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Abstract

Robotic assembly tasks are typically implemented in static settings in which parts are kept at fixed locations by making use
of part holders. Very few works deal with the problem of moving parts in industrial assembly applications. However, having
autonomous robots that are able to execute assembly tasks in dynamic environments could lead to more flexible facilities with
reduced implementation efforts for individual products. In this paper, we present a general approach towards autonomous
robotic assembly that combines visual and intrinsic tactile sensing to continuously track parts within a single Bayesian
framework. Based on this, it is possible to implement object-centric assembly skills that are guided by the estimated poses of the
parts, including cases where occlusions block the vision system. In particular, we investigate the application of this approach
for peg-in-hole assembly. A tilt-and-align strategy is implemented using a Cartesian impedance controller, and combined
with an adaptive path executor. Experimental results with multiple part combinations are provided and analyzed in detail.

Keywords Autonomous assembly - Sequential Monte Carlo - Compliant manipulation - Sensor fusion - Peg-in-hole -

Future manufacturing

1 Introduction

The growing individualization of products demands facili-
ties that can manufacture small batch sizes with little effort.
Autonomous robots can help increase the required flexibil-
ity. At the Institute of Robotics and Mechatronics of the
German Aerospace Center (DLR), we are developing an
autonomous robotic assembly system for flexible manu-
facturing (see Fig. 1). It is capable of assembling unique
products with parts from an aluminum profile construction
set [52]. Assembly sequencing at task level is performed
automatically using multiple abstraction levels [56]. Fur-
thermore, a reliable task execution is required for similar
but different product variants. For this purpose, we imple-
mented robust and reusable robotic skills using compliant

X Korbinian Nottensteiner
korbinian.nottensteiner @dlr.de

German Aerospace Center (DLR), Institute of Robotics
and Mechatronics (RM), Miinchener Str. 20, 82234
WebBling, Germany

2 Technical University of Munich (TUM), Department of
Informatics, Chair of Sensor Based Robots and Intelligent
Assistance System, Boltzmannstr. 3, 85748 Garching,
Germany

control methods of the lightweight robot technology [1].
However, high-level feedback is only incorporated in spe-
cific situations where logic decisions are required, and
geometric uncertainties are only passively compensated for
during execution. In order to increase the level of autonomy,
we need an adaptive task execution that actively reacts to
the current state of the objects in the robotic cell.
Compared to the previous version of the system with
only a single robotic arm [52], we removed all part hold-
ers to increase flexibility with respect to product types. At
the same time, this step introduced significant uncertainties
in object poses. However, a successful execution is still pos-
sible if the initial state is well defined.! In our recent work
on combined visual and touch-based registration [57], we
show how static objects in the robotic arm workspace can
be localized autonomously at high precision. This reduces
the need for manual calibration efforts and poses of objects
can be initially registered automatically; any remaining
uncertainties can subsequently be compensated for with
passive alignment and blind-search strategies. Neverthe-
less, our system currently fails if parts unexpectedly move
during the assembly process. Furthermore, the fact that
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@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-020-01303-z&domain=pdf
https://orcid.org/0000-0002-6016-6235
https://orcid.org/0000-0003-4974-4134
https://orcid.org/0000-0001-5343-9074
mailto: korbinian.nottensteiner@dlr.de
https://youtu.be/XQhXGJbUURE

49 Page2of22

JIntell Robot Syst (2021) 101: 49

Fig. 1 Autonomous assembly of aluminum profile structures with a
dual-arm robotic system without specialized holders

robots often occlude the field of view of cameras motivates
us to investigate tactile sensing in the case of moving parts.

Consequently, in this work, we present how robotic
skills can adapt according to the observed contact situation.
In particular, we are looking into the classical peg-in-
hole task in which the hole is moving with an unknown
motion. Numerous approaches for peg-in-hole exist [44,
74] and Section 2 provides an overview, but only a few
papers deal with moving parts. An example is provided
by Jorg et al. [34], who demonstrate the insertion of a
piston using visual servoing in combination with a force
controller; similar solutions were also investigated for
automated wheel assembly on conveyor belts, e.g., [14,
38]. Nevertheless, the existing solutions typically require a
fine position estimate from the vision system and do not
explicitly localize the parts with tactile measurements. In
contrast, we present a general approach that combines visual
and tactile sensing and continuously tracks the parts in an
integrated framework. Therefore, we extend our previous
works [54, 57] based on intrinsic tactile sensing with an
adaptive motion generation component and combine both
in an adaptive assembly skill. We provide a brief overview
of the system in Section 3, and present the details of the
approaches for state estimation in Section 4 and motion
generation in Section 5. Experimental results are presented
and discussed in Section 6.

2 Background and Related Work

In the field of assembly automation, peg-in-hole is consid-
ered an important benchmark. The main challenge is the
transition of a part from free space into a highly constrained
target pose. During the insertion, tight tolerances in combi-
nation with positioning errors can lead to undesired effects
such as jamming [61]. It was concluded early that only
compliant motions can solve this issue [29, 45]. For this
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purpose, passive compliant tools [21, 71] and control meth-
ods with force feedback were developed [43]. Doing this
soon showed that automated insertion of parts with clear-
ances down to the scale of microns is technically feasible
[24]. Today, the challenges have shifted from solving the
pure physical task to aspects that concern the reduction of
implementation efforts and the increase of reusablity in the
presence of large uncertainties. In the following, we provide
an overview about various classes of peg-in-hole approaches
and current related work in this field.

2.1 Pre-defined Strategies and Offline Planning

Nearly 50 years ago, Inoue [29] described robust pro-
cedures, called “stereotype actions,” for shaft-bearing
assemblies. These make use of force feedback and well-
arranged shift and tilt motions to reduce uncertainty in the
parts locations. Since then, further approaches using pre-
defined motion strategies have been developed. Bruyninckx
et al. [11] describe a search strategy with a tilted peg and a
kinematic model for the alignment motion. “Blind-search”
strategies follow similar ideas and were applied with mul-
tiple variations, e.g., for transmission gear assembly [50]
inserting a plug for charging an electric car [33]. A system-
atic search to cover the uncertain region in combination with
a tilt strategy is presented in [16]. Nevertheless, disadvan-
tages to those search strategies are the time spent exploring
the contacts and that the strategy must be carefully selected
in advance.

Consequently, specialized offline planners were devel-
oped to automatically find an appropriate sequence of fine
motions that are extremly likely to reach a goal area [20, 22,
41]. Stemmer et al. [63] describe a method that analyzes the
shape of complex planar parts and automatically generates
a robust alignment motion. Recently, belief space planners
were applied that aim at finding optimal and robust trajec-
tories [72]. Furthermore, online optimization techniques are
developed to tune pre-defined strategies automatically and
outperform humans with respect to execution times [32].
Clearly, it is of a major advantage to apply a suitable strategy
to reach high performance. Limitations of the pre-defined
and offline-planned strategies are that they are often only
applicable in a narrow scope, require prior knowledge of the
task and that online data is not always incorporated. This
becomes especially important when objects are not fixed,
but can move within the environment. In this work, we also
apply a pre-defined tilt strategy and will show how it makes
use of visual and tactile feedback to track moving parts.

