1 56◦ 29601.3 km
LEO Walker 6/2/1 89.7219◦ 7626.3 km

Fig. 3   Maximum contribution of Earth’s potential harmonic terms of 
degree n on MEO and LEO satellites proper time rates

Table 3   Number of geopotential harmonic terms to take into account 
in the proper time rate for different thresholds

Constellation Threshold [s/s] n
max

LEO 10
−12 2 (3 

recom-
mended)

10
−15 5

10
−18 27

MEO 10
−12 2

10
−15 3

10
−18 5
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velocity. In fact we want to determine the permitted error on 
those parameters that leads to:

6.1 � Velocity Error Margin

An error in the velocity of the satellites would impact the 
determination of the proper time rate, affecting the second-
order Doppler term. Consider (v0 + �) the velocity of the 
satellite with error and v0 the velocity without error:

(28)
d�

dt

||||w/Error −
d�

dt

||||w/o Error

= H [s∕s]

(29)

�Prop
���w/Error − �Prop

���w/o Error
= H [s]

where H =

⎧⎪⎨⎪⎩

10−12

10−15

10−18
.

which leads to:

Assuming circular orbits, the orbital velocity of a body is 
v0 =

√
GM

a
 where a is the orbit radius. Table 5 summarizes 

the results for all thresholds H and both types of satellites 
considered for the Kepler constellation. It is noticeable how 
the requirement for the uncertainty in the velocity is techno-
logically not hard to meet (at least for the 10−12 case). The 
velocity can be determined with a higher level of precision 
without major difficulties.

6.2 � Position Error Margin

6.2.1 � Impact of Position Errors on the Proper Time Rate

Satellite position errors impact the determination of the 
proper time rate because of the dependence of the Earth’s 
geopotential on position. Particularly affected is the uni-
form geopotential term, which is the dominant term in the 
expansion and depends on the norm of the position vector 
�(t) . Consider (r0 + �) the norm of the position vector of the 
satellite with error and r0 the same quantity without error:

Using the assumption of uniform gravity V(r) = −
GME

r
:

which leads to:

Table 6 summarizes the results for all thresholds H evaluat-
ing Eq. (34) for both types of satellites of the Kepler con-
stellation. It can be seen again how the requirement for the 

(30)d�

dt

||||w/Error −
d�

dt

||||w/o Error

=
(v0 + �)2

2c2
−

v2
0

2c2
= H

(31)� =

√
v2
0
+ 2Hc2 − v0

(32)
V

c2

||||w/Error −
V

c2

||||w/o Error

= H

(33)
GME

c2

(
−

1

ro + �
+

1

ro

)
= H

(34)� =

(
−

Hc2

GME

+
1

r0

)−1

− r0

Fig. 4   Maximum value of terms in the proper time rate expression for 
LEO and MEO satellites during the simulated 10 days

Table 4   Terms to take into account in the proper time rate for differ-
ent thresholds

Constellation Threshold [s/s] Terms

LEO 10
−12 Geopot, Doppler

10
−15 Geopot, Doppler

10
−18 Geopot, Doppler, Moon, Sun

MEO 10
−12 Geopot, Doppler

10
−15 Geopot, Doppler, Moon

10
−18 Geopot, Doppler, Moon, Sun

Table 5   Allowed velocity error 
to remain below a proper time 
rate error threshold H 

Orbit H |�| [m/s]

LEO 10
−12 12.42

10
−15 12.42 × 10

−3

10
−18

12.43 × 10
−6

MEO 10
−12 24.40

10
−15 24.48 × 10

−3

10
−18

24.48 × 10
−6
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uncertainty in the positioning is very loose (for the 10−12 s/s 
case). There is no difficulty in knowing the radial position 
with such precision.

6.2.2 � Impact of Position Errors on the Propagation Time

The real impact of satellite position errors manifests itself in 
the calculation of the difference in propagation times, rather 
than on the proper time rate. Assume that the real positions 
�A(t) and �B(t) are affected by positioning errors (in vectorial 
form) expressed respectively as ��A(t) and ��B(t) due to uncer-
tainties in the orbit determination. The difference in propaga-
tion times is then:

As a first approximation we can assume that the posi-
tion errors remain basically constant during the com-
munication period which is expected to last a few hun-
dreds of ms, i.e. ��A ∶= ��A(t0) ≈ ��A(t3) ≈ const. 
and ��B ∶= ��B(t1) ≈ ��B(t2) ≈ const. We have that 
‖��B − ��A‖ ≪ ‖�AB‖ so we can use the Taylor expansion 
of Eq. (35).

