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Abstract

Laser altimeters are commonly used in planetary research for their high geodetic accuracy. A key procedure in processing of
laser altimeter data is the geolocation. In this process, the time-of-flight measurements are converted to coordinates of laser
pulse footprints on the surface of the target body. Here, we present a consistent and systematic formulation of three commonly
used geolocation models with increasing complexity: static model, spacecraft motion model, pointing aberration model and
special relativity model. We show that for small velocities of the spacecraft relative to the target the special relativity model
can be reduced to the pointing aberration model without significant loss in the geolocation accuracy. We then discuss the
respective accuracies of the proposed models and apply them to time-of-flight measurements from the Mars Orbiter Laser
Altimeter (MOLA) onboard the Mars Global Surveyor (MGS) spacecraft and the Mercury Laser Altimeter (MLA) onboard
the MErcury Surface, Space ENvironment, GEochemistry and Ranging spacecraft (MESSENGER). While, the archived
datasets had not considered the effect of pointing aberration, we demonstrate that a correction due to pointing aberration
makes insignificant improvements of 4-5 m laterally and up to & 3 cm radially for MOLA profiles, these figures enormously
increase to up to about 150 m laterally and =+ 25 m radially when applied to the ML A orbital profiles.

Keywords Laser altimetry - Geolocation - MOLA - MLA - Pointing aberration - Special relativity - Mercury - Mars

1 Introduction

Alaser altimeter is an instrument aiming at a precise measure-
ment of distances. The high precision is obtained by accurate
measurement of the time-of-flight (ToF) of short (few ns)
laser pulses. A laser footprint is the spot area illuminated
by a single laser pulse, which varies with the laser beam

Part of this research was carried out within the framework of the DLR
BigData Querschnittsplattform. H. Xiao thanks the China Scholarship
Council (CSC) (No. 201706260266) for financial support of his Ph.D.
study at the Technische Universitit Berlin, Germany.

B<I Haifeng Xiao

Haifeng.Xiao@campus.tu-berlin.de

Alexander Stark
Alexander.Stark @dlIr.de

Gregor Steinbriigge
gbs@stanford.edu

Hauke Hussmann
Hauke.Hussmann@dlr.de

Jiirgen Oberst

Juergen.Oberst@dlr.de

Institute of Geodesy and Geoinformation Science, Technische
Universitit Berlin, Berlin, Germany

Institute of Planetary Research, German Aerospace Center
(DLR), Berlin, Germany

Department of Geophysics, Stanford University, Stanford,
USA

Published online: 02 February 2021

divergence angle, the ranging geometry and the encountered
terrain. In planetary exploration, these instruments are very
useful for the derivation of shape and topography of a celes-
tial object (e.g., Perry et al. 2015). By studying the reflected
laser pulse from the surface, it is possible to derive surface
albedo and roughness at footprint scale (Smith et al. 2001a;
Neumann et al. 2016; Smith et al. 2017). Furthermore, differ-
ential range measurements at intersecting profiles (cross-over
points) can be used for tidal deformation measurements
(Mazarico et al. 2014a; Steinbriigge et al. 2015, 2018) and
for precise orbit determination (e.g., Rowlands et al. 1999;
Mazarico et al. 2010). Co-registration of laser altimeter data
with topography information derived from stereo images can
be used for rotation measurements (Stark et al. 2015) and to
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improve the spatial coverage of the merged product (Barker
et al. 2016).

Due to their high measurement accuracy, laser altime-
ters continue to be used in planetary exploration (Huss-
mann 2014; Hussmann et al. 2019). Most recently, we
have seen launches of the BepiColombo Laser Altimeter
(BELA) (Thomas et al. 2007, 2019) onboard the Mercury
Planetary Orbiter (MPO), the OSIRIS-REx Laser Altime-
ter (OLA) (Daly et al. 2017) onboard the Origins Spec-
tral Interpretation Resource Identification Security-Regolith
Explorer (OSIRIS-REXx) and the LIght Detection And Rang-
ing (LIDAR) onboard Hayabusa2 (Mizuno et al. 2017).

The concept of the laser altimetry is to measure the
round-trip ToF of laser pulses emitted to the surface and
reflected back at the instrument’s receiver. Currently, four
commonly adopted methods to measure the ToF exist: lead-
ing edge detection, waveform processing and analyzing,
constant fraction discrimination and photon counting (see
Zhou et al. 2017, for details). The ToF measurement itself
is typically performed with an ultra stable oscillator (USO)
featuring a high frequency stability over short time inter-
vals (us). Typically, the long-term drift and aging of the
laser altimeter USO is such that it requires recurrent cal-
ibration using the spacecraft’s clock (Abshire et al. 2000;
Sun and Neumann 2015). The laser altimeter USO is cali-
brated against the spacecraft clock which is monitored and
calibrated using radio links to Earth. As a consequence, the
ToF measurements are expressed in Barycentric Dynami-
cal Time (TDB) scale, instead of the proper time of the
spacecraft. The implication of this is presented in Sect. 2.4,
and the conversion of these two timescales is detailed Sec-
tion A in Appendices. The measured ToF might require
additional calibration due to broadened return pulses (range
walk) and delays in the receiver electronics (Abshire et al.
2000; Sun and Neumann 2015). Typically, the measured
ToF is downlinked to Earth and associated with a surface
coordinate using auxiliary information from the spacecraft
(trajectory and pointing). The purpose of the here presented
paper is to discusses this critical processing step, the geolo-
cation, and to reveal important differences in the derived
surface coordinates depending on underlying assumptions.
For the Mars Orbiter Laser Altimeter (MOLA) onboard the
Mars Global Surveyor (MGS) spacecraft and the Mercury
Laser Altimeter (MLA) onboard the MErcury Surface, Space
ENvironment, GEochemistry and Ranging (MESSENGER)
spacecraft, there have been some brief descriptions of their
geolocation processes in user guide documents as distributed
with the corresponding data products in the Planetary Data
System (PDS) Geosciences Node (Smith et al. 2003b; Neu-
mann 2016). The difference in the positions of the spacecraft
at laser transmission and reception has been considered.
There are detailed geolocation specifications for some pre-
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cise laser altimeters for applications on Earth, e.g., the Ice,
Cloud and Land Elevation Satellite (ICESat) Geoscience
Laser Altimeter System (GLAS) (Shutz and Urban 2014),
recently deployed ICESat-2 Advanced Topographic Laser
Altimeter System (ATLAS) (Luthcke et al. 2019a) and the
Global Ecosystem Dynamics Investigation (GEDI) laser
ranging system (Luthcke et al. 2019b). The ICESat mis-
sions are designed mainly for high-precision measurement
of height change of Earth’s cryosphere, e.g., Antarctic and
Greenland ice sheets and high-altitude mountain glaciers;
thus, any factor that might affect the geolocation will need to
be examined and taken care of. Indeed, both the spacecraft’s
motion during ToF and pointing aberration have been incor-
porated into their geolocation models. In this paper, we will
give a consistent and systematic formulation of three geolo-
cation models: static model (SM), spacecraft motion model
(SMM) and pointing aberration model (PAM). For the two
most typically used models, i.e., SMM and PAM, we will
additionally introduce in the concept of the external observer
which could be any body including the spacecraft itself. In
addition, we will present the novel special relativity model
(SRM) which copes with the special relativity effects due to
the relative velocity of the spacecraft with respect to the target
body. Furthermore, it will be shown that the pointing aber-
ration correction for PAM could be directly deduced from
SRM under some assumptions. Using the cases of MOLA
and MLA, it will also be shown that for a spacecraft on an
elliptic orbit the effect of pointing aberration, caused by the
relative velocity of the spacecraft with respect to the observer,
can lead to significant lateral and vertical displacement of
the footprint coordinates. It is worth noting that none of
the geolocation models presented here have dealt with the
inherent orbit, pointing and timing errors which could sig-
nificantly degrade the geolocation process. Thus, additional
calibrations to eliminate these error types are needed to fur-
ther improve the geolocation accuracy, e.g., terrain matching,
ground-based laser detector approach, cross-over analysis,
satellite commanded maneuver method and so on (Row-
lands et al. 1999; Neumann et al. 2001; Luthcke et al. 2005;
Magruder et al. 2005). In particular, the accuracy of plan-
etary laser altimetry is often limited by significantly larger
unmodeled orbit, attitude errors and less precise transforma-
tion from inertial to planet body-fixed coordinates than in the
terrestrial case.

The paper is structured as follows: In Sect. 2, four geolo-
cation models designed to convert the ToF measurements
to footprint geodetic coordinates will be introduced. This
will be followed by applications of these models to MOLA
and to MLA in Sects. 3 and 4, respectively. Discussions
of the MOLA and MLA results and their implications are
presented in Sect. 5, and finally, conclusions are drawn in
Sect. 6.
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2 Geolocation in laser altimetry

The process of geolocation, i.e., the conversion of ToF mea-
surements to surface coordinates in the body-fixed reference
frame of the target body, can be divided into two steps. In the
first step, the ToF measurements are combined with instru-
ment orientation, spacecraft orbit position and pointing to
retrieve coordinates of the footprints in the International
Celestial Reference Frame (ICRF) centered at the center
of mass (CoM) of the target body. For the computation of
the inertial coordinates r;,, we will systematically formulate
three commonly used geolocation models (SM, SMM and
PAM) with increasing complexity and accuracy. Then, we
will present the fourth model, i.e., SRM, to account for the
effects of special relativity and examine its relation to PAM.
Before we discuss these models, we outline the second step
which consists of the transformation of the inertial coordi-
nates to body-fixed coordinates by evaluating an appropriate
rotation model for the target body at the time of the laser
pulse reflection. With rj, denoting the inertial coordinates of
the footprint with respect to the CoM of the target body, the
body-fixed coordinates can be obtained by

rof = Rinsvr(t™) - rin, )]
where rp are the body-fixed coordinates and ¢* is the time of

the reflection in TDB timescale. The transformation matrix
R;,_ v can be expressed as

Rinr = R (W) Ry (5 = 80) R (5 + ).

