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Abstract

Vibration testing is a crucial step within the admission process of an aircraft. Before certifi-
cation, these tests are essential to validate the existing numerical models and to ensure flutter
clearance to guarantee the safe operation of the system. Currently, these tests are performed
within the so called Ground Vibration Test, where the aircraft is under operational-like
boundary conditions and excited in a hangar with shakers to identify the modal parameters
of the system. However, these procedures are very time intensive and take place during a pe-
riod of aircraft development that is very time critical. To circumvent this problem, the DLR
has developed a new method that promises to save time, named Taxi Vibration Test. During
this process, the aircraft merely taxis over the uneven runway. The occurring vibrations are
recorded by sensors. Complex algorithms are then used to identify the modal parameters.
In contrast to the Ground Vibration Test where the aircraft is hung up with cords to imitate
the boundary conditions, the nonlinear landing gear is involved within the system which
influence the modal parameters. Since the algorithms used for this purpose are formulated
for linear systems, this work addresses the problem in which various methods are developed
and investigated to identify the overall nonlinear system within the Taxi Vibration Test. In
doing so, a promising algorithm is presented that can identify the nonlinearity for the most
part.
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1 INTRODUCTION

1 Introduction

Within this introductory chapter, the motivation for this thesis is exposed. Afterwards
the problem is defined and the research objectives arising in this work are presented and
discussed. The chapter concludes with the structure of this work.

1.1 Motivation

The aim of aircraft manufacturer is to develop always lighter and more economic while
being at the most cost-efficient. This makes the resulting structures very susceptible for
vibrations. To ensure that these tremendously complex and lightweight systems are still
safe and reliable, numerous tests have to be deployed before the first flight. During the
development process, time plays a major role which is why experimental tests are suboptimal.
With today’s computation power, more and more of these tests or respectively analysis can
be performed within simulations to save both time and costs. For structural analysis, for
example fatigue testing or flutter analysis, the aircraft manufacturers often make use of the
well established Finite Element Method (FEM). Anyway, it is not sufficient to just have
these computer-based models without any verification. These Finite Element (FE) model
verification have to be deployed before the first test flight and hence are in a very time-
critical window from the manufacturer’s point of view, see Soal et al. [2019]. Within these
tests the absence of aeroelastic instability such as flutter, divergence or control reversal
must be demonstrated experimentally. This can be achieved e.g. on the basis of identified
damping ratios at different flight conditions within the flight envelope. Anyway, the modal
parameters, the eigenfrequencies, damping ratios and eigenvectors of a system are of great
importance which are afterwards used to validate the structural FE model. A common
way to obtain these parameters is the so called Ground Vibration Test (GVT). In this
process, the aircraft under investigation is inside a hangar and equipped with many sensors to
measure the acceleration. To achieve this, the structure is excited through electro-dynamic
shakers at different positions. Due to the complexity of such structures, the aircraft has
to be excited using various combinations of excitation positions to ensure that all modal
parameters are identified properly, making such a procedure very expensive in terms of time.
As already mentioned this is suboptimal because this phase is very time sensitive for aircraft
manufacturers. A procedure like the GVT, where the systems input and output are known
can be classified within the Experimental Modal Analysis (EMA).

To improve such a procedure in terms of time and costs, the German Aerospace Center (DLR),
Institute of Aeroelasticity, Department of Structural Dynamics and System Identification
introduced a novel approach, see Boswald and Govers [2008]. This approach is, in contrast
to the GVT, not part of the group of EMA techniques but can be classified into the so called
Operational Modal Analysis (OMA) methods. This new testing method is called the Taxi
Vibration Test (TVT). Throughout this test, the aircraft is pulled over the runway and is
excited through the uneven ground. Here, not a determined excitation is used but the natural
excitation during taxiing in combination with data-driven algorithms to obtain the desired
modal parameter. Although the excitation can not be measured and is thus unknown, it can
be described with the help of stochastics. There are a number of such algorithms to extract
the modal parameters from the system response, like for example the Stochastic Subspace
Identification (SSI) algorithm. Consequently, this test can be integrated in a multi-objective
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(b)

Figure 1 - Demonstration of the Taxi Vibration Test with the DLR HALO (a) and ATRA
(b) aircraft

testing concept to decrease the expensiveness. Additionally, because the aircraft is equipped
with sensors for the first flight test anyway, even more preparation time can be saved. Such
a test is shown in figure 1, where the two DLR aircraft configurations HALO and ATRA are
pulled over the runway.

It is shown in the papers from Soal et al. [2019] and Boswald et al. [2017] that with a suffi-
ciently long time series, the modal parameters can be identified. Further it is demonstrated
that even with shorter durations of testing, the data does not show trends of increasing
uncertainties, but fewer modes are identified. This is why the authors state that the mea-
surement duration has to be chosen in accordance with speed and objectives of the test
campaign. Summarising, the motivation of this work is to further develop this novel method
for the identification of the modal parameters of aircraft.

1.2 Description of the problem

During the first TVT, carried out by the DLR, a systematic deviation of the results was
observed, see [Boswald and Govers, 2008]. Especially the modes where the landing gear is
involved deviate. Since the damping ratios play an important role and need to be identified
accurately, the GVT is until now the only way to obtain these modal parameters for model
updating. After further investigation of this phenomena, it was concluded that the main
problem is the highly nonlinear dynamic landing gear. The stick-slip friction is located
within the shock absorbers of the landing gear and has an impact on the modal parameters
such that they vary with changing excitation force, see Soal et al. [2019]. As it is mentioned
in the motivation, the TVT is an output-only modal analysis and uses algorithms to extract
the modal parameters. The problem is that these algorithms are written for linecar systems
and hence are without any improvements not applicable to nonlinear influenced systems.

1.3 Research objectives

The overall aim of this thesis to extend OMA to nonlinear systems and hence to further
develop the aforementioned TVT. This shall be achieved by developing and investigating
different algorithms. To do so, a numerical efficient substitute model shall be constructed
of which all parameters are constantly accessible and known. This is to ensure that one
is able to compute analytical solutions of the system if needed. In order to achieve the
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numerical efficiency an integration scheme shall be presented to be able to solve nonlinear
systems under random excitation. Furthermore, this model shall represent the nonlinear
behaviour of an aircraft, initiated through the nonlinear landing gear. For demonstration
purposes, different excitation levels are used to simulate the system response to uncover the
nonlinearity. Afterwards, it shall be shown that if the nonlinear subsystem is part of the
excitation mechanism, the linear and nonlinear subparts can be decoupled to identify the
analytical modal parameters of the linear structure. Following this, different methods for
nonlinear OMA shall be developed. Since within the TVT different excitation levels can not
be realised, only one simulation run shall be used to reveal the nonlinearity. With the aid
of statistical analysis the obtained data shall be processed in advance of the modal analysis
to be able to identify the overall nonlinear system properly.

1.4 Structure of this thesis

The aim of this work is to further develop the TVT procedure to make it applicable for
linear systems with a local nonlinear mechanism. Therefore, theoretical investigations are
carried out to develop and investigate different methods for OMA of nonlinear systems. To
do so, an Airbus A320 is taken as an example aircraft and is modelled equivalently in a
simplified theoretical way to investigate the influence of the landing gear. For this purpose,
the needed theory of structural dynamics is explained in chapter 2. The nonlinearity of
the landing gear plays a major role, since the modal parameter of modes can change under
different excitation levels. Therefore, in chapter 3, the modelling of such nonlinearities and
their effect on dynamic systems are presented and explained. After the fundamentals to
describe the substitute model mathematically are submitted, an introduction into stochastic
processes and signal processing is given in chapter 4. The intention is to describe and
generate the excitation caused by the uneven road pavement as accurate as possible in order
to realise a simulation of the substitute model. Additionally, this signal shall have optimal
properties for modal analysis purposes. Basically, now the structure and the excitation can
be united to compute the output, or differently said the response of the system caused by
the excitation. At this point it can be taken in advance that the system output is supposed
to stand for what the sensors on the aircraft actually record during the TVT. Anyway,
to simulate the response, an integration of the equation of motion and its excitation is
needed. Thereby the problem arises that for randomly excited nonlinear systems no analytic
solution can be computed. Thus, a numerical integration scheme has to be employed. The
combination of long simulation times and randomly distributed excitation leads to time-
intensive computations which is why an improved RUNGE-KUTTA integration scheme is
presented in chapter 5 to fulfil this task faster. Subsequently in chapter 6, two modal analysis
methods are presented on which the improvements are later based on. Thereby the focus is
on the already quoted SSI algorithm. In addition, the Least Squares Complex Frequency-
domain (LSCF) modal analysis is briefly discussed. After explaining the theory, the example
problem, the AIRBUS A320 is mathematically modelled in chapter 7 to obtain a substitute
model. Thereby, the before discussed fundamentals in structural dynamics are applied to
create the model. The excitation is generated using chapter 4 and the output is computed
by employing the developed improved RUNGE-KUTTA scheme in chapter 5. Afterwards
the simulation results are presented and the problem is illustrated again. Chapter 8 then
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discusses the different developed methods and shows whether they are applicable or not.
The last chapter, chapter 9, concludes the thesis, discusses the results again and gives an
outlook for further research.



2 STRUCTURAL DYNAMICS PRELIMINARIES

2 Structural Dynamics Preliminaries

Structural dynamics in general deals with the vibration processes of structures. This research
field has gained more and more attention during the last decades, see Freymann [2011]. A
structural dynamic analysis contains a mathematical-mechanical description of the structure
with the capability to oscillate, using a discretised and more or less simplified system which
is easier to handle, see Gasch et al. [2012]. While at the start of this area the interest laid
in the analytic models and the analytic and numeric solution, nowadays the focus is on the
numerical analysis, corresponding for example with the well established FEM. The structures
which appear for example in aerospace engineering are becoming more and more complex in
the course of time, see Kerschen [2017]. For a better understanding of the theory, structural
dynamics make use of simple, analytic solvable systems, which then can be investigated in
detail. Afterwards, the gained knowledge can be extended to more complex geometries.
The regarded systems are mathematically described by the so called equations of motion,
which are usually second order differential equations. If the system is simple enough, it
can be possible to derive the equation of motion by hand, but with increasing complexity
it becomes more and more difficult. Therefore, other methods have to be employed. An
also well established way to do this analytically is to use the so called EULER-LAGRANGE
equations, which is based on the energies contained in the system. For complex structures, as
they occur in aerospace engineering, numerical solutions have been widely adopted, like the
before mentioned FEM. As the name suggests, this method divides the complex geometries
into finite elements, for which the governing partial differential equations are solved. Thereby,
the displacements of the element-nodes are approximated with so called ansatz functions,
which are polynomials. The approximation adjusts the coefficients of these polynomials such
that the displacement of the whole structure is described by the displacements of subparts,
the elements. This procedure can be done for several geometric objects such as squares
and triangles in the two dimensional and cuboids for a three dimensional space. These
simple geometries can then be put together to form the desired complex structure. Thereby,
different assumptions are made, such as for example small deformations, which again leads
to a linearised model [Wriggers, 2001]. An example is given in figure 2 where a meshed
aircraft is presented, illustrating a FEM model.

Figure 2 — Artistic Finite Element model of an aircraft (from: progresstech.am)

It becomes clear that this complex geometry is divided into several elements with rather
simple geometric shape and known material parameters for which the above described ap-
proximation procedure is applied. Each element has a certain amount of so called nodes,
mostly located in the corner-points of each element. Depending on the choice of the element,
each node represents a maximum of 6 Degree of Freedom (DoF), through which all of the
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three translatory and three rotatory DoF are covered. It is worth to mention that by increas-
ing the number of DoF per element, the number of DoF of the whole system increases rapidly,
too. By respecting the initial and boundary conditions, the system of equation within the
FEM can be solved to obtain the so called system matrices, which can be used to construct
the equation of motion and thus the mathematical description of the model. At this point
it is worth to mention that in some cases these systems can consists of several million DoF
and hence the same amount of equations, which shows the need for computational resources,
see Henwood and Bonet [1996]. For further details on FEM, the reader is referred to Bathe
[2014], Tenek and Argyris [1998] as well as the already cited literature.

Since the aim of this work is to investigate different methods to characterise and identify non-
linear structural dynamic systems, a brief introduction into the fundamentals of structural
dynamics in the linear range is given, where the mathematical equations are introduced, as
well as different formulations to rewrite these systems in differential equations. Therefore,
the fundamental equations of structural mechanics are shown which are then transformed to
the so called state-space formulation.

This chapter shall provide the reader with the fundamental equations in structural dynam-
ics. After alrecady introducing the use of FEM in the aviation industry, at first a step is
taken backwards to start at the beginning of formulating the equation of motion based on
LAGRANGE’s equation of the second kind as an example.

2.1 Lagrange’s equation of the second kind

The equation of motion results from the physical laws, established by NEwTON and EULER
and is a mathematical equation to describes how a mechanical system evolves in space and
time. There are several methods to derive such an equation. For a fundamental derivation,
consider the scalar functional L which is called the LAGRANGian and describes the system
energetically. Furthermore, the vector of generalised coordinates in a three dimensional
system q, € R3 is introduced, representing each point of mass of the system. For a rigid
body motion, the LAGRANGE equation depends on the generalised coordinates and their
time derivative, written as

L(q,q) =T -0, (2.1)

where T' denotes the kinetic and U the potential energy of the system, see Pletser [2018].
For the sake of completeness, it should be mentioned that for non-rigid body motions an
additional term appears, representing the strain energy functional. In the further course of
this work, however, only rigid body motions will be considered, letting this term vanish.
Anyway, by applying HAMILTON’s principle, which is based on a variation of the functional
L, it can be shown [Han and Benaroya, 2002] that the evolution of a conservative mechanical
system can be described by

d 0 15, d (0L oL
(aa—q;a—qs)“a(a—q)‘a—q;“ (2:2)
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Equation (2.2) describes a conserving system. If the system does dissipate energy, the so
called non-conservative forces have to be introduced, denoted by () and extend equation
(2.2) as

d [ OL oL
—— - _0.=0. 2.
dt <8qs) oq, s =0 (2:3)

By separating all variables which occur in the second time derivative on the left hand side,
the equation of motion can be expressed as [Wallaschek, 2018]

a=f(q,aq,?). (2.4)

where f denotes a function.

2.2 The linearised equation of motion and the eigenvalue problem

The equation of motion, derived in the previous chapter is in most cases non-linear. In
many engineering disciplines it is however sufficient to assume small displacements of the
mechanical systems. In other words, it will remain close to its equilibrium. If this assumption
is made, the system can be linearised. Therefore, the vector of the generalised coordinates
q,(t) is regarded again. Additionally, the system is considered to be in an equilibrium
position q,(t = 0) = q,. For the linearisation, equation (2.4) is evoked again. The non-
conservative forces are neglected for the linearisation. The again rewritten equation of motion
writes

For an equilibrium position, the system can be expressed as f(q = 0,q = 0,q = q,,) = 0.
In the following let q and its time derivatives be a small deviation from the equilibrium

qa=q,+4q qa=q q=aq. (2.6)

If this expression is expanded around the equilibrium position by using TAYLOR series, this
yields ) ‘
fla=q,9=q,9=q,+q) = f(a=0,9=0,9=q,, +q)+

of . Of . Of _ (2.7)
— — = =0. :
0| a=0 4" ] a=0 1" Bq| =

q=0 q=0 q=0

A=A A=A, a=9q,,

The first term vanishes due to the definition of the equilibrium position, resulting in the
linearised equation of motion, as

Mq(t) + Cq(t) + Ka(t) = f(t). (2.8)
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Since small displacements are always assumed in this thesis, the linearised and generalised
coordinates and their time derivatives are defined as q = q. Let N be the number of DoF of
the regarded system, the symbols denote:

M € RM*Y mass matrix q(t) € RY displacement vector
C € RY*Y damping matrix f(t) € RY force vector

K ¢ RV*YN gtiffness matrix

These symmetric matrices are called system matrices. In engineering disciplines, especially
in aerospace engineering, very complex structures occur. In this case, the system matrices
are approximated using for example the already mentioned FEM.

In the following, the solution for this Ordinary Differential Equation (ODE) (2.8) shall be
briefly shown. Therefore, an ansatz of the complex-exponential type is used, like

q(t) = geM A eC, (2.9)

where q is an unknown amplitude and A an unknown parameter, called eigenvalue. Inserting
the ansatz into the equation of motion and rearranging it, the solution can be expressed as

(M*M + AC + K)g = 0. (2.10)

In mathematics an equation of this type is called an eigenvalue problem. To solve this, the
demand is made that the determinant of the expression must become zero, as in

Det(A’M + \;,C + K) = 0. (2.11)

A system with N DoF delivers a 2N-th order polynomial, also called the characteristic poly-
nomial, which has to be solved. This procedure brings 2N complex-conjugated eigenvalues.!
Ongoing, each complex eigenvalue has a corresponding complex eigenvector. The eigenvec-
tors can be determined by inserting the eigenvalues into the eigenvalue problem, see equation
(2.10). This can be written as

(MM + \C +K)p, =0 ¢, € CY (2.12)

Since the eigenvalues exist in complex-conjugated pairs, the eigenvectors do as well. The
ordering of the eigenvectors is given by the eigenvalues.

Subsequently, the orthogonality of the eigenvectors should be briefly introduced. This prop-
erty results from the fact, that the eigenvalues \; and the corresponding eigenvectors ¢;
solve the eigenvalue problem. By arranging all eigenvectors into a matrix, like

2=[¢ & - ox ® e CVN, (2.13)

LOnly for systems which are capable to vibrate and which are not overcritically damped

8
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the so called modal matrix, a modal transformation can be performed, based on the rela-
tionship

q = ®n, (2.14)

where 1) represent the new introduced modal coordinates. Further it can be shown that by
multiplying the equation of motion with the transpose of the modal matrix from the left and
with the non-transposed one from the right, like

&"M®#H + ®TCPn + 'KdPn =0, (2.15)

the equation of motion can be decoupled and yields

Mq>’f] + Cqﬂ’[ + K@’I’] =0. (216)

After normalising the eigenvectors to one, the decoupled mass and stiffness matrices can be
written as

Mg = diag(m;) Ko = diag(\?). (2.17)

In case of proportional damping, the damping matrix can be diagonalised as well by

where m; is called the modal mass and ¢; the modal damping. In this resulting equation of
motion, only the main diagonals of the matrices are populated.