2.2 Human Demonstrations and Learning

Modeled strategies are often inspired by human manipu-
lation strategies. A shortcut to directly implement human
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strategies is programming by demonstration. Hirzinger
showed early on how force-torque sensors can be used to
teach new tasks [27]. For specific situation, these types
of methods provide quick solutions and are nowadays the
default teach-in technique for so-called “cobots”. Neverthe-
less, it is difficult to generalize over multiple tasks, and tra-
jectories are usually not reusable. Recent works in the field
of kinesthetic teaching and imitation learning try to general-
ize demonstrations, e.g., [19, 37, 59]. Those methods might
be important in the future for acquiring robotic skills. Right
now, an open question is still how the demonstrations can be
generalized efficiently and wheter they are also applicable
for environments with moving parts. Multiple works also
aim at enabling the robots to learn appropriate skills directly
based on experience without human intervention. For exam-
ple, Simons et al. [60] implement a self-learning controller
mapping force to corrective motions; neural networks and
reinforcement learning methods were also applied for learn-
ing compliant controllers, e.g., in [5, 25]. Recently, new
approaches using deep learning and unsupervised learn-
ing for solving peg-in-hole were published [30, 39, 42].
The latest advances show promising results. However, the
approaches still depend heavily on the amount and quality
of training data for specific use cases.

2.3 Bayesian State Estimation

The novel machine learning approaches are sometimes
criticized for the limited explainability of the mapping
between inputs and outputs. In contrast, approaches based
on Bayesian probability theory provide interpretable mod-
els for tracking of uncertainties. Besides classical methods
in this field like Kalman Filters, particle filtering methods
have gained more attention in robotics since the pioneering
works of Thrun et al. [69]. They have been used not only for
mobile robotics, but also in the field of assembly. Nguyen
et al. [51] present a framework for tracking pose uncertain-
ties with vision and tactile data. The uncertainty information
is used to adapt an elliptical spiral search pattern for peg-
in-hole with static parts. Wirnshofer et al. [73] present
Bayesian state estimation in multiple scenarios including
peg-in-hole, but do not make use of force measurements in
the probability update. Force measurements enable robots
to distinguish contact states and keep a controlled contact.
Meeussen et al. [47, 48] implement a particle filter for con-
tact state detection and show how to use it for estimating
geometric uncertainties and executing compliant motions.
Multiple works estimate geometric uncertainties with parti-
cle filters and force measurements in peg-in-hole assembly
[4, 15, 54, 65, 68], but all of them consider a fixed and rigid
hole pose during the assembly. In this work, we will extend
our previous works in this field [54, 57] for moving parts

and suggest an adaptive motion generation procedure for the
execution of assembly skills.

3 Autonomous Robotic Assembly
Framework

Increasing the level of autonomy requires systems that exe-
cute goal-directed actions while considering the currently
observed world state. In this section, we describe compo-
nents of such an autonomous robotic assembly system,
explain the concept of robotic skills, and introduce Bayesian
methods used for state estimation and motion gener-
ation in the implementation of an adaptive assembly
skill.

3.1 Components of the Autonomous Assembly
System

The considered assembly system is composed of a task plan-
ning unit, a knowledge base, a scheduler and a collection
of robotic skills (see Fig. 2). A task typically represents
the specification of one one step necessary for assembly. A
skill is defined here as a robotic behavior that robotic behav-
ior that reaches desired goal states in multiple situations and
under varying conditions (see Section 3.2). The delibera-
tive task planning unit selects robotic skills, which are in
principle capable of solving the tasks under the constraints
that arise from the goal specification and the assumed world
state. For this, we are using a sequence planner that auto-
matically decomposes the assembly of a desired product
into a sequence of tasks and selects using representations
of the parts and the system on multiple abstraction levels
[56]. The knowledge base provides information about prop-
erties of objects and grounds them in physical quantities as
far as possible. States can be defined based on the object
entities in the knowledge base. A central runtime compo-
nent keeps track of the overall world state of all objects [40].
The skill executor schedules robotic skills in compliance
with the present world state and orchestrates the execution
at runtime.

3.2 Robotic Skills

As stated above, our assembly system makes use of the
concept of robotic skills, which is known from various
related works [7, 8, 52, 62, 67] with comparable definitions.
In contrast to traditional implementations of robotic programs
in the industry, which blindly follow pre-programmed paths
and routines, robotic skills adapt to the current situa-
tion by observing the execution and changes in the state
of the world. Furthermore, they are formulated object-
centric to be efficiently reuseable in various situations. The
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interested reader might also like to compare the robotic
skills with the philosophical view on agents’ abilities and is
referred to [31]. As depicted in Fig. 2, we suggest that the
implementation of a robotic skill for assembly might be com-
posed of a feature detector, a state estimator, a component
for motion generation and finally a robot controller.

The feature detector recognizes the presence of features
of physical objects. In our case, we assume that CAD data
and semantic descriptions of the geometry of the objects and
their features are available through the central knowledge
base. The features then provide state variables, which can
be tracked by a state estimator. The estimator fuses all
information about detected features and measurements in
order to estimate the states relevant for skill execution,
e.g., the relative pose between two parts. The motion
generator is a component that generates motion commands
based on the comparison of estimated and desired states
of the features. In combination with the state estimator,
the motion generator can realize reactive and sensor-guided
motions. The robot controller abstracts the robotic hardware
and provides interfaces to execute motion commands,
such as motion primitives to execute impedance-controlled
trajectories.

3.3 State Estimation and Motion Generation

We model the tracking of features as a recursive Bayes-
ian estimation problem, where features are represented
as states of a hidden stochastic process. The states can
contain pose and shape information. We denote the state
vector at time t = f by x; € R” and furthermore
assume that it is not directly observable. Instead, obser-
vations from dedicated feature detectors are collected in
a measurement vector y, € R™. Then, the objective is
to then estimate the current state up to time #; given
all past measurements denoted by the probability density
function p(xi|y;,). Bayesian estimation provides recur-
sive methods to solve this probabilistic inference task. Each
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Fig.2 Components of a robotic system for autonomous planning and
adaptive execution of assembly tasks
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cycle involves two steps: (1) predicting p(x|yq..—1) and
(2) updating p(xk|y;.x), where the distribution is updated
using the measurement likelihood p(y;|xx) and the relation
Py 1) X pYelx) Pk Y 1—1)-