@

with the time-dependent Euler angles o, § and W denoting
the right ascension, declination and prime meridian angle,
respectively (see Archinal et al. 2018, for details). Ry ;
denotes counterclockwise rotation matrices about the respec-
tive axis

1 0 0
R.(®)=| 0cosf —sinf
| 0 sinf cos@ |
- . Z 3)
cosf —sinf 0
R.(0) =| sinf cosO 0
0 0 1]

2.1 Static model

We start with the static model (SM) which is the simplest
among the proposed models. It basically corresponds to the
case where the speed of the spacecraft and hence its relative
motion during ToF are ignored. It is equivalent to the case in
which the speed of light is assumed to reach infinity. Under

Footprint

ICRF

CoM of target

Time (TDB) *

Fig. 1 Scheme for the laser altimeter measurement within the static
model (SM). rj, is the position vector of the footprint, r; is the laser
pulse one-way transmit vector, r is the position vector of the spacecraft,
v is the velocity vector of the spacecraft relative to the target body,
and ¢ is the off-nadir angle of the emitted laser beam. All vectors are
evaluated at time ¢* and refer to the ICRF centered at the CoM of the
target body

this assumption, the emission, reflection and detection of the
laser pulse are then condensed to a concurrent event at t*
(Fig. 1). With these approximations, the derivation of the
inertial coordinates ri, is straightforward. The laser pulse
one-way transmit vector r| (Fig. 1) is obtained by an equation
often cited in connection to laser altimetry

= e, 4
r=e “4)

where c is the speed of light in vacuum, t is the ToF and e; is
the normalized boresight vector denoting the orientation of
the emitter of the laser altimeter. With r| given, the inertial
coordinates of the footprint are obtained by

Fin =rs+ry, (5)

with rg being the positional vector of the spacecraft with
respect to the target’s CoM. The local radius of the target
body at the footprint location ri, = |riy| can be expressed as

rinz\/r82+r12—2rs-r1 6)

= \/rgz + r]2 — 2rgr1 COS @, @)

where ry = |rg| is the distance from CoM to the spacecraft,
r1 = |r1] is the one-way range and ¢ is the off-nadir angle.
Note that Eq. (7) is identical to Eq. (2) in Abshire et al. (2000).
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Fig.2 Scheme of the spacecraft motion model (SMM). ri, is the posi-
tional vector of the bounce point with respect to the target body. rj
is the one-way vector of the outgoing leg, while r; is the receipt leg.
r12 is the vector directed from the spacecraft’s position at 7 to that at
to = t1 + t. The r¢(¢1) and r¢(22) are the spacecraft’s position vectors
with respect to the CoM of the observer at 71 and , respectively. ry (t*)
is the position vector of the CoM of the target body with respect to the
CoM of the observer at the reflection time ¢*

2.2 Spacecraft motion model

In the second model, we now account for the spacecraft’s
motion between the transmission and reception of the laser
pulse. The geometry for the spacecraft motion model (SMM)
is shown in Fig. 2. To enable for different observers, we
have generalized the observation conditions with an exter-
nal observer which could be any body in the Solar System
including the spacecraft itself. Here, the measured quanti-
ties are the laser transmission time stamp #; and receipt time
stamp #, (hence the ToF T = 1, — #1), while the unknown
to be solved is the footprint positional vector with respect to
the CoM of target body rij, at the reflection time ¢*. It can be
vividly imaged that a string of length of the two-way range
is attached at the ends to the spacecraft evaluated at laser
transmission (1) and reception r¢(f7). The string is pulled
along the laser boresight e until it is tight and the point at
which it becomes tight is the bounce point. As in the pre-
vious model, the position vectors of the spacecraft at pulse
transmission r¢(#1), at pulse reception r(#>) and the location
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of the target body r,(¢*) can be readily known as long as the
required spacecraft and planetary ephemerides are provided.
With these vectors, the change in spacecraft position during
the ToF is obtained through

rip =rs(t) —rs(t). (®)

Given that r 1 is known from spacecraft ephemeris, the angle
0 between ri> and the boresight normalized vector e; =
e1a(t1) at time #; can be computed by

ri2-e

cosf = =
ri2 V12

V2 - €]

©))

Considering the triangle formed by r1, r; and r 12, and apply-
ing the Law of Cosines, one obtains

r12+r122—r22 =2ririacos6 = 2rirys - ey. (10)

Another constraint is that the sum of the norms of r| and r»
corresponding to two sides of the triangle in question equals
the total distance the laser pulse has traveled, and is the two-
way range ct:

r +r =crt. (11)

Combining Egs. (8)—(11), the geometric solution of the norm
of the emission leg ry is
2 2.2

T, —c°T ct (rip/et)? —1

12)

N S -e1—ct)  2rpjet-e—1

L . T
Considering thatr i/t = vz andusing § = (ﬂx, By, ﬂz) =
v12/c, we can write

ct pr-1 cT 5 (13)
r=—————">="—=—
'Y 2B e -1 2 ©

with B = |B]| and the range difference § given by

5= ct B-e; — p?
N 7 ﬂ - €] —1
- % (—,8 cos 6 + B2 sin29) +OB). (14)

Following this derivation, the laser pulse is reflected at the
surface at

. r T gr—1
tf=nh+—=n+--—""
1—i_c 1+2ﬂ~el—1
T
=+ (14 Bcost) + O(B>). (15)

When 6 < 90°, then Scosf@ > 0, the time of reflection is
thus always longer than or equals a half of ToF t* — ¢ > t/2
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and the outgoing leg is longer than or equals the receipt leg
ry = nr.

Finally, the position vector of the bounce point with
respect to the CoM of the target body is given by

rin = rie) +rg(t) — rp(t*)
2
ct B7—1 "
= = t) — ). 16
Zﬂ.el_lel‘i‘rs(l) ry (1) (16)
For small 8, we may write

cT * 2
Fin = €l (14 Bcost) +rs(t1) —rp(@™) + OB). (17)

If the CoM of the target body is assumed as the observer,
ie., rp(t*) = 0, and if we assume that rjp < ct (8 =~ 0),
Eq. (16) is equivalent to the expression of the static model
described in Sect. 2.1. Typically, B is about 10~ for space-
craft in planetary orbits or when performing flybys. Such
small values for 8 might be considered negligible, but can
lead to range differences § as large as 10 m when ranging in
the direction of the target body (6 = 0) from a distance of
1000 km. Critical for the effect is the product -e; = S cos6,
i.e., the direction of the pulse emission with respect to the
spacecraft’s direction of motion. The more the two direc-
tions coincide (8 =~ 0 — Bcosf ~ B), i.e., the higher the
off-nadir angle and/or the higher the orbital eccentricity, the
larger becomes the absolute values of §. For range measure-
ments performed from a circular orbit with nadir pointing,
i.e.,, 6 = 90°, the range difference § is typically below 1
mm and the result is comparable to the static model. These
findings will be confirmed when applying the geolocation
methods to MLA data (large off-nadir angles on an eccentric
orbit) in Sect. 4.

2.3 Pointing aberration model

An important aspect of the geolocation process is the depen-
dence of e; on the relative velocity of the spacecraft with
respect to the observer. This effect is known as aberration
and can be of significant importance for both the lateral and
radial positions of the laser pulse footprint. Typically, the
orientation of the spacecraft (and consequently of the laser
altimeter transmitter) is expressed with respect to a refer-
ence frame centered at the spacecraft. This implies that in
case another observer than the spacecraft is chosen, Eq. (16)
is only correct when the emission direction e; is corrected for
aberration. We will therefore present the pointing aberration
model (PAM) which features an observer-independent treat-
ment. The geometry of this model is depicted in Fig. 3. The
pointing aberration model is an extension of the spacecraft
motion model and differs from it only in that it takes the
pointing aberration into account. By applying the velocity

- _. __________
CoM of target

(%)

CoM of observer

t2 t'* tl +1/2 tl

\
Time (TDB) l

<

Fig. 3 Scheme of the pointing aberration model (PAM). The same
nomenclature is applied as shown in Fig. 2. The aberration correction
angle is denoted by A6

aberration correction to the initial boresight unit vector e to
account for the relative velocity of the spacecraft with respect
to the observer, we obtain the corrected boresight unit vector
e that defines the one-way vector r} in Fig. 3. The corrected
boresight vector €] can be obtained by the parallelogram law
of addition of velocity vectors v12 and ce;

v12 + ceg e+ B

lviz +cel| VBE+2B el +1

¢| = (18)

Note that Eq. (18) is a nonrelativistic approach which man-
ifests itself in an absolute velocity that can become greater
than the speed of light if the boresight vector e has a com-
ponent parallel to vi2. However, we find that in practice this
approximation works reasonably well (Bae and Schutz 2002;
Luthcke et al. 2019a,b). A fully relativistic approach will be
presented in Sect. 2.4.

The magnitude of the pointing aberration depends on the
component of the relative velocity of the spacecraft and the
observer v1; that is perpendicular to the laser altimeter initial

@ Springer
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boresight e; (Bae and Schutz 2002)

AB = arccos (e; - €])

BcosH + 1 )

= arccos
VB2 +2Bcosh + 1

=ﬂsin9+(’)(,32> ~ 2sin@,

c

(19)

where 0 represents the angular separation between vy, and
the laser altimeter’s uncorrected boresight unit vector ey, i.e.,
cos = B -e1/B. As can be observed from Eq. (19), the
aberration correction A6 increases with the relative velocity
V12, but is minimized for pulse emissions in flight direction,
ie.,0 ~0.

Using the corrected boresight vector, the one-way vector
becomes

2
ct pe—1
r/l r{e/lz Zﬂ'e/_le/l
" (20)
cT B-—1

2B2+B-e1—/B*+2B €1+ 1 (1t h)

Analogous to Sect. 2.2, the time at which the laser pulse is
reflected by the surface is given by "* = t; + r{/c and the
position vector of the bounce point with respect to the CoM
of the target body becomes

ri,=ry 4+ rst) —rp(™). 20

In contrast to SMM in which pointing aberration has been
neglected, the obtained expression can now be used to obtain
consistent and accurate results for all different observers.
However, for applications concerned with high accuracy of
footprint coordinates, such as cross-over analysis, a relativis-
tic approach should be considered.