2.3 Modal damping for time-domain analysis

Since M and K can be approximated by, for instance, FEs, the question is how the damping
matrix C can be constructed. It can be shown that an undamped system, once excited,
oscillates indefinitely with a constant amplitude, see Paz and Leigh [2004]. In reality no
completely undamped systems exist, see Markert [2016]. This is why it is crucial to consider
how to model damped systems since within the numerical solutions it is the aim to predict
the behaviour of the structure as accurate as possible.

There are several methods to build the damping matrix. Well established ones are for exam-
ple the proportional or RAYLEIGH damping as well as the structural damping. Proportional
damping uses the mass and stiffness matrices M and K in combination with two indepen-
dent scalar factors. However, the problem arises that not the whole needed band-width of
frequencies is covered and thus, overcritical damping can occur. Additionally, it is impor-
tant to mention that this form of damping is not in every case applicable, especially when it
comes to structures consisting of different materials [Boswald et al., 2016]. Structural damp-
ing in turn is indeed simple to define, but only within the frequency domain and therewith

9
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inapplicable for the desired time domain analysis, see Boswald et al. [2016]. Hence, a third
method is introduced, the so called modal damping.

Within modal damping the damping matrix is defined through the desired modal damping
ratios. Each mode produces a contribution to the global matrix, see Link [2014]. This is
done under the assumption that the eigenmodes are not coupled with each other. Assuming
that modal damping values ¢; can be obtained from experiments or empirical values, within
this approach the damping matrix is constructed by using the orthogonality relations of the
modal matrix ® like

&M = My = diag(m;)
P'KP = Ky = diag(k;) (2.19)
®TCP = Cy = diag(cy).

Equation (2.19); can be rewritten and shows the relationship

I=M; Mg
15T -1 (2.20)
=My @ M)® =3 P,
Rearranging equation (2.19)3, the damping matrix C can be expressed by
C=®"Ce® ' = MPM,'CsM,' &' M (2.21)
—_————

~_ 2ciw;
Ci= :
7711

where ¢; modal damping for decoupled differential equations.? Equation (2.21) can then be
rewritten as

N

c=M [Z 2;“’ (¢; ® d%] M C e CVV, (2.22)

i=1 ’

The dyadic product of the desired mode shape vectors ¢, forms a fully populated matrix.
The rank of the damping matrix is defined by the number of modal contributions N, as
rank(C) = N.. Since the matrix is fully populated, there is no band-structure like in the
mass and stiffness matrix which shows that the matrix does not have a proper physical
meaning but can therefore be used in time domain. The ability to calculate the damping
with respect to the mode shapes raises the question how to choose or define the latter. By
computing the eigenvalues and eigenvectors of the system and incorporating the boundary
conditions, the system is reduced by the constrained DoF. To obtain the correct size of
the mode shapes, the eigenvectors have to be appended by zeros such that they replaces
the constrained DoF. Several publications showed the performance of modal damping, see
Bianchi et al. [2010] and Hasselman et al. [1993].

Anyway, now that the damping matrix C can also be constructed, FEM and the method
presented in this section can be used to formulate the equation of motion as shown in
equation (2.8).

2Qnly valid if the Modal Damping Assumption is applied.

10
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2.4 Time-domain response analysis using state-space models

After defining the equation of motion in matrix formulation, the aim is now to transform
this system into the so called state space formulation. The huge advantage of this kind of
formulation is the reduction of the order. After re-formulating the equation of motion, the
system is described by a first-order ODE instead of a second-order one, but the number of
equations is doubled. Especially when it comes to integrating the equation of motion this
formulation shows its strength since only one integration has to be carried out. To do so,
another equation has to be introduced, which does not have to contain additional information
about the system itself. By calling again the equation of motion (2.8), multiplying it with
the inverse of the mass matrix M from left and introducing a second equation, like

q(t) —q(t) =0

2.23
q(t) + M 'Cq(t) + M 'Kq(t) = M 'f(t). (2:23)
the state space formulation of reduced order can be defined as
I 0f. 0 -1 10 ~ a(?)

By rearranging the equation and introducing the matrices A and B, the system can be
written as

%(t) = [MolKXmll Clx(t) +Ll\dliﬂu(t). (2.25)

In summary, the state-space representation of time continuous systems can be defined as

x(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), (2.26)

where the symbols denote

A € C*M**N gtate matrix x(t) € C* state vector
B ¢ C**¥ input matrix u(t) € CV input vector
C € C*V*2N output matrix y(t) € CY output vector

D € C? feedthrough matrix

After finding a solution for the vector x(), the output matrix and the feedthrough matrix can
be used to compute the freely selectable output vector, for example to compute afterwards
the acceleration. The eigenvalues and eigenvectors can be computed in the same manner as
before, by

Det(AA + B) = 0. (2.27)

11
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Ongoing, it can be shown that the analytical response of a system, described by equation
(2.26), is given by [Juang, 1993]

x(t) = e*x(0) + /Ot AT Bu(r)dr. (2.28)

Up to this point only a time-continuous formulation is regarded. The transformation from
the continuous to the discretised model can be found for example in Murray-Smith [1995].
Here, the data is available in a discrete manner where u changes only at discrete time points.
For k € N, this can be written with the so called hold function, as

u(t) = u(k) KT <t<(k+1)T (2.29)

Therewith, equation (2.28) can be modified in terms of a discrete expression by

x(k +1) = e*Tx(k) 4+ Bu(k) (/T eA”da) : a=k+1)T—r1. (2.30)

By rewriting the continuous form to the discrete form, the solution can be computed at the
relevant sampling instants. Thus, the discrete state-space model is represented by

x(k+1) = Agx(k) + Bgu(k)

y(k) = Cgx(k) + Dgu(k) (2.31)

where

T

Aj=e*T B;,=B (/ eA(kTJrT_T)dT)
0

C,=C Dy;=D

The subscript d defines the discrete formulation. The huge advantage of the discrete form in
equation (2.31) is that the next time step can be simply computed by inserting the current
one, which can be evaluated much more efficient than for example equation (2.26).

(2.32)
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3 MODELLING FRICTION NONLINEARITIES FOR TIME-DOMAIN ANALYSIS

3 Modelling Friction Nonlinearities for Time-domain
Analysis

So far, only the linear theory of structural mechanics is regarded. For these linear system
and consequently their governing linear differential equation, there are well defined analytical
tools to obtain a solution, like for example LAPLACE or FOURIER. In contrast to that, if
nonlinear systems occur, no systematic analytic tools are available. The question arises
how linear and nonlinear systems can be distinguished from each other. Lakshmanan and
Rajasekar [2003] state that linear systems admit the so called linear superposition principle.
If uy and us are two independent solution of a linear homogeneous differential equation, here
denoted with the linear differential operator L, the solution is given by

Lu =0, (3.1)

If superposition is fulfilled, it can be shown that the linear combination of u; and uy written
as

u = auy + bus (3.2)

where a and b are two arbitrary complex constants are also a solution of the homogeneous
differential equation. If the operator L does not represent a linear differential equation, the
system counts as nonlinear and superposition can not longer be applied. If these relation-
ships are now transferred back to structural dynamics, it can be stated that the equations
must be linear in nature. Accordingly, elasticity and viscoelasticity, for example, must also
be described by a linear behaviour too. If this is not the case nonlinearities appear and
have to be treated with attention. It is important to expand the analysis models to these
non-linearities, otherwise false results are obtained. In aircraft structures the phenomena
often occur by joints and friction. Lee and Tron [1989] state, that the often-exhibiting non-
linearities in aircraft structures affect not only the flutter speed but also the characteristics
of the flutter motion. Regarding this statement, it is even more important to further in-
vestigate these nonlinearities to obtain more reliable results. But also the eigenfrequencies
and eigenvectors behave differently under non-linear influence. A part of an aircraft which
is treated in this thesis is the landing gear, which is very nonlinear because of friction.

In section 2.2, the linearisation of the equation of motion is discussed. This linearisation is
performed with the assumption of small displacements of the structure, which is sufficient
for many engineering tasks. This assumption shall also be assumed to be true in the further
course of this work. By evoking the superposition principle again, the friction is the source
of the nonlinearity since it can not longer be described by using the linear theory, which
shall be briefly explained now.

For modelling this friction phenomena, the well-known mass-spring model is extended to a
nonlinear model, using the so called MASING element, which consists of a parallel connection
of two springs where one spring is in turn connected in series with a slider element, see figure
3. Starting from a characteristic threshold, this element dissipates energy.

13
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g " *Fc —e — >

W

Figure 3 — MASING element

By thinking about the eigenfrequencies and damping ratios of a system containing such an
element, it becomes clear that they have to change somehow and depend on the displacement
amplitude. It is shown in Boswald [2006], that the two modal parameters, the eigenfrequency
and the damping ratio, follow the course, illustrated in figure 4. Under harmonic excita-
tions, the Harmonic-Balance-Method can be applied to compute the equivalent stiffness and
damping ratios of such a system which are defined by

ko +k i < Uc

ko + 2 (o — 1sin(2a)) Va > u,

(3.3)

0 Vi < ue h
Ceglil) =4, U=t os(a) =1 — 2
(1 — cos(2a)) Vi > u kit

kqu cqu
Ceq7ma:r:

ko + Ky

Ue

e 2U,

Ko

~ ~

u u

> >

Figure 4 — Dependency of eigenfrequencies and damping ratios from displacement
amplitude within the MASING element [Béswald, 2006]

It can be seen that the stiffness is constant until a specific threshold and then decreases
with increasing amplitude. Equally the damping ratio stays constant up to an threshold
but then increases with increasing amplitude, in contrast to the stiffness. The increasing
damping is caused by the supplementary friction of the system. Additionally it is shown
that the damping has a maximal value when the displacement amplitude is twice as high as
the threshold. The area enclosed by the resulting hysteresis, as for example in figure 6, then
measures the energy dissipation within one cycle and is thus a measure for damping. Of
course these changes in the modal parameter of the system have an impact on the frequency

14
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response function which then show a shift of the eigenfrequency to the left.

%fw

A TfN

Figure 5 — Single degree of freedom oscillator with a friction nonlinearity

Anyway, the non-linear equation of motion for the Single Degree of Freedom (SDof) system,
shown in figure 5 then yields

mg +dq +kq+ fu = f(t) (3.4)

where f,,; represents the non-linear force, produced by the friction element. Different models
exist to describe f,; and probably the most intuitive one is based on static friction, like the
CoOULOMB friction model, represented by

frr = fesign(v) = pFysign(v), (3.5)

where the modelled force occurs tangential between the two friction surfaces. f. is the
Coulomb friction force, fy the normal force and p a friction coefficient. It should be remarked
that the so defined force just addresses the friction force in case of sliding while the sticking
phase has to be treated separately, see Gaul and Nitsche [2001]. The most obvious way to
solve this model is to perform a case differentiation to define either a stick or a slip phase.
Besides the fact, that this method can become numerically very inefficient, the transition
from one to another of these stages is however very abrupt, and hence for a dynamic process
not ideal. Additionally, neither the so called microslip nor the STRIBECK effect can be
simulated with such a model which is why more sophisticated ones have to be employed.
For dynamic friction models, the quite well known LUGRE model, introduced in Canudas de
Wit et al. [1995], is defined as

frl = oow + 01w + 024

W= q— 00@10 w(t = 0) = wp (3.6)

g 2

g(v) = fe+ (fs = fe)e v
It can be seen that the friction force depends on the relative velocity ¢. The variable w is
the friction state variable and o(, o1, 09 are material parameters. An important advantage
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of this model is the capability to model smooth transition from sticking to sliding friction
(id est (i.e.) microslip effect) and the STRIBECK effect, see Gaul and Nitsche [2001], which
occurs for example in self-exciting systems. Since the STRIBECK effect and possible self-
exciting effects are not relevant for modelling the nonlinear damping of the landing gear,
the focus is here on another model, the VALANIS model, known from endochromic plasticity
[Valanis, 1971]. The advantage of this model over the LUGRE model in this application
is that the transition from sticking to sliding friction can be better controlled through the
later introduced parameter x. The VALANIS model is represented through a single first order
differential equation

fL(z)+ Af(2) = Eod' (2) + A\Eyq(2). (3.7)

where f denotes a generalised force, ¢ is a generalised displacement and FEj, E; and A are
material parameters. The variable z is the so called state variable and is defined by

==/, (3.8)

where k is another dimensionless parameter. By setting f = f’Z and rearranging the equation
(3.7) yields

f. EOQT‘ [1 + EAOSgn(q‘r)(EtQT - fnl)] f ( . f ) (3 9)
nl — ] = Jni\4r,qr, Jni), :
1 + REAOSgn(QT)(EtQT - fnl)

where ¢, is the relative displacement between the two sliding surfaces. The parameter s
defines the microslip and thus the shape of the hysteresis and can take values as 0 < k < 1.
The closer this value reaches the value 1, the sharper is the transition phase between the
stick and slip phase. Additionally, a parameter f. is introduced, which can be interpreted
as a threshold force which describes the point where the slip phase starts. This parameter
is contained in A and can be computed by

Ey

T eE)

(3.10)
with
EO == /{70 + kl, Et - ]fo. (311)

Thereby is Ey the overall stiffness and FE; the stiffness in case of slipping. The resulting
hysteresis and the different model parameters appearing in it are illustrated in figure 6.
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_— B

Figure 6 — Hysteresis curve

To conclude this section and to bring this theory into the context of an multiple DoF system,
the state-space model can be extended by the non-linear part, as indicated in equation (3.4),
described by the VALANIS model in equation (3.9) as

x(t) = Ax(t) + Bu(t) + Buy(t) uy(t) = [fnz t)] . (3.12)

where f,,; is the integrated friction force similar to equation (3.9).
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4 Stochastic Excitation Modelling and Signal Process-
ing

This section shall now introduce the topic of stochastic excitations, how they are modelled
and their application. Aircraft structures are often excited by random processes, for in-
stance while taxiing, caused by the uneven runway, or an excitation due to turbulences
during operational flight. The occurring mechanisms cannot be predicted and recreated ex-
actly. Nevertheless, these processes follow certain regularities which can be described by
using statistical analysis and the probability theory.

Referring to the central limit theorem [Bendat and Piersol, 2010], [Papoulis, 2002], a random
signal u(t) which is compounded by n different contributions u;, can be defined as normally
distributed, independent of the distribution of each sample. This distribution is also called
the GAussian distribution theorem. With it, many random sources in nature can be de-
scribed. Ongoing, this statistical behaviour shall be fundamentally defined. Following this,
the required theory of signal processing is briefly explained.

4.1 Statistical definition for random processes

A random process is defined as stationary and ergodic. Stationary means that all statisti-
cal properties do not change in time, whereas ergodicity refers to the equality of different
measured signals. The mean of a signal u(t) is calculated by

p = Elu(t)] = Jim % / Lty (4.1)

For arbitrary t; the mean value is equal like

The mean or also called the expectation operator can be described by an average value of

the function and is thus computable by

N

Blu(n)] = Jim 5 [ (43)

Furthermore, the probability distribution P(u) and its derivative, the Probability Density
Function (PDF) P,(u), are defined as

P(u) = Probu(t) < u] P,(u) = %[P(u)] (4.4)

The probability density function defines the probability of the occurrence of the different
possible results of an ”experiment”. A very prominent example for such a function is the well
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known GAussian distribution. As it is shown in equation (4.4), the PDF is the derivative
with respect to the random variable u. The function then describes the probability of the
random variable falling into a specific range. This is represented through the integral under
the PDE, visualised in figure 7. The blue area indicates the probability that a value falls
into this range. The total area is of course always one.

0.7

0.6

0.4

p, )

0.3

0.2

0.1

0 . . L. 1 - 8
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Standardized variable u

Figure 7 — Probability density function of a normally distributed signal

For a random signal wu(t), the expected value p, can be computed by

| V-l
U= fl, = N 2 u(n). (4.6)
The variance 2 can be defined as
02 = E[(u— )% = E[u*] — @°. (4.7)

The root of this expression gives then the standard deviation which indicates the amount of
variation. This can be described in other words by saying that the smaller the value for the
standard deviation is, the closer are the samples to the mean value.

Another important expression is the correlation function which describes a measure how
similar the signal is with a time-shifted version of itself. The cross correlation function R,,,
hence describes the similarity with the input function w(t), as

Ryu(7) = Elu(t)u(t — 7)] Ryu(7) = Elw(t)u(t — 7)]. (4.8)
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With these formulas, the GAUSSian probability distribution can be formulated as

1

OuV 2T

U—pu )2
o)

e 2wt (4.9)

Pu (u) =

which can be again seen in figure 7. The last formula in this section is designated to the so
called CREST factor which indicates how "peaky” the signal is. Usually it is defined by the
peak amplitude divided by the Root Mean Square (RMS) value of the signal. Anyway, in this
thesis another definition is used, which can be also found in Brandt [2011] and is computed
by the expression

a
¢, — max(ju(m)l) (4.10)
Oy
For a GAussian randomly distributed signal this factor normally yields values between 4-5.
In contrast to that, a sine wave has a value of 1.414, and a square wave of 1.

