
1. Introduction
The Dawn mission was designed to understand the conditions and processes that shaped the formation 
and evolution of two large planetesimals from the initial stages of planetary accretion (Russell & Ray-
mond, 2011), and was the first mission to visit and orbit two planetary bodies located in main asteroid belt. 
Both Vesta and Ceres are terrestrial protoplanets with Vesta being a dry rocky body and Ceres a volatile-rich 
body (Russell & Raymond, 2011). They have provided the opportunity to enhance our understanding of 
planetary formation related to the existence of volatiles (Buczkowski et al., 2016; Chilton et al., 2019; Combe 
et al., 2016; De Sanctis et al., 2012, 2013; Jaumann et al., 2012; Sizemore et al., 2019a). As a result of the 
Gamma Ray and Neutron Detector (GRaND) and Visible and Infrared Mapping Spectrometer (VIR) obser-
vations, the connection between the HED meteorites and Vesta has been confirmed. Vesta has experienced 
significant heating and dehydration (Formisano et al., 2013; Toplis et al., 2013), whereas Ceres appears to be 
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run-out length (L) (effective coefficient of friction, H/L) against the run-out length and spreading width 
(W), we demonstrate that deposits on Vesta terminate on shorter distances, whereas on Ceres they travel 
longer distances. The deposit geometry and the similar surface gravity on both asteroids suggest that the 
material composition and volatile component have a significant effect on deposit emplacement. However, 
both bodies’ mass movements have similar effective coefficients of friction, even though Vesta's regolith 
is comparatively dry, whereas Ceres is rich in water ice. This leads to the conclusion that volatile content 
alone cannot be responsible for low effective coefficients of friction, and that more than one geological 
process is needed to explain the mass motion behavior and morphology.

Plain Language Summary Landslides are one of the most studied geological events on 
planetary bodies. Many scientists have contributed to a diverse database of knowledge with the aim to 
better understand these processes. They have been observed for various environmental conditions and 
are affected by gravity and the physical and chemical composition of the hosting body. However, it is 
challenging to delineate which specific type or morphology of landslide is sensitive to which parameter. 
On airless asteroids Vesta and Ceres, landslides have been well preserved, allowing for in-depth analysis 
using remote sensing data. Interestingly, Vesta and Ceres’ substantially different surface compositions 
have a major effect on landslides, despite their similar gravity. In our study, we have examined and 
updated the landslide inventory on both bodies, and performed an analysis of deposit mobility which 
will further enhance our understanding related to the material conditions, their mobility, and surface 
evolution.
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rich in water ice, which appears to exert control on short-wavelength surface morphology (Otto et al., 2019; 
Schmidt et al., 2017; Sizemore et al., 2019a, 2019b).

As a result of high-resolution surface images acquired by the Dawn rendezvous mission, Vesta and Ceres 
have been of particular interest for studies of their surface morphology and geology. The internal and ex-
ternal conditions that shaped the surface of Vesta and Ceres can be studied with the data returned by the 
mission, including detailed shape models (Preusker et al., 2016) and geological maps (Jaumann et al., 2012; 
Krohn et al., 2014; Roatsch et al., 2012, 2015, 2016, 2017; Williams, Denevi, et al., 2014). Both Vesta and 
Ceres have undergone critical erosional processes, including impact cratering, that gradually changed their 
chemical and physical composition, playing a significant role in their evolution (Russell & Raymond, 2011; 
Russell et al., 2004, 2012; Toplis et al., 2013). The high-resolution images gathered by the Framing Camera 
(FC) of the Dawn mission (Sierks et al., 2011) have provided visual evidence of geologic processes includ-
ing landslides (Otto et al., 2013, 2019; Schmidt et al., 2017; Sizemore et al., 2019a), impact cratering, and 
huge impact basins (Rheasilvia and Veneneia) on the southern latitudes of Vesta (Marchi et al., 2012; Otto 
et al., 2013; Schenk et al., 2012). Similarly, the FC data has also improved our understanding related to 
cryovolcanic processes (Nathues et al., 2020; Ruesch et al., 2016; Sori et al., 2018), large-scale mass wasting 
features and the existence of subsurface water ice on Ceres (Bland et al., 2016; Buczkowski et al., 2016; Chil-
ton et al., 2019; Duarte et al., 2019; Reddy et al., 2012; Schmidt et al., 2017; Sizemore et al., 2019a). The VIR 
instrument also found ammoniated phyllosilicates (De Sanctis et al., 2017) on Ceres which are proposed 
to be linked to geomorphologic features such as flow-like mass wasting features (Chilton et al., 2019; Otto 
et al., 2013). Overall, landslides are one of the most prominently studied geological features on Vesta and 
Ceres because of their ability to expose fresh regolith material (Otto et al., 2013; Schmidt et al., 2017). In 
fact, mass wasting analyses provided clues of granular-like material behavior on Vesta (Krohn et al., 2014; 
Otto et al., 2013) and the possible existence of subsurface volatiles that may have triggered lubricated mass 
wasting processes on Ceres (Schmidt et al., 2017).