For small relative velocities 8 <« 1, the expression in
Eq. (20) can be simplified to

1
rh = % (e1 +B) <1 — 5,32 sin29> + OB, (22)

and the one-way range r| can be expressed as

, cT s cT n cT 8 P 1,33 0 sin2 0
ry = — — = — —_— COS —_ = COS U SIn
L) 2 2 2
+O(BY. (23)

Finally, the footprint coordinates can be written as

T 1
ri, = % (e1 +B) <1 — Eﬂz sin’ 9) + ry(t1)

—rp (1) + O(BY). (24)
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The comparison of the derived expression for r{_ to the one
obtained in SMM reveals that the boresight vector e; is now
corrected for aberration indicated by the term e; + B. If the
spacecraft itself was chosen to be the observer, i.e., 8 = 0,
then Eq. (24) can be reduced to Eq. (17) in SMM.

2.4 Special relativity model

In the special relativity model (SRM), the observables will be
transformed from a quasi-inertial spacecraft-centered ICRF
to one centered at the CoM of the target body, accounting
for the effects of special relativity. The geometry of the spe-
cial relativity model is shown in Fig. 4. Two assumptions
are made to facilitate this process: (1) The relative velocity
of spacecraft and target body v{, remains constant between
transmission and reception of the laser beam and (2) no
effects of general relativity are incorporated.

It is worth mentioning, under the aforementioned assump-
tions, from the spacecraft’s perspective the laser pulse has
been fired at #1, hit the ground at exactly #; + t/2 and then
returned at f». This means that the reflection of the laser
pulse always takes place at the mid of the round-trip ToF.
The directions of the laser pulse’s outgoing and receipt legs
always align with the initial boresight e; measured at time
tag t;. However, for an observer located elsewhere, e.g., at
the CoM of the target body, the duration and direction of the
outgoing and receipt legs might be observed as different.

We consider two four-vectors with origin at #; in the
Minkowski space referenced to the spacecraft (left panel of
Fig. 4). The first four-vector connects the events when the
laser pulse leaves the laser altimeter transmitter at ¢ and gets
reflected from the target body surface at # + 7/2

_|er/2) et o cr il
1'1—[',1]— Se = [81:|’ (25)

where we have made use of the one-way range vector

r = %el. (26)

The second four-vector connects the events of laser pulse
emission on the spacecraft and the position of the target body
(with respect to the spacecraft) at laser pulse reflection at
H+1t/2

o @ =) 0 ct/2
rs( )‘[ ro(t%) }‘[a(n)}*[vm/z] @7)

Note, as we have assumed that v}, is constant we can simply
compute the position vector between spacecraft and target
by rs(t*) = rs(t1) +v127/2.
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f r*
S/C&LA

CoM of target

Fig.4 Scheme of the special relativity model (SRM). The left and right
panels denote the measurement process as observed from the spacecraft
and the target body, respectively. Vectors printed in bold denote (space—
time) four-vectors and those printed in bold and italic denote regular
spatial vectors, i.e., with zero time component. rj, is the positional vec-
tor of the bounce point with respect to the target body. r; is the one-way

By computing the difference of these two four-vectors, we
obtain the four-vector for the footprint

rip = 1| —rg(t*)
_|er/2 ct*—1)| _|et/2—ct/2
I RN N N Cao B B R N ()

_ 0 10
i —re() —viat/2] T |rin]’

Thus, observed from the spacecraft the laser pulse is
reflected at t* = #; + /2 and the footprint coordinates are
rin = r1—rg(t*). In order to obtain the corresponding coun-
terparts of quantities as observed from the target body, we
need to apply a Lorentz transformation.

The proper Lorentz transformation boost matrix A from
the spacecraft quasi-inertial reference frame to the target
body quasi-inertial reference frame can be written as (Nolt-
ing 2013)

(28)

[ —yﬂT}
A=ls L
R Vb 5 —vBy —vB:
—Vﬂx1+<y—1)% (y—l)ﬂ;’f” <y—1)’3;fz
_ b . a
C|h (V‘l)ﬁfgf* 1+(y—1>% (y—l)ﬂgf"
BB B-By g2
B DS DR =D
(29)

S/C&LA
Vi
\J e‘l
. e '
z A r 1
ICRF Y : ry
AJ
ry(t) r' (%)
/X'/)" Footprint
A\l
in
CoM of target -
A 4 f
t r'* t

four-vectors of the transmission leg. e; is the four-vector representation
of the boresight direction e;. ry(¢*) is the four-vector of the target body
with respect to the spacecraft at the reflection time 7*. v is the relative
velocity vector of the target body with respect to the spacecraft. ¢ is
the proper time of the spacecraft. The definitions are vice versa for the
quantities with primes in the right panel

where $ is the norm of 8 = —wv3/c and the Lorentz factor
y is defined by

1

‘}/:—

J1-p%

Note that vj> denotes the relative velocity vector of the
target body with respect to the spacecraft, which is constant
given the assumptions made at the beginning. The matrix L
is the sliced (spatial) part of A and can be expressed as

(30)

y —1
ﬁ2

L=I+ BB". GD
where I represents the 3 x 3 identity matrix.
Now the four-vector of the footprint as observed from the

target body can be obtained by

rin =A-rpn=A |:r(i)ni|

B [_{ér.i:m} N [L : ;rflilrr:r*))] ' (32)
Finally the r]_ can be expressed as
rin=L-(r1 —r,@") =r —ry

5 L(887)- 1~ . (33)

Note that the involved quantities r¢(¢*) and r are still those
which were observed from the spacecraft. In particular, for
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the time of reflection #* in the proper timescale of the space-
craftitholds t* = #; 4+1/2. However, to obtain the body-fixed
position of the footprint on the surface of the target body with
Eq. (1) we need to convert T to TDB timescale. This aspect
is discussed in more detail in Section A in Appendices.

2.5 Relation between PAM and SRM

Theoretically, the pointing aberration can be straightfor-
wardly derived using the Lorentz velocity transformation,
while the Lorentz velocity transformation can be inferred
from the Lorentz transformation by calculation of the deriva-
tive with respect to time on both sides of the equation. Thus,
the pointing aberration correction could also be deduced from
the Lorentz transformation in its general form as represented
by Eq. (29) and PAM with the targets as the observers should
be nearly identical to SRM with difference on the order of
O(B?) in terms of the pointing correction. Here, we carry out
a two-step analysis to tap into the relation between these two
models: (1) Simplify and approximate the resultant formula
Eq. (33) from SRM and (2) deduce the pointing correction
angle A6 inferred from SRM to see whether it equals the
pointing aberration correction A@ as in PAM.

For (1), we first expand the expression for L in Eq. (31)
as series of 8

L=1+ %BBT + %ﬂzﬂﬂT + OB, (34)
With that, Eq. (33) becomes

riy=r1i—rs) + %ﬂﬂTrl - %ﬂﬂTrs(t*) +0(84.(35)
Recalling that r; = rje;, we obtain

1 T 1 T 1

SBB T =2r1BB er =S pricostp. (36)

Rearranging terms in Eq. (35) and neglecting 887 r(¢*) lead
to

ri, i <el + %,3 0059,3) —rs(t"). (7

Compared to the obtained result in PAM, we find that the
boresight direction is now corrected by e + S cos 6 /2. Note
that the direction of r¢(#*) is opposite to the one used in SMM
and PAM. The one-way range r| can be approximated to

r=|Lri=r (1 + %/3200529> + OBY. (38)
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The maximum radius error associated with this approxi-
mation can be given by
Allrinll = (7 = 1) |[BBT - (1 = 1)
=7 =1 |B87| |r1 = )]
< B ri—rya"]. (39)

Thus, this approximation error is solely related to the relative
velocity of the spacecraft with respect to the target and to the
radius of the target at the footprint.

For (2), we first apply the Lorentz transformation on the
one-way range four-vector r; from Eq. (25)

;o | _ct|y(d-B-e)
rl_A.rl_ZA [e1]_ 2 [—yﬁ—FL.el} (40)

The time component of the four-vector denotes the ToF 7’ as
observed by the target body

=ty —-B-e) =1y (1 —Bcosh), 41)

which is the classical equation of time dilatation. The spatial
component ¢/ is the corrected boresight vector and can be
expressed as

e/l=L~e1—yﬂzel—l—[(y—l)cos@—yﬁ]g. 42)

The magnitude of e} is then constrained to be

¢, = \/sinZ 6 + y2(cos2 0 — 2B cos 6 + B2), (43)

which is always less than unity due to the length contrac-
tion effect induced by the special relativity. As in previous
derivations, 6 represents the angular separation between the
relative velocity vector of the spacecraft with respect to the
target body v> and e (see also Fig. 3). Finally, the point-
ing correction by SRM A6’ can be calculated as the angular
separation between e/1 and e; as

’

’ (2] 'el
AfO = arccos -
¢

(1 +[(y = D cos6 — yﬂ]cos@)
= arccos

!
€

— Bsinf + OB ~ ”Cﬁ sin6. (44)

Thus, for B2 « 0 the derived expression for A6’ coincides
with A6 from PAM (Eq. (19)), indicating that SRM can also
be reduced to PAM if we assume that the relative velocity of
the spacecraft with respect to the observer v, is small.
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2.6 Post-correction of the geolocation

As has already been stated, the performance of the geolo-
cation models described above is often compromised by
significant unmodeled orbit, attitude errors and less precise
rotational parameters that are required to transform the foot-
print inertial coordinates to body-fixed ones, especially in the
planetary case. Due to the lack of a ground truth for valida-
tion and calibration on planetary bodies, the most common
approaches to post-correct the geolocation are the cross-over
analysis (e.g., Neumann et al. 2001; Hu et al. 2013) and
registration to optical stereoscopic Digital Terrain Models
(DTMs) (e.g., Glidser et al. 2013; Barker et al. 2016). For
MOLA, Neumann et al. (2001) has done a global cross-over
analysis with corrections parameterized by slowly varying
functions to adjust the tracks in 3D and to post-correct for
residual spacecraft orbit, timing and pointing errors. The
accuracy of individual footprints after the global cross-over
analysis of MOLA is reported to be about 1 m radially and
within 100 m laterally (Neumann et al. 2001).