4.2 Signal processing in modelling random processes

To evoke the aim of this section again, the theory of stochastic analysis shall be applied to
model a random excitation signal. This theory can now be used to define a so called pseudo-
random signal. In order to be able to identify all desired modes clearly, the corresponding
frequencies or eigenfrequencies, respectively, have to be excited by the signal. To make sure
of this, not randomly distributed numbers shall be created but instead a more detailed one.
The sampling frequency f, is defined through the NYQUIST theorem as

_ 1
s

where f, is the n-th eigenfrequency of the system, ko the so called oversampling factor
[Murray-Smith, 1995] and At the time step size. To choose the sample step size such that
each mode can be reproduced by a sufficient amount of samples, the bandwidth B is defined
as

fs - 2max{fn}k0 At (411)

_ 2min{d,}
N 2m
Equation (4.12), is the so called decay constant. By choosing B such as it is described by

the lowest decay constant, the peakiest mode is regarded. By saying that even this mode is
sampled by n samples, Af is defined by

B: Op = fndy, (4.12)

N (4.13)

n

This ensures that the resolution of the frequency is fine enough to illustrate all modes
properly, see Brandt [2011], where n should be chosen n > 4. With these definitions, the
needed simulation time and the number of samples can be computed by
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1 T
T = Ny— N

while Np defines the number of time series. Multiple time series are required since the
excitation is a random process. The multiple averages of independent time series confirm
the result statistically. When applying the WELCH method this averaging is automatically
involved in the analysis of cross- and auto-power spectra, see Brandt [2011]. Anyway, another
reason why the length of the signal is so important is the later introduced modal analysis.
The more data available in the end, the better are the modal analysis results, see Peeters and
De Roeck [1999]. The objective now is to define an appropriate random excitation signal
representative for the random excitation when taxiing with an aircraft over the uneven
runway. The general form of a signal within the frequency domain is defined as

a(f) =p(f)-a- e (4.15)

where ¢(f) defines the phase and shall take a random distribution and the variable a a con-
stant amplitude. The function p(f) depends on the frequency and determines the excitations
frequency band, like

_J1 it fefr
p(f) = {0 7 g (4.16)

where f* defines an intervall of the regarded frequencies f,.;, < f* < finae- The frequencies
fmin defines the smallest and f,,,, the largest eigenfrequency to be excited from the signal.
In the end the vector p(f) is a purely logical vector and controls whether a frequency is
excited p = 1 or not p = 0. In this way, the frequency band is defined. The signal is
then transformed to the time domain with the help of the FOURIER transformation like for
u:C—R

u(t) = / (e (4.17)

o0

which results in a random excitation function in time domain. The corresponding code to
generate a pseudo-random signal as it is introduced in this chapter can be found in appendix
B.
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5 Improved Runge-Kutta Integration to Solve Nonlin-
ear Systems

In operational modal analysis, where systems are excited by stochastic processes, long data
sets can be required for the modal identification process, especially when lightly damped
systems with low eigenfrequencies are considered, see equation (4.12). This makes an in-
tegration of the equation of motion demanding and expensive in terms of computing time.
For this reason, the present chapter is dedicated to an improved integration scheme for non-
linear randomly excited systems. It is clear that due to nonlinearities within the system,
no analytic solution can be found and hence a numerical integration is unavoidable. The
initial problem is the state space formulation introduced before, which reduces the second
order differential equation to first order, while the system of equations doubles its size, as in
equation (2.26);, written as

7 - R so)

et (5.1)

2(tr) = 7(t,) + /t .

For finding approximative values for z; at time ¢;, the initial values are given by z(ty) = zo,
(z,t) € B and the difference between two time steps is called the time step size At = ¢, 11 —ty.
From this general form, different integration schemes can be derived. Within this thesis, the
so called explicit RUNGE-KUTTA method is of great importance, which is derived from
equation (5.1)y and writes

At
Zpi11 = 2y + F(kl + 2k2 + 21{3 + k4), t”_;,_l = tn + At, Z(to) = Zo, (52)

using for ny = 0,1, 2, ... the values for the so called stages, computed by

f(tn,20),
kz = f(tn + At/2,2, + (k1At)/2),
Fltn + At)2,2, + (ko AL)/2),
k4 = f(tn + At, Zyn + Atkg),

as example for a fourth order scheme. The order is defined through the number of stages.
Increasing the stages at the same time increases the accuracy but simultaneously the com-
putational effort, see Quarteroni et al. [2007]. The evaluation of the stages is visualised
in figure 8. For more information concerning the derivation of the method, the reader is
referred to the cited literature.

(5.3)
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A

2o + ]’Lk?g

Zo+hk2/2

tn tn + h/2 tn—‘rl
Figure 8 — Schematic representation of a 4th-order Runge-Kutta integration

In general, the weighting coefficients are summarised in the so called BUTCHER tableau and
arc denoted as a;;, b; and ¢; for @ = 1 : n,. Therewith, the integration scheme can be rewritten
in matrix notation and the computation can be carried out in matrix multiplication as well,
see Atkinson et al. [2009]. Thus, the integration scheme for the discrete-time state space
model as in equation (2.31); can be formulated by

Jj=1
z; = z(n) + At Z aijki-1,
i—1
k; = z(t = nAt + ¢;At), (5.4)
z(n+1) =z(n) + Atz bik;.
i=1

Since the aim of this thesis is to use the simulated data which is the system response due to
the random excitation, it is also crucial to regard the interpolation of the latter. By starting
with Matlab’s ODE45 function, one rapidly realises that by interpolating the whole input
signal at each step, long simulation times arise. Since the random signal is only available
in form of a lookup table, the signal is exclusively accessible at discrete time points. Due
to the fact that ODE45 uses adaptive step sizes to increases its stability and accuracy, the
random signal has to be interpolated for each step. To overcome this problem, the following
interpolation scheme is presented to faster evaluate the corresponding excitation at a certain
time step within the integration scheme. The idea is to use a constant spacing between the
time steps in combination with a very small sample size to be able to know at any time at
which time step the integration scheme is.

As it is said, the random excitation signal is available in form of a so called lookup table.
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Therewith, at each time point, randomly distributed samples exists. The next step is, to
generate coefficients c of interpolating order p. These coefficients can be obtained, using
the so called VANDERMONDE matrix V,,, = ™! where m is the order of the interpolating
polynomial, see Horn and Johnson [1991]. Let s be the number of samples, for i =1 :s—1,
the polynomial coefficients for the i-th row of u(t) can be written as

[u;(n + 0)] 1 0 - 0 cio(n)
ui(n+1) 1 At - AP ¢ia(n)
wn+2)| = |1 2At - (2A1)P| |c¢a(n)] | (5.5)
| ui(n+p) | |1 pAt - (pA)P| |cip(n)
uTV ;’; ;g
(nim-tp)

Since both u and V,, are known, the coefficients can be computed by rearranging the equation
as

u'(n:n+p)=Vyey(n)=c, =un:n+pV," c,y(n) € RP*! (5.6)

By concatenating the s samples into a matrix, the interpolating polynomial coefficients can
be computed within one single matrix C, € RE~Y*P. Therewith, Cg(n) = c(n) are the
polynomial coefficients, which can be rewritten in terms of a vectorisation as [Jelicic et al.,
2020]

cin)=u(n:n+pV," = (V,'@I)u(n:n+p) c(n) € RP*1, (5.7)

Now, thanks to the equal spacing, for each Runge-Kutta step the corresponding polynomial
can be evaluated to obtain the excitation at a specific time point.®> In the following a
benchmark test is shown, comparing the computation of a random signal with 10.000 samples
using on the one hand the aforementioned ODE45 and Simulink/ODE4. These two integration
algorithms are compared with the improved ones, described in this chapter, called FastRK4
for the RUNGE-KUTTA integration of order four and FastRK8 for the one of order eight.

3During the work, a problem occurred which was tried to solve with the help of an higher order integration
scheme to obtain more accurate results. This is why also an RK scheme of order eight is introduced and
compared, using the same equations as in equation 5.4, only with an extended Butcher tableau.
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Figure 9 — Benchmark test of integration methods with 10.000 samples; Processor: Intel
Core i7-6820HQ CPU @ 2.70GHz; RAM: 16GB

Looking at the results in figure 9 it can be seen that through using the new developed
methods, a huge advantage in terms of computation time can be obtained. Additionally it
is worth to mention that while using ODE45 in combination with an interpolation method
(here interpl) from Matlab, the computation time increases exponentially with increasing
number of samples because at each step the whole signal has to be interpolated to obtain
the right time point within the random signal.

The presented scheme reduces the computing time significantly, allowing a faster simulation
of the nonlinear randomly excited system.
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6 Modal Analysis Methods

After the theoretical basis to construct and simulate the substitute model is given, two modal
analysis methods shall now be briefly introduced. As the name of this chapter suggests, these
methods aim to extract the modal parameters from the dynamic response. Of course, there
arc many different algorithms. Within this work the focus is on the so called Data-driven
SSI and the LSCF analysis.

6.1 Data-driven Stochastic Subspace Identification

The SSI algorithm is a system identification method to analyse data structures with the aim
to identify the systems modal parameters. Especially in output-only analysis cases, this
method shows its strengths. The algorithm and how it works shall be briefly introduced in
this section, with regard to the use case arising in this thesis where the system is excited
by a random function and thus outputs a random system response. Following on chapter 4
where the stochastic excitation itself is introduced, this chapter is about how to extract the
structural dynamic properties of the system, which is assumed to be linear, by analysing the
outputted data, see Brincker and Andersen [2006].

Equation (2.8) represents the equation of motion, modelled through FE approximations.
Further it is shown how to rewrite this formulation to the state-space model form. The
discrete form of the state space model is hence written down in equation (2.31) and is
intended to lay the foundation for further considerations. The vector u(k) contain the
sampled excitations whereas y(k) represents the measured systems output. Especially in
operational modal analysis, it is nearly impossible to measure the random input forces which
is why the algorithm to identify the systems properties must be built on solely the measured
outputs y(k). Londono et al. [2004] consider the input terms as random white, zero-mean,
stochastic processes, independent of the state vector, noted as w and v, defined as

x(k + 1) = Agx(k) + w(k),

6.1
y(k) = Cyx(k) + v(k). (6.1)
By introducing the convention that e(k) = e, the discrete form can be rewritten as
[Xk+1 Xk+2 Xk+s] = Ay [Xk X1 - Xk+s—1] + Wy, (6.2)
[Yk Yey1 - Yk—&-p—l} =Cy [sz X1 - Xk+s—1] + V. ‘

Ongoing, s denotes the number of samples. The output data matrix can be defined, which
is simply a matrix where each column represents a time sample at the systems output (the
column), as

Y=[yo i Y2 = ¥ Y € R, (6.3)

where ¢ is the number of considered DOFs. Let i be the user defined number of block rows,
the output data, stored in Y can then be rearranged to construct the so called BLOCK
HANKEL matrix Yz € RO+ by
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[ ¥o Y1 Yo o Yia 1
Y1 Yo ys - y;
1 |y, Yy, Y, T Y i1 Y
Y= — i—1 i i+1 i+j-2 | _ (0:i—1) | _ Hi 6.4
i Vil ¥ Y Yige oo Yiti—1 Y(i:%—l) YE (6.4)
Yit1 Yir2 Yiys Yitj
LY2i-1 Y2i Y2it1 0 Yoitj—2d

Y 5 can be further divided into two sub-matrices, where Yz € R represents the ”past”
and Y}; € R the "future”. The total data shift is 2¢ and thus the number of columns of
the matrix can be expressed as j = s—2¢+1. Further, the 2¢ block rows can be distinguished
into ¢« — p and ¢ + p rows for the past and the future configuration. For p = 0 both the past
and the future configuration have the same size. Van Overschee and De Moor [1996] suggest
to use i = 2(maxorder)/q where mazorder is another user defined parameter.

The next step is to perform a so called projection. This is a crucial step within SSI. If more
profound informations are sought, the reader is referred to Van Overschee and De Moor
[1996]. In general, this operation is of a mathematically geometric nature. Here, since
stochastic processes are regarded, the projection defines a conditional mean. Hence the idea
is to retain informations from the past to predict the future. The projection can be written
in two different manners, whereas the first one is the correct definition and the latter a series
of matrix multiplication. Thus, O defines the stacked free decay of the system and can be
computed with

0 =E(Y;\Y}) = YH(YH" (Ya(Yn)") Y5 OeREm?y (6.5)

The symbol | designates the MOORE pseudo-inverse. The next step is to perform a QR-
decomposition on matrix Yy which writes

v
Yy = {Yf} = RQT (6.6)
H
Ry ;
R21 R22 2
_ 6.7
Ry Rg R T (6.7)

R41 R42 R43 R44 Z

with the properties

Q’'Q=QQ" =1 R € RU-91XJ Q e R (6.8)

The idea is now to retain all information from the past that is useful to predict the future.
By inserting equation (6.6) into equation (6.5) the projection reduces the data to
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0, = [Rs | QF 0, € R (6.9)
R41

The matrix O; in turn can be defined more precisely through the observability matrix I and
the initial conditions, also called the KALMAN state matrix X. The KALMAN filter states
are used to produce an optimal prediction for the state vector Xi_’_l. This is done by using
the so called observations up to time 7, the system matrices which are available up to then
and the noise covariance, due to the assumption that the system is excited randomly (zero
mean, white noise). When the initial state estimate %, = 0, the covariance P = E[XoX{ |
and the output measurements [y, y;,ys, ...| are given, the state vector can be computed for
every time point [Peeters and De Roeck, 1999] using the following relationships

K, = (G- AP,C") (A—CP,CT) " (6.10)
P, = AP,AT + (G — AP,CT) (A, - CP,C7) ' (G — AP,CT)"

where (3¢ is the state output covariance matrix and Ay the output covariance matrix. The
KALMAN filter states are further defined by

~

Xi=[% %1 o Xy X; € R™ (6.11)

As it is mentioned before, the matrix O can also be described by the observability matrix T’
and the KALMAN filter states X;.;. For ¢ =1 : j this writes

0, = I';X;. (6.12)

It is implied that the observability matrix, as the name suggests, is observable, which means
that the matrices Ay and Cy can be observed in the output with respect to equation (6.2)
and is defined as

I,=[CA} CA} CAZ ... ca;']". (6.13)

Since neither the observability matrix, nor the initial conditions of each stage are known,
Singular Value Decomposition (SVD) is performed on the matrix O to obtain estimates, as

0, = USV”. (6.14)

The SVD is then used to define the not unique estimates as

X;=SV7 (6.15)

N

I' =US
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One important step is the following. If one block row is removed from the top of O and one
block row from the bottom of I';, the KALMAN state at the next time lag can be computed
like

0,11 =1 X4 (6.16)

If this procedure is continued, all KALMAN states can be computed by

~

Xit1 = FI’—1Oi—1- (6'17)

The next step is to estimate the system matrices A,;. By using equation (6.17) and evoking
again equation (6.2);, the system matrices can be computed by

Xi—l—l = Adf(z = Ad = Xz‘—l—lxj (618)

From the system matrices the modal parameter can be extracted, so the eigenfrequencies,
damping ratios and eigenvectors. Therefore, an numerical eigenvalue decomposition is ap-
plied to matrix Ay, denoted by

Aj=2AD 7' = Ad¢z’ = [, A = diag(u) (6.19)

where ® is the modal matrix, containing all modes of the system and A a diagonal matrix
with the discrete-time system poles p; which can be computed by solving the eigenvalue
problem. The last step is to employ the following relationships, to compute the desired
values

_ In(p)
)\i - At fz

_ Al — 2
27 d |\l (6.20)

where ); are the continuous-time poles, f; are the eigenfrequencies and d; the damping ratios,
see Van Overschee and De Moor [1996].

In the end, the selection of the subspaces n is important in terms of determining the modal
parameter. The size of the subspace defines the size of the state matrix A, and therefore the
number of modes of the model. Since all modal parameter occur in complex conjugated pairs,
n has to be chosen twice as big as the regarded frequency band, to identify all modes properly.
Therefore, a stabilisation diagram is used together with the singular values to determine an
optimal subspace number, see Soal [2018]. A basic implementation of data-driven SSI can
be found in appendix C.

6.2 Least Squares Complex Frequency-domain modal analysis

Whereas SSI belongs to the group of OMA analysis techniques using time domain responses
as input, the LSCF method works in frequency domain within EMA. It uses the frequency
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response functions as an input and thus uses both, output and input for the modal iden-
tification. This method can handle Multiple Input Multiple Output (MIMO) Linear Time
Invariant (LTI) systems. Generally speaking, this algorithm estimates polynomial coefficients
to extract the modal parameters from that. By regarding the poles and modal participation,
it uses the denominator to reconstruct the transfer function. Consider a MIMO LTI system
like

M OV
0 b (592)°

H(jQ) = —2710 (%) H € CNimpuxNowpue (6.21)
> imo @i(JS2)

where H(j) is the frequency response function, M is the user defined model order and a

and b the polynomial coefficients. By bringing everything over to the left hand side of the
equation, this equation yields

H(jQ)>  ai(jQ) - Z b (5Q)° = e, (6.22)

=0

where € denotes the value to be minimised. The coefficients of the polynomial are unknown
and must be determined. This often leads to a non-linear optimisation problem that aims to
minimise the mean value of €. Therefore, all parameters are stored into the unknown vector

@, like

©=1[- bui - | ag - QM}T (6.23)

leading to the following expression which needs to be minimised

Error(®) = Z ¢ — min. (6.24)

This can be accomplished by following TAYLOR series linearisation with the JACOBIAN
matrix like

Oe
= — e =0. 2
10=0- -6=0 (6.25)

After finding the coefficients, the eigenvalues and damping ratios can be obtained from the
roots of the dominator polynomial [Boswald, 2016]

M
=0

This section gives just a fundamental introduction into the wide field of LSCF estimators.
For further information the reader is referred to Boswald et al. [2006] and Guillaume et al.
2003].
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7 Example Problem: Vibration Analysis of an Aircraft
During Taxiing

Within this chapter, a substitute model of an aircraft shall be constructed. This model shall
retain the essential effect of coupled vibration if the linear airframe is excited through the
nonlinear landing gear and shall be numerical efficient. The symmetric property shall be used
to only consider one half of the aircraft in accordance with additional boundary conditions.
This will then be used to run various simulations and the results can be subjected to the
actual examinations. To do so, the present section is divided into three parts. Within the
first part, the model itself is constructed and the parameters are defined. Afterwards, the
random excitation is generated, using the stochastic fundamentals and signal processing
introduced in chapter 4. The third section then defines and shows different excitation levels
to uncover the nonlinearity of the system and to visualise the main motivation of this work.