Thus:

where H corresponds to the last term on the right hand side 
of Eq. (36), �AB =

�AB

‖�AB‖ and �BA =
�BA

‖�BA‖.
We identify here a synchronization offset H due to uncer-

tainty in orbital position determination, expressed as:

(35)
�Prop

���w/Error =
‖�AB + ��B(t1) − ��A(t0)‖

2c

−
‖�BA + ��A(t3) − ��B(t2)‖

2c

(36)
�Prop

|||w/Error ≈
(
RAB

c
−

RBA

c

)

+

(
�AB + �BA

)T(
��B − ��A

)
2c

(37)=∶ �Prop
|||w/o Error

+ H

(38)H =

(
�AB + �BA

)T(
��B − ��A

)
2c

The offset is minimal when �AB ≈ −�BA . This is the case for 
an approximately simultaneous exchange of signals, where 
t0 ≈ t2 . In practice, since the clocks will be roughly synchro-
nized, both Satellite A and Satellite B will send a signal at 
proper times �A0 and �B2 which they can approximately relate 
to coordinate times t0 ≈ t2.

The worst case scenario is when ��A = −��B and both 
uncertainties are parallel to �AB + �BA . Preliminary analy-
sis of Precise Orbit Determination (POD) for the Kepler 
constellation shows that by considering a simultaneous 
application of a large number of modelling errors (with-
out using error reduction techniques), satellite 3D posi-
tion errors are expected to be smaller than 70 cm. In the 
mentioned case, POD is performed by a single ground 
station with the support of the LEO segment, without any 
assumption of prior synchronization or use of ISLs [9]. In 
an operational scenario, satellites would infer their posi-
tion from the broadcast ephemerides based on predicted 
orbits. The accuracy of the predicted orbits is expected to 
be lower than the one of POD orbits but it is nevertheless 
expected to be much better than 1 meter. To remain con-
servative, we assume here that the positions of all com-
municating Kepler satellites are known with a relatively 
large uncertainty ‖��A‖ = ‖��B‖ = 4 m. A simulation has 
been performed by injecting orbital errors at this level and 
the results are given in Table 7. In the simulation different 
types of transmission delays t2 − t0 are evaluated. In the 
first case optical signals are transmitted simultaneously, 
i.e. t0 = t2 . In the other cases Satellite B transmits after 
delay t2 − t0 with respect to the moment of transmission 
t0 from Satellite A. We can see from the results that even 
when a large uncertainty in the positions of the satellites 
is considered and the communication is very asymmetric 
( t2 > t0 ), we can still model relativistic effects to within 1 
ps accuracy. This means that with the current orbit deter-
mination capabilities we can accurately model relativistic 
effects to below 1 ps.

Table 6   Permitted radial 
position error to remain below a 
proper time rate error threshold 
H 

Orbit H |�| [m]

LEO 10
−12

13.136 × 10
3

10
−15 13.1149

10
−18

13.114 × 10
−3

MEO 10
−12

198.900 × 10
3

10
−15 197.573

10
−18

197.572 × 10
−3

Table 7   Clock offsets resulting from 4 m positioning errors in TWTT 
assuming that those errors remain constants during the whole signal 
exchange process

Communication t
2
− t

0
  [s] |H| [s]

MEO-MEO neighbours 0 9.8986 × 10
−18

0.1 1.6545 × 10
−13

0.5 8.2728 × 10
−13

MEO-MEO next-neighbours 0 1.2348 × 10
−17

0.1 1.6544 × 10
−13

0.5 8.2723 × 10
−13

LEO-MEO 0 3.4792 × 10
−13

0.1 3.2474 × 10
−13

0.5 3.4630 × 10
−13
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7 � Technological State of the Art