3 Application to MOLA
3.1 Selected profiles and preprocessing

The MGS MOLA was inherited from the Mars Observer
Laser Altimeter for which the requirements were a preci-
sion of 1.5 m and an accuracy of 30 m accuracy (Zuber
et al. 1992). Enabled by improved electronics (Abshire et al.
2000) and precision gravity analysis and orbit determina-
tion (Lemoine et al. 2001), the performance of the MGS
MOLA was substantially improved to be about 30 cm in pre-
cision over smooth terrain. The profile analysis of MOLA
footprints after the cross-over analysis by Neumann et al.
(2001) enabled the detection of the temporal variations in
seasonal CO; ice/snow depth (Smith et al. 2001b). Up to the
current day, MOLA data are still used extensively for geo-
logical and geophysical applications (Robbins and Hynek
2013; Heavens 2017; Parro et al. 2017). The MOLA Preci-
sion Experiment Data Records (PEDR) dataset Version L (
Smith et al. 2003b, released on May 27, 2003) includes a
total of more than 8600 valid profiles acquired in the map-
ping and extended phases from March 1999 to June 2001. It
contains shot emission times, one-way ranges, laser altimeter
pointing, as well as range corrections and other instrument
and observation characteristics. For this study, five profiles in
the mapping phase numbered orbit 1000, 3000, 5000, 7000
and 8000 have been selected for testing. The locations of the
selected profiles are shown in Fig. 5. They cover latitudes
of up to 86°S/N due to the inclination of the MGS frozen
orbit and nadir-oriented configuration of MOLA. Some key
measurement characteristics corresponding to these selected

profiles are visualized in Fig. 6. Due to the near-circular orbit
during the mapping and extended phases, the relative veloc-
ity of MGS with respect to the CoM of Mars is around 3.4
km/s. The ranging distance slightly increases from about 370
km at the South Pole to 440 km at the North Pole. Given
the aforementioned MOLA one-way ranging distance (thus
ToF) and relative velocity of MGS, a motion of 8 to 10 m
of the spacecraft with respect to Mars during ToF can be
expected. In addition, MOLA remained nadir-pointed with
off-nadir angle less than 1° during operation. In the PEDR
processing, flagged noise returns and shots with missing
attitude information have been excluded from the analysis.
Further, corrections due to the detector response and range
walk have been applied (Neumann et al. 2001). These range
corrections are on the order of meters. Besides timing biases
specific to MOLA, including the MOLA internal timing bias
of 117.1875 ms, the CK time tag adjustment bias of -1.15 s
has been accounted for (Neumann et al. 2001).

3.2 Comparison of SRM and PAM

We have theoretically proved that SRM can reduce to PAM
given some assumptions in Sect. 2.5. Here, SRM and PAM
are compared in the case of MOLA for verification. The dif-
ferences of SRM with respect to PAM with Mars as observer
(supplied with the attitude information and refined orbit
model from NAIF (Konopliv et al. 2006)) are within 0.1 mm
laterally and 3 mm radially (Fig. 7). Furthermore, the maxi-
mum approximation errors in radius as indicated in Eq. (39)
are estimated to be ~0.5 mm for MOLA profiles. These errors
are relatively small compared to the differences between
SRM and PAM as shown in Fig. 7. Thus, the effect of the
special relativity could be well compensated by accounting
for a simple pointing aberration correction. We then inves-
tigate the impact of this pointing aberration on the MOLA
geolocation.

3.3 Impact of pointing aberration

The MOLA PEDR dataset has adopted SMM with Mars as
the observer for the geolocation (Smith et al. 2003b). To
investigate the improvement that can be achieved by solely
incorporating the pointing aberration correction, the model
outputs of PAM and SMM, with both using Mars as the
observer, are compared in Fig. 8. The lateral differences do
not show much variation and slowly increase from 4 m at
south to a maximum of 5 m toward the north. The magnitudes
of the radial differences peak at about 3 cm nearly midway
between the equator and the poles (although with different
signs for the ascending and descending tracks) and gradually
decrease to 0.5 cm toward both the northern and southern
ends of the track. The maximum height biases at the cross-
over points of the ascending and descending tracks caused by
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Fig.5 Location of the selected North Pole
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Fig.7 Lateral (top) and radial
(bottom) differences of SRM
with respect to PAM with Mars
as the observer for the selected
MOLA profiles

Fig.8 Lateral (top) and radial
(bottom) differences of PAM
with Mars as observer with
respect to SMM with Mars as
observer for the selected profiles
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Table 1 Statistical summary of the comparison of different geolocation models applied to MOLA
Comparison pair Lateral statistics Radial statistics
Mean RMS Max Mean RMS Max Min
SRM versus PAM Mars as observer 0.0mm 0.0mm 0.0mm —2.2mm 2.2mm —1.6mm —2.8mm
PAM versus SMM Mars as observer 4.4m 44m 49m —0.8cm 1.8cm 3.2cm —5.6cm

pointing aberration alone can thus only be 6 cm. Therefore,
the effects of pointing aberration for circular orbits as the
case of MOLA are relatively small. This has been expected,
due to the nature of the circular orbit and the nadir pointing of
the laser, especially when the relative velocity of the space-
craft and the observer (Mars) is small [compare Eq. (17) to
Eq (24)].

3.4 Summary

The statistics for comparison of different geolocation models
applied to MOLA dataset as shown in Figs. 7 and 8 is given in
Table 1 for better interpretation. The relatively small numbers
in the first row in the table indicates that the effect of the spe-
cial relativity could be well compensated by accounting for
a simple pointing aberration correction. The MOLA PEDR
dataset has adopted SMM with Mars as the observer for the
geolocation, neglecting the pointing aberration or special rel-
ativity effects. But the impact of this neglection is limited to
4 to 5 m laterally and up to &3 cm (second row in Table 1).
Compared to the accuracy of 100 laterally and approximately
1 m radially of the MOLA PEDR after the global cross-over
analysis Neumann et al. (2001), the impact of the pointing
aberration could thus be largely left unattended.

4 Application to MLA
4.1 Selected profiles and preprocessing

MLA had acquired one profile during each of the two Mer-
cury flybys in 2008 and a total of 3270 profiles had been
obtained in the 4 years from March 2011 to April 2015 in the
orbital phase. Here, the MLA Reduced Data Record (RDR)
MESSSMLA2001 dataset is utilized for the analysis (Neu-
mann 2016). These records contain among others the shot
ToF, firing time, instrument alignment, spacecraft orientation
and quality flags. Here, apart from the two equatorial flyby
profiles numbered 0801141902 and 0810060836, five other
profiles numbered 1104010231, 1204011915, 1304010004,
1404011002 and 1504012318 have been selected out for
tests. These 10-digit naming codes correspond to the Coor-
dinated Universal Time (UTC) time when the first shot in
the respective track was recorded. The distribution of the
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selected seven profiles on the surface of Mercury is shown
in Fig. 9. The two flyby profiles run approximately along
the equator, while the other orbital profiles cluster in the
northern hemisphere due to MESSENGER’s eccentric, high
inclination orbit and the limitation of the ML A ranging dis-
tance. The spacecraft speed, altitude and off-nadir pointing
angle when these profiles were acquired are plotted versus
the longitude (flyby profiles) and latitude (orbital profiles)
in Fig. 10. Note that the flyby profile 0810060836 has been
offset by -180° in longitude to fit in the depicted range; the
same is done in Figs. 11, 12 and 13. The relative velocity of
MESSENGER with respect to the CoM of Mercury of the
two flyby profiles is located at relatively high values with 6
to 7 km/s compared to 3 to 4 km/s for the orbital profiles.
The one-way ranging distance culminates at 1500 km for the
flyby profiles, while for most of the orbital profiles it grad-
ually increases toward the lower latitudes to a maximum of
1000 km. Constrained by the fact that MESSENGER should
always have its sunshade faced to the Sun, off-nadir angles
generally increase southward and can be as high as 60°, but
can be almost zero for profiles acquired from a dawn—dusk
orbit, as profile 1304010004 marked in blue—violet in our
case (Fig. 10). The large variations of the measuring charac-
teristics between different orbital profiles are a result of the
orbit correction maneuvers (OCMs) and orbital evolution due
to various perturbing forces (Mazarico et al. 2014b). For the
preprocessing, erroneous returns and shots with missing laser
start trigger time and pulse width have been filtered out. The
range walk error of MLA (about 0.6 m under ideal condi-
tions) is much smaller than that of MOLA (1 to 3 m) and
is further mitigated by the usage of a variable-gain ampli-
fier (VGA) gain control that allows MLA to accommodate
the wide signal dynamic range resulting from the constantly
changing spacecraft altitude during measurements. There-
fore, the range walk error is neglected. Unlike MOLA, the
corrections to the range offsets due to electronic delays have
already been incorporated in the RDR ToF records, which
vary with different channels and thresholds and can be up to
tens of meters (Sun and Neumann 2015).

4.2 Recomputation of RDR MESSMLA2001

Based on SMM with the Solar System Barycenter (SSB) as
the observer (supplied with the same attitude and orbit ker-
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Fig.9 Location of the seven
selected profiles with the color
scale indicating the height
defined with respect to the
TAU2015 Mercury sphere with a
radius of 2439.4 km (Archinal
et al. 2018). The background is
the 250 m resolution Mercury
Dual Imaging System (MDIS)
global mosaic (Denevi et al.
2017) in a van der Grinten
projection with a central
meridian of 0°E
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Fig. 11 Lateral (top) and radial o 0801141902 0810060836
(bottom) differences of SMM e 1104010231 e 1204011915 e 1304010004 e 1404011002 e 1504012318

with the Solar System
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with respect to RDR
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nels that the RDR MESSMILA2001 has adopted and using the
TAU2015 Mercury rotational model (Archinal et al. 2018)),
we had managed to reproduce the RDR MESSMLA2001
locations. The recomputed footprint locations are then com-
pared to the RDR MESSMLA2001 footprint positions as
shown in Fig. 11. The residuals are below ~30 cm laterally
and range from ~-15 cm to ~5 cm radially. The residuals
are fairly uniformly distributed within the band-like pattern
for each profile, implying the cause to be the representation
errors of relevant values by the RDR MESSMLA2001 files.
Indeed, in these files the longitudes and latitudes in degree
of the footprints are represented to five decimal places with
radii in kilometers to four decimal places, and ToF mea-
surements in nanoseconds are documented to first decimal
place. Besides, the general trends of magnitudes on the order
of several centimeters are due to the Shapiro delay that has
been additionally taken care of in RDR MESSMLA 2001
by iteratively converging to the two-way light time solution
(Neumann 2016) (see also Section C in Appendices). Thus,
the RDR MESSMLA2001 is confirmed to have adopted
SMM processing scheme in combination with the SSB being
appointed as the observer with a small adjustment for Shapiro
delay.