On Vesta, the classification of mass wasting features was conducted based on morphological characteristics 
which include intra-crater mass wasting, flow-like and creep-like features, slumps, slides, and curvilinear 
features within the Rheasilvia basin (Otto et al., 2013). Considering the varying morphological characteris-
tics throughout the southern latitudes on Vesta, it is thought to be the most geologically active region of the 
asteroid (Schenk et al., 2012). This region is also rich in ejected materials which cover the original surface 
of the Rheasilvia and Veneneia basins (Otto et al., 2013; Reddy et al., 2012). Another detailed study of a 
prominent slumping block at the Matronalia Rupes scarp suggests that forces like friction and cohesion 
affect slump formation (Krohn et al., 2014). Furthermore, gully formation on Vesta suggests a granular-like 
brittle regolith (Krohn et al., 2014; Scully et al., 2015; Williams, O'Brien, et al., 2014) with characteristics 
similar to dry gullies on Mars (Crosta, De Blasio, & Frattini, 2018; Crosta, Frattini, et al., 2018). On Vesta, 
only very few morphologic features, including pitted terrains (Denevi et al., 2012) and interconnected cur-
vilinear gullies (Scully et al., 2015) suggest the presence of volatiles in the regolith, which may have been 
delivered via impacts.

Previous investigations of landslides on Ceres focused on morphological appearance and spatial distribu-
tion (Chilton et al., 2019; Schmidt et al., 2017). Various flow-like mass movement features were identified 
and were classified in three categories: deposits with thick frontal lobes, dominating latitudes ≥50° (type 
1), deposits with broad sheet-like spreading, traveling on longer distances (type 2), and platy lobate sheets 
with cuspate toes (type 3) (Schmidt et al., 2017). Most of the landslides were identified proximal to crater 
rims. The morphology, spatial distribution of mass movements and variation in the geometry of the deposits 
suggest the presence of subsurface ice on a global scale on Ceres (Schmidt et al., 2017; Sizemore et al., 2017, 
2019). In addition, the low effective coefficient of friction, defined as the ratio of the fall height (H) and the 
run-out length (L) of a mass wasting feature, point toward low shear strength which is attributed to icy ma-
terial in the upper subsurface of Ceres (Chilton et al., 2019). Recently, Duarte et al. (2019) provided a more 
detailed investigation of Cerean flows based on intermediate flow features. The morphological characteris-
tics of these flows agree with the previously described classification by Schmidt et al. (2017). However, type 
2 flows are prominently identified in relatively shallow craters near the polar regions (Duarte et al., 2019), 
which supports the hypothesis of a shallow subsurface ice layer in the polar latitudes on Ceres, a conclusion 
also reached by analysis of GRaND data (Prettyman et al., 2017; Schorghofer, 2008, 2016). This ice layer is 
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thought to be stable for millions of years (Chilton et al., 2019) because of low surface temperatures (Hayne 
& Aharonson, 2015) and sublimation rates. Further, an extended study conducted by Hughson et al. (2019) 
showed that type 3 flows resemble fluidized ejecta and they suggest the presence of an ice-rich subsurface 
with a low coefficient of friction within upper surface material. In a nutshell, the morphology on Ceres is 
consistent with the ice-rich composition.