In this work, the Bayesian state estimator is implemented
in the form of a sequential Monte Carlo (SMC) algorithm
[12], i.e., a particle filter. This approximates the distribution
of the hidden state x using a set of weighted samples &} =
{(Wk(i), xk(i))}, where Wk(i) € R denotes a scalar weight
and x; a sample of the hidden state. The initial uncertainty
at time ¢t = 0 is represented by a set of N samples Xy =
{(1/N, xoM), ..., (1/N, xo™)} drawn from the initial
density p(xo). Samples x; ¥ are then repeatedly propagated
with a process model p(xi|xr—1) to get p(xXi|yix—_1)s
weighted by the measurement likelihood p(y;|xx) and
resampled according to the resulting distribution (see
Fig. 3). After resampling, the weights are set to W;® =
1/N. Assuming normalized weights, statistical estimates,
e.g., expected values Vk of a function V(xy), can be
approximated by the evaluation of the particle distribution
[12]:

N
Ve > WOV D). (1)

i=1

The sample distribution represents the belief space over
the feature states and can be used for motion generation.
The motion generation component of the skill analyzes the
distribution of samples and generates motion commands
based on a policy (see Fig. 3), which can be computed in
advance or online. This combination of state estimator and
motion generator is comparable to a partially observable
Markov decision process (POMDP) control architecture as
described by Kaelbling and Lozano-Pérez [35]. In Section 4,
we describe detailed models of the state estimator and
in Section 5 we present how adaptive behavior can be
implemented in the motion generation step.

4 State Estimation for Assembly

In this section, we provide a detailed view of the models
used for the recursive Bayesian state estimation. First, the
robot and uncertainty model, as well as the virtual contact
model, are introduced, after which the computation of the
tactile and the visual likelihood is presented. The section
finishes with the update model.

4.1 Robot and Uncertainty Model

We consider manipulators with n > 6 rotational joints that
are equipped with joint torque sensors. At each discrete time
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step k, the joint position ¢, € R" and the external joint
torque 74 € R" are measured. We assume that a peg with
known geometry is grasped rigidly, i.e., does not slip inside
the gripper. The grasp transformation is known and the
forward kinematics can be computed from the joint position
measurements. The homogeneous transformation Hgp y =
Hpp(q;) € SE(3) denotes the transformation from the
robot base frame B to the reference frame D of the peg (see
Fig. 4). The hole with frame C moves on an unknown path
in the workspace of the manipulator. Thus, the pose of the
hole is initially unknown, but is within the field of view of
a vision system with frame V. In this work, we assume an
eye-to-hand setting with a monocular camera at Hpy =

Fig.4 Definition of frames and
variables in the considered
scenario. A peg with reference
frame D is rigidly attached to a
manipulator with base frame B.
The position (x, y, z)x of a
moving hole C at time ¢ = # is
uncertain with respect to a
known reference frame C. The
task is to transfer the peg to the
target frame 7'. The hole is
moving within the field of view
of a camera with frame V. The
camera provides detections of
the hole center (p,, py)r and
the joint sensors provide joint
position ¢, and the external
torque 74 induced by the contact
wrench wy

const. € SE(3). A dedicated feature detector provides
measurements of the projected center points (py, py)x € R?
of the hole in the image plane.

In order to track the hole, we define the hidden state
x;p = [x,%,y,y,2 2], where x, y, z € R are the Cartesian
coordinates of the hole center with respect to a reference
frame C and %, y, z denote the respective time derivatives.
The true pose of the hole can be written as Hpc(x, vy, z) =
HygesHpa-(x,y,2). The given task is to transfer the peg
from a start frame to a desired target frame 7 specified with
respect to the hole at a known location Hcr = const. €
SE(3). We define D to be located at the bottom of the peg,
and T at the bottom of the hole.

@ Springer
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4.2 Virtual Contact Model

A virtual contact model is required for the sample propaga-
tion and update in the state estimation. As in our previous
works [54, 57], we use a fast and accurate penalty-based
collision detection algorithm [58] for the contact force
and distance computation. The implementation is based
on the voxelmap-pointshell (VPS) algorithm by McNeely
et al. [46]. The object geometries are efficiently represented
by voxelmaps and pointshells, as depicted in Fig. 5. It can
naturally handle complex and non-convex geometries, as in
our work on intrinsic tactile sensing with aluminum profiles
[54].

Dependent on the relative pose Hy = Hcp(qy, xk) €
S E (3) of the objects, the contact model computes the virtual
contact wrench w; = (Fk, M) = w(Hy) with contact
force Fr € R3 and torque M) € R3. Furthermore, the
contact distance c?k = c?(H ) € R is calculated, which
is positive for penetrations. The contact distance defines
implicitly the relative configuration space C between the
virtual representations of both objects:

no contact (Hy € é) cdy <0
contact (Hy € 3C): 0<d <d, )
invalid (Hy ¢ C):  d; < dj.,

where d; > 0 is a threshold on the maximal feasible
virtual penetration. In the contact case we allow a small
intersection, which is necessary for the penalty-based
algorithm. In this work, the joint torque sensors of the
manipulator will be used instead of a force/torque sensor
at the endeffector. Therefore, wy is mapped to a virtual
contact torque Ty in joint space with T, = J,Zﬁ)k,
where J; := JgD(qk) € ROXM denotes the Jacobian
of the robot arm with respect to D. The virtual stiffness of
the contact and the threshold d; are selected such that the
real contact wrenches during the insertion are reproducible
in magnitude. Furthermore, we assume a frictionless and
quasi-static contact. Although the contact model simplifies
the physical effects drastically, it provides adequate
directional information to distinguish certain contact states
and to reduce position uncertainty. Naturally, friction has

Fig.5 Left: contact situation
with contact wrench wy. Center:
penalty-based contact model.
Right: implementation of contact
model with a voxelmap and
pointshell representation of the

a crucial effect on jamming in peg-in-hole applications,
but as will be seen later, the model provides sufficient
information in the considered experiments and jamming can
be prevented by an appropriate motion strategy.

4.3 Propagation Model

The real motion of the hole is unknown, therefore we apply
a constant velocity (CV) tracking model at first. In a second
stage, we combine it with a heuristic to increase the sampling
performance for the peg-in-hole use case. The first stage of
the propagation is given by a general CV model [13, p. 58]:

1T
X[k = (13®[0 lek—vak, 3)

where I3 is the 3 x 3 identity matrix, ® is the Kronecker
product, T is the duration of the time step and vy is Gaussian
noise with covariance matrix Xy. xjx is an intermediate
auxiliary state that will be passed to the second stage.

In [54], we investigated various heuristics to improve the
propagation model for observing peg-in-hole tasks, which
are inspired by probabilistic roadmap planning [36], namely
by the Gaussian sampler of Boor et al. [9] and the bridge
test by Sun et al. [64]. It was shown that especially the
bridge test helped to increase the sample density within
the narrow passage of the configuration space. Thus, more
efficient sampling is possible with a reduced risk of sample
impoverishment, which is an undesired effect of particle
filtering approaches. This principle is depicted in Fig. 6
and summarized in Algorithm 1 together with the constant
velocity propagation.