4.3 Comparison of SRM and PAM

As with MOLA in Sect. 3.2, SRM and PAM are compared
in the case of MLA as well. The differences with Mercury
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105
Longitude/Latitude [deg]

as observer (supplied with the attitude and orbit kernels that
adopted by the RDR MESSMLA2001) are within 2 cm lat-
erally and 6 cm radially (Fig. 12). Mercury is chosen here as
the observer for PAM in order to have a consistent compari-
son with SRM in which the target body is set as the observer
for concise illustration. The maximum approximation errors
as inferred by Eq. (39) are ~0.5 mm for MLA orbital pro-
files, while this number increases to ~1.3 mm for MLA flyby
profiles. Like MOLA, these errors can be neglected com-
pared to the differences between SRM and PAM as shown
in Fig. 12. Thus, the effects of the special relativity could be
aptly compensated by a pointing aberration correction. We
then investigate the impact of this pointing aberration on the
MLA geolocation.

4.4 Impact of pointing aberration

To investigate the improvement that can be achieved on the
MLA RDR MESSMLA2001 by incorporating the pointing
aberration correction, the model outputs of PAM and SMM
both with the SSB as the observer (supplied with the attitude
and orbit kernels that adopted by RDR MESSMILA2001) are
compared in Fig. 13. The lateral differences vary from ~0
m to up to more than 150 m for the orbital profiles and ~20
m to ~100 m for the flyby profiles. The maximum mag-
nitude of the radial differences can be up to ~25 m top
for the orbital and ~50 m for the flyby profiles. Note that
the radial differences for ascending and descending tracks
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Fig.12 Lateral (top) and radial
(bottom) differences of SRM
with respect to PAM with
Mercury as the observer for the
selected MLA profiles

Fig. 13 Lateral (top) and radial
(bottom) differences of PAM
with the SSB as observer with
respect to SMM with the SSB as
observer for the selected profiles
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of the orbital profiles are nearly symmetrically distributed
around zero. The maximum height differences at the cross-
over points of the ascending and descending tracks caused by
pointing aberration can thus be ~50 m in magnitude when
approaching the equator. Owning to MESSENGER’s highly
eccentric orbit and significant ML A off-nadir pointing angle,
these improvements by accounting for the relative velocity
of MESSENGER with respect to SSB (~47 km/s on aver-
age with maximum of ~63 km/s) can be significantly larger
than the ones of MOLA (Fig. 8). Thus, applying the correct
model (PAM) can result in significant improvements of the
MLA geolocation, especially for the flyby profiles [compare
Eq. (17) to Eq. (24)].

To validate the improvements that could be brought
by the pointing aberration correction in terms of RDR
MESSMLA2001, we have compared the height misfits
at cross-overs for RDR MESSMLA2001 and the repro-
cessed RDR MESSMLA?2001 using PAM at the Shakespeare
Quadrangle (H3) (22.5° to 65°N and 180° to 270°E).
Before statistical analysis, these height discrepancies have
been edited through a 3-sigma and 8-sigma iterative filter-
ing process, respectively. As a result, 1.1% and 0.1% of
these height misfits have been excluded from analysis for
RDR MESSMLA2001 dataset (122206 left) and the repro-
cessed RDR MESSMLA2001 (95594 left), respectively.
The histograms of these cross-over height misfits for RDR
MESSMLA2001 and reprocessed RDR MESSMLA2001
are shown for comparison in Fig. 14. Note the long-tailing
extreme large discrepancies for RDR MESSMLA2001 com-
pared to the much more concentrated distribution for the
reprocessed RDR MESSMLA2001. After accounting for the
pointing aberration due to the relative velocity of MESSEN-
GERER with respect to SSB, the mean and RMS of the height
misfits at cross-overs have been improved from 11.8 m and
828.5 m to —2.8 m and 300.1 m, respectively, showcasing
the significant improvements that could be brought to RDR
MESSMLA2001 internal consistency after applying the
pointing aberration correction. In addition, we have also com-
pared the aforementioned results of RDR MESSMLA2001
to the new version of RDR MESSMLAZ2101 which has ben-
efited from a refined MESSENGER orbit model derived
from a simultaneously reprocessing of the radio tracking
data with the MLA altimeter data (Neumann 2017). The his-
togram of RDR MESSMLA2101 is close to that of RDR
MESSMLA2001 with mean of -13.4 m and RMS of 864.7 m
from 117981 cross-overs, indicating that the errors induced
by pointing aberration still remain in RDR MESSMLA2101.

4.5 Summary
The statistics for comparison of different geolocation mod-

els applied to MLA dataset as shown in Figs. 11, 12 and
13 are summarized in Table 2 for better interpretation. The
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centimeter-level numbers in the first row of the table indicate
the MLA RDR MESSMLA2001 dataset has adopted SMM
with SSB as the observer for the geolocation with a small
adjustment for Shapiro delay, neglecting the pointing aber-
ration correction to the boresight. In contrast to MOLA, the
resultant geolocation errors can be up to ~150 m laterally
and ~ =£25 m radially for the orbital profiles and up to ~100
m laterally and ~-50 m radially for the flyby profiles (third
row of Table 2). Concerning cross-over height discrepan-
cies at the Shakespeare Quadrangle (H3), the RMS could be
reduced from 828.5 m for RDR MESSMLA2001 and 864.7
for RDR MESSMLA2101 to 300.1 m for the reprocessed
RDR MESSMLA2001 incorporating the pointing aberration
correction, nearly a threefold improvement in terms of self-
consistency.

5 Discussion

The remarkable improvements in terms of self-consistency
evaluated by the height misfits of cross-overs brought to
RDR MESSMLA2001 by applying the pointing aberration
correction as shown in Fig. 14 could be mainly attributed
to the following factors: (1) along-track gaps up to 440
m between consecutive footprints means significant height
interpolation distances to the cross-overs which would trans-
late to large errors when the underlying terrain features rough
crater rims and central peaks. (2) Large relative velocity of
MESSENGER and SSB of magnitude ~47 km/s on aver-
age could lead to significant pointing aberration correction
and hence non-negligible lateral and radial shifts, especially
toward the equator where one-way range and off-nadir angle
generally increase (Figs. 10, 13). (3) Owing to the rela-
tive velocity vector of MESSENGER with respect to SSB
being nearly perpendicular to the approximately meridian-
parallel profiles at the Shakespeare Quadrangle (H3), the
lateral shifts could have cross-track components, especially
for profiles collected when MESSENGER was at noon—
midnight orbit. These cross-track displacements are capable
of shifting the intersection points dramatically upwards or
downwards along the near-parallel profiles in question. (4)
The radial shifts for ascending and descending profiles are
nearly symmetrically distributed around zero; thus, the height
misfits could be doubled at cross-overs (Fig. 13). As for
RDR MESSMLA?2101, although each MLA profile has been
adjusted to an existing MLA DTM for refined MESSEN-
GER orbit and MLA pointing, this postprocessing has not
even slightly absorbed the pointing aberration errors. This
could be due to the fact that a constant correction is applied
to each MLA profile, while the pointing aberration errors as
shown in Fig. 13 are largely nonlinear.

Three different kinds of general relativity effects on the
geolocation, i.e., converting the ToF measurement in TDB
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Fig. 14 Histogram of the height discrepancies at cross-overs for RDR MESSMLA2001 (blue), the reprocessed RDR MESSMLA2001 accounting
for the pointing aberration (red) and RDR MESSMLA2101 (black) at the Shakespeare Quadrangle (H3)

Table 2 Statistical summary of the comparison of different geolocation models applied to MLA

Comparison pair Lateral statistics

Radial statistics

Mean RMS Max Mean RMS Max Min
SMM SSB as observer versus MESSMLA2001 129cm 14.2cm 30.6cm —1.6cm 3.4cm 5.0cm —13.1cm
SRM versus PAM Mercury as observer 0.2cm 0.3cm 1.9cm 0.8cm 0.9cm 49cm 0.0cm
PAM versus SMM SSB as observer 46.9m 52.1m 161.8m —04m 8.2m 28.6m —48.1m

scale to proper time of the spacecraft, errors of the laser pulse
emission time stamps and the Shapiro delay, have also been
examined and are detailed in Appendices. The maximum
Shapiro delay of the transmit one-way leg has been estimated
to be ~6 mm and ~9 cm for MOLA and MLA, respectively
(Section C). Thus, for future laser altimeters to Mercury with
long-ranging distance, e.g., BELA, the Shapiro delay has also
to be compensated in the geolocation process.

6 Conclusion

We have presented a consistent and systematic formulation
of three commonly used geolocation models which could
account for the spacecraft’s motion during the ToF of the
laser pulse and pointing aberration. Then, the special relativ-
ity model is proposed to compensate for the special relativity

effects. Furthermore, other conceivable effects (e.g., Shapiro
delay) induced by general relativity have been discussed.
These models have been applied to MOLA and MLA profiles
as case examples. We have analytically demonstrated that the
special relativity effects can be reduced to a simple point-
ing aberration correction given some assumptions. More
importantly, ignoring the pointing aberration correction can
lead to significant geolocation errors, especially when the
laser altimeter is operating in an off-nadir configuration and
the spacecraft is moving fast with respect to the observer
body. This geolocation errors can be up to ~150 m later-
ally and ~ #£25 m radially when applied to the MLA orbital
profiles. Concerning cross-over height discrepancies at the
Shakespeare Quadrangle (H3), the RMS could be improved
by a factor of 3 from 828.5 m for RDR MESSMLA2001
and 864.7 for RDR MESSMLA2101 to 300.1 m for RDR
MESSMLA2001 corrected for the pointing aberration. This
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paper can serve as a processing guide for future laser altime- \/ 1 = 2¢gc/c? — |vg/cssB|?/c?
try geolocation applications. = , (A.2)
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Appendices

Here, we further discuss three other relativistic effects that
have not been considered within SRM model which are gen-
erally small, but could be important to consider for future
precise laser altimetry missions.