7.1 Building the substitute model

As it is mentioned in the introductory chapter, this thesis aims to investigate the behaviour
of the nonlinear landing gear, acting on linear structures. This is represented here through
the wing in operation, i.e. under stochastic excitation. The structure discussed in this thesis
is one half of the ATRBUS A320 or DLR D150 configuration, respectively. A representation
of such an aircraft is shown in figure 10. This aircraft is then modelled, using the already
introduced fundamentals of structural mechanics. To construct the system matrices, the FEM
is used. The desired substitute model is visualised in figure 11. As can be seen, the symmetry
of the aircraft has been exploited to increase the numerical effectiveness of the substitute
model. This means that only one half is modelled with appropriate boundary conditions at
the symmetry plane. Furthermore, the aircraft is represented through a cantilever beam,
additional masses for the fuselage and the engine, the nonlinear friction model discretised
with the VALANIS model, two rods under and above the nonlinear branch (piston and fitting)
as well as the tire with its mass, stiffness and damping values, see figure 11.

Figure 10 — Airbus A320neo (from: airbus.com)
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@) ) ©) (@©)

Figure 11 — Discretised aircraft, (I) fuselage, (II) engine, (IIT) non-linear stick-slip
element described by the Valanis model, (IV) tire, (V) stiffness and damping of the tire,
(VI) randomly distributed displacement, ( VII') rods representing landing gear elements,
(1-13) indicate the nodes

Ongoing, the particular parts shall be examined in more detail, starting with the structure
of the wing. Rossow et al. [2014] state that there are different structural concepts of aircraft
wings. Since in aviation, the weight and strength of parts are of great importance, hollow
profiles are used to save weight without reducing the strength. This is illustrated in figure
12a. In order to approximate this within the model, the well known box profile is used. Since
the wing is tapered, the depth decreases towards the tip. Therefore, a common parameter
in aircraft design is used, the so called Mean Aerodynamic Chord (MAC). This parameter
defines the mean value of the depth of the aircraft wing. By further investigating the wings
profile, it becomes clear that the box profile of the beam has not the same depth as the
wing itself. Approximately 50% of its depth is aerodynamic fairing. By saying that the wall
thickness is 10% of the beams dimensions, the depth of the beam can be defined as

B=MAC-05 b=B-09 (7.1)

Despite the fact that the height of the wing also decreases towards the tip, it is assumed to
be constant within the model and is defined as H, h = 0.9H. The other needed material
parameters can be taken from the documentary of the aircraft, see Airbus [2005].

The comparison between the actual wing design and the modelled one can be seen in figure
12.
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(a) (b)

Figure 12 — Cross section of an aircraft wing (a)[Rossow et al., 2014] and cross section of
the modelled hollow cantilever beam (b)

By looking at the cross section of an aircraft wing, see figure 12, it can be seen that it can be
discretised by using a finite number of an hollow cantilever beam. As said, the mathematical
description is based on the FEM. The system matrices for each element of such a cantilever
beam are defined as

12 6l. —12 6l 156 22[. 54 —13l.
e Ec-[c 4[3 _6lc 21(2: e pcAclc 41(2: 13[6 _3l(23
K. = ;3 12 —6l. 420 156  —22[, (7:2)
sym 412 sym 412

where E. denotes the E-Module of the beam material, [. represents the length of one element,
I. is the geometrical moment of inertia, p. is the density and A, the cross section area. The
geometrical moment of area is computed by

1

L=
i

BH? — bh?) (7.3)
where B and H are the outer and b and h the inner dimension of the profile. The derivation of
these system matrices can be found in Link [2014]. Each node has two DoF, a translational
and a rotational one. The displacement vector corresponding to the element matrices in
equation (7.2) writes

e

qc:[ui Pi Uy SOJ}T:: [Qz’,m Qi Gz Qj,cp]T- (74)

The wing is discretised with a number of elements of n, = 10. Therewith the length of the
elements is computes by l. = L/n.. The needed measurements are again taken from the
Airbus [2005] report. The used parameter are noted in the subsequent table
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L 17 m Overall length
B 1.55 m Outer width
H 0.465 m Outer height
b 1.345 m Inner width
h 0.4185 m Inner height
MAC 3.1 - Mean Aerodynamic Chord Length
E 7.3-100 N/m? E-Module
A 0.1369 m? For hollow profile
p  1.8226-10° kg/m? Density
m 4243 kg Overall mass wing
I 0.0045 m* Geometrical moment of inertia

It is assumed that the material for the wing will be DURALU. Moreover, additional masses
are added which represent the weight of the turbine attached to the wing and the fuselage of
the aircraft. These masses can be simply added to the correct entry within the mass matrix.
Since the center of gravity of the turbine differs from the node of the wing, the theorem of
HUYGENS-STEINER must be taken into account, which writes

IJD = I 4 m[(rap - rap)l — rap @ rap] (7.5)

where J is the moment of inertia, r4p is the vector describing the displacement of the axes
crossing the center of gravity and its actual point of reference. I is the identity matrix. The
additional masses in numbers are

Fuselage 1800 kg
Engine 3100 kg
Eccentricity 1 m

The damping of the beam is constructed with the help of equation (2.22) in section 2.3.
Therefore, a separate eigenvalue and eigenvector analysis has to be executed, regarding
solely the hollow beam. The modal damping of the system is described by an empirical
value.

Consecutively, the landing gear shall be modelled. As illustrated in figure 11, the gear
consists of two rods, one end is attached to the wing, the other one to the wheel. The two
rods are connected with a spring, damper, slider branch, which holds the nonlinearity in
form of a VALANIS friction model, introduced in chapter 3. The element matrices of the rods
are given by

S e A

and the parameters are

Parameter Upper rod Lower rod  Unit

L 1.1 1.1 m
E 211-10"0 2.11-10"0 N/m?
A 0.15 0.15 m?
m 610 287 kg
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which are also chosen based on empirical landing gear parameters.
Subsequently, the tire takes the parameters

ke 3.13-10° N/m
tire 4500 Nm/s
Miire 202 kg

After constructing the model, a total mass of My = 20529kg for the half aircraft can be
computed. The Operating Empty Mass (OEM) of mogry = 42000kg for the aircraft can be
taken from the report which supports the correctness of the parameter estimation.

The last crucial part is the VALANIS element. As it is shown in equation (3.9), the VALANIS
element is described by four independent parameters, where E;, Ey and k can be estimated
through empirical values. The parameter f. denotes the threshold when the element changes
its behaviour from stick to slip. This parameter was adjusted such that when rolling on
typical taxiway with given roughness will lead to phases with sticking friction and phases
with sliding friction. This is necessary to have the desired nonlinear features in the simulated
response data. For the sake of completeness, the parameters used in the following simulations
are

Parameter Value Unit

E, 10° N/m
Fy 5-10° N/m
fe 3-100 N
K 0.9 -

Looking again at figure 11, it is easy to see that the model has 23 DoF, 20 wing and 3 landing
gear DoF. With the aforementioned aspects, the mass, stiffness and damping matrix can be
constructed and the state space formulation can be defined. As the just named VALANIS
model has the same order as the state space model, these two equations can be merged as
one system of equation which has to be solved. Therefore equation (5.1) is evoked again

5= |: X:| . |:AX(t) + Bu(t) + Bllnl(t, fnl)
fui fui(@r(x(t)), G (1)), frr)
After having defined the dynamic system and its mathematical description, the Initial Con-
dition (IC) and Boundary Condition (BC) have to be set. The only BC is found at node
number one. In other words, the fuselage can only move up and down but can not rotate,
like ¢1,,(t) = 0 and the initial condition is defined as

(7.7)

_ | Xo | _
Zy — |:Fnl70:| =0 (78)

Thus, all conditions are fulfilled to perform a simulation of the system. Since the IC are
zero, the system would not move without external force. Therefore, in the next chapter, the
previously mentioned stochastic excitation is generated.
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7.2 Modelling of the stochastic excitation

In chapter 4 the theory for stochastic processes and signal processing is briefly introduced. In
this section this theory shall now be applied to construct a random excitation function in time
domain to model operational loading which is the vertical displacement at the contact point
of the tire with the runway. To be able to identify the systems modal parameters properly,
the excitation signal must ensure that every eigenfrequency of interest is excited. Therefore
the theoretical system, constructed in the previous chapter is used to better understand the
systems eigenfrequency to be therewith able to define the random signal. After solving the
eigenvalue problem for the linearised VALANIS model, such that ky and k; are active, like

Det(/\Alm + Blm) = 0. (79)

a first estimate of the lincar eigenfrequencies can be computed. The highest eigenfrequency
of the linearised system is at max{\} = 3318 Hz. Therewith, the sampling frequency can be
defined as in equation (4.11); and the time step size as in (4.11),. By also computing the
damping ratios, the frequency resolution and consequently the minimum required simulation
time can be computed as well. The defined spectrum is illustrated in figure 13. It can be
seen that the sampling frequency is very high compared to the highest excited frequency.

<107

[ac)l

D " " A " L1
0 2000 4000 6000 8000 10000
Frequency [Hz]

Figure 13 — Spectrum of the random signal

After transforming the signal from frequency to time domain, the whole randomly dis-
tributed, zero-mean signal u(¢) and its distribution is visualised in figure 14. Additionally, a
segment of the time signal is illustrated, showing that the generated pseudo random signal
is smooth.

The statistical properties of the signal are p = 3.374 - 107%° ~ 0, ¢ = 0.0054 and the crest
factor C' = 4.6358. These values can be used as a verification that the signal meets all the
desired requirements, namely (GAUSSian, white, zero-mean noise. Besides the excitation as
a displacement caused by the uneven pavement in time domain, the distribution of the same
is also shown. Regarding the latter in combination with the before mentioned parameter of
the standard deviation and mean value, it is proven that the excitation function fulfils the
aforementioned requirements. Additionally the normal distribution can be clearly observed.
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Figure 14 — The modelled random excitation and its normal distribution for

max{u(t)} = 0.025m
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7.3 Simulation results and illustration of the problem

After constructing the model as well as the systems excitation, both can now be merged
together to simulate the systems response caused by the excitation. Since the system is
nonlinear because of the nonlinear friction element, a numerical integration is used to solve
the nonlinear system of equation as equation (3.12). To do so, the improved Runge-Kutta
integration scheme, presented in chapter 5, is employed.

Before showing the results, it should be fundamentally recapitulated what this thesis aims
to show. Within these first simulations it should be demonstrated that the regarded system
behaves nonlinear. In chapter 3 the theory for modelling friction nonlinearities is explained
as well as the influence on the modal parameters. To recall the findings again, it is shown
that with increasing displacement amplitude the eigenfrequency decreases while the damping
ratios increase. This happens due to the change of phase of the VALANIS model from stick to
slip. In the further course of this chapter this development shall be presented. Therefore, the
displacement function wu(t) is scaled to different excitation levels to show that the systems
modal parameters are dependent on the excitation level. The levels are defined through the
maximum value, like

Level 1 2 3 4 )
max{u(t)} 0.005m 0.012m 0.025m 0.040m 0.060m

Since the third level reflects the behaviour of the uneven pavement very well, two higher and
two lower excitations are chosen. Moreover, the first level is defined such that the excitation
is small enough that no slipping phase within the VALANIS model occurs and thus a linear
system response is achieved.

After simulating the system, for demonstration purposes, figure 15 indicates the hysteresis
curve, visualising the force within the nonlinear landing gear or respectively the VALANIS
model, depending on the relative displacement.

In contrast to that, figure 16 illustrates the hysteresis curves for the next lower and higher
level. The change in shape of the curve, showing the different transitions from stick to slip,
can be clearly observed.

After simulating the system for each level, applying SSI, computing the estimated Frequency
Response Function (FRF) through SSI H (jw) and averaging [Pintelon and Schoukens, 2012]
the channels with

Ntates Nstates
- 1 . 1
H = H(jw)| | + S(H(jw , 7.10
N(Z H(; >|> Nm(z (1(j >>> (7.10)

=1

the FRF for the levels can be visualised in figure 17. Additionally, the mode shapes for the
six shown modes are illustrated in order to demonstrate the movement of each mode at the
corresponding eigenfrequency.

The averaging reduces the impact of the disturbing noise and results in a smoother estimate,
see Schoukens et al. [2014]. Within this figure, two phenomena can be observed. The first
one is that not every mode is affected by the nonlinearity. This is because not in every mode
the nonlinear element of the landing gear has an impact. A perfect example for that is mode
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Figure 15 — Modelled hysteresis curve through the VALANIS model at excitation level
max{u(t)} = 0.025m

<10 Fi Dispall t-Diag =10t Force-Dispal t-Di

£ z
go go
i £
At
2F
2t
_4 E
at
4 - ' ; % : : : : : :
-0.01 -0.005 0 0.005 .01 0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
Relativ displacement [m] Relativ displacement [m]
(a) Modelled hysteresis curve through the (b) Modelled hysteresis curve through the
VALANIS model at excitation level VALANIS model at excitation level
max{u(t)} = 0.012m max{u(t)} = 0.040m

Figure 16 — Hysteresis curves for different excitation levels
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Figure 17 — Averaged Frequency Response Functions and corresponding mode shapes
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three around 10Hz. The different levels match the others perfectly which is an indicator
for the absence of the landing gear. Another important aspect is the increasing noise with
increasing excitation level. This is caused by the increasing impact of the nonlinear subsys-
tem. Schoukens et al. [2000] found the same results by saying that the eigenfrequency shifts
with changing excitation level and the measurement becomes more noisy. These findings
can also be explained by looking again at the mode shapes in figure 17 where it can be seen

that especially in modes three and five the landing gear does not move.

To better visualise this behaviour, the so called nonlinearity plot is introduced, showing the
eigenfrequency and damping ratio of a specific mode depending on the excitation level, see
figure 18. This plot is essential for the further course of this work since it is a good indicator

how well the nonlinearity can be reproduced by the developed methods.
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Within this chapter the influence of nonlinearities are shown, which proves the prediction
derived in the theory chapter. The problem that arises is, that within the introduced TVT,
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Figure 18 — Nonlinearity plots as problem description
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7 EXAMPLE PROBLEM: VIBRATION ANALYSIS OF AN AIRCRAFT DURING TAXIING

it is hard to obtain test data for different excitation levels, and thus a method for identifying
this nonlinear behaviour of the system is lack. In the following, different approaches are
developed and investigated to obtain the changing eigenfrequencies with changing excitation
level. To identify the nonlinear behaviour here the five different simulations were used which
would correspond to different TVT test under different excitation levels. This is however not
possible which is why the goal is to use just one simulation dataset in combination with data
analysis methods to extract the nonlinear modal parameters out of this single simulation
run.
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8 NONLINEAR SYSTEM IDENTIFICATION METHODS

8 Nonlinear System Identification Methods

In this chapter, different methods will be developed and investigated to identify the previ-
ously described and demonstrated nonlinearity. As it is mentioned before, within the TVT it
is hard to obtain different excitation levels to identify the changing modal parameters. Even
though it is not possible to control the level of stochastic excitation, it can be seen that
within these stochastic signals time segments exist with rather low and time segments with
rather high excitation level. This shall be exploited for characterisation of the nonlinearity
from a single excitation run. Thus, it is the aim of this chapter to use data analysis methods
and stochastic analysis to further develop the already established OMA techniques for linear
systems.

Therefore, a preliminary investigation is performed to validate the simulated results. After-
wards, three methods are regarded for nonlinear operational modal analysis.

8.1 Preliminary investigation: Decoupling the non-linear and lin-
ear subsystems

Within this preliminary investigation it is the aim to proof that by decoupling the linear and
the nonlinear subsystems, the analytical modal parameters of the linear cantilever beam can
be identified from the dynamic response. Therefore, the system is cut free between the nodes
three and eleven, see again figure 11. With the help of the relative displacement between
the nodes 3 and 11 and the stiffness of the upper landing gear rod, the element force can be
computed that is transmitted into the wing. Figure 19 shows a schematic drawing of this
test. Now, the linear part is separated from the nonlinear part. The forces generated by the
nonlinear landing gear can be considered as excitation forces to the linear part and EMA can
be applied to identify the linear subsystem.

Z

Figure 19 — Decoupled system

To do so, the following procedure is employed. First of all, the force Fj, is computed by
using the response data of node 3 and 11 and the known stiffness parameter of the upper
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8 NONLINEAR SYSTEM IDENTIFICATION METHODS

part of the landing gear. This force is then used as the excitation of the system. In combi-
nation with the simulated displacement of all nodes of the wing, LSCF is applied, resulting
in the before mentioned stabilisation diagram as in figure 20. By considering figure 21 it is
evident that the eigenfrequencies of the linear cantilever beam can be reproduced with high
accuracy. Within the nonlinearity plots no dependence of eigenfrequencies or damping ratios
on excitation levels is seen which means that the nonlinear part of the system no longer has
any influence on the modal parameter of the linear subpart.

L e —
e

Ampiitude [Log]
-
B
—
[

Frequency [Hz}

Figure 20 — Stabilisation diagram for the first level with Least Squares Complex
Frequency-domain analysis

After the eigenfrequencies and damping ratios are already compared, it is additionally in-
teresting to see how the identified eigenvectors behave compared to the analytical ones.
Therefore the Mode Assurance Criterion (MAC) is used. Let ¢, be an eigenvector identified
through the LSCF algorithm and ¢, an analytical one of the same system [Soal, 2018]. The
MAC writes

| Do’
(B0 0)(B) B5)

and gives a value near to one if the two compared modes are similar and tends to zero if the
mode shapes are orthogonal.

By looking at figure 22 it can be clearly seen that the main diagonal has values very close to
one which indicates that the LSCF identification can reproduce the analytical eigenvectors
accurately. The same can be stated after looking at the modal parameters, the eigenfrequen-
cies and damping ratios, see figure 21.