So far, time transfer has been presented in abstract form 
through a mathematical description of the process. The goal 
of this section is to provide an overview of the technology 
required to make the presented synchronization methods a 
reality. Two-way time transfer at ps-level is possible via com-
munication systems based on lasers, already space-qualified 
and operative for commercial satellite data relay applications 
[5]. Early ground-to-space tests of time transfer via non-coher-
ent optical links have already demonstrated accuracies in the 
range of hundreds picoseconds. Examples of such tests are 
the Laser Time Transfer technology validated at 300 ps-level 
on Beidou satellites [8] and the Time Transfer by Laser Link 
(T2L2), which demonstrated time transfer between a number 
of International Laser Ranging Service (ILRS) stations and the 
Jason-2 satellite below the 100 ps-level [4]. These methods use 
non-coherent links. By exploiting laser-based coherent links, a 
network of two or more frequency references synchronized at 
sub-ps level can be established. A DLR laboratory demonstra-
tor of coherent links is being developed to verify optical range, 
time transfer, and data transmission. The demonstrator consists 
of two terminals, running a bidirectional free-space optical 
link in the laboratory, with single-mode fiber coupling in the 
receivers at both sites. The optical carrier is modulated by a 
fast ranging sequence and a slower data stream. The coherent 
transceivers enable time-stamping received reference bits with 
sub-ps precision, enabling the exchange of measured time-
of-arrival information between the paired satellites, which 
in turns enable two-way time transfer to retrieve clock off-
sets and perform inter-satellite ranging at sub-mm level [18]. 
Such optical transceivers could be integrated in existing opti-
cal communication terminals, such as those employed in the 
SpaceDataHighway operated in space since a few years in the 
framework of the Copernicus program to optically link LEO 
and GEO satellites. This integration is the focus of a DLR 
mission named COMPASSO, initiated in 2021, aiming at test-
ing a coherent optical link for time/frequency transfer, rang-
ing and data exchange between a terminal on the international 
space station and an optical ground station in Europe. The 
mission will hopefully pave the way to further validation mis-
sions aimed at testing autonomous accurate synchronization 
between satellites in higher orbits, and future utilization in 
GNSS constellations to augment navigation solution accuracy, 
system operability and robustness of operations.

8 � Conclusion and Future Perspectives

This work focused on analysing how to accurately model 
relativistic effects to enable ps-accurate time transfer 
between satellites in MEO and LEO orbits. In Sects. 2 

and 3 we have defined simultaneity and coordinate syn-
chronization in the relativistic domain. A synchronization 
method based on a Two-Way Time Transfer was presented 
in Sect. 4. Then the relativistic effects to be taken into 
account for a time transfer with the necessary degree of 
accuracy have been studied, and Sect. 5 shows that the 
gravitational influence of other celestial bodies can be 
neglected and only the Earth geopotential has to be taken 
into account. The Earth’s geopotential needs to be char-
acterised with a higher degree of accuracy than in cur-
rent GNSS systems, considering harmonics beyond the J2 
moment. For a correct relativistic modelling with the goal 
of picosecond-level synchronization accuracy, there is a 
need to keep the errors on orbits below a certain threshold. 
These thresholds have been calculated and presented in 
Sect. 6. It was discussed how a Two-Way Time Transfer 
picosecond synchronization is not only fundamentally fea-
sible, but can also be implemented in practice.

A relativistic analysis is a fundamental step in the defi-
nition of the GNSS processing architecture, since in this 
framework synchronization offsets derive from fundamen-
tal characteristics of nature. The feasibility of relativistic 
synchronization with OISLs confirms the possibility of 
separating space and time in the error estimation process, 
resulting in a much higher level of synchronization across 
the constellation than is achievable in current architectures. 
This has the potential to greatly improve accurate orbit 
determination and consequently the navigation service for 
end users. Furthermore, the significant degree of autonomy 
in synchronization enabled by the proposed TWTT scheme 
has a potentially large impact on infrastructure and opera-
tional costs. The feasibility of an innovative concept of a 
fully autonomous ’space clock’ was also addressed. The idea 
of such a clock could be further investigated and has the 
potential to strongly impact the the field of time metrology, 
with the definition of a spatial time scale less affected by 
various terrestrial phenomena.
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