Appendix A: ToF measurement in TDB scale

In Sect. 2.4, T denotes the proper ToF as measured in the
spacecraft reference frame. But as mentioned before, due
to the calibration of the spacecraft clock and laser altimeter
USO by radio links to Earth, the documented ToF measure-
ments are actually expressed in TDB scale tTpg, not as the
proper time of the spacecraft. The conversion of tTpp to t
can be done via the time-dependent multiplicative scaling
factor QTDB—>pr0per

T = TTDBQTDB—>pr0per- (A.D
QTDB- proper €an be deduced by examining the rate deviation

of spacecraft proper time and TDB with respect to Barycen-
tric Coordinate Time (TCB) (Bauer et al. 2017)

dclock dTDB

QTpB— =
proper
drce ' drcB

@ Springer

1— Ly

with ¢g/ being the total gravitational potential at the space-
craft’s location, summed up over all bodies that cannot be
neglected. vy/cssB represents the relative velocity vector of
the spacecraft with respect to the SSB, while

1 —Ly=1-150519768 x 1078 (A.3)

d
is the constant scaling of TDB with respect to the TCB 1B

(see Baueret al. 2017, for details). If we assume that the rggg-
nitude of the relative velocity of the spacecraft with respect
to SSB remains constant for the each measurement process,
then the rate difference between the laser altimeter internal
clock and TDB €21pB - proper is a constant. Since ToF mea-
surements are typically expressed in TDB scale, Eq. (A.1) can
be used to obtain the proper ToF t as measured by the space-
craft and then further used in the calculations in Sect. 2.4.

Appendix B: Errors in the emission time

While the uncertainty of the time stamps in the MLA RDR
dataset is well below 150us which is mainly due to the
Shapiro delay unmodeled in the MESSENGER timekeep-
ing system (Cooper et al. 2012), the accuracy of the MGS
Spacecraft Clock Coefficients Kernels (SCLKs), which con-
vert the spacecraft clock ticks to Terrestrial Dynamical Time
(TDT) time, is only 10 ms (corresponding to almost 30 m
on the Martian surface) in the orbital phase (Neumann et al.
2006). This constitutes a significant source of geolocation
error when considering that the mean errors of the refined
MGS orbit have been reduced to less than 2 m (Konopliv et al.
2006). The laser timing is affected by the clock’s drift and
aging and also the relativity effects. If each of these factors
could be accurately modeled, then the errors of the footprint
emission time stamps could be significantly lowered, con-
tributing to more rigorous and precise geolocation. Here, we
have investigated the effects of gravitational potential at the
spacecraft’s location and its relative velocity with respect to
the SSB on the MGS onboard clock rate as in Bauer et al.
(2017). The result for the MGS mapping phase is plotted in
the top panel of Fig. 15. Variations due to MGS’s orbit around
the Sun and Mars (see the inset) are visible with an average
difference of ~ 5.5 x 10~ s/s. Meanwhile, we have con-
verted the TDT time tags documented in the MGS SCLKSs to
TDB timestamps and calculated the normalized deviation of
the MGS onboard clock rate with respect to TDB (Fig. 15,
bottom). Apparently, relativistic effects only account for a
small fraction (a maximum of ~0.06) of the total deviations
(more than 110 x 1077 s/s at the beginning of the map-


https://pds-geosciences.wustl.edu
https://pds-geosciences.wustl.edu
https://naif.jpl.nasa.gov/naif

Processing of laser altimeter time-of-flight measurements to geodetic coordinates

Page 19 of 23 22

Fig. 15 MGS onboard clock 8
rate deviation with respect to ]
TDB during the MGS mapping
phase. Top: rate deviation
induced by the effects of
relativity, the inset shows a
zoomed view of the periodic
variations inflicted by the
gravity of Mars over one Earth
day; Bottom: total rate deviation
indicated by the MGS SCLK
piecewise linear fitting. Grey
shade denotes the period of the
solar conjunction

’I

Difference in rate dcjock/dpg — 1 in [ 1072 s/s ]

100 +——
-300

ping phase and increasing with mission elapsed time); the
most influential factors are still the drift of the MGS clock
itself. Unfortunately, the deterministic clock model was not
revealed to the public, also gaps from solar conjunction and
other causes exist; therefore, we did not attempt to further
refine the MOLA emission time.

Appendix C: Shapiro delay

When the light propagates in a gravitational well, the coor-
dinate velocity of light will be reduced to below ¢ and a
bending of the light path will occur. Thus, the light will
travel an extra distance. These two effects will add up to the
Shapiro delay (Shapiro 1964). We adopt the one-way light-
time solution between any two points in the Solar System
barycentric space—time frame to estimate the prolongation of
the MLA one-way down-leg light path inflicted by Shapiro
delay (Moyer 2005; Turyshev et al. 2010):

n
(I+y)us
C(tz_tl):rlz‘i‘BZ_:lc—z
B B B
m| T2 (A4)
SEE R

] +0O(c™.

—_—
—-200

I ;lIO(IJ o (I) . Il(l)Ol '2(]JOI B I3(50I B I400
Earth days from J2000 epoch

B denotes a celestial body in the Solar System. The up term
denotes the accumulating retardation effect of the celestial
bodies. 71 refers to the emission time of the laser pulse and
17 is the reflection time on the surface of the target body. r{
is the linear distance of the spacecraft with respect to the
gravitational body at emission time, r, is the distance from
the bounce point to the gravitational body at the reflection
time. 7 is the relativistically uncorrected linear range of the
transmit one-way leg. y is one of the ten parameters in the
parameterized post-Newtonian (PPN) formalism. up is the
standard gravitational parameter of a celestial body.

The potential upper limit of the impact of each grav-
itational body in the Solar System is estimated separately
to infer the maximum delay MOLA and MLA might have
experienced. For MOLA, mostly nadir-pointed in the map-
ping phase, the one-way distance 15 ranges from 368 to 438
km. We use the maximum distance for the error estimation.
The Shapiro delay inflicted on the MOLA transmit one-way
leg by the Sun is at its maximum when Mars is at its peri-
helion (25 November 1999). For simplicity, we focus on the
two extreme cases, which are (1) Mars being in opposition
to the MGS spacecraft and (2) the MGS spacecraft being in
opposition to Mars (top left and top right in Fig. 16, respec-
tively). In these two cases, r] and r; can be easily related to R,
d and rq» as embedded in the geometry. Here, R is the mean
radius of Mars and d is the Mars—Sun distance at perihelion

@ Springer
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Fig. 16 Top: two extreme cases
used to constrain the maximum
prolongation on the MOLA

transmit leg by the Sun. Bottom:

configuration where the MGS
altitude and the gravitational
delay impact of Mars maximize

Fig.17 Top: two extreme cases
used to constrain the maximum
prolongation on the MLA
transmit leg induced by the
gravitational field of the Sun.
Bottom: configuration when the
MLA ranging distance is the
longest and the gravitational
delay impact of Mercury peaks.
Here, R is the mean radius of
Mercury and d is the distance
between Mercury’s perihelion
and the Sun
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(see Fig. 16). Inserting these parameters into the second term
of Eq. (A.4), both scenarios yield nearly identical maximum
range prolongation of 6.3 mm as for the impact of the Sun.
When it comes to Mars, assuming it to be a point source of
gravity, then the impact peaks at 0.12 mm when MGS is at
apoapsis where the maximum ranging distance is reached
(over the North Pole, see bottom panel in Fig. 16). For other
planets, the impacts are all at least two order of magnitudes
smaller than the impact of Mars itself and can be neglected.
Thus, the maximum prolongation exerted on MOLA’s one-
way range by all the gravitational bodies in the Solar System
is less than 1 cm. Among MGS orbit and attitude errors and
MOLA timing errors, the Shapiro delay for MOLA could
thus be largely neglected during geolocation.

MLA can successfully perform range measurements up
to 1500 km altitude, assuming nadir operation in an eccen-
tric dawn—dusk orbit (Zuber et al. 2012). Thus, the MLA
one-way distance of 717 is set to 1500 km to estimate the
maximum gravitational delay MLA might experience. The
maximum impact exerted by Sun occurs when Mercury is at
perihelion. As with MOLA, we consider two extreme sce-
narios to constrain the magnitude (see Fig. 17). r; denotes
the distance of the Sun to MESSENGER and r, denotes the
distance of the Sun to the bounce point, which can be readily
known given their simple geometric relations with respect
to R, d and r12. Using the formalism discussed before, the
two extreme cases yield similar range prolongation of 9.4
cm with a difference on the order of 0.01 mm; thus, the max-
imum gravitational delay of Sun on MLA one-way leg is
~ 9.4 cm. Similarly, for the impact of Mercury itself, the
maximum is when MESSENGER is in a dawn—dusk orbit
and the ranging distance reaches the maximum of 1500 km
in a nadir pointing configuration (bottom plot in Fig. 17).
The corresponding range prolongation for the transmit leg
is then calculated to be 0.46 mm. For all other bodies, the
impacts are all at least two order of magnitudes smaller than
that of Mercury and can be neglected. Thus, the maximum
prolongation exerted on MLA one-way range due to Shapiro
delay is ~9 cm. Future laser altimeter missions to Mercury
with the aim of achieving centimeter-level ranging accuracy
should take the Shapiro delay into careful consideration.