The bridge test is an iterative policy that draws an
auxiliary sample in each cycle of the loop. This auxiliary
sample has a frame /7 in the neighborhood of the original
sample frame / in order to find so-called bridge points
in the configuration space, denoted with frame /71. The
bridge point is then located at the half distance between
I and I1. The function EVALCONTACT is needed to test
if a sample is in the configuration space C according to
Eq. 2, and the first stage propagation (3) is implemented
in the function CONSTANTVELOCITY. Note that for better

Pointshell

objects. dj denotes the contact
distance and d; a threshold on
the maximal feasible virtual
penetration, wy the virtual
contact wrench. Compare [54]

W
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Algorithm 1 Propagation model.

function PROPAGATESAMPLE(x; 1D, q;)
x; < CONSTANTVELOCITY (x_1 ™)
forj:=1to L, do

draw p;; ~N(p;, Xpp).

1:

2 > (3)
3

4:

5: Cr1 < EVALCONTACT(p;, q1)

6

7

8

9

> (2)
if C;; = invalid then
P < (pr+pip/2
Crr1 < EVALCONTACT(p 11, q1)
: if C;j; # invalid then
10: return p,;,

> (2)

11: draw p;y ~N(py. Xp p).
12: return p;y

readability, we denote the position components of x by
p = (x, v, 7). Furthermore, ' (p, ¥) denotes a multivariate
Gaussian distribution with mean p and covariance matrix
Y. The operation s ~ D generates a sample s from a
distribution D. The covariance X p ;, defines the size of the
neighborhood of I and can be chosen according to the gap
size of the passage. The number of maximal iterations L,y
controls the admissible effort in the search for a bridge
point, and also the density in the narrow passage. If no
bridge point can be found, then the sample I will be returned
with small additional Gaussian noise X', j, in order to avoid
sample impoverishment.

4.4 Tactile Likelihood

Once a robot has grasped an object and brings it into
contact with the environment, intrinsic tactile sensing is
an important ingredient to distinguish contact states and
estimate uncertainties (whereas during grasping extrinsic
tactile sensing with sensors directly at the fingertips plays
a major role, see [18] for a classification of robot tactile
sensing approaches). In this work, the internally measured
joint torques are used for intrinsic tactile sensing. The tactile
likelihood in the update step of the Bayesian state estimator
is computed using a comparison of the current joint position
and torque measurements y‘,i' = (qy, Tk) of the robot with
the virtual contact model as described in the following.

Fig.6 The bridge test policy in

three steps. An auxiliary sample

with frame /7 is drawn in the

neighborhood of the original

sample frame / in order to find

so-called bridge points with

frame /11 in the configuration

space, which is located at I
half-distance between [ and 11 o

Firstly, we ensure consistency in the relative configura-
tion space of the peg and hole feature using

N HO ¢,

—— ] _Gap y 5 @)
ouv/2r |50, H ¢C.

saylxg) =
It ensures that the virtual objects stay in the valid
configuration space given by the threshold d; on the virtual
contact distance Jk [54]. This means that the objects
are not allowed to intersect. Secondly, we incorporate
the force information from the contact by comparison of
the measured torques 7, with the torques computed by
the virtual model assuming normal distributed errors with
covariance X ; in the measurements [54]:

seY ) = N3, Zo). (5)

Here, the magnitude and the direction of the contact
forces are evaluated in joint space. Contact states can
be distinguished by the directional information, which is
important for the convergence of the filter in the peg-in-hole
task. For instance, lateral forces acting on the peg can imply
that it is already partially inserted, whereas vertical forces
can mean that the upper rim of the hole is touched. The full
tactile likelihood is consequently derived as the product of
those two elementary likelihoods:

P Iy = s 1x) - sp (' 1x). (©)

Furthermore, in the case of multiple similar parts or
similar local tactile features, the concept of observable
regions [66] could be introduced as suggested in our
previous work on visual and touch-based sensing [57]. It
states that the tactile update shall only be done for reachable
samples, i.e., samples that can potentially be touched within
a motion step. However, this is not necessarily required here
as we are only considering a single tactile feature in the
geometrical shape of the hole in its entirety.

4.5 Visual Likelihood

Generally, the proposed method is capable of handling
multiple cameras with static and variable poses. However,
without loss of generality, we capture images from a single
monocular camera at a fixed pose H py = const. € SE(3).

@ Springer
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Certainly, better visual feature detection can be achieved
with multiple cameras, mobile cameras and depth image
acquisition techniques. Nevertheless, we use the monocular
stationary camera in order to show that the missing
information can be inferred during assembly execution
using tactile sensing.

We use a simple blob detection algorithm in order to
extract hole features from the image. In this work, we will
assume that only a single feature is present in the image,
but the method is in general also applicable for multiple
detections [57]. The center of the area is computed in pixel
values and forms the visual measurement vector

w=(pp) . @)
where p,, py denote the center coordinates of the detection
in pixels. We assume a pin-hole camera model [26, pp. 153f]
for the visual sensor model. The function project : R® —
R? implements the pin-hole model by taking the position
components of the state vector and projecting them onto the
image plane. Given the intrinsic parameters of the camera,
this function can be straightforwardly derived.

We then use a multivariate Gaussian for the likelihood
model with the mean being the projected version of the state
vector

POy 1) = Ny project(x ). Xo). ®

where X, denotes the expected covariance of yi”. We
use a diagonal covariance matrix here, i.e., we assume the
components of the measurement vector to be uncorrelated.

Similar to the tactile case, the concept of observable
regions can be introduced for the visual domain. Visual
observable regions are commonly known as fields of view.
Detectable regions are subsets of the latter in which the
features are detected with a high confidence. Occlusions,
e.g., from the robot, further shrink the detectable region and
we need to incorporate that particular case in our approach.
Therefore, as suggested in [57], we set the likelihood
p(y‘;{” |x,(€l)) = 1 if the robot occludes the view on a
particular sample, which can be computed from the sample
and the robot pose. Thus, the vision cannot decrease the
likelihood of a sample in that case.

4.6 Visual Tactile Update Model

In the update step of the recursive filter, the samples are
weighted using the likelihood of the measurements. In this
work, the weights are computed according to the bootstrap
filtering approach by Gordon et al. [23], compare [12]:
W(l) x p( yklx ) We multiply the likelihoods from both
tactﬂe and visual sensors, Egs. 6 and 8, and obtain the joint
likelihood

Py = pri ey p(yi ey ©)
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The implementation of the update model is summarized in
Algorithm 2. Note that logarithmic weights are used in the
implementation. Resampling is performed afterwards using
systematic resampling [28].