Landslides are also commonly studied geological features on other planetary bodies, such as the icy satel-
lites of Jupiter and Saturn including Iapetus, Rhea (Singer et al., 2012) and Callisto (Moore et al., 1999), 
Pluto's largest satellite Charon (Beddingfield et al., 2020), Mars (Crosta, De Blasio, & Frattini, 2018; Quantin 
et al., 2004) and the Moon (Brunetti et al., 2015). Previous studies conducted on Iapetus, Rhea, and Callisto 
provided quantitative measurements of the effective coefficient of friction and demonstrated that landslides 
on these planetary bodies exhibit unusual long run-out length. The reduction in friction supports the the-
ory of shear heating within icy surfaces (Singer et al., 2012). On Charon, mixtures of H2O and ammonia 
hydrates reduce the melting temperature of the ice, decreasing the internal friction without the necessity 
of large amounts of energy to melt the ice (Beddingfield et al., 2020). Martian landslides have occurred 
throughout its history and provide a window into its erosional and environmental evolution (Crosta, Frat-
tini, et al.,  2018). On the Moon, landslides, including slumping features, appear as fragmented deposits 
probably triggered by meteorite impacts and the associated impact shock wave propagation (Scaioni et al., 
2017; Xiao et al., 2013).

Landslide run-out length, morphological characteristics (such as hummocky surfaces, brittle deposits, wide 
alcoves, blocky or lobate frontal margins) and deposit spreading depend on the material and environmental 
conditions during the time of formation, the presence of ice, water or other volatiles and impurities as well 
as mass wasting triggering factors (e.g., meteorite impacts and shock wave propagation). Depending on the 
planetary bodies, the influence of these parameters on landslide formation, appearance, and morphology 
may vary.

On Ceres, previous investigations of mass movements focused on their flow behavior (Chilton et al., 2019; 
Combe et al., 2019; Duarte et al., 2019; Schmidt et al., 2017), whereas on Vesta the analysis was limited to 
the mid-latitudes (Marcia, Calpurnia carter and its neighboring regions) and southern regions (Krohn et al., 
2014; Otto et al., 2013, 2016; Williams, Denevi, et al., 2014). Using these investigations as a base, we extend 
existing findings by classifying and comparing three different types of mass wasting processes under similar 
gravitational conditions but compositionally different environments as present on Vesta and Ceres. Our aim 
is to classify landslides based on morphology and highlight the similarities and differences. Next, we quan-
tify the mobility of landslide depositions by estimating the effective coefficient of friction and the spreading 
efficiency on Vesta and Ceres. Our interpretation is based on the analysis of morphological characteristics 
and geometrical estimations to constrain the effect of volatiles on the morphology of Vesta and Ceres.

2. Data
To identify mass movement features on Vesta and Ceres, we used mosaics of the Low Altitude Mapping Or-
bit (LAMO) and High-Altitude Mapping Orbit (HAMO) (Roatsch et al., 2012, 2016, 2017) of the Dawn mis-
sion's framing camera (Sierks et al., 2011). The Dawn HAMO mosaics have a spatial resolution of ∼70 m/
pixel for Vesta and 140 m/pixel for Ceres and LAMO mosaics have a spatial resolution of ∼20 m/pixel for 
Vesta and ∼35 m/pixel for Ceres (Roatsch et al., 2012, 2015, 2016, 2017). For regions largely shadowed in 
the mosaics (e.g., the northern hemisphere of Vesta and the polar regions on Ceres), we additionally used 
individual images (where available) for identification of mass wasting features. Unfortunately, the northern 
regions of Vesta (≥60°N) were mainly in shadow because of the northern winter during the LAMO phase of 
Dawn and thus, we had to exclude this particular region in our analysis. The measurements of drop height 
(H), run-out length (L) and spreading width (W) of deposits was carried out by taking surface profiles using 
digital terrain model (DTM) mosaics with ∼135 m/pixel resolution (with ∼10 m vertical accuracy) on Ceres 
and 92 m/pixel resolution (with ∼5 m vertical accuracy) on Vesta (Preusker et al., 2016), derived from stereo 
pairs. All data used in this work on Vesta and Ceres can be downloaded from the Planetary Data System 
(PDS) at https://sbn.psi.edu/pds/resource/dawn/dwnvfcL1.html and https://sbn.psi.edu/pds/resource/
dawn/dwncfcL1.html, respectively.
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3. Materials and Method
3.1. Global Mass Movement Feature Classification, Identification, and Mapping