References

Abshire JB, Sun X, Afzal RS (2000) Mars Orbiter Laser Altimeter:
receiver model and performance analysis. Appl Opt 39(15):2449—
2460. https://doi.org/10.1364/A0.39.002449

Archinal BA, Acton CH, A’'Hearn MF, Conrad A, Consolmagno GJ,
Duxbury T, Hestroffer D, Hilton JL, Kirk RL, Klioner SA,
McCarthy D, Meech K, Oberst J, Ping J, Seidelmann PK, Tholen
DJ, Thomas PC, Williams IP (2018) Report of the IAU work-
ing group on cartographic coordinates and rotational elements:
2015. Celest Mech Dyn Astron 130(3):22. https://doi.org/10.1007/
$10569-017-9805-5

Bae S, Schutz BE (2002) Geoscience Laser Altimeter System (GLAS)
Precision Attitude Determination (PAD). Algorithm Theoretical
Basis Documents (ATBD), pp 1-106

Barker MK, Mazarico E, Neumann GA, Zuber MT, Haruyama J, Smith
DE (2016) A new lunar digital elevation model from the Lunar
Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus
273:346-355. https://doi.org/10.1016/j.icarus.2015.07.039

Bauer S, Hussmann H, Oberst J, Dirkx D, Mao D, Neumann GA,
Mazarico E, Torrence MH, McGarry JF, Smith DE, Zuber MT
(2017) Analysis of one-way laser ranging data to LRO, time trans-
fer and clock characterization. Icarus 283:38-54. https://doi.org/
10.1016/j.icarus.2016.09.026

Cooper SB, Jensen JR, Weaver GL (2012) MESSENGER onboard time-
keeping accuracy during the first year in orbit at Mercury. In: 44th
Annual precise time and time interval (PTTI) systems and appli-
cations meeting, pp 361-370

Daly MG, Barnouin OS, Dickinson C, Seabrook J, Johnson CL, Cun-
ningham G, Haltigin T, Gaudreau D, Brunet C, Aslam I, Taylor
A, Bierhaus EB, Boynton W, Nolan M, Lauretta DS (2017) The
OSIRIS-REx Laser Altimeter (OLA) investigation and instru-
ment. Space Sci Rev 212(1-2):899-924. https://doi.org/10.1007/
s11214-017-0375-3

Denevi BW, Chabot NL, Murchie SL, Becker KJ, Blewett DT,
Domingue DL, Ernst CM, Hash CD, Hawkins SE, Keller MR,
Laslo NR, Nair H, Robinson MS, Seelos FP, Stephens GK,
Turner FS, Solomon SC (2017) Calibration, projection, and final
image products of MESSENGER’s Mercury Dual Imaging Sys-
tem. Space Sci Rev 214(1):52. https://doi.org/10.1007/s11214-
017-0440-y

Glidser P, Haase I, Oberst J, Neumann GA (2013) Co-registration of
laser altimeter tracks with digital terrain models and applications
in planetary science. Planet Space Sci 89:111-117. https://doi.org/
10.1016/j.pss.2013.09.012

Heavens NG (2017) The reflectivity of Mars at 1064 nm: derivation
from Mars Orbiter Laser Altimeter data and application to clima-
tology and meteorology. Icarus 289:1-21. https://doi.org/10.1016/
j.carus.2017.01.032

Hu W, DiK, LiuZ, Ping J (2013) A new lunar global DEM derived from
Chang’E-1 Laser Altimeter data based on crossover adjustment
with local topographic constraint. Planet Space Sci 87:173-182.
https://doi.org/10.1016/j.pss.2013.08.004

Hussmann H (2014) Laser altimetry and its applications in planetary
science. In: Planetary geodesy and remote sensing, pp 51-75

Hussmann H, Lingenauber K, Kallenbach R, Enya K, Thomas N, Lara
LM, Althaus C, Araki H, Behnke T, Castro JM, Henri M, Gerber T,
Herranz M, Revilla D, Hiittig C, Ishibashi K, Jiménez J, Martinez
I, Harald N, Noriyuki M, Hirotomo N, Jiirgen N, Oshigami S,
Pablo J, Garcia R, Rodrigo J, Rosner K, Stark A, Steinbriigge
G, Thabaut P, Kazuyuki T, Sebastian T, Wendler B, Wickhusen
K, Willner K (2019) The Ganymede laser altimeter (GALA): key
objectives, instrument design, and performance. CEAS Space J
11(4):381-390. https://doi.org/10.1007/s12567-019-00282-8

Konopliv AS, Yoder CF, Standish EM, Yuan DN, Sjogren WL (2006) A
global solution for the Mars static and seasonal gravity, Mars ori-
entation, Phobos and Deimos masses, and Mars ephemeris. Icarus
182(1):23-50. https://doi.org/10.1016/j.icarus.2005.12.025

Lemoine FG, Smith DE, Rowlands DD, Zuber MT, Neumann GA,
Chinn DS, Pavlis DE (2001) An improved solution of the grav-
ity field of Mars (GMM-2B) from Mars Global Surveyor. J
Geophys Res Planets 106(E10):23359-23376. https://doi.org/10.
1029/2000JE001426

Luthcke SB, Rowlands DD, Williams TA, Sirota M (2005) Reduction of
ICESat systematic geolocation errors and the impact on ice sheet
elevation change detection. Geophys Res Lett 32:3-6. https://doi.
org/10.1029/2005GL023689

@ Springer


https://doi.org/10.1364/AO.39.002449
https://doi.org/10.1007/s10569-017-9805-5
https://doi.org/10.1007/s10569-017-9805-5
https://doi.org/10.1016/j.icarus.2015.07.039
https://doi.org/10.1016/j.icarus.2016.09.026
https://doi.org/10.1016/j.icarus.2016.09.026
https://doi.org/10.1007/s11214-017-0375-3
https://doi.org/10.1007/s11214-017-0375-3
https://doi.org/10.1007/s11214-017-0440-y
https://doi.org/10.1007/s11214-017-0440-y
https://doi.org/10.1016/j.pss.2013.09.012
https://doi.org/10.1016/j.pss.2013.09.012
https://doi.org/10.1016/j.icarus.2017.01.032
https://doi.org/10.1016/j.icarus.2017.01.032
https://doi.org/10.1016/j.pss.2013.08.004
https://doi.org/10.1007/s12567-019-00282-8
https://doi.org/10.1016/j.icarus.2005.12.025
https://doi.org/10.1029/2000JE001426
https://doi.org/10.1029/2000JE001426
https://doi.org/10.1029/2005GL023689
https://doi.org/10.1029/2005GL023689

22 Page22o0f23

H. Xiao et al.

Luthcke SB, Pennington T, Rebold T, Thomas T (2019a) ATLO03g
ICESat-2 Receive Photon Geolocation (version 6). Algorithm The-
oretical Basis Documents (ATBD), pp 1-53

Luthcke SB, Rebold T, Thomas T, Pennington T (2019b) GEDI Wave-
form Geolocation for L1 and L2 Products (version 1.0). Algorithm
Theoretical Basis Documents (ATBD), pp 1-62

Magruder L, Silverberg E, Webb C, Schutz B (2005) In situ tim-
ing and pointing verification of the ICESat altimeter using a
ground-based system. Geophys Res Lett. https://doi.org/10.1029/
2005GL023504

Mazarico E, Neumann GA, Rowlands DD, Smith DE (2010) Geodetic
constraints from multi-beam laser altimeter crossovers. ] Geodesy
84(6):343-354. https://doi.org/10.1007/s00190-010-0379-1

Mazarico E, Barker MK, Neumann GA, Zuber MT, Smith DE (2014a)
Detection of the lunar body tide by the Lunar Orbiter Laser
Altimeter. Geophys Res Lett 41:2282-2288. https://doi.org/10.
1002/2013GL059085

Mazarico E, Genova A, Goossens S, Lemoine FG, Neumann GA, Zuber
MT, Smith DE, Solomon SC (2014b) The gravity field, orientation,
and ephemeris of Mercury from MESSENGER observations after
three years in orbit. J] Geophys Res Planets 119(12):2417-2436.
https://doi.org/10.1002/2014JE004675

Mizuno T, Kase T, Shiina T, Mita M, Namiki N, Senshu H, Yamada R,
Noda H, Kunimori H, Hirata N, Terui F, Mimasu Y (2017) Devel-
opment of the Laser Altimeter (LIDAR) for Hayabusa2. Space Sci
Rev 208(1):33-47. https://doi.org/10.1007/s11214-015-0231-2

Moyer TD (2005) Formulation for observed and computed values of
Deep Space Network data types for navigation, vol 3. Wiley, New
York

Neumann GA (2016) Mercury Laser Altimeter (MLA) Planetary
Data System (PDS) document. https://pds-geosciences.wustl.
edu/messenger/mess-e_v_h-mla-3_4-cdr_rdr-data-v1/messmla_
2001/document/mla_edr_to_cdr_to_rdr-gdr.pdf. Accessed 7 Sept
2018

Neumann GA (2017) Mercury Laser Altimeter (MLA) Navigation
Assessment (NAVASSMT) documents. https://pds-geosciences.
wustl.edu/messenger/mess-e_v_h-mla-3_4-cdr_rdr-data-v2/
messmla_2101/document/navassmt/navinfo.txt. Accessed 22
July 2020

Neumann GA, Rowlands DD, Lemoine FG, Smith DE, Zuber MT
(2001) Crossover analysis of Mars Orbiter Laser Altimeter data. J
Geophys Res Planets 106(E10):23753-23768. https://doi.org/10.
1029/2000JE001381

Neumann GA, Cavanaugh JF, Coyle DB, McGarry J, Smith D, Sun X,
Torrence M, Zagwodski TW, Zuber MT (2006) Laser ranging at
interplanetary distances. In: Proceedings of the 15th international
workshop on laser ranging, Canberra, Australia

Neumann GA, Perry ME, Mazarico E, Ernst CM, Zuber MT, Smith
DE, Becker KJ, Gaskell RE, Head JW, Robinson MS, Solomon SC
(2016) Mercury shape model from laser altimetry and planetary
comparisons. In: Lunar and planetary science conference, vol 47,
p 2087

Nolting W (2013) Grundkurs Theoretische Physik 4: Spezielle Relativ-
itdtstheorie, Thermodynamik. Springer, Berlin

Parro LM, Jimenezdiaz A, Mansilla F, Ruiz J (2017) Present-day heat
flow model of Mars. Sci Rep 7(1):45629. https://doi.org/10.1038/
srep45629

Perry ME, Neumann GA, Phillips RJ, Barnouin OS, Ernst CM, Kahan
DS, Solomon SC, Zuber MT, Smith DE, Hauck SA, Peale SJ,
Margot JL, Mazarico E, Johnson CL, Gaskell RW, Roberts JH,
McNutt RL, Juergen O (2015) The low-degree shape of Mer-
cury. Geophys Res Lett 42(17):6951-6958. https://doi.org/10.
1002/2015GL065101

Robbins SJ, Hynek BM (2013) Utility of laser altimeter and stereoscopic
terrain models: application to Martian craters. Planet Space Sci
86:57-65. https://doi.org/10.1016/j.pss.2013.06.019

@ Springer

Rowlands DD, Pavlis DE, Lemoine FG, Neumann GA, Luthcke SB
(1999) The use of laser altimetry in the orbit and attitude determina-
tion of Mars Global Surveyor. Geophys Res Lett 26(9):1191-1194.
https://doi.org/10.1029/1999GL.900223