In contrast to the other investigations, it is worth to mention that within this subchapter,
not OMA but EMA is performed, since after decoupling the system, the force which is at the

MAC = (8.1)
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Figure 21 — Nonlinearity plots for different excitation levels of the preliminary
investigation, F'R* and d* show the analytical values
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Figure 22 — MAC matrix to compare the analytical and identified modes

same time the excitation is known and used as reference. To conclude this section, it can
be shown that if the nonlinear part is part of the excitation mechanism and the connection
between these two is given through a unique, statically determined path, the two subsystems
can be decoupled. Afterwards the modal parameters from the linear part can be determined
and reflect the analytical solutions very well within a specific accuracy limit. It must be crit-
ically mentioned that not the exact values can be reproduced but only good approximations.
For further information on how accurate the identification with LSCF can be performed, the
reader is referred to Béswald [2016].
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8 NONLINEAR SYSTEM IDENTIFICATION METHODS

Anyway, the problem is that in reality the force which is transmitted into the wing can not
be measured or computed easily. However, in an experiment, strain gauges can be installes
at the upper landing gear part to measure the excitation force. Nevertheless, in this chapter
only the feasibility of this approach shall be shown. Conversely, the decoupling of both sub-
systems could also be used to identify the nonlinear modal parameters of the landing gear
with the help of the Restoring Force Surface method. However, this will not be discussed
further in this thesis.

8.2 Main idea for nonlinear system identification

This section shall explain the basic idea of how to identify the nonlinear modal parameters
within the OMA. This idea shall lay the foundation on which the following methods are built.
In chapter 7 it is shown that with increasing the excitation signal in terms of its maximal
displacement, the modal parameters change. As it is explained before, SSI is formulated
for linear systems and thus not applicable for nonlinear influenced ones. Since the aim is
to show the nonlinear trend of the system solely based on one signal, or respectively the
responses obtained from one excitation level, the idea is to take the relative displacement of
the landing gear and resort or manipulate it, such that the modal analysis can be performed
for different levels which have however a fewer number of samples. Within the TVT it is
possible to measure the relative displacement. This is considered as a measure of excitation
of the aircraft, which is why the relative displacement of nodes 11 and 12, see figure 11,
is used for sorting. Anyway, fundamental statistical equations are employed to realise this
sorting or manipulation, respectively. The relative displacement can be computed using the
translatory displacement of node eleven and twelve, see again 11, which is written as

yrel =112 — q12,2 (82)

while assuming that this signal contains valuable information of the landing gears state,
whether it is in stick or slip phase.

8.3 A standard deviation-based windowing technique

The first idea is to classify the data into specific levels and afterwards employ SSI to iden-
tify the nonlinear behaviour. The relative displacement signal, defined in equation (8.2)
shall serve as a reference to define a number of excitation levels based on the displacement
to then resort the data set of the system. Therefore, the run with the excitation level
max{u(t)} = 25mm is chosen. This run is not only used for this method but also for all sub-
sequent, analysis. Anyway, the algorithmic procedure for this first method can be described
as follows
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Result: Modal parameters \;, d;, ¢; for each level set y;
Using system output y and reference signal "¢/

Defining window size and overlapping factor

Compute number of windows ny,

for Number of defined windows ny in y"¢ do
| Compute standard deviation o ., of windows

end
Define levels based on standard deviation O yref
for Number of levels ny do

for Found values do
Extract segment out of the systems output data y

Link the segments within the same level together y;,
end
end
for Number of levels ny, do
Perform SSI on the datasets y, = [y} y7 --- ¥y7*]
end

Algorithm 1: Standard deviation-based windowing technique
In this case, the number of levels ny, is set to ten. The corresponding code can be found
in the appendix, see D.1. To sum up, it is the aim to find a number of segments within
the reference signal which share a specific statistical properties to be more precise a specific
mean value and standard deviation. After classifying the signal and attach all segments
one behind the other, it can be visualised that the different reference signals have different
levels of displacement, see figure 23. In the end ny data sets exist, consisting of a number
of segments which are simply linked together. Nevertheless, it shall emphasised again that
all levels are extracted from one simulation run. In the end, SSI is employed for each data

set ny,.

) Rlealﬁv dis_p_lﬁcmeent of llha Ianding__?ear
0.025 - —rTy

Level 1

0.02 - :
0.015 }
0.01

E

= 0.005 Jl

=

£

& 0

o

@ |

% -0.005 FENH 1

a 11IRE

&
o

|
0,015 -
-0.02 +

-0.025 - P x

1
0 20 40 60 80 100 120 140
Time [s]

Figure 23 — Visualisation of sorted excitation levels for an arbitrary time segment of 140
seconds

After extending this sorting to the systems output y, different data sets for the number of
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levels ny, are available which can be analysed with SSI. After employing SSI for each level,
the already introduced nonlinearity plots are used again to show the performance of this
method. The results are visualised in figure 24.
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Figure 24 — Nonlinearity plots as results of the standard deviation-based windowing

technique

By comparing the results with the ones shown in figure 18 it can be easily seen that especially
the damping ratios can not be identified properly. In addition to that, also the change in
frequency does not fit. By looking at mode number one and four which are earlier identified
as clearly nonlinear modes, uncertainties can be seen.
Now some crucial points shall be discussed. By computing the standard deviation value of
each window, n,, standard deviation values are obtained. By looking at the distribution of
these values one rapidly realises that these are normally distributed, too, due to the random-
ness of the signal. That means that by resorting the signal with respect to the defined levels,
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the length of each signal varies, depending on how extreme the level is. That is why a more
extreme level, or differently said with a more significant distance (positive and negative)
from the mean value, has less samples than a level in the middle of the level band. This
of course has an impact on the identification through the algorithm, which is why the level
band has to be chosen narrow enough such that an analysis through SSI is possible after all.
Nevertheless, there are many other parameters which have an impact, too, such as the block
size (as introduced in chapter 6 as a user defined parameter within SSI), the selected model
order and the window size. Within the investigation this could be one aspect to enhance
the results. If the window size is chosen too large, no proper levels can be identified, due to
an averaging effect caused by the normal distribution of the signal. Additionally it is worth
to mention that by setting the overlapping factor > 0 the same segments can be appear
multiple times within the sorted data. Even after further investigations of these parameters
no enhancement could be achieved.

Another critical point is that after resorting the signal, the single segments are simply linked
together which creates discontinuities within the signal, which is then non-steady. By inves-
tigating a known linear system and by cutting out several segments, linking them together
and employing SSLit can be observed that this point, in turn, is not problematic for the
results.

Since the results of this method were not satisfactory, another method is described and
investigated in the following.

8.4 A Rainflow-counting algorithm-based identification

The second approach is based on the so called Rainflow Counting Algorithm (RCA). Again,
the idea is to resort the data within a pre-processing step into specific levels on which then
SSI can be employed. This time the classification is not carried out with the help of the
simple windowing technique, but uses the aforementioned RCA. The algorithm itself is not
discussed here in detail. For more information the reader is referred to the cited literature.
Instead, it will shortly be explained how it works and which information it can provide.
The RCA, firstly presented by Endo et al. [1974], is mainly used within the fatigue analysis
where it is aiming to count the load cycles. The method is based on the stress-strain response
of a mechanical system, where the path is influenced by the history. A huge advantage is
that even smaller hysteresis loops (or respectively load cycles) nested within larger hysteresis
loops can be detected and counted. Anyway, one cycle is counted for one closed hysteresis
loop. After counting, in fatigue analysis it is common to proceed with for example the
MINERs rule, this, however, without going into the details. The complex RCA can be, albeit
not straight forward, programmed and gives as an output the cycle count, the corresponding
range which is the distance between the minimal and maximal displacement, the mean values
of the considered samples, the starting and the ending sample.

The idea of the algorithm is the following. Imagine water which drops from a pagoda roof.*
To obtain the cycle count from the variable amplitude loading, the peaks and valleys of the
signal are needed. Therefore, the regarded signal is turned 90° clockwise. At each minimum
and maximum water starts to flow and drop down the "roof” or peak, respectively. The

4A pagoda is a layered tower with multiple eaves that is common in China, Japan, Korea, Vietnam and
other parts of Asia.
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drop will stop when it passes an absolute value which is equal or bigger than the value where
it started. Additionally it stops when it merges with a path of an early started drop or it
reaches the end [Rychlik, 1987]. This is illustrated in figure 25.

é | Yt é

Figure 25 — Rainflow counting algorithm example

From this scheme, the hysteresis curves can now be derived, which, however, is not of interest
here. The idea is to use the computed range from the RCA to define again specific levels to
sort the signal and finally perform SSI. The range defines the absolute value between the
start and the end point, for which the start and the end sample is additionally given. An
important advantage of this method is, that no higher means of the peaks can appear within
the sorted signals, thanks to the formulation of the RCA. The combination with SSI can be
formulated as
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Result: Modal parameters \;, d;, ¢; for each level set y;
Using system output y and reference signal "¢/
Applying RCA on the reference signal "¢/

Delete cycles with to less samples

Using the range (output of RCA) to define ny, levels

for Number of Levels ny, do

for Found values do
Extract segment out of the systems output data y

Link the segments within the same level together to obtain y;
end
end

for Number of levels ny, do
| Perform SSI on the datasets y;,

end
Algorithm 2: Rainflow-counting algorithm-based identification

Since through RCA also segments with a very low number of samples can appear, it is crucial
to avoid that finally not enough data samples are available to achieve stable and confident
results with SSI. After again performing the latter for each level, the results are illustrated
in figure 26.

By looking at them, the same problems can be seen as in the chapter before. Since this
approach is based on the same idea as the previous one, the same conclusions can be drawn.
In the end the problem of this and the previous method could be, that despite the fact that
the signal is sorted, still slices of higher levels can be appear since the sorting is solely based
on statistical properties. These higher level shares can smear the results for the analysis.

8.5 An advanced stochastic subspace identification algorithm

After the results of the previous two methods were not satisfying, a third method is developed
in this section. The idea is not only to treat the output data in form of a level dependent
selection and initiate the data into the SSI algorithm but manipulate the latter actively by
cancelling out columns in the HANKEL matrix within the SSI algorithm. The main idea is
to eliminate not needed columns to separate the different excitation levels to be afterwards
able to identify the nonlinear trend within the modal parameters. The cancelling of columns
is introduced by Juang [1993] to improve the numerical conditioning. This idea is taken
up here with the previously formulated aim of identifying nonlinear systems. Here again, a
reference signal for the level-dependent selection of the response data is used, introduced in
equation (8.2).

The fundamental theory is explained in chapter 6. To evoke the algorithm again, the systems
output is arranged in a HANKEL matrix like
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Figure 26 — Nonlinearity plots as result for the rainflow counting algorithm-based
identification
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Yo Y Y. - Yi-1
Y1 Yo ys - y;
Y, = L Yi-1  Yi Yir1 0 Yigj-2 (8.3)
Vil Y Y Yiee Yitji—1
Yiti Yir2 Yits Yivj
[ Yoi1 Y2 Yoir1 0 Ya2ipj-od

where y, € RY¥*! denoting the current coordinates of each DoF at a specific time point. In
the same manner the reference signal (the relative displacement of the landing gear) y"¢/,
defined in equation (8.2), is arranged as

- ref ref ref ref

yq ; Y1 ; Yo ; yjf%
vt oyt ey
1| yreh yrel el et

Y;(;f — : i—1 i i+1 i+j—2 Y’[“;f c Rlxk (84)

Vil oy v e i
ref ref ref Te,

Yisr Yise Yirs 0 Yy

RSP Ve /s SRR T Y

with the difference that ygef € R of the reference signal is just a scalar value. Let in the
following I denote the number of rows and k& the number of columns. The matrix can be
rewritten as

o
e,
X ?/i+}
) g e,

viif = — [viih vil vib - vk Vi = |viz| €R(85)

ref
_yzii i

In the following the standard deviation of each column of the matrix Y?jf is computed

2
Oyl = \/ E {(ny ~iiyzer) } (86)

using the mean value

H,i

l
>y y e vy (8.7)
=1
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and leading to

ref _ . of e ref k
R i oy €R. (8.8)

After computing the standard deviation of each column, different levels can be defined. By
again computing the standard deviation of the vector o”}ff , ongoing denoted as o7, € R and
the mean value i, the levels L lie in the interval

—€oL + fgrer < L <eop+ figres eeR (8.9)

where e is a constant, defining the width of the interval, which can then be divided into np
sub-intervals. The value e typical takes values between 1 and 2.5 to ensure that enough values
for a specific level are found, see Vesterholm et al. [2018]. Subsequently the subintervals
represent the different levels. By looping over the number of levels, the task is now to find
all columns of the reference signal whose standard deviation falls into a corresponding level
band. The columns which fulfil this requirement are kept, the others are deleted to obtain a
reduced HANKEL matrix. This pattern is then transferred to Yy which brings the reduced
matrix Y%, such as

Yo YioO¥E v Y
ViooYE ¥ Y

=

Vi Vi o Yirj-2
1—=d | Yi Wz/y// Wz/}/;‘ 0 Yiri1
Ve W W Ve

1 yi-

Yt = : (8.10)

Yar YH Y Ve
where d defines the number of deleted columns. Starting with equation (6.6), the standard
SSI procedure is executed, albeit with the reduced HANKEL matrix. This identifies the modal
parameters for each level, whereby it is aimed to generate the same change of the modal
parameters as visualised in figure 27.

By looking at the results, the modal parameters of all modes can be reproduced with respect
to figure 18. It is worth to mention again that in the just referenced figure the excitation
levels result from the different simulation runs. In contrast to that, the levels in figure 27
are based on the standard deviation values, defined in equation (8.8), and thus can not be
brought together on one axis. As it is explained before, the level band is chosen such that
still enough values are found for each level to perform a proper modal analysis. Anyway,
only for mode four the nonlinear characteristics as shown in figure 27 cannot be identified.
Because this method looks promising after the first run, it is further investigated what can
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Figure 27 — Nonlinearity plots as result for the advanced Stochastic Subspace
Identification algorithm

cause the inaccuracy at this specific fourth mode. For this, various plausible reasons are
explored with regards to what could trigger the inability to identify the nonlinear trends in
eigenfrequency and damping ratio.
The first reason one think of is that the deleting of columns in the HANKEL matrix influence
the data quality. It is believed that a minimum number of consecutive columns must be
retained to perform modal analysis. By saying that columns occurring only in groups of
n-columns, the identification procedure is employed again but no improvements can be ob-
served. Further it is looked at the appearance of columns again. Additionally, no correlation
between the appearance of columns with respect to the different levels is seen, which leads
to the conclusion that even the selection of the columns happens randomly and no pattern
can be identified.
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8 NONLINEAR SYSTEM IDENTIFICATION METHODS

Another point is the extension of the criteria for the selection of the columns. Until now,
a reference signal which is the relative displacement of the nonlinear subsystem is regarded.
When looking at equation (3.9), it becomes clear that the nonlinear friction force is not only
dependent on the displacement but also on the velocity. In general, a good way to do the se-
lection would probably be to use the energy within the friction element. By keeping in mind
that this approach is supposed to lay the foundation for the TVT, this is hence not applicable
because no real material parameter can be obtained from the aircraft structure. This is why
another approach is chosen to not only use the displacement as a criterion for the selection
but the velocity as well. The relative velocity can be easily computed. With the simulated
data this can be done by simply using the velocity data since not only the displacement but
also the velocity is the result of the state space formulation. Within the TVT this can be
done by using the sensor data in combination with for example finite differences. Thereby,
it is important to say that by expanding the selection criterions, less columns are picked for
each level, since they have to meet an additional requirement. Although acceptable results
were generally achieved by this attempt, the nonlinearity of mode four was not improved by
it.

Another critical point is the choice of the parameter within the SSI algorithm. The user is
supposed to define the so called block size and model order. By looking again at equation
(8.4), the block size defines the parameter . Because the standard deviation is computed
for each column, the block size hence defines a kind of window size since the value among
yrd s y:j{ and so on. The bigger the block size is chosen, the bigger is the regarded window
size. Due to the random distribution, the bigger the window size the closer is the standard
deviation value to the mean value, also described by the law of the large numbers. This is
not beneficial for the definition of the individual level. However, the block size of course has
an impact on the obtained results and has to be chosen with caution. In the end this can
not improve the results of mode number four either.

By regarding the mode shape of this fourth mode in figure 17, it becomes clear that mode
number four is effecting solely the landing gear DoF. Another idea was to use the so called
referenced based SSI, see Peeters and De Roeck [1999], or use only the landing gear DoF for
modal analysis but neither the first nor the latter is a successful attempt.

The last aspect which shall be discussed here also aims to identify mode number four more
accurately. Thereby the attempt is made to filter the reference signal before introducing it
into the advanced SSI algorithm. The idea behind that is to filter the signal such that solely
the frequency band around mode number four is kept. It must be stated again that this
attempt is not successful either.

Despite the imprecise identification of the aforementioned mode number four, it shall be
investigated how the presented method works on higher and lower excitation signals. There-
fore, the system response with the excitation levels two (max{u(t)} = 0.012m) and four
(max{u(t)} = 0.040m) are taken to compute the system response which shall be further in-
vestigated with the advanced SSI algorithm. It becomes clear that the nonlinearities at level
two are not detected because the energy of the excitation is not large enough to trigger the
nonlinear friction. It should be noted that the force f. was determined by a static analysis
of the system and is only triggered at a displacement of approximately 0.01m. Due to the
normal distribution, it can be assumed that this signal is energetically not sufficient enough
to trigger the nonlinearity. This result is in line with expectations. Thus, this level does not

56



8 NONLINEAR SYSTEM IDENTIFICATION METHODS

need further attention here.
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Figure 28 — Nonlinearity plots as results for the advanced Stochastic Subspace
Identification algorithm at excitation level four

On the other hand, the signal in level four has a higher energy and does trigger the nonlin-
earity. In figure 28 the corresponding nonlinearity plots can be seen which show the correct
trend as before. To be able to better compare especially mode number one, figure 29 shows
this first mode identified through the simulations of level three and four.

Thereby it can be seen that the nonlinear trend is well captured, even though small deviations
occur, resulting through the fact that the same levels were used for the fourth simulation
run as for the third. This means that for the lower levels less corresponding columns appear
which influence the result.
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9 Conclusion and Outlook

This last chapter is supposed to conclude this thesis. Therefore, a recap and a discussion of
the obtained results is given. Afterwards, the work is critically reflected and an outlook is
provided by issuing research questions based on this work.