Our mass movement classification is based on the system developed by Dikau et al. (1996). This method 
categorizes six different mass movement processes namely; falls, topples, slides, lateral spreads, flows, and 
complex mechanisms. Each category reveals various modes of morphological features, material properties 
and surface conditions. For example, falls are found on surfaces with steep slopes, topples are recognized 
in rocky materials, slides are commonly found within dry granular-like materials, lateral spread is promi-
nent in fine grain materials with shallow topography and flow-like movements are common within water 
rich surfaces (Varnes, 1978). On Vesta and Ceres, based on morphological indicators (Table 1), three com-
mon morphological types were noted: slides associated with granular-like behavior (Otto et al., 2013); a 
wide spread of unconsolidated material, slumps (or rotational slides) exhibiting transverse ridges at lateral 
margins on large cohesive blocks of material; and, flow-like movements correlated with lobate tongue-like 
spreading and/or thin sheet-like (Schmidt et al., 2017) large fans with rippled deposition. Each category 
shows distinct morphological signatures (Table 1) and using this as an identification tool, we mapped and 
updated the list of mass movement features on Vesta and Ceres. To understand the behavior of mass wast-
ing processes comprehensively, previously identified landslides (Chilton et al., 2019; Duarte et al., 2019; 
Krohn et al., 2014; Otto et al., 2013; Schmidt et al., 2017) were also included and are marked accordingly in 
our global maps (Figures 4 and 5).

On Vesta, earlier mapping analyses classified mass wasting features based on geological appearance (Krohn 
et al., 2014; Otto et al., 2013) in the southern latitudes (30°–60°). These studies either focused on certain 
regions of the bodies that were of particular interest (e.g., the southern impact basins on Vesta) or concen-
trated on features of particular interest (e.g., lobate and alcove fan-like flows on Ceres). In our study, the 
characterization was conducted globally based on multiple morphological impressions of the mass wasting 
features. To be able to compare the observations on both bodies, we chose the three versatile classes men-
tioned above (slides, slumps and flow-like movements) (Table 1) which were commonly recognized on both 
bodies. This classification covers all types of mass wasting features identified at global scale.

In our global mapping campaign on Vesta and Ceres, each of the three mass wasting classes is displayed in 
a separate color and the symbol geometry is designated to the different mapping surveys. Landslides have 
been identified and marked by using geomorphological indicators, as listed in Table 1. The mapping was 
conducted at the scale of 1:125,000 and 1:200,000 in ArcGIS 10.3™ on Vesta and Ceres, respectively, and cat-
aloged in a GIS geodatabase. For a consistent mapping, a fishnet of 150  × 150 m for Vesta and 250  × 250 m 
for Ceres was evaluated systematically and a minimum feature size of 0.02  and 0.03 km2 was defined on 
Vesta and Ceres, respectively.

3.2. Landslide Geometry

One of the most rudimentary methods to estimate the efficiency of landslide deposit mobility is to ana-
lyze the effective coefficient of friction represented as the ratio of fall height and run-out length of a mass 
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Characteristics Slump Slide Flow

Deformation during wasting process Very little Yes Yes

Exposed scar Partly exposed Yes Covered

Transverse features/striations Possible, but not observed on Vesta and Ceres No Yes

Lobate trunks No Possible but rare Yes

Sheet-like wide fans No No Yes

Boulders and spur/gullies Rare Common Rare

Albedo variations No Common Rare

Note. The indicators were adapted from the classification system developed by Dikau et al. (1996).

Table 1 
Key Indicators Are Considered for the Identification and Classification of Mass Movements
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wasting feature (H/L) (McEwen, 1989), also known as Heim's ratio (Heim, 1932). The ratio H/L reflects the 
capacity of material to travel in the direction of movement, whereas the spreading width (W) denotes the 
material spreading efficiency perpendicular to the direction of motion. Another technique known as center 
of mass estimation (Cruden, 1980; De Blasio, 2011) uses the center of the scarp and deposit to estimate the 
values. However, it shows a high level of inaccuracy because of the irregular topography of Vesta and Ceres 
(Chilton et al., 2019) and thus, we avoided using this method.

