Potential of using ground-based high-power lasers to decelerate the evolution of space debris in LEO

Stefan Scharring, Jürgen Kästel, Gerd Wagner, Wolfgang Riede, Erik Klein German Aerospace Centre (DLR) – Institute of Technical Physics Egon Döberl, Dietmar Weinzinger, Wolfgang Promper ASA Astrosysteme GmbH Tim Flohrer, Andrea Di Mira European Space Agency (ESA) – European Space Operations Center (ESOC)

Knowledge for Tomorrow

Space Debris Mitigation Methods

Collision Avoidance

Rationale: UN COPUOS Guideline "Long-Term Sustainability of Outer Space Activities": \rightarrow D.2: Techniques to prevent collision with and among debris

• Deceleration by $\Delta v = 1 \, mm/s$ \rightarrow in-track displacement by $\Delta x / \Delta t = 259.2 \, m / d$

Removal by atmospheric burnup

Initial orbit altitude z_0 [km]

900

1000

1100

600

700

800

Laser-matter Interaction: Photon Pressure

Momentum coupling coefficient:

Heat accumulation at debris: $Q = \int A \cdot P_L dt$

Coefficient of residual heat: $\eta_{res} = \dot{Q}/P_L = Q/E_L$

Laser backreflection from debris: $P_{refl} = (R_S + R_D)P_L$ Reflectivity: $R = P_{refl}/P_L = E_{refl}/E_L$

Key parameter: Albedo $R_A = R_S + R_D = 1 - A - T$

Interaction dependencies: Material, temperature, wavelength λ Scaling of \vec{F} , Q, P_{refl} with laser power: (mostly) linear

$c_m = F/P_L = \Delta p/E_L$

A absorptivity ϑ incidence angle R_D reflectivity (diffuse) R_{S} reflectivity (specular) P_L laser power E_L laser pulse energy R_A albedo T transmissivity

Laser-matter Interaction: Laser Ablation

Momentum coupling coefficient Target: Aluminum, $\lambda = 1064$ nm, $\vartheta = 0^{\circ}$, circular polarization mpulse coupling coefficient c_m [mNs/kJ] Short pulses Short pulses Pulse duration τ 10 ns Pulse duration \square 1 ns లீ 🔺 10 ns 100 c 1 ns coupling coefficient **v** 100 ps Ultrashort pulses Pulse duration τ △ 10 ps **O** 1 ps ▼ 100 fs Surface Ultrashort pulses hermal Pulse duration 1 ablation - 10 ps 1 ps Momentum: $c_m = 1 ... 1000 \ \mu N / W$ 0.01 1E+03 10 (Photon pressure: $c_m \approx 5 \ nN/W$) Incident fluence Φ [J/cm²] S. Scharring et al, Opt. Eng. 58(1): 011004 (2018) Ablation threshold $\Phi_0 \propto \sqrt{\tau}$ doi: 10.1117/1.OE.58.1.011004

Example: Metals, ns-pulses: $\Phi_0 = 1 \dots 10 \ I/cm^2$

Key parameter: Fluence $\Phi = E_L/A$

Dependencies: Material, temperature, λ , pulselength τ , fluence Φ Scaling of \vec{F} , Q, P_{refl} with laser power: **non**-linear

Coefficient of residual heat

Incident fluence Φ [J/m²]

C.R. Phipps et al., J. Appl. Phys. 122: 193103 (2017) doi: 10.1063/1.4997196

Laser Beam Propagation through the Atmosphere

Compensation of MT Laser Beam Broadening

$$w_f(z) = \sqrt{\left(\frac{M^2 \lambda z}{\pi w_0}\right)^2 + 8\left(\frac{\lambda z}{\pi r_0}\right)^2 \left(1 - w_f(z)\right)^2}$$
$$w_f(z) = \frac{M^2 \lambda z}{\pi w_0 \sqrt{Str}}$$