9.1 Discussion of the results

Within this work a numerical efficient substitute model is built to be able to access all
data and parameters at any time. Additionally with the help of stochastic analysis and
signal processing a random excitation is modelled to reflect the excitation of the aircraft by
the runway. By using a newly developed RUNGE-KUTTA integration scheme to be able to
compute the solution of the ODE in an appropriate amount of time, the substitute model
is simulated. The resulting data shows very well the nonlinear effect of the landing gear.
The visual comparison with real aircraft data supports the obtained results since similarities
of modeshapes and eigenfrequencies can be seen. Furthermore, within chapter 7 different
hysteresis curves are shown which show the force-displacement behaviour of the nonlinear
branch within the landing gear. At this point it is worth to mention that the parameter
of the aforementioned nonlinear element are chosen by performing a static analysis of the
system and by defining that the JENKINS element changes from stick to slip at an excitation
displacement of approximately 10mm.

Subsequently, different methods were developed and investigated. Within the TVT it is not
possible to excite the structure with different levels, resulting in the fact that the identifica-
tion of nonlinear modes is not possible. Therefore, the methods are supposed to use statistics
to classify the data to identify the nonlinear behaviour. The first method represents a case
that is not applicable in practice but shows very well, that if the linear system can be decou-
pled from the nonlinear system and the transmitted force between these two subsystems is
computable, the linear structure can be properly identified, using LSCF as an EMA technique.
This is confirmed by comparing the identified and analytical modal parameters, where even
the eigenvectors can be well reproduced. As it is mentioned in chapter 8, the accuracy within
such a model analysis method is investigated for instance in Boswald [2016].

After this preliminary investigation is carried out, the actual aim of this work is pursued.
The first two methods, namely the standard deviation-based windowing technique and the
rainflow counting algorithm-based identification are both based on the idea of sorting the
system response into specific levels. This is done as a kind of pre-processing step before the
SSI algorithm is employed on the sorted data. By looking at the results and comparing them
with the nonlinearity plots obtained in chapter 7 it can be seen that besides the fact that
the nonlinear modes can not be identified properly, especially the damping values deviate
significantly. After further investigating different aspects which could cause these problems,
no solution is found which leads to the dismissal of these two methods and the development
of a third one.

The third method is based on the same idea but uses a different approach. Thereby, the data
is not manipulated within a pre-processing step but the SSI algorithm is enhanced directly
by implementing a scheme to reduce the BLOCK HANKEL matrix. By looking at the re-
sults, one immediately realises the potential of this method since five of the six modes were
identified quite accurately. Even the damping ratios, which can become very critical are
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identified well. Only the nonlinear trend of mode number four, a pure landing gear mode,
can not be reconstructed correctly. However, it must be mentioned positively that the re-
sults are nevertheless realistic, only the non-linear trend is not visible. After investigating
again several aspects, described within chapter 8, no solution is available yet. Up to this
point, the methods were solely tested on the simulation run with max{u(t)} = 25mm. To
validate the algorithm, also the simulations with an excitation level of max{u(t)} = 12mm
and max{u(t)} = 40mm were used. As expected, the 12mm case shows no nonlinearity
since the displacement is energetically not sufficient to change the friction state from stick
to slip. Nevertheless, the modes are identified properly and solely the nonlinear trend can
not be seen. Remember that the parameter f. was adjusted such that the system changes
from stick to slip at approximately 10mm. The other simulation in turn shows again the
nonlinear trend, what strengthens the benefit and the validity of this method under the con-
dition that the excitation triggers the nonlinearity sufficiently. In the end it can be stated
that the advanced SSI algorithm is a promising approach and shows, apart from the fourth
mode, good results. However, the question remains what triggers this inaccuracy in this one
mode while the others can be well identified.

9.2 Critical reflection

This section is designated to reflect this thesis critically. First of all it has to be mentioned
that the minimum amount of theory is reported here that is required to understand the
technical problem and the solutions adopted in this work. For more information the reader
is referred to the cited literature. Moreover, it is crucial to list that in addition to the blank
algorithms the Matlab toolbox of the DLR is used to increase the functionality and to obtain
better results.

Furthermore, the modelled system has to be reviewed. It must be emphasised again that only
a simplified model is constructed and regarded in this work, to demonstrate the identification
methods. Using a more detailed model can have an impact on the results. Thereby, for a
three dimensional model the symmetry condition can no longer be applied and antisymmetric
modes can appear in addition. Nevertheless, it must be stated that the results obtained
from the simulation performed very well compared to real aircraft data during vibration
test. Regarding the substitute model, the used parameter have to be reviewed critically
as well. The example aircraft should be modelled as accurately as possible. Therefore,
either the parameter were taken from empirical values of the DLR, out of the cited AIRBUS
documentary or estimated as properly as possible. As it is mentioned, a check of the overall
weight was carried out which supports the correctness of the model. In this course also the so
called piston and the fitting of the landing gear have to be regarded. Within the work, these
two parts are modelled without any damping. It is clear that there are no parts without
damping. However, for the sake of simplicity, these parts are assumed to be so stiff that
damping would not have an major impact on the results.

At next, the VALANIS model is considered. Compared with the also introduced LUGRE
model, the results, especially the hysteresis curve could be reconstructed better. Additionally
the transition from stick to slip can be seen more precisely since it is controllable via the
parameter x, which, in contrast, is not possible within the LUGRE model. This is why
the VALANIS model is chosen here. However, it must be stated that there are of course
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other friction models which can be employed. Regarding the nonlinearities, in chapter 3 the
harmonic balance method is used to compute the equivalent stiffness and damping ratios of
the JENKINS element. Of course, within this work only randomly distributed excitation are
regarded while for the harmonic balance method a harmonic excitation is assumed. The use
of a harmonic excitation is only intended to show how such a nonlinear element behaves with
changing harmonic motion. It must be noted that the comparison of harmonic and random
levels is difficult because the axis can only be related to each other in approximation.

A next important part is the developed time integration scheme. Of course there are schemes
which are more accurate and stable. Within this work it is however the aim to be able to
simulate the model in a reasonable time. As it is written in chapter 5, firstly the simulation
was carried out with ODE45 in combination with the interpolation method INTERP1, due to
the fact that the regarded excitation is non-deterministic and can not be evaluated based
on an analytical function. Because of the very long simulation time and the huge number of
samples, not even the DLR cluster was able to compute the system response within days.
This is why another method was crucial to not further delay the course of this work. In
the end it is possible to compute the system response for a simulation time of 9000 seconds
within approximately 30 minutes, which is a huge advantage in contrast to the MATLAB
functions, while a sufficiently small error is accepted.

Regarding the used modal analysis methods it has to be mentioned that only data-driven
SSI and LSCF are employed within this work, while there are of course other variations of
these algorithms.

The last major point is the review of the obtained results. It must be mentioned that it would
of course be advantageous to compare the results from the various simulations in chapter 7
with those from chapter 8 in one plot. However, this is not possible due the unclear scaling of
the response axis. The question arises how a purely harmonic and a purely random response
can be compared. Another important point is that within the methods the number of levels
is always set to ten to obtain a sufficient solution of the level band. Although, this parameter
can also be changed. Similarly, the parameters of SSI, for instance the model order or the
block size, play an important role and can significantly influence the results.

9.3 Outlook

In the end a short outlook shall be provided, to give impulses for further investigations. The
results of the third method look very promising which is why it is worth to further pursue
this approach. As it is already mentioned, several parameters can be adjusted which gives
plenty of possibilities to further improve the results. In addition to that, it is also worth to
mention that there are other modal analysis methods which perform maybe better for this
application.

The last point to investigate could be to complement these methods with the so called
Recurrence Quantification Analysis, which aims to uncover recurring phases of nonlinear
systems. Ideally, the stick and slip phases could be better identified in order to achieve a
more precise sorting of the signal.

Additionally, the method could be used to analyse actual acquired data from a TVT since
within this work only the analysis of a model is regarded.
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A Simulation Model

This section contains all Matlab files necessary to build and simulate the substitute model.
To execute the file SimModell.m not only the functions rod2dof.m and beam4dof.m are needed
but additionally the in the following listed random.m to generate the random excitation force
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and the improved Runge-Kutta methods.

A.1 SimModel.m

%% Substitute Model Half Aircraft Airbus A320
% Master Thesis Hauke Maathuis

%% Parameters

ner = 9; % number of elements beam

nad = 3; J number of additional nodes

nbe = ner + 1; Y number of nodes beam

n = nbe + nad; % number of nodes (over all)
ndof_beam = nbe * 2; % number of DOFs bean

ndof = ndof_beam + nad; ) number of DOFs (over all)
natt = 3; 7 node where the gear is attached

% Parameter Wing

pWing .E = 0.73el1l;

pWing.length = 17;

pWing.1 pWing.length/ner; J Element length (discretization)
pWing.MAC = 3.1; /% Mean aerodynamic chord length

pWing.B = pWing.MAC * 0.5;

pWing . H = pWing.MAC * 0.15;

pWing.b = pWing.MAC * 0.5 x 0.9;

pWing.h = pWing.MAC * 0.15 * 0.9;

pWing.A = pWing .B*xpWing.H - pWing.b*pWing.h;

pWing.weight = 4243;

pWing.rho = pWing.weight / (pWing.A * pWing.length);

pWing.I = 1/12 * ( pWing.B*pWing.H"3 - pWing.bxpWing.h"3 );

% Parameter rods before and after the LuGre element within landing gear

% u -> upper rod

pRod.mass_u = 610; % total mass of main fitting and piston
pRod.A_u = 0.15;

pRod.1_u = 1.1;

pRod.rho_u = pRod.mass_u / (pRod.A_u * pRod.l_u);
pRod.E_u = 2.1el1l;

% 1 -> lower rod

pRod .mass_1 = 287;

pRod . A_1 = 0.15;

pRod.1_1 1.1,

pRod.rho_1 = pRod.mass_1 / (pRod.A_1l * pRod.1l_1);
pRod.E_1 = 2.1el1;

% Parameter Tire
3.13e6;
4500; %

pTire.ktir =
pTire.dtir =

% Stiffness of the tire (3.13e6)

Damping of tire (but apparently not needed)
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pTire.mtir = 202; 7 Mass of the tire

% additional masses

pXmasses.fuselage = 11800; 7 Additional mass fusalage

pXmasses.engine = 3100; 7 Additional mass engine

pXmasses.e = 1; % distance between node and center of gravity of the
engine

% Parameter for the Valanis modell

val.Kges = b5e6;

val.Et = 0.2 * val.Kges;

val.E0O = 0.8 * lugr.Kges;

val.sigma0 = 3e4;

val.kappa = 0.90;

val.lambda = val.EO/(val.sigmaO#*(1-val.kappax*val.Et/val.E0));

HO = 3; % Hold-order for FastRK

%% Building the geometry model
% Node-Tabel of the system Tab = [Node-Number X Y Z]

GeoTab = zeros(n,4);
for ii = 1:nbe

GeoTab(ii,1) = iij;

GeoTab(ii,2:4) = [pWing.1*(ii-1),0,0];
end
GeoTab (nbe+1,:)
GeoTab (nbe+2,:)
GeoTab (nbe+3,:)

[nbe+1,pWing.1%(3-1) ,-1.1,0];
[nbe+2,pWing.1%(3-1) ,-1.1,0];
[nbe+2,pWing.1*(3-1) ,-2.2,0];

% DOF Tabel DofTab = [Dof-Number Node-Number Dof-Direction(l:Translation
,2:Rotoation)]

DofTab = zeros(ndof,b3);

DofTab(:,1) = [1:ndof]’;

DofTab (1:2*nbe ,2) = sort(repmat ([1l:nbel"',[2,1]));
DofTab (1:2*nbe,3) = repmat ([1;2], [nbe,1]);

DofTab (2*nbe+1:ndof ,2) = nbe+[1;2;3];

DofTab (2*nbe+1:ndof ,3) = [1;1;1];

%% Building element matrices

[me_2_u, ke_2_u] = SIMh.rod2dof (pRod.E_u,pRod.l_u,pRod.A_u,pRod.rho_u);
[me_2_1, ke_2_1] = SIMh.rod2dof (pRod.E_1,pRod.1_1,pRod.A_1,pRod.rho_1);
[me_4, ke_4] = SIMh.beamddof (pWing.E,pWing.I,pWing.l,pWing.A,pWing.rho);

%% Initialize total values
S_total = zeros(3,1); J total center of gravity

M_total = 0; % total mass
I_total 0; % total moment of inertia

%% Sorting element matrices into global

M = zeros(ndof ,ndof); K = zeros(ndof,ndof); D = zeros(ndof,ndof);

63



A  SIMULATION MODEL

98 % sort in the beam parameters

99 for i = l:ner Jloop over elements

100 index = (i-1)x*2 + [1:4];

101 K(index ,index) = K(index,index) + ke_4;

102 M(index ,index) = M(index,index) + me_4;

103

104 tmp_Mass = 2%(me_4(1,1)+me_4(1,3));

105 [M_total,S_total,I_total] = SIMh.RB_Inertia(GeoTab,DofTab,index,

tmp_Mass ,M_total,S_total,I_total);
106 end
107
108 Ms = M; Ks = K;
109
110 %% Additional Masses on Beam
111

112 idx = 1;
113 M(idx,idx) = M(idx,idx) + pXmasses.fuselage;
114 tmp_Mass = pXmasses.fuselage;

115 [M_total,S_total,I_total] = SIMh.RB_Inertia(GeoTab,DofTab,idx,tmp_Mass,
M_total,S_total,I_total);
116

17 idx = 7;
118 M(idx,idx) = M(idx,idx) + pXmasses.engine;
119 tmp_Mass = pXmasses.engine;

120 [M_total,S_total,I_total]l] = SIMh.RB_Inertia(GeoTab,DofTab,idx,tmp_Mass,
M_total,S_total,I_total);
121

122 idx = 8;

123 M(idx,idx) = M(idx,idx) + pXmasses.engine * pXmasses.e 2;
124 I_total = I_total + pXmasses.engine * pXmasses.e 2;

125

126 idx = ndof_beam+nad;

127 M(idx,idx) = M(idx,idx) + pTire.mtir;

128 tmp_Mass = pTire.mtir;

129 [M_total,S_total,I_total] = SIMh.RB_Inertia(GeoTab,DofTab,idx,tmp_Mass,
M_total,S_total,I_total);

130

131

132 %% Defining static constrains

133

134 Dof_stat

2; % rotation is fixed, translation is not

135 index_al = 1:ndof;
136 index_al (find(index_al==Dof_stat)) = [];
137 index_bl = [Dof_stat];

138

139 %% Physical damping of the cantilever beam

140 modDamp = 0.005; 7 empirical value

141 index = [1 2];

1492 Mn = Ms(l:ndof_beam,l:ndof_beam); Kn = Ks(l:ndof_beam,l1:ndof_beam);
143 Mn(index,:)=[]; Mn(:,index)=[]; Kn(index,:)=[]; Kn(:,index)=[];

145 nnDOF = size(Kn,1);

146

147 [Psi,Lambdal] = eig(Kn,Mn);
148
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149 %Normieren der Eigenvektoren

150 for ii = 1:nnDOF

151 [¥,index_max]=max(abs(Psi(:,1ii)));

152 Psi(:,ii) = Psi(:,ii)/Psi(index_max,ii);
153 end

154
155 Lambda = diag(Lambda) ;
156 w_elg = abs(sqrt(Lambda));

157 Mn = Psi'*Mn*Psi; Kn = Psi'*Kn*Psi; ), modal transformation
158

159 psi_zero = zeros(1,nnDOF);

160 Psi = [psi_zero; psi_zero; Psil;

161

162 k = zeros (2x(ner+1));

163

164 for i = 1:nnDOF

165 kn = Psi(:,i)*Psi(:,1i) '*(2*modDamp*w_eig(i)/Mn(i,i));
166 k = k+kn;

167 end

169 D(1:ndof_beam,1:ndof_beam) = D(1:ndof_beam,1:ndof_beam)+ Ms(1l:ndof_beam,1:
ndof_beam) * k * Ms(l:ndof_beam,1:ndof_beam);

170

171 clearvars Kn Mn Ms Ks

172

173 %% Computing EF/EV of the damped beam for comparison in 8.1

174

175 tmp_id = [(natt*2)-1,ndof_beam+1];

176 M(tmp_id,tmp_id) = M(tmp_id,tmp_id) + me_2_u;

177

178 index = [Dof_stat];

179 Mb = M; Db = D; Kb = K;

180 Mb(index,:)=[]; Mb(:,index)=[];

181 Kb(index,:)=[]; Kb(:,index)=[];

182 Db(index,:)=[]; Db(:,index)=[];

183

184 dof_el = [2

185 Mb(dof_el,:

186 Db(dof_el,:

187 Kb(dof_el,:

188

189 Ab = [zeros(size(Mb)) eye(size(Mb)); -Mb\Kb -Mb\Db];

190 [Psi,Lambdal] = eig(Ab); Lambda = diag(Lambda);

191 [7,id] = sort(Lambda); Lambda = Lambda(id); Psi = Psi(:,id);

192 id1 = find(imag(Lambda) >=0); id2 = find(imag(Lambda) <0);

193 Lambda = Lambda([id1;id2]); Psi = Psi(:,[id1;id2]);

194 id = find(imag(Lambda) >=0);

195 wn_beam = abs(Lambda(id)); fn_beam = wn_beam/(2*pi); Damp_beam = -1xreal(
Lambda (id)) ./wn_beam;

196 % Cut out lower part of psi matrix

197 Psi = Psi(1:19,id); Lambda = Lambda(id);

198 % Normalize eigenvectors

1 2271;
[1; Mb(:,dof_el) [1;
[1; Db(:,dof_el) = [1;
[1; Kb(:,dof_el) [1;

N
]

0
)
)
)

199 for ii = 1:numel (id)
200 [",index_max]=max (abs(Psi(:,ii)));
201 Psi(:,ii) = Psi(:,1ii)/Psi(index_max,ii);
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A  SIMULATION MODEL

end
%% Sort in the gear parameters

% Rod above friction element

tmp_id = [(natt*2)-1,ndof_beam+1];
K(tmp_id,tmp_id) = K(tmp_id,tmp_id) + ke_2_u;
M(tmp_id,tmp_id) = M(tmp_id,tmp_id) + me_2_u;
D(tmp_id,tmp_id) = D(tmp_id,tmp_id) + de_2_u;