To measure the length and width of a landslide, we first identified the boundaries of deposited materials 
of all possible mass wasting sites. The horizontal run-out length (L) of the deposit was estimated by taking 
five profiles (evenly distributed within the boundary of the deposit) in the direction of the movement and 
averaging it. The boundaries at the top of the deposit and the toe of the deposit were considered as starting 
and end points for these measurements. Similarly, the spread width (W) was estimated by taking five evenly 
distributed profiles perpendicular to the direction of movement and the average value was considered. Next, 
the drop height (H) was measured from the top of the scarp to the tip of the deposit (Figure S1). However, 
in a few regions, because of erosion, the scarp was not clearly identifiable. In such cases, the height of the 
crater rim or ridge from which the mass wasting feature originated was considered as the highest dropping 
point. This is common practice for the estimation of vertical fall height when using topography alone (Sing-
er et al., 2012). For each possible landslide site, five profiles were taken for all parameters (H, L, and W).

Out of our marked mass wasting sites, the estimation of all three parameters (H, L, and W) was feasible only 
for 85 sites on Vesta and 34 on Ceres. The limited number of measurements is because of restrictions in im-
age or DTM resolutions, blurred deposit boundaries or inadequate illumination conditions (e.g., shadowed 
features), on both bodies. Other than our measurements, we also adapted previous measurements of H and 
L from Duarte et al. (2019) and Schmidt et al. (2017) of Ceres landslides. After determining the parameters, 
we compared the material mobility on Vesta and Ceres.

4. Results
The identified mass-wasting features on Vesta and Ceres show significant similarities and differences in 
terms of geomorphological signatures (Table 2). In this section, we first present details of morphological 
classes followed by measurements of the deposit geometry.

4.1. Morphological Identification of Landslides on Vesta and Ceres

4.1.1. Slumps (Rotational Slides)

Rotational slides are commonly identified on terrains with extensive slopes and cohesive materials (De 
Blasio, 2011). A chunk of material detaches from its host surface because of the gravitational pull often 
triggered via a shock wave propagation (e.g., from a nearby impact) (Shingareva & Kuzmin, 2001), creating 
a spoon-like circular or semicircular surface of failure (De Blasio, 2011). Cohesion within the sliding mass 
prevents extensive spreading and the mass maintains most of its original shape along the surface of rupture 
(Otto et al., 2013), causing a step-like topographic profile with one or multiple scarps (Krohn et al., 2014). 
At the rest position, the detached material partly exposes the steep surface of rupture and is comparatively 
flat at the frontal margins. In a few cases, the frontal deposit exhibits transverse ridges or cracks as a result 
of the material deformation.

Octavia crater (Figure  1a) located at −15.47, 168.48 on Vesta is an examples of a single step rotational 
slump. The crater is ∼60 km in diameter and ∼9 km deep. The slump head appears on the crater wall with 
a fall height of ∼4.5 km. The slump deposit covers about 208.9 km2 of the crater floor. The slump major 
and minor scarp and the exposed slope are seen in Figures 1a and 1b. The slump block moved downwards 
from the crown region and the top surface of the detached material leans backwards toward the crater wall. 
However, even though Octavia's landslide possesses most attributes defining a rotational slide, it appears to 
have formed in granular material leaving a relatively small head compared with the scarp. Nevertheless, we 
defined it as slump as it shares predominantly slump attributes. More unambiguous rotational slumps are 
evident in the basins at the southern latitudes of Vesta including the one on the eastern side of Matronalia 
Rupes (Krohn et al., 2014) where a huge slumping mass covers approximate 600 km2 with multiple ridges 

PAREKH ET AL.

10.1029/2020JE006573

5 of 19



Journal of Geophysical Research: Planets

and minor scarps. Similar features have also been identified on Ceres, for example, in the crater of Toharu 
(Figure 1c). The crater is ∼150 km in diameter and ∼3.5 km in depth, located at −48.32, 155.95. We have 
identified two slump regions at the western and eastern rim of this crater. The detached slump material 
slipped along the direction of the slope, exposing a steep scarp. Multiple heads are evident which locally 
have given rise to subsequent failure, generating multiple steps-like surface features (Figures 1d and 1e). 
Similar to Vesta, Ceres