Algorithm 2 Update model.

function WEIGHTSAMPLE(yk ,yk , xk ))
a < TACTILELIKELIHOOD(y;' ,xk )

1:

2

3: b« VISUALLIKELIHOOD(yk ,xk))
4 weight <— Ina +1Inb > update particle weight
5 return weight

5 Motion Generation

Assembly tasks are typically implemented in static settings
where parts are kept at a constant and stable location
using specialized part holders. In the previous section, we
presented a general approach that combines visual and
tactile sensing to continuously track the parts in dynamic
environments within a single Bayesian framework. Based
on this, it is now possible to implement an object-centric
motion generation algorithm that is guided by the estimated
poses of the parts. A tilt-and-align strategy is implemented
and combined with an adaptive path executor as described
in the following.

5.1 Tilt-and-Align Strategy

The investigation of peg-in-hole assembly traces back to
the early history of robotics research. Inoue [29] presented
strategies for loose- and close-fit cases in the example
of shaft-bearing assembly. A crucial component is the
tilt of the peg to increase the robustness against pose
uncertainties. Multiple works use this principle in various
approaches for peg-in-hole, e.g., [11, 16, 32, 63]. We will
also employ a tilt-and-align strategy and follow the planning
method of Stemmer et al., which was demonstrated for
complex shaped planar parts [63]. The basic idea is to align
the peg with the contour of the hole by pressing in the
lateral direction of corner features. A pushing motion is
commanded into this direction using a Cartesian impedance
controller [2] in order to achieve robustness against pose
uncertainties. Based on a prior analysis of the geometric
shape of the contours, regions of attractions (ROA) can be
identified in which the starting point of the pushing motion,
i.e., the lowest point of the tilted peg, must lie in it in order
to guarantee a successful and robust alignment with respect
to small rotational and lateral offsets. Although the method
was proven to be fast and robust against uncertainty, it did
not directly incorporate the feedback of the hole pose, and
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thus, is by itself insufficient for assembly with parts moving
on a larger scale. However, because of its robustness, we
define a nominal strategy according to [63] and will show
how to combine it with an adaptive motion generation step
in the next section.

5.2 Adaptive Task Execution

Following the skill-based programming approach in our
system, we define an object-centric tilt-and-align strat-
egy and use the state estimation to adapt the execution
online. The object-centric formulation is suitable for many
manipulation tasks and was applied in various domains,
e.g., robotic assembly [70] or assistive robotics [55].
Recently, Migimatsu and Bohg [49] describe an object-
centric task and motion planning approach (TAMP) and
show how it can be combined with a reactive controller that
allows the plans to adapt to the online measured poses of
objects. However, they use visual perception only, and addi-
tional fiducial markers increase the tracking performance.
In our case, we assume that the objects are only visible in
the first phase and are then occluded such that tactile sensing
becomes necessary.

First of all, we specify a nominal geometric path of the
peg frame D with respect to the hole frame C according
to the tilt-and-align strategy. It connects a start frame with
the target frame 7 at the bottom of the hole and is given
as a sequence 7 = (T, Tp, ..., Tr) of interpolated path
frames 7; withl = 1,..,L; Hcr; = const. € SE(3)
denotes the homogeneous transformation from C to 7;. Note
that the path frames do not need to be consistent with the
real configuration space between both parts, but can include
offsets to support the passive alignment of the geometries
with the help of the Cartesian impedance controller. For
example, we will introduce an offset for the push motion
against the hole contour, and an offset in the final frame
Tr to align the peg stably with the bottom of the hole,
respectively. An example path is visualized as orange line in
Fig. 7.

The path is then executed in a conditional loop that
evaluates the distance to the next path frame as listed in
Algorithm 3. The internal while-loop includes the functions
for the state estimation and analyzes the sample distribution
for the generation of the next peg pose. For this purpose,
an estimate of the hole pose Hpc is computed using (1)
with V : x — (x, y, z) for the computation of the expected
value. The estimated relative pose between both parts Hep
can THEN be obtained by the forward kinematics. The
function GETDISTANCES calculates the Euclidean distance
dr € R of the position and the geodetic distance dgp € R
on SO(3) between H cp and the current path point / with
transformation Hcr;. The parameters dr . € R and
dr.max € R control the permissible path deviations. As

long as it is not reached, a motion to 7; will be generated
with the desired transformation Hpp g = H scHcr,
which is send as reference to the underlying Cartesian impe-
dance controller. We assume that the generated motions
are reachable in joint space and that the robot is not
in a singular configuration, which can be evaluated and
guaranteed using task-specific workspace maps [6]. The
underlying impedance controller ensures that the contact
is stable, and passively compensates small pose errors that
occur when the estimate is not yet accurate.

Algorithm 3 Adaptive motion generation.

1: function GENERATEMOTION(7T)

2 for/:=1to L do

3 reached < false

4 while not reached do

5: ¥ < GETMEASUREMENTS( )
6 for all x,((’) e X do

7 x;) < PROPAGATESAMPLE(x}”, q;)
8 W,il) < WEIGHTSAMPLE(y, x]((l))

9

Xi+1 < RESAMPLE(X})

10: k< k+1

11: H pc < ESTIMATEHOLEPOSE(X})

12: ﬁCD <~ GETRELATIVEPOSE(fIBC, q;)
13: dr,dg < GETDISTANCES(H¢cp, Herp)
14: ifdr > dr max V dr zAdR,max then

15: Hgpka < NEXT(Hpc, Her,1)

16: else

17: reached < true .

18: Hpp rq < NEXT(Hpc, Her,141)
19: EXECUTEMOTION(H gp k.4)

6 Evaluation

We systematically evaluate the approach with a dual-arm
robotic setup. In particular, the assembly skill is executed
under varying conditions and with various part geometries.
Furthermore, the effects of the modalities in the likelihood
function are investigated.

6.1 Experimental Setup

Figure 8 shows our setup for the peg-in-hole experiments.
It consists of two 7-dof KUKA LBR iiwa robots with joint
torque sensors. The left robotic arm executes the assembly
skill, whereas the right robotic arm simulates the unknown
hole motions. The right arm is only used to measure the ground
truth pose of the hole and does not share this information
with the active robot executing the skill. Furthermore, a
monocular camera is mounted rigidly above the table at a

@ Springer
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Fig.7 Adaptive execution of an
object-centric path (orange line)
considering the currently
estimated frame of the hole C‘k.
The hole moves to the right
between time step k — 2 (left)
and k — 1 (center). The motion
commands (blue lines) follow
the estimated poses

distance of &~ 1.5 m. It provides images with a resolution
of 1620 x 1220 pixels. The hole feature detector provides
observations at a rate of 18 Hz. In this setup, three part
combinations are investigated: a configuration with square
peg and hole P, one with a round peg in a square hole Py
and a cylindrical peg-in-hole with round peg and round hole
P, (see Fig. 9). The parts are made of aluminum. The pegs
have a chamfered edge of 2 mm, the holes are chamferless
and have a depth of 60 mm; the round peg has a diameter
of 78.9 mm, the round hole 79.1 mm, the side length of the
square peg is 79.8 mm and of the square hole 80 mm.