2% (me_2_u(l,1)+me_2_u(1,2));
SIMh.RB_Inertia(GeoTab,DofTab,idx,tmp_Mass,

tmp_Mass =
[M_total,S_total,I_total] =
M_total ,S_total,I_total);

% No damping in the bars under and above the LuGre element

% Stiffness and damping of the LuGre branch (parallel connected)

k1 = lugr.k1l = [1 -1; -1 1];

K(ndof_beam+1:ndof_beam+2,ndof_beam+1:ndof_beam+2)
ndof_beam+2,ndof_beam+1:ndof_beam+2) + ki;

di = lugr.dl = [1 -1; -1 1];

D(ndof_beam+1:ndof_beam+2,ndof_beam+1:ndof_beam+2) =
ndof_beam+2,ndof_beam+1:ndof_beam+2) + di;

K(ndof_beam+1:

D(ndof_beam+1:

% Rod under the friction element
K(ndof_beam+2:ndof_beam+3,ndof_beam+2:ndof_beam+3) =
ndof_beam+3,ndof_beam+2:ndof_beam+3) + ke_2_1;
M(ndof_beam+2:ndof_beam+3,ndof_beam+2:ndof_beam+3) =
ndof_beam+3,ndof_beam+2:ndof_beam+3) + me_2_1;
D(ndof_beam+2:ndof_beam+3,ndof_beam+2:ndof_beam+3) =
ndof_beam+3,ndof_beam+2:ndof_beam+3) + de_2_1;

K(ndof_beam+2:

M(ndof_beam+2:

D(ndof_beam+2:

2%¥(me_2_1(1,1)+me_2_1(1,2));
SIMh.RB_Inertia(GeoTab,DofTab,idx,tmp_Mass,

tmp_Mass =
[M_total,S_total,I_total] =
M_total,S_total,I_total);

% Stiffness of the tire

K(end,end) = K(end,end) + pTire.ktir;
D(end,end) = D(end,end) + pTire.dtir;
M(end,end) = M(end,end) + pTire.mtir;
tmp_id = length(K(:,1));

tmp_Masse = pTire.mtir;
[M_total,S_total,I_total] =
M_total ,S_total,I_total);

SIMh.RB_Inertia(GeoTab ,DofTab,idx,tmp_Mass,

%% Incorporate static constraints

index = [Dof_stat];

M(index,:)=[];
K(index,:)=[]1;
D(index,:)=1[]1;
DofTab (index, :)

M(:,index)=[];
K(:,index)=[1;
D(:,index)=[];
= [1;

%% Creating state space model and computing EF/EV of the damped SYSTEM

66



A  SIMULATION MODEL

[zeros(size(M)) eye(size(M)); -M\K -M\D];
[zeros(size(M)); inv(M)];
zeros(size(M,1),1); u(end,1) = 1;

zeros (size(M,1) ,1); p(20) = 1; p(21) = -1;
u = Bxu; Bp = Bx*p;

249

250
251

252

wo & W=
]

253
254
255 [Psi,Lambdal = eig(A);

256

257 Lambda = diag(Lambda); [~,idx] = sort(Lambda); Lambda = Lambda(idx);

258 Psi = Psi(:,idx);

259

260 idx1l = find(imag(Lambda)>0); idx2 = find(imag(Lambda) <0);

261 Lambda = Lambda([idx1;idx2]);

262 Psi = Psi(:,[idx1;idx2]);

263 clear idx1 idx2

264

265 idx = find (imag(Lambda) >0);

266 wn = abs(Lambda(idx)); fn = wn/(2*pi); Damp = -1*real(Lambda(idx))./wn;
267

268 /% Computing Eigenvalus for the damped system with "retracted" gear

269

270 idx = 19;

211 M_op = M(1:idx,1:idx); D_op = D(l:idx,1:idx); K_op = K(1l:idx,1:idx);
272 % Add gear mass to the beam at node 3

273 mg = me_2_u(1,1) + me_2_1(1) + pTire.mtir;

274 idx = 3;

275 M_op(idx,idx) = M_op(idx,idx) + mg;

277 A_op = [zeros(size(M_op)) eye(size(M_op)); -M_op\K_op -M_op\D_opl;

278 [Psi_op,Lambda_op] = eig(A_op);

279

280 Lambda_op = diag(Lambda_op); [~,idx]
Lambda_op (idx) ;

281 Psi_op = Psi_op(:,idx);

282 idx1l = find(imag(Lambda_op)>0); idx2

283 Lambda_op = Lambda_op ([idxl;idx2]);

284 Psi_op = Psi_op(:,[idx1;idx2]);

285 idx = find(imag(Lambda_op) >0);

286 wn_op = abs(Lambda_op(idx));

287 fn_op = wn_op/(2*pi);

288 Damp_op = -1*real(Lambda_op(idx))./wn_op;

289 clear idx1l idx2 idx;

290

201 %% Initial Conditions

292

sort (Lambda_op); Lambda_op =

find (imag (Lambda_op) <0) ;

203 u0 = zeros(size(A,1),1);
204 z0 = 0; % initial condition of the friction modell
205 x0 = [u0;z0];

296
207 %% Static analysis to adjust parameter val.Fc
298

200 K_static

K((end-2) :end, (end-2) :end) ;

300 p_static = zeros(size(K_static,1),1); p_static(end) = 1;
300 ub = 0.01;
302 x_static = inv(K_static) #* p_static * pTire.ktir * ub;
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303

304 du = x_static(end-2) - x_static(end-1);

305 F_KO = lugr.sigmaOx*du;

306 F_K1 = lugr.klx*xdu;

307

308 %% Create/Load random excitation vector

309

310 delta = fn.*Damp; nfreq = 6; 7 how many of the lowest eigenfrequencies
shall be covered by the random excitation

311 Nt = 10; % adjust simulation time

312 [u_rand,dt,fs] = SIMh.randSignal (HO,delta,fn,nfreq,Nt);

313 maxDisp = 0.025;

314 scalef = maxDisp/max(u_rand); u_rand = u_rand' * scalef; J, rescaling the
random vector

3153 N = length(u_rand); t_rand = [0:(N-1)]x*dt; 7’ Computing number of samples
and time vector for random signal

s16 v_rand = SIMh.centralDiffQuot(u_rand,t_rand,dt);

317 v_rand = v_rand';

318

319 %% Integration with FastRK
320 exc = 22;

321 tic;

322 [tout,xout,Fout] = SIMh.FastRK4(A,B,u_rand,dt,u0,z0,exc,H0,ner,val,pTire);
323 time_RK4 = toc;

324

325 %k PLOTTING Fhhhththtehtehteots ot bt Tt to ot ot loteloteTote ot ToteToteTo o Tofo Tofo %o lo toTo toTo 1o To toTo 1o To Yo To o %o o %6 o
326 Do lototototototolotate o toto o totolototo ot toToto tolo o to ot to o o to o o toTo b toTo o 1o To o 0o To o 1o To Yo 06 T o 0o To Yo 06T o 16 To o %6 To o 06 o o 96 o o

327

328 friction_state = Fout;
329 urel = xout(:,20)-xout(:,21); urel_max = max(urel);
330

331 subplot(2,1,1)

332 h = plot(tout,urel);

333 set(h,'LineWidth',0.002) ;

33¢ title('Relative Displacement Landing Gear')
335 xlabel('Time [s]')

336 ylabel('Displacement [m]')

337

338 subplot(2,1,2)

339 h = plot(tout,friction_state);

320 set(h,'LineWidth',0.002) ;

3a1 XL = get(gca, 'Xlim');

342 h1(1) = line(XL,lugr.Fcx[1 1]1);

343 h1(2) = line(XL,-lugr.Fc*[1 1]);

344 set(hl,'Color','r','LineStyle','--"','LineWidth',2)
345 title('Force within the friction element')
346 xlabel('Time [s]')

347 ylabel ('Force [N]')

348

349 figure(2)

350 h = plot(urel,friction_state,'Color',[0.3010 0.7450 0.93301]);
351 set(h, 'LineWidth',0.2);

352 title('Force-Dispalcement -Diagram')

353 xlabel ('Relativ displacement [m]"')

354 ylabel ('Force [N]')
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355 grid on

356

357 figure (3)

358 sgtitle('Random excitation function and its distribution')

359 subplot(1,2,1)

360 plot(t_rand,u_rand,'Color',[0.3010 0.7450 0.9330])

361 xlabel ('Time [s]')

32 ylabel('Displacement [m]"')

363 grid on

364 subplot(1,2,2)

365 h = histogram(u_rand, 'FaceColor',[0.3010 0.7450 0.9330], "EdgeColor'
,[0.3010 0.7450 0.93301);

366 ylabel ('Number of samples [-]')

367 set(gca, 'View',[90 270])

36s x1im ([-0.025 0.025]1)

360 grid on

370

s11 %% Statistics of random excitation

372

373 rand_stat.standard_dev = std(u_rand);
374 rand_stat.mean = mean(u_rand);
375 rand_stat.crest = max(abs(u_rand))/std(u_rand);

376

377 %% Compute acceleration through y in state space model
378

379 stiffness_rod = pRod.E_u * pRod.A_u / pRod.1_u;

380

381 Cs = [eye(size(M)) zeros(size(M)); zeros(size(M)) eye(size(M)); -M\K -M\D
1;

382 Ds = [zeros(size(M)); zeros(size(M)); inv(M)]; q = zeros(size(M,1),1); q(
exc) = 1;

383
384 cf = zeros(1,2*xsize(M,1)); idx = [4 20];

385

386 y = Cs#*xout' + Ds(:,exc)*(pTire.ktir*u_rand) + Dsx*px*Fout';
387 y(end+1,:) = u_rand;

A.2 rod2dof.m

1 function [me,ke] = beamd4dof(E,I,1,A,rho)
2
3 ke = ExA/1 * [1 -1; -1 1];
4
5 me = rhoxAx1*[1/3 1/6; 1/6 1/3];
6
7 end
A.3 beam4ddof.m
1 function [me,ke] = beam4dof(E,I,1,A,rho)
2
3 ke = ExI/(1°3) * [12, 6%1, -12, 6%*1;
1 6%1,4*%x172,-6%1,2%x1"2;
5 -12,-6x1, 12, -6%1;
6 6%1,2%x1°2,-6%x1,4%x1"2];
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me = rho*xAx1/420%[156, 22%1, 54, -13x%1;
22*%x1, 4x1°2, 13*%x1,-3%x172;
54, 13%1, 156, -22x*1;

-13%1,-3%1"2,-22%1,4x1"2];

end

B Pseudo-Random Excitation Generator

This section introduces a function to be able to generate pseudo-random excitation function.

function [u_rand,dt,fs] = randSignal (HO,delta,fn,nfreq,Nt)
% delta: fn*damp (Abklingkonstante) to determine sample step size

% fn: Vector containing all eigenfrequencies
% nfreq: Number up to which EF the signal covers the excited frequencies
% Nt: Number of Ts, for evaluating with windows

switch HO 7 oversampling factor
case {0, 'constant'}, kO = 2.841; % see D.J. Murray-Smith (1995)
case {1,'linear'}, kO = 4.016;
case {3, 'spline'}, kO = 1.572;
otherwise

error ('Unknown hold order "7s"',string)
end
fs = round (2*max (fn)*k0) ;
dt = 1/fs;

amplitude = 1/120;
offset = 0; 7 constant part (for random signal usually =0)

Bandwidth = 2*min(delta)/(2*pi);

df = Bandwidth / 6; J points per peak

Nt * 1/df; % T=10, for evaluating with windows
T/dt;

2xfloor (N/2);

= =24
1

df = fs/(N-1);
freq = df*[0:(N-1)]";

f_dach = zeros(N/2,1);

index = find(freq>=0.01 & freq<=(fn(nfreq)*1.1));
amp = O0.5*xamplitude*ones(size (index));

phase = 2*pi*(rand(size(index))-0.5);
f_dach(index) = amp.*exp(li*phase);

f_dach (1) = offset;

f_dach_conj = conj(flipud(f_dach(2:N/2)));
f_dach = [f_dach;0;f_dach_conjl;

f = N*xifft (f_dach); u_rand = real (f);
end
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C A BASIC STOCHASTIC SUBSPACE IDENTIFICATION ALGORITHM

C A basic Stochastic Subspace Identification algorithm

This section contains a simple SSI implementation, taken from Otto [2021]. These function
shall solely serve as an example for how an implementation could look like. As it is men-
tioned in the critical reflection, within this work the DLR toolbox is used to increase the
functionality. Anyway, file main.m computes the matrices A, C and G. These are used
within modalparams.m to extract the modal parameters.

C.1 main.m

function [A,C,G,R0] = ssidata(Y,order,s)
% [A,C,G,R0] = SSIDATA(Y,order,s)

% Data-based stochastic subspace identification (SSI-data).

A

h INPUTS:

%Y sensor data matrix

% order desired maximum model order to identify (scalar)

% s number of block rows in the block hankel matrix, should be at
% least ceil(order/ns) to obtain results up to the desired model
% order , generally recommended that s > order

%
% OUTPUTS :

% A cell array of state transition matrices for model orders {i}
% C cell array of output matrices for model orders {i}

% G cell array of next state output covariance matrices for model
A orders {i}

% RO zero—-lag output covariances

%
% REFERENCES:

% [1] "Subspace Identification for Linear Systems" by Peter van
Overschee

% and Bart de Moor, doi:10.1007/978-1-4613-0465-4

% [2] "System Identification Methods for (Operational) Modal Analysis:

% Review and Comparison" by Edwin Reynders in Archives of

% Computational Methods in Engineering, Vol. 19, No. 1,

A doi:10.1007/s11831-012-9069-x

% [3] "Operational Modal Analysis of Civil Engineering Structures" by

% Carlo Rainieri and Giovanni Fabbrocino,

% doi:10.1007/978-1-4939-0767-0

b

% NOTES:

% (1) this implementation can easily consume a lot of memory for large

% sensor records or numerous time lags, iterative algorithms

% operating on the sensor data to create the projection are

% recommended and will be the focus of future updates

disp('SSI-data status:')

[r,c] = size(Y);

if r > ¢ % make sure y is shaped correctly with samples going across rows
Y =Y';

end
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[ns,nt] = size(Y); % ns = # of sensors, nt = # of samples

% shifted data matrix

disp(' forming shifted data matrix...')

Yh = zeros(ns*2*s,nt-2%s+1);

for i = 1:2%s J go down block rows of the Hankel data matrix
Yh((i-1)*ns+1:i*ns,:) = Y(:,i:nt-2*xs+i); 7 fill out the entire row

end

Yh = Yh/sqrt(nt-2*s+1);

% QR decomposition and projection of raw data
disp(' ©projecting raw data...')

R = triu(qr(Yh'))"';

R = R(1:2*s*ns,1:2*xs*ns) ;

Proj = R(ns*s+1:2%ns*s,l:ns*s);

% SVD (no weighting = balanced PC)

disp(' performing singular value decomposition...')
[U,8,"] = svd(Proj);

S = diag(S);

% zero lag output covariance

RO = R(ns*s+1:ns*(s+1) ,:)*R(ns*xs+1:ns*(s+1),:)"';
% output cell arrays

A = cell(1l,order);

C = cell(1l,order);

G = cell(1l,order);

% loop over model orders and generate system matrices

disp([' @generating system matrices A,C,G for ' num2str(order) ' model
orders..."'])
for i = 1:order
UL = U(:,1:1);
gam = Ulxdiag(sqrt(S(1:i)));
gamm = Ul (l:ns*(s-1),:)*diag(sqrt(S(1:1i)));
gam_inv = pinv(gam) ;
gamm_inv = pinv(gamm) ;
A{i} = gamm_inv*gam(ns+l:ns*s,:); ’ state transition matrix
C{i} = gam(l:mns,:); % output matrix
delta = gam_inv*(R(ns*s+1:2*ns*s,l:ns*s)*R(1:ns*s,l:ns*s)');
G{i} = delta(:,ns*(s-1)+1l:ns*s); ’ next state output covariance matrix
end

disp('SSI-data finished.')

end

C.2 modalparams.m

function [f,zeta,Phi] = modalparams(A,C,dt)
% [f,psi,Phi] = MODALPARAMS(A,C,dt)
% Modal decomposition of discrete state space system.

h
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5 h INPUTS:

6 % A cell array of system matrices for model order {i}

7 % C cell array of output matrices for model order {i}

8 h dt sampling period of the discrete system A,C

o b

10 % 0UTPUTS :

1% f cell array containing the system pole frequencies in Hz for

12 % model orders {i}

13 psi cell array containing the damping ratios of each pole for
model

14 % orders {i}

15 % Phi cell array containing the mode shape vectors for model orders

16 {i}

17
18 % NOTES:

19 % (1) modal scaling (normalization) is not performed

20 % (2) complex conjugate pairs are eliminated and modes are sorted by
21 % frequency

22

23 % check for cell array input

24 if “iscell(A)

25 A = {A};
26 end

27 if “iscell(C)
28 c = {CZ};
29 end

30
31 £ = cell(size(A));

32 zeta = cell(size(A));

33 Phi = cell(size(A));

34

35 % loop over model orders
36 for i = 1:length(A)

37 [v,d] = eig(A{i});

38 lam = log(diag(d))/dt;

39 f{i} = abs(lam)/2/pi; 7% modal frequencies (Hz)

40 [£{i},I] = sort(£f{i}); ’ sort using ascending frequencies
41 zeta{i} = -real(lam)./abs(lam); 7 modal damping ratios
42 zeta{i} = zeta{il}(I);

43 Phi{i} = C{i}*v; 7 mode shapes

44 Phi{i} = Phi{il}(:,I);

45 % eliminate complex conjugate pairs

46 [£{i},I] = unique(f{i});

47 zeta{i} = zeta{il}(I);

18 Phi{i} = Phi{i}(:,I);

49 end

50

51

52

53 end
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D Algorithms for Nonlinear System Identification

This last section presents the codes corresponding to the developed and investigated algo-
rithms for nonlinear modal analysis. All codes are formulated within the syntax of the DLR
toolbox.