Shapiro II (1964) Fourth test of general relativity. Phys Rev Lett
13(26):789-791. https://doi.org/10.1103/PhysRevLett.13.789

Shutz BE, Urban TJ (2014) The GLAS algorithm theoretical basis docu-
ment for laser footprint location (Geolocation) and surface profiles.
Algorithm Theoretical Basis Documents (ATBD)

Smith DE, Zuber MT, Frey HV, Garvin JB, Head JW, Muhleman DO,
Pettengill GH, Phillips RJ, Solomon SC, Zwally HJ, Banerdt
WB, Duxbury TC, Golombek MP, Lemoine FG, Neumann GA,
Rowlands DD, Aharonson O, Ford PG, Ivanov AB, Johnson CL,
McGovern PJ, Abshire JB, Afzal RS, Sun X (2001a) Mars Orbiter
Laser Altimeter: experiment summary after the first year of global
mapping of mars. J Geophys Res Planets 106(E10):23689-23722.
https://doi.org/10.1029/2000JE001364

Smith DE, Zuber MT, Neumann GA (2001b) Seasonal variations of
snow depth on Mars. Science 294(5549):2141-2146. https://doi.
org/10.1126/science.1066556

Smith DE, Neumann GA, Arvidson RE, Guinness EA, Slavney S
(2003a) Mars Global Surveyor laser altimeter Mission Experiment
Gridded Data Record (MEGDR). NASA Planetary Data System.
Tech. rep., MGS-M-MOLA-5-MEGDR-L3-V1.0

Smith DE, Zuber MT, Neumann GA (2003b) Mars Orbiter
Laser Altimeter (MOLA) Planetary Data Syatem (PDS)
pedrds.cat. https://pds-geosciences.wustl.edu/mgs/mgs-m-mola-
3-pedr-11a-v1/mgsl_21xx/catalog/pedrds.cat. Accessed 7 Sept
2018

Smith DE, Zuber MT, Neumann GA, Mazarico E, Lemoine FG, Head
JW 111, Lucey PG, Aharonson O, Robinson MS, Sun X, Torrence
MH, Barker MK, Oberst J, Duxbury TC, Mao D, Barnouin OS, Jha
K, Rowlands DD, Goossens S, Baker D, Bauer S, Gliser P, Lemelin
M, Rosenburg M, Sori MM, Whitten J, Mcclanahan T (2017) Sum-
mary of the results from the Lunar Orbiter Laser Altimeter after
seven years in lunar orbit. Icarus 283:70-91. https://doi.org/10.
1016/j.icarus.2016.06.006

Stark A, OberstJ, Preusker F, Peale SJ, Margot JL, Phillips RJ, Neumann
GA, Smith DE, Zuber MT, Solomon SC (2015) First MESSEN-
GER orbital observations of Mercury’s librations. Geophys Res
Lett 42(19):7881-7889. https://doi.org/10.1002/2015GL065152

Steinbriigge G, Stark A, Hussmann H, Sohl F, Oberst J (2015) Mea-
suring tidal deformations by laser altimetry. A performance model
for the Ganymede Laser Altimeter. Planet Space Sci 117:184-191.
https://doi.org/10.1016/.pss.2015.06.013

Steinbriigge G, Stark A, Hussmann H, Wickhusen K, Oberst J (2018)
The performance of the BepiColombo Laser Altimeter (BELA)
prior launch and prospects for mercury orbit operations. Planet
Space Sci 159:84-92. https://doi.org/10.1016/j.pss.2018.04.017

Sun X, Neumann GA (2015) Calibration of the Mercury Laser Altimeter
on the MESSENGER Spacecraft. IEEE Trans Geosci Remote Sens
53(5):2860-2874. https://doi.org/10.1109/TGRS.2014.2366080

Thomas N, Spohn T, Barriot JP, Benz W, Beutler G, Christensen U,
Dehant V, Fallnich C, Giardini D, Groussin O, Gunderson K,
Hauber E, Hilchenbach M, Iess L, Lamy P, Lara LM, Lognonné
P, Lopez-Moreno JJ, Michaelis H, Oberst J, Resendes D, Rey-
naud JL, Rodrigo R, Sasaki S, Seiferlin K, Wieczorek M, Whitby
J(2007) The BepiColombo Laser Altimeter (BELA): concept and
baseline design. Planet Space Sci 55(10):1398-1413. https://doi.
org/10.1016/j.pss.2007.03.003

Thomas N, Hussmann H, Lara LM (2019) The BepiColombo Laser
Altimeter (BELA): a post-launch summary. CEAS Space J
11(4):371-380. https://doi.org/10.1007/s12567-019-00270-y

Turyshev SG, Farr W, Folkner WM, Girerd AR, Hemmati H, Murphy
TW, Williams JG, Degnan JJ (2010) Advancing tests of relativistic


https://doi.org/10.1029/2005GL023504
https://doi.org/10.1029/2005GL023504
https://doi.org/10.1007/s00190-010-0379-1
https://doi.org/10.1002/2013GL059085
https://doi.org/10.1002/2013GL059085
https://doi.org/10.1002/2014JE004675
https://doi.org/10.1007/s11214-015-0231-2
https://pds-geosciences.wustl.edu/messenger/mess-e_v_h-mla-3_4-cdr_rdr-data-v1/messmla_2001/document/mla_edr_to_cdr_to_rdr-gdr.pdf
https://pds-geosciences.wustl.edu/messenger/mess-e_v_h-mla-3_4-cdr_rdr-data-v1/messmla_2001/document/mla_edr_to_cdr_to_rdr-gdr.pdf
https://pds-geosciences.wustl.edu/messenger/mess-e_v_h-mla-3_4-cdr_rdr-data-v1/messmla_2001/document/mla_edr_to_cdr_to_rdr-gdr.pdf
https://pds-geosciences.wustl.edu/messenger/mess-e_v_h-mla-3_4-cdr_rdr-data-v2/messmla_2101/document/navassmt/navinfo.txt
https://pds-geosciences.wustl.edu/messenger/mess-e_v_h-mla-3_4-cdr_rdr-data-v2/messmla_2101/document/navassmt/navinfo.txt
https://pds-geosciences.wustl.edu/messenger/mess-e_v_h-mla-3_4-cdr_rdr-data-v2/messmla_2101/document/navassmt/navinfo.txt
https://doi.org/10.1029/2000JE001381
https://doi.org/10.1029/2000JE001381
https://doi.org/10.1038/srep45629
https://doi.org/10.1038/srep45629
https://doi.org/10.1002/2015GL065101
https://doi.org/10.1002/2015GL065101
https://doi.org/10.1016/j.pss.2013.06.019
https://doi.org/10.1029/1999GL900223
https://doi.org/10.1103/PhysRevLett.13.789
https://doi.org/10.1029/2000JE001364
https://doi.org/10.1126/science.1066556
https://doi.org/10.1126/science.1066556
https://pds-geosciences.wustl.edu/mgs/mgs-m-mola-3-pedr-l1a-v1/mgsl_21xx/catalog/pedrds.cat
https://pds-geosciences.wustl.edu/mgs/mgs-m-mola-3-pedr-l1a-v1/mgsl_21xx/catalog/pedrds.cat
https://doi.org/10.1016/j.icarus.2016.06.006
https://doi.org/10.1016/j.icarus.2016.06.006
https://doi.org/10.1002/2015GL065152
https://doi.org/10.1016/j.pss.2015.06.013
https://doi.org/10.1016/j.pss.2018.04.017
https://doi.org/10.1109/TGRS.2014.2366080
https://doi.org/10.1016/j.pss.2007.03.003
https://doi.org/10.1016/j.pss.2007.03.003
https://doi.org/10.1007/s12567-019-00270-y

Processing of laser altimeter time-of-flight measurements to geodetic coordinates Page 23 of 23 22

gravity via laser ranging to Phobos. Exp Astron 28(2-3):209-249. Zuber MT, Smith DE, Phillips RJ, Solomon SC, Neumann GA, Hauck

https://doi.org/10.1007/s10686-010-9199-9 SA, Peale SJ, Barnouin OS, Head JW, Johnson CL, Lemoine FG,
ZhouH, Chen Y, Hyyppa J, Li S (2017) An overview of the laser ranging Mazarico E, Sun X, Torrence MH, Freed AM, Klimczak C, Mar-
method of space laser altimeter. Infrar Phys Technol 86:147-158. got JL, Oberst J, Perry ME, McNutt RL Jr, Balcerski JA, Michel
https://doi.org/10.1016/j.infrared.2017.09.011 N, Talpe MJ, Yang D (2012) Topography of the northern hemi-
Zuber MT, Smith DE, Solomon SC, Muhleman DO, Head JW, Garvin sphere of Mercury from MESSENGER laser altimetry. Science
JB, Abshire JB, Bufton JL (1992) The Mars Observer Laser 336(6078):217-220. https://doi.org/10.1126/science.1218805

Altimeter investigation. J Geophys Res Planets 97(E5):7781—
7797. https://doi.org/10.1029/92JE0034 1

@ Springer


https://doi.org/10.1007/s10686-010-9199-9
https://doi.org/10.1016/j.infrared.2017.09.011
https://doi.org/10.1029/92JE00341
https://doi.org/10.1126/science.1218805

	Processing of laser altimeter time-of-flight measurements to geodetic coordinates
	Abstract
	1 Introduction
	2 Geolocation in laser altimetry
	2.1 Static model
	2.2 Spacecraft motion model
	2.3 Pointing aberration model
	2.4 Special relativity model
	2.5 Relation between PAM and SRM
	2.6 Post-correction of the geolocation

	3 Application to MOLA
	3.1 Selected profiles and preprocessing
	3.2 Comparison of SRM and PAM
	3.3 Impact of pointing aberration
	3.4 Summary

	4 Application to MLA
	4.1 Selected profiles and preprocessing
	4.2 Recomputation of RDR MESSMLA2001
	4.3 Comparison of SRM and PAM
	4.4 Impact of pointing aberration
	4.5 Summary

	5 Discussion
	6 Conclusion
	Acknowledgements
	Appendices
	Appendix A: ToF measurement in TDB scale
	Appendix B: Errors in the emission time
	Appendix C: Shapiro delay
	References