Fig.8 Setup for the peg-in-hole experiments. The left arm executes the
assembly skill. The right arm is used as a ground truth measurement
device and simulates the hole motions. The camera image is visible in
the upper screen, the lower screen shows the live view of the world
model

@ Springer

The particle filter implementation features a parallel
propagation and update of the samples in up to 16 threads,
which is important for the collision checks in the virtual
contact model, which requires ~ 1 ms per call. The
other functions in Algorithm 3 are executed sequentially.
In the online application of the framework, we use a set
of N = 320 samples, which is a sufficient number to
provide a reliable estimate in this scenario, compare [54]
for an analysis of required sample numbers. The parameters
are summarized in Table 1. Given those parameters, a
command rate of & 5 Hz can be realized by the motion
generator. We define a path 7 which is applicable for all
three cases; the rotational parts of the path points in Table 1
are listed with parameters «, B, y, which are Z-Y-X Euler
angles [17, p. 43]. Note that we additonally refine the path
by carrying out an interpolation in the translation of 0.5
points/mm and 1 points/deg in rotation in order to obtain 7.
Figure 10 visualizes the nominal peg motion (left) defined
for the object-centric skill and the executed motion (right)
for one of the experiments carried out.

On side of the robot, a Cartesian impedance controller
is used with an additional small oscillating motion overlay
for the task frame motion according to a given force
amplitude and frequency. This is a common strategy for
peg-in-hole tasks employed to improve robustness of the
insertion against pose uncertainties. Note that the internal
controller of the robot runs at a controller rate > 1 kHz and
generates trajectories in finer granularity and guarantees a
stable execution.

6.2 Variation of the Execution Conditions

The following experimental procedure is carried out for
multiple runs. First, the hole is randomly positioned in a
region below the camera mounted above the table. The state
estimator is then initialized with the first visual detection
of the hole. Due to the projective nature of cameras, it
is not possible to reconstruct a full state vector from a
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Fig.9 Snapshots of the
assembly experiments: square
peg-in-hole P, round peg into
square hole P, and cylindrical
peg-in-hole P,

(a) Po

single visual detection y* without additional constraints.
Therefore, we randomly sample a vertical coordinate z(()l)
from a uniform distribution of 10 mm width and use this
value as a constraint for the reconstruction (compare [57] for
a detailed algorithm) and obtain the initial set of X( with the
additional assumption that the feature is not moving at start
time. The samples are then aligned along the ray direction
of the camera for the visible hole in the image plane
(Fig. 11a) and because of the constant velocity model, they
start spreading in all directions of the x y-plane immediately.
However, they stay in a bounded region due to the update
with the visual sensor (see Fig. 11b).

At first, the hole is at a static pose and after 10 steps
the hole motion is triggered. The passive robot moves the
hole along a line 100 mm long with a Cartesian velocity
of 2 mms~!. The hole is slowly drifting away, and at this
point, the motion is tracked by visual sensing only. We
have designed the procedure such that the tactile sensing
and robot motion start at k = 25. Once the robot moves
the peg to the first path point relative to the estimated hole
pose, it occludes the camera’s field of view. By comparing
the peg frame D and the current pose of a sample, the
implemented algorithm recognizes if a sample is within the
detectable region of the vision system or whether the robotic
arm occludes it. If the distance between the projected frames
of peg and sample in the image plane is below a threshold
of 100 pixels, we assume that the sample is occluded.
Doing this, we can ensure that features are always visible
completely and no offset occurs in the estimate due to a
shifted blob center of a partially occluded hole. The samples
outside of the detectable region are then only updated using
the tactile likelihood (compare Section 4.5). The transition
from Fig. 1lc to d shows how the sample distribution
reshapes according to the influence of the geometry of the
parts when the peg comes closer. The spread of the sample
distribution is then limited by the borders of the relative
configuration space between both parts.

(b) Px

(C) Po

In the following phase, the bridge test policy helps to pull
samples into the narrow passage in the relative configuration
space and the distribution appears funnel-shaped. During
the insertion, the samples then align along the hole axis
(Fig. 11f) and condense in a small region (Fig. 11h). Note
that in Fig. 11g) the peg has already reached the physical
bottom of the hole, but that there is still a significant spread
in the z-direction. This is due to the fact that the controller
has not yet generated enough force through the contact.
Nevertheless, an accurate estimate of the hole pose can be
obtained at the end with the help of the force feedback.

This experiment was repeated 10 times for each of the
three investigated cases. In all runs the peg was successfully
inserted. The state evolution for one example? of each series
is plotted together with the ground truth measurement in
Fig. 12. The plot for P, in particular shows a characteristic
evolution of the above-described process. The distribution
in the z-direction stays constant before the peg motion starts
at k = 25, where it shrinks the first time according to the
configuration space constraints. The spread in the x- and
y-direction narrows at k &~ 45 when the parts are aligned
and the insertion starts. From this point onward, the hole
motion in the plane is accurately tracked. At k ~ 73 the hole
motion stops, and soon after the peg reaches the bottom the
distribution in the z-direction shrinks for the second time.

In the x- and y-direction, the final estimate is very close
to the ground truth value. Yet in the z-direction, a remaining
offset is observable in all three experiments. One factor for
the remaining deviation to the ground truth value is the force
which is still applied in the z-direction by the impedance
controller due to the offset in the final path point. The virtual
contact model needs a little penetration of the geometries in
order to counterbalance the external force.

2Videos and further visualizations are provided in the supplemental
material
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Table 1 Parameters of experiments

Contact Model

voxelmap resolution
pointshell resolution
stiffness

d

Propagation Model

# samples

Update Model

x,
od
X

Motion Generation

dT,max
dR,max

=X
I

transl. interpol.
rot. interpol.
command rate

Impedance Controller

task frame

transl. stiff. (x/y/z)
amplitude
frequency

rot. Stiff. (x/y/z)
amplitude
frequency
cartesian velocity
controller rate

1.0
3.0
25000

320

diag [0, 0.1, 0, 0.1, 0, 0]
diag [6, 6, 3]

diag [0.1, 0.1, 0.1]

5

diag [10, 10]
0.5
diag [5,5,5,5,5,5,5]

5

5
y, z, o, B,y
0, 10, 0, 10, 0],

[10, O, -2, 0, 10, 0],

0, -2, -3, 10, 0],
0, =10, 3, 0, 0],
0, =70, 0, 0, 0]

0.5

1.0

5

D

5000/5000/3000

3/3/0

1.5/2/-

300/300/50

0.5/0.5/0

1.5/1.4/-

20

> 1000

mm, deg

points/mm
points/deg

Hz

Nmrad—!