D.1 Standard deviation-based windowing technique

function sorted_data = sdbwt(td,ns,s,overlapping,nlvl,lb)

% td: TimeD Object containing system output
% ns: Numbers sample per window

% overlapping: Overlapping factor

% nlvl: Number of levels

% 1lb: Level boundary (-lb*sigma:lb*sigma)

rel_var = td.DataY(:,20) - td.Data¥Y(:,21); % compute relative
displacement
t = td.DataX;

numberwindows = floor ((numel(rel_var)-ns)/(ns*(l-overlapping)));
s = 1;
for k = 1l:numberwindows
if k == 1
s = 1;
else
s = (k-1)*(l-overlapping)*ns; s = round(s);
end
y = rel_var(s:s+ns);

y_rms = std(y);

if k == 1

YY = y;

RMS = y_rms;
else

RMS(:,end+1) = y_rms;
end

end
RMS = round (RMS ,4, 'decimals');
histogram (RMS)

%% find RMS

mu = mean (RMS) ;
sigma = std (RMS);

level = linspace(-2.5xsigma ,2.5*sigma,nlevel) + mu;
level = round(level,4, 'decimals');
for k = 1:numel(level)
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idx = find(RMS == 1level(k));
for q = 1:numel (idx)
s = (idx(g)-1) * (l1-overlapping)*ns;
if s == 0; DataY = td.DataY(1:ns,:); end
if idx(q) == 1; s = 1;
else s = (idx(qg)-1) * (l-overlapping)*ns; s = round(s);
end

DataY = td.DataY(s:s+ns,:);

if q == 1; YYY = DataV;
else %YYY = [YYY; DataY]; % TIME CONSUMING!!!
YYY(end+1:end+size(DataY,1),:) = DataY;
end
end
Data (k) .DataY = YYY;
end

for n = 1:numel(level)
Td(n).td = TimeD;
tvec(n) .tvec = [1l:size(Data(n).Data¥Y,1)]*dt;
Td(n).td.DataY = Data(n).DataY;
Td(n) .td.DataX tvec(n) .tvec;
Td(n).td.ChTable = td.ChTable;
Td(n) .td.Header = td.Header;

end

end

D.2 Rainflow counting algorithm-based identification
function sorted_data = rca(td,crit,lb)

% td: TimeD Object containing system output
% crit: Threshold for min number of samples
% 1lb: Level boundary (-lb*sigma:lb*sigma)

rel_var = td.DataY(:,20) - td.Data¥Y(:,21); % compute relative displacement
t = td.DataX;

[R,rm] = rainflow(rel_var); ’ Matlabs Rainflow
%0UTPUT: R = [CycleCount Range Mean SampleStart SampleEnd]

%% Clean from cycles with to less samples
Rc = zeros(1,5);

for k = 1:size(R,1)
samp_diff = R(k,5)-R(k,4);
if samp_diff > crit
Rc(end+1,:) = R(k,:);
end
end
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22

23 Rc(1,:) = [];

24

25 %% Defining levels and searching for them
26

27 sigma = std(Rc(:,3));

28 mu = mean(Rc(:,3));
29 nlevel = 10;
30 level = linspace(-2.5xsigma ,2.5*sigma,nlevel) + mu;

31
32 % search for series which fall into the defined level and sort signal
33

34 for ii = 1:numel(level) -1
35 Data(ii) .DataY = [];
36 end

37
38 for k = 1:size(Rc,1)

39 for i = 1:numel(level) -1

40 if Rc(k,3) > level(i) && Rc(k,3) < level(i+1)

41 hstore ref signal and system outputs

42 if isempty(Data(i).Data¥) == 1

43 Data (i) .DataY = td.DataY(Rc(k,4) :Rc(k,5),:);

44 else

15 %Data(i) .DataY = [Data(i).Data¥;

16 %td.DataY(R(k,4):R(k,5),:)]; % TIME CONSUMING! Better next
line

47 b = td.DataY(Rc(k,4) :Rc(k,5),:);

48 s = size(td.DataY(Rc(k,4):Rc(k,5),:),1);

49 Data(i) .DataY(end+1:end+s,:) = b;

50 end

51 end

52 end

53 end

55 %% Create for each trigger level band a timeD object

57 for n = 1:numel(level) -1

58 Td(n).td = TimeD;

59 dt = td.DataX(2);

60 tvec(n).tvec = [1:size(Data(n).Data¥Y,1)]x*dt;
61 Td(n).td.DataY = Data(n).DataV¥;

62 Td(n).td.DataX = tvec(n).tvec;

63 Td(n).td.ChTable = td.ChTable;

64 Td(n) .td.Header = td.Header;

65 end

66 end

D.3 Advanced Stochastic Subspace Identification

1 function [U,S,R,RO,ns] = x_ssi(Y,order ,ReferenceSignal, SelectedLevel ,nlvl,
dt)

2

3 8 = order(1); % Block Size

4

[ns,nt] = size(Y); % ns = # of sensors, nt = # of samples

ot
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6 if ns > nt ) make sure y is shaped correctly
7 Y =Y';

8 [ns,nt] = size(Y);

9

end

11 % shifted Hankel matrix

12 Yh = zeros(ns*2*xs,nt-2%xs+1) ;

13 for i = 1:2%s Y, go down block rows of the Hankel data matrix

14 Yh((i-1)*ns+1:i*ns,:) = Y(:,i:nt-2*xs+i); % fill out the entire row
15 end

16 Yh = Yh/sqrt(nt-2*xs+1);

17

18 % shifted Hankel matrix for reference signal

19 [rs,rt] = size(ReferenceSignal);

20 if rs > rt ’ make sure y is shaped correctly with samples going across

rows

21 ReferenceSignal = ReferenceSignal';

22 end

23 [rs,rt] = size(ReferenceSignal);

24

25 Yref = zeros(rs*2*xs,rt-2*xs+1) ;

26 for i = 1:2%s % go down block rows of the Hankel data matrix

27 Yref ((i-1)*rs+1l:i*rs,:) = ReferenceSignal (:,i:rt-2*s+i); 7 fill out
the entire row

28 end

29 Yref = Yref/sqrt(rt-2*s+1);

30 % compute statistical properties

31 Yref_std = std(Yref);

32 Yref_mu = mean(Yref_std);

33 Yref_sig std(Yref_std);

34

35 1lvl = linspace(-2.5*xYref_sig ,2*Yref_sig,10) + Yref_mu;
36

37 idx

(Yref_std<lvl(SelectedLevel+1) & Yref_std>=1vl(SelectedLevel));

38
39 Yh_red
40

41 % QR decomposition and projection of raw data
42 R = triu(qr(Yh_red'))';

43 R = R(1:2*s#*ns,1:2*xs*ns);

44 Proj = R(ms*s+1:2*ns*s,l:ns*s);

Yh(:,idx); % reduced Hankel matrix

15
46 % SVD (no weighting = UPC)

a7 [U,8,7] = svd(Proj);

48 8 = diag(8);

49

50 /% zero lag output covariance

51 RO = R(ns*s+l:ns*(s+1),:)*R(ns*s+1l:ns*x(s+1) ,:)";

52

53 end

54

55 function [A,C,delta,G] = x_ssifun(N,order ,ns,U,S,R)
56 % Observable and Controllable Subspaces

57 s = order(1); % Block Size

58
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Ul = U(:,1:N);
gam

Ul*xdiag(sqrt (S(1:N)));

gamm = Ul (1l:ns*(s-1),:)*diag(sqrt(S(1:N)));

gam_inv = pinv(gam);

gamm_inv = pinv (gamm) ;

A = gamm_inv*gam(ns+1l:ns*s,:); J, state transition matrix

C = gam(l:ns,:); % output matrix

delta = gam_inv*(R(ns*s+1:2*xns*s,l:ns*s)*R(1l:ns*s,l:ns*s)');

G = delta(:,ns*(s-1)+1:ns*s); 7/ next state output covariance matrix
end

function [x_dot] = centralDiffQuot(x,dt)

x_dot = zeros(length(x),1);

n = length(x);

warning ('CD works only with constant time steps!')

for i = 1:n  t is timevector
if i == 1; xm2h = x(1); elseif i == 2; xm2h = x(i-1);
-2); end
if i == 1; xmilh = x(1); else xmlh = x(i-1); end
if 1 == n-1; xp2h = x(n); elseif i == n; xp2h = x(n);
+2); end
if i == n; xplh = x(n); else xplh = x(i+1); end
x_dot (i,1) (-xp2h + 8xxplh - 8*xmlh + xm2h)/(12*dt);
end
end

78

else xm2h

else xp2h

x (i

x (i



REFERENCES

References

S.A.S Airbus. Airbus a320 aircraft characteristics airport and maintenance planning. 2005.

K. Atkinson, W. Han, and D. Stewart. Numerical solution of ordinary differential equations.
Pure and applied mathematics. Wiley, 2009. ISBN 978-0-470-04294-6.

K.-J. Bathe. Finite Element Procedures. Pearson Education, 2014. ISBN 978-0-9790049-5-7.

J. Bendat and A Piersol. Random Data - Analysis and Measurement Procedures. 2010. ISBN
978-0-470-24877-5. doi: 10.1002/9781118032428.

J. Bianchi, E. Balmes, G. Vermot Des Roches, and A. Bobillot. Using modal damping for
full model transient analysis. application to pantograph/catenary vibration. 2010.

A. Brandt. Noise and vibration analysis: signal analysis and experimental procedures. Wiley,
2011. ISBN 978-0-470-74644-8. doi: 10.1002/9780470978160.

R. Brincker and P. Andersen. Understanding stochastic subspace identification. 2006.

M. Boswald. Updating of Local Non-Linear Stiffness- and Damping Parameters in Large
Order Finite Element Models by Using Vibration Test Data. 2006.

M. Boswald. Analysis of the bias in modal parameters obtained with frequency-domain
rational fraction polynomial estimators. 2016. doi: https://elib.dlr.de/108128/.

M. Boswald and Y. Govers. Taxi vibration testing - an alternative method to ground vibra-
tion testing of large aircraft. 2008. doi: https://elib.dlr.de/56120/.

M. Béswald, D. Goge, U. Fiillekrug, and Y. Govers. A review of experimental modal analysis
methods with respect to their applicability to test data of large aircraft structures. 2006.

M. Boswald, M. Hoser, and Y. Govers. Aufbau globaler dimpfungsmatrizen aus modalen
ddmpfungsmafien von substrukturtests. 2016. doi: https://elib.dlr.de/107992/.

M. Boswald, J. Schwochow, G. Jelicic, and Y. Govers. Recent developments in operational
modal analysis for ground and flight vibration testing. 2017.

C. Canudas de Wit, H. Olsson, K.J. Astrom, and P. Lischinsky. @A new model
for control of systems with friction. IEEE  Transactions on Automatic Con-

trol, 40(3):419-425, 1995. ISSN  00189286. doi:  10.1109/9.376053. URL
http://ieeexplore.ieee.org/document/376053/.

T. Endo, K. Mitsunaga, K. Takahashi, K. Kobayashi, and M. Matsuishi. Damage evaluation
of metals for random or varying loading - three aspects of rain flow method. 1974.

R. Freymann. Strukturdynamik: Ein anwendungsorientiertes Lehrbuch. Springer, 2011. ISBN
978-3-642-19697-3 978-3-642-19698-0. doi: https://doi.org/10.1007/978-3-642-19698-0.

79



REFERENCES

R. Gasch, K. Knothe, and R. Liebich. Strukturdynamik: Diskrete Systeme und Kontinua.
Springer-Vieweg, 2., neu bearb. aufl., korrigierte neuaufl edition, 2012. ISBN 978-3-540-
88976-2 978-3-540-88977-9. doi: 10.1007/978-3-540-88977-9.

L. Gaul and R. Nitsche. The role of friction in mechanical joints. Applied Mechanics Reviews,
54(2):93-106, 2001. ISSN 0003-6900, 2379-0407. doi: 10.1115/1.3097294.

P. Guillaume, P. Verboven, S. Vanlanduit, H. Van der Auweraer, and B. Peeters. A poly-
reference implementation of the least-squares complex frequency-domain estimator. 2003.

S. Han and H. Benaroya. Nonlinear and Stochastic Dynamics of Compliant Offshore Struc-
tures. Springer Netherlands, 2002. doi: 10.1007/978-94-015-9912-2.

T.K. Hasselman, J.D. Chrostowski, and R. Pappa. Estimation of full modal damping ma-
trices from complex test modes. 1993. doi: https://doi.org/10.2514/6.1993-1668.

D. Henwood and J. Bonet. Finite Elements - A Gentle Introduction. 1996.

R. Horn and C. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.
ISBN 9780511840371. doi: https://doi.org/10.1017/CB0O9780511840371.

G. Jelicic, M. Boswald, and A. Brandt. Improved computation in terms
of accuracy and speed of Iti system response with arbitrary input. 150:
107252, 2020. ISSN  08883270. doi:  10.1016/j.ymssp.2020.107252. URL
https://linkinghub.elsevier.com/retrieve/pii/S0888327020306385.

J.-N. Juang. Applied System Identification. 1993. ISBN 978-0130792112.

G. Kerschen. Nonlinear Dynamics, Volume 1: Proceedings of the 35th IMAC, A Conference
and FEzxposition on Structural Dynamics 2017. Springer International Publishing, 2017.
ISBN 978-3-319-54404-5. doi: 10.1007/978-3-319-54404-5.

M. Lakshmanan and S. Rajasekar. Nonlinear Dynamics. Springer, 2003. ISBN 978-3-642-
62872-6. doi: 10.1007/978-3-642-55688-3.

B. H. K. Lee and A. Tron. Effects of structural nonlincarities on flutter characteristics of the
cf-18 aircraft. Journal of Aircraft, 26(8):781-786, 1989. ISSN 0021-8669, 1533-3868. doi:
https://doi.org/10.2514/3.45839. URL https://arc.aiaa.org/doi/10.2514/3.45839.

M. Link. Finite Elemente in der Statik und Dynamik. Springer Vieweg, 4., korrigierte aufl
edition, 2014. ISBN 978-3-658-03556-3 978-3-658-03557-0. doi: 10.1007/978-3-658-03557-
0.

N. Londono, S. Desjardins, and D. Lau. Use of stochastic subspace identification methods
for post-disaster condition assessment of highway bridges. 2004.

R. Markert. Strukturdynamik. Shaker, 2016. ISBN 978-3-8440-2098-4.
D. J Murray-Smith. Continuous System Simulation. Springer-Science, 1995. ISBN 978-1-
4615-2504-2. URL https://doi.org/10.1007/978-1-4615-2504-2.

80



REFERENCES

A. Otto. Ooma toolbox (https://www.mathworks.com/matlabcentral/fileexchange/68657-
ooma-toolbox). 2021.

A Papoulis. Probability, Random Variables and Stochastic Processes. 2002. ISBN 0-07-
366011-6.

M. Paz and W. Leigh. Structural Dynamics: Theory and Computation. Springer US, Boston,
MA, 2004. ISBN 978-1-4613-5098-9 978-1-4615-0481-8. doi: 10.1007/978-3-319-94743-3.

B. Peeters and G. De Roeck. Reference-based stochastic subspace identification for output-
only modal analysis. 1999. doi: https://doi.org/10.1006/mssp.1999.1249.

R. Pintelon and J. Schoukens. System Identification: A Frequency Domain Approach. Wiley,
2012. ISBN 9781118287422.

V. Pletser. Lagrangian and Hamiltonian analytical mechanics. Springer Berlin Heidelberg,
New York, NY, 2018. ISBN 9789811330254. doi: 10.1007/978-981-13-3026-1.

A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. 2007. ISBN 0939-2475.
doi: 10.1007/b98885.

C. Rossow, K. Wolf, and P. Horst. Handbuch der Luftfahrzeugtechnik. Carl Hander Verlag,
2014. ISBN 978-3-446-43604-6. doi: https://doi.org/10.3139/9783446436046.fm.

[. Rychlik. A new definition of the rainflow cycle counting method. 1987. doi:
https://doi.org/10.1016,/0142-1123(87)90054-5.

J. Schoukens, R. Pintelon, Y. Rolain, and T. Dobrowiecki. Frequency response func-
tion measurements in the presence of nonlinear distortions. Automatica, 2000. doi:
https://doi.org/10.1016/S0005-1098(01)00037-1.

J. Schoukens, A. Marconato, R. Pintelon, Y. Rolain, M. Schoukens, K. Tiels, G. Vanbeylen,
G. Vandersteen, and A. Van Mulders. System identification in a real world. Advanced
Motion Control, 2014. doi: 10.1109/AMC.2014.6823250.

K. Soal. System identification and modal tracking on ship structures. 2018. doi:
https://scholar.sun.ac.za/handle/10019.1/103788.

K. Soal, Y. Govers, M. Boswald, and A. Vollmer. Taxi vibration testing: A new and time
efficient procedure for the identification of modal parameters on aircrafts. 2019.

L.T. Tenek and J. Argyris. Finite Element Analysis for Composite Structures. Springer
Netherlands, 1998. ISBN 978-90-481-4975-9. doi: 10.1007/978-94-015-9044-0.

K.C. Valanis. A theory of viscoplasticity without a yield surface. Archive of Mechanics, (3):
517-551, 1971.

P. Van Overschee and B. De Moor. Subspace identification for linear systems theory, im-
plementation, applications. Springer, 1996. ISBN 978-1-4613-8061-0. doi: 10.1007/978-1-
4613-0465-4.

81



REFERENCES

K.K. Vesterholm, R. Brincker, and A. Brandt. Linearization of modal parameter in duffing
oscillator using the random decrement technique. 2018.

J. Wallaschek. Skript zur Vorlesung Maschinendynamik. Number 1. Gottfried Wilhelm
Leibniz Universitat Hannover, 2018.

P. Wriggers. Nichtlineare Finite Element Methoden. Springer, Berlin, 2001. ISBN 978-3-
540-67747-5. doi: 10.1007/978-3-642-56865-7.

82



	1
	2
	3
	4