Constraints

- Tracking jitter \rightarrow adaptive optics, laser guidestar, tip/tilt compensation, $\sigma = 0.1 \ arcsecs$
- Cloud cover (CF) \rightarrow no compensation Statistical approach: feasibility up to 50% CF
- Aerosol attenuation • \rightarrow ~ 20%, no compensation
- Molecular absorption • \rightarrow transmission windows
- Air breakdown • \rightarrow pulselength $\tau \gtrsim 100 \ ps$

 $\cdot 0.26\left(\frac{r_0}{r_0}\right)$

 M^2 laser beam quality parameter λ laser wavelength z distance to debris w_0 initial beam radius r_0 coherence diameter *Str* Strehl ratio

h [km]	m [kg]	<i>L</i> _C [<i>m</i>]	$\frac{A/m}{\left[m^2/kg\right]}$
1111	23.8	1.15	0.026
937	1421.2	5.18	0.010
859	8226.0	8.23	0.005
649	1.0	0.10	0.015
799	42.0	2.38	0.076
983	802.8	2.07	0.006
706	1.0	0.20	0.025
737	5.0	0.80	0.071
661	50.0	2.50	0.079
867	0.6	0.10	0.014
790	1.8	0.15	0.010
772	3.7	0.19	0.008

Target Deceleration – Photon Pressure

Laser configuration:

High power laser:

$P = 40 \ kW$, $\lambda = 1064 \ nm$, $M^2 = 1.5$, cw (i.e., not pulsed)

Adaptive optics + Laser guidestar Optical cross-sectional area Homogeneous beam profile Telescope outshining losses Atmospheric attenuation Photon pressure: debris albedo

Target Deceleration – Photon Pressure

 $P = 40 \ kW$, $\lambda = 1064 \ nm$, $M^2 = 1.5$, cw (i.e., not pulsed)

Adaptive optics + Laser guidestar Optical cross-sectional area Homogeneous beam profile Telescope outshining losses Atmospheric attenuation Photon pressure: debris albedo

Assumptions:

- Transmitter: 2.5 m Ø

Neglected:

- Tracking uncertainty
- Beam pointing jitter
- Shape, orientation

Adaptive optics + Laser guidestar Optical cross-sectional area Homogeneous beam profile Telescope outshining losses Atmospheric attenuation Photon pressure: debris albedo

Adaptive optics + Laser guidestar Optical cross-sectional area Homogeneous beam profile Telescope outshining losses Atmospheric attenuation Photon pressure: debris albedo Ablation: Exp. c_m data (AI, Steel)

Adaptive optics + Laser guidestar Optical cross-sectional area Homogeneous beam profile Telescope outshining losses Atmospheric attenuation Photon pressure: debris albedo Ablation: Exp. c_m data (Al, Steel)

Detonation of partially passivated objects

Global Framework for Operational Safety

Avoid harmful activities (UN Space Debris Mitigation Guideline #4)

Summary: Rationales and Risks of Laser-based Debris Mitigation (LDM)

Benefits

- Debris vs. debris collision avoidance
- Access to many small debris objects
- Operation from ground
- Photon pressure: COTS technology
- Laser ablation: suitable even for debris removal

Risks

- Laser dazzling
- Debris meltdown / fragmentation
- Stored energy detonation
- Weaponization

Challenges

- High power laser technology
- Turbulence compensation
- High-precision tracking
- Debris reconnaissance

Outlook (reverse roadmap)

• T_K

- $T_{K} 3y$
- $T_K 6y$
- $T_{K} 9y$
- $T_K 12y$
- $T_{K} 15y$

Onset of Kessler syndrome in LEO Start of LDM operations Implementation of an LDM station network In-orbit verification of LDM Proof of technical feasibility LDM concept validation

Thank you for your kind attention

Acknowledgements for ...

... DLR Institutional funding ... European Space Agency (ESA) via ESA Contract No. 4000127148/19/D/CT

Icons made by Eucalyp, Becris, Vectors Market, Freepik from https://www.flaticon.com/ Virus taken from www. Iconfinder. Com CC-BY SA 3.0