Nm
Hz

mms—

Fig. 10 Nominal object-centric
peg motion following a tilt-and-
align strategy (left) and finally
executed peg motion (right). The
nominal path is drawn in orange,

the blue line represents the
executed path of the peg

reference frame, the black line
the online estimated pose of the
hole to which the motion adapts
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Figure 13 shows the Cartesian force at frame D.
The virtual model is capable to represent and estimate
the acting external forces which is visible in the small
deviation between ground truth and expected value of the
force components. Between k = 25 and k = 45, the
touches the upper rim of the hole; during insertion, only
minimal forces act in the z-direction, and a clear step
is visible at the end. Note that although friction effects
are not explicitly modeled, the virtual model is able to
provide sufficient directional information to support the
convergence of the pose estimation, which is especially
visible in the condensation of the z-position distributions
between k = 80 and k = 120.

The evolution of the pose estimation error is plotted
in Fig. 14 for all runs and shows the Euclidean distance
between the ground truth position of the hole and the
expected value computed from the samples. Due to the
unobservability of the hole feature in direction of the
projection line of the camera, the error stays nearly constant
until £k = 25. The robotic arm THEN occludes the field
of view and the error arises because there is no feedback
from the contact yet and the hole could potentially change
its speed or direction. During insertion, the error gradually
reduces and is in most cases at terminal time below of the
initial error, see Table 2.

6.3 Comparison of Modalities

In order to compare the effects of tactile and visual
modalities on the state estimation and skill execution, we
carry out a series of experiments using either only the
tactile likelihood (6) or only the visual likelihood (8) and
compare it with the combined visual-tactile likelihood (9).
All parameters are set according to Table 1. Furthermore,
we assume that in all cases the visual modality is available
at least at the start for a one-shot initialization of the state
estimator. In all runs, the hole is positioned at the same
initial pose. In particular, we evaluate two cases: at first, a
baseline experiment in which the hole is kept at the inital
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a) b)

e
'
U

Fig. 11 Evolution of the sample distribution for the cylindrical peg-in-
hole (P,). Yellow dots represent the origins of possible hole frames.
For each dot the hole geometry is additionally rendered. The peg is
displayed with its measured pose. a At first, the samples are initialized
using the visual detection of the circular feature and the samples align
along the projection line (blue dashed line). b The constant velocity
model of the estimator spreads the samples in planar direction con-
strained by the visual likelihood. ¢—g The field of view is occluded

g h)

by the robotic arm and the sample update can only be done with tac-
tile measurements. Consequently, samples align according to the local
configuration space between both parts (schematically drawn with
dashed orange lines). h The samples condense at the real pose of the
hole. Note that the visualization of the sample dots is scaled up in order
to be better visible, whereas the offsets in the hole geometry are at
actual scale
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(a) P (square peg - square hole)

Fig. 12 Examples of the sample evolution for the x, y and z compo-
nent of the state for the three investigated scenarios. The gray value
indicates the sample density, the black line corresponds to the expected

(b) P« (round peg - square hole)

T T T T T T
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(c) P, (round peg - round hole)

value and the blue dotted line represents the ground truth value from
the second robot, i.e., the directly measured hole pose
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Fig. 13 Measured force (dashed 30
blue line approximated from the

joint torque measures using a

pseudo inverse of the Jacobian) 10

and force distribution &
represented by the samples for a =

run of P,. For each sample the

virtual contact force is -20
computed with respect to the

peg frame D. The density is 0 2
given in gray values, the black

line corresponds to the expected

value of the force distribution
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(c)

pose, and then the case of a moving hole similar to the one
in the previous section.

In all cases tested with a static hole, the insertion was
successful due to the robust mating strategy, but there are
differences in the state estimates. Figure 15 shows the
sample evolution of the x-component of the state in the
case of a cylindrical peg-in-hole.?> Furthermore, Fig. 16a
provides the error of the position estimate and the spread of
the samples over time (standard deviation of the distance of
a sample to the expected value of the position). For the case
of tactile modality alone, we can see a growing spread of
the samples, i.e., an increasing uncertainty in the estimate,
as long as there is no contact between peg and hole. This is
due to the modeled assumption that the hole is moving (3),
and as long as there is no tactile observation available, this
assumption cannot be corrected and the sample evolution
is completely governed by the propagation model. Only
from k = 25 on it can be seen that the spread shrinks due
to the tactile likelihood. At the end, an accurate estimate
of the hole position with only a small variance can be
obtained. This is different in the case of using the visual
likelihood alone. Here, the uncertainty at the start is limited,

3Figures showing the sample evolution for all cases and all state
components are provided in the Appendix.
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but then increases as soon as the robotic arm blocks the
field of view (from k = 25 on). Notably, the insertion
is still successful. Consequently for a static environment,
visual sensing and using a robust strategy is enough for
a successful insertion. But since the final phase is not
observable, it is not possible to infer solely from the vision
data if the peg really reached the desired pose. The visual-
tactile sensing is the combination of the best of both worlds.
The uncertainty is limited during nearly all all the phases
of the process, and the position of the hole can be tracked
during insertion.

The same comparison is carried out for the moving
hole in a dynamic environment. In this case, only the
visual-tactile likelihood enables a successful insertion. By
using only the tactile or only the visual likelihood it,
is not possible to track the part with sufficient accuracy
throughout all phases. Similar to the static case, it is visible
in Fig. 16b that in both cases the spread increases as soon
as features are not detectable in the modality anymore. At
k ~ 30, the spread for the tactile likelihood shrinks for a
short period due to the sensed contacts. Nevertheless, too
many hypotheses of potential hole poses are not longer
distinguishable through the tactile feedback and the motion
of the hole prevents the convergence of the estimate. In the
presented approach, we have no active uncertainty reduction
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Fig. 14 Pose estimation error
over time, computed from the

ground truth measurement and
the expected value of the sample

distribution. Each light gray line é
represents a single run. The <

black line is the average of the
error over all 10 runs for each
case 0

T
40

: e k
(a) Po (b) Po

20_ ..................................................................................................................

included in the motion generation step. In future work it
might be possible to overcome that issue by triggering
dedicated exploration motions as soon as a certain threshold
on the spread is reached.

In our experiment, we move the hole with a constant
velocity. The visual tracking and identification of the
velocity until k 25 could theoretically be sufficient
for completing the insertion task. However, offsets in the
position typically occur during establishment of contacts
(due to compliance, motion changes) which are not visible
for the state estimator due to the occlusion. This prevents
the successful insertion as the offset can no longer be
corrected without feedback. In practice, this could be
handled by tuning the insertion motion so that it is faster or
more robust against this transition from visual feedback to
blindness. Nevertheless, additional assumptions regarding
the motion direction and speed of the hole would be
potentially necessary and the implementation would loose
some generality. By using a combined approach, the spread
of the possible hole positions is limited through the tactile
feedback once the visual features are no longer detectable.
The clear advantage here is that fewer assumptions on the
motion of the hole are needed and that the reusability of the
assembly skill is therefore higher. Furthermore, the pose of

100 120

(c) P« (round peg - square hole)

the hole can accurately and explicitly be estimated during
execution of the insertion process.

7 Discussion

The results clearly show that the implemented framework is
able to perform peg-in-hole tasks in a dynamic environment
with moving parts, but requires visual and intrinsic tactile
sensing. An internal probabilistic state representation makes
the robotic assembly system aware of the current situation
and present uncertainties, and makes it possible to continue
the execution although sensors might be occluded or might
not yet provide enough information, e.g., in the absence of

Table 2 Final position estimation error

P PD Px
# Runs 10 10 10
Position error
min. 1.245 1.261 0.887 mm
max. 2.638 5.962 1.348 mm
average 1.754 2.483 1.076 mm
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Fig. 15 Sample evolution of the 0

x-component of the state in the
case of a cylindrical peg-in-hole 2

200

(P,) with static hole using three
variants of likelihood functions.

100

2 (mm)

The gray-value indicates the
sample density, the black line —20
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—100

corresponds to the expected
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(b) visual likelihood only
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contact force. Initial uncertainties are reduced and the part
position can be tracked during execution.

Theoretically, the state estimation works independently
of the presence of sensor modality and the order in which
modalities become available. Nevertheless, we are assuming
that the vision modality is available at first so that the
uncertainty can be efficiently narrowed down at the start.
In general, the vision modality makes it possible to detect
features globally, whereas tactile sensing typically has only
a local scope (see [10] for a comparison of visual and
tactile data). Therefore, it is usually better to use the vision
modality at first (if available), because a wider field can be
observed. The tactile data then helps to refine the estimate
and determine state components which are unobservable in
the other modality, e.g., a 2D coordinate in the image plane
does not provide enough information to retrieve the position
of a point in 3D space. This complementary advantage of
both modalities were investigated in multiple works, e.g.,
compare the pioneering work of Allen [3].

In our particular implementation of an assembly skill, we
make use of a motion strategy which requires that the low-
est point of the tilted peg lie within a region of attraction
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(c) visual-tactile likelihood

of the hole (as described in Section 5.1). Accordingly for a
successful execution, the uncertainty of the hole center posi-
tion is not allowed to be larger than the (inner) diameter of
the hole. If this is given, then the strategy can be executed
successfully. The visual tracking at the beginning ensures
that the uncertainty stays within these limits. If the uncer-
tainty were larger, then a tactile exploration phase in the
motion strategy would be necessary (compare the search
strategies referenced in Section 2.1). Nevertheless, it is an
open question as to how such an exploration phase can be
implemented efficiently for moving parts in dynamic envi-
ronments. Therefore, we believe that an initial phase of
visual tracking is currently mandatory, and could only be
omitted if there were another data source which provides
sufficiently accurate position data of the moving part.

In general, the implemented peg-in-hole strategy is
robust against small rotation errors up to &= 5 deg as shown
experimentally by Stemmer [63]. Therefore, estimating the
orientation of the parts might not always be necessary in
many industrial settings. However, for an enlarged field
of applications, it is possible to augment the hidden state
with another part for orientation, which on the downside
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(b) moving hole

Fig. 16 Pose estimation error over time (solid) and spread of the
current sample distribution (dotted line) given as standard deviation
for the case of using a tactile (red), visual (green) or visual-tactile
likelihood (blue). The values are plotted for P, and for the case of a
static (a) and moving hole (b)

increases the number of required samples due to the higher
dimensionality of the state space. The work of Taguchi et al.
[65] shows one possible solution with a Rao-Blackwellized
particle filter to obtain an efficient implementation for
this problem in a probing-based localization of a static
part. Also in another work [53], we started to investigate
constraint-based approaches in the propagation model to
estimate large rotation motions, but still need to improve
the implementation of the contact model to apply it in all
phases of the peg-in-hole task. Nevertheless, it is clear that
the suggested framework supports these future developments.

In the experiments, we tested three combinations of
part shapes. Real parts in industrial use cases typically
have more complex shapes. In our previous work [54], we
have already demonstrated that the contact model can deal
with complex and non-convex geometries in peg-in-hole,

but have shown only observation results without motion
generation. The implementation of the VPS algorithm
is in general suitable for large scenes such as in car
manufacturing [58, Sec. 5.2.3]. In future work, alternative
and learned contact models could also be applied for the
likelihood computation in order to support flexible materials
and high friction contacts. Furthermore, for the application
in an industrial setting, a speed-up of about one order of
magnitude would be necessary. We are very confident that
this can be reached by implementing the framework more
efficiently. Furthermore, experience-based optimization of
the path points and controller parameters could significantly
improve execution times for repeated tasks.

Although the filter step is computationally more expen-
sive than in alternative approaches, an advantage is that the
image of the local configuration space can be approximated
by the sample distribution, and it is geometrically inter-
pretable. A possible future extension of the presented work
is to adapt the controller parameters automatically accord-
ing to the current shape of the configuration space. Learning
approaches could be used on top of the sample distribution
to optimize the performance of the insertion strategy.

8 Conclusion

In this work, we presented an approach towards autonomous
robotic assembly, which could be used in future manu-
facturing scenarios in order to increase the flexibility of
production facilities. We showed how robotic skills can
adapt to moving parts according to the currently observed
contact situation by using visual and intrinsic tactile sens-
ing. The general framework is composed of a recursive
Bayesian state estimator and an adaptive robot motion gen-
erator. The state estimation makes the system aware of the
present uncertainties that are affected by occlusions and
unknown part motions. The motion generator provides a
reactive behavior based on a probabilistic representation
that selects the motion according to the currently estimated
part poses. In particular, we showcase an object-centric peg-
in-hole skill, which is reusable for different part combina-
tions, different initial positions and with moving parts. This
skill entails using a robust tilt-and-align assembly strategy
implemented with a Cartesian impedance controller and was
demonstrated successfully for three different part combina-
tions. In future work, we plan to improve the performance
of the framework with respect to execution time and orien-
tation uncertainties. Furthermore, we want to investigate the
possibility to include iterative and experience-based learn-
ing approaches to map the knowledge of the current contact
configuration to controller parameters.
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Appendix

Figures 17 and 18 show the sample evolution for the x, y
and z component of the state for the experiments described
in Section 6.3.
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Fig. 17 Sample evolution for the x, y and z component of the state for
a static cylindrical hole using three variants of likelihood functions.
The gray value indicates the sample density, the black line corresponds
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to the expected value and the blue dotted line represents the ground
truth value from the second robot, i.e. the directly measured hole pose
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Fig. 18 Sample evolution for the x, y and z component of the state for
a moving cylindrical hole using three variants of likelihood functions.
The gray value indicates the sample density, the black line corresponds
to the expected value and the blue dotted line represents the ground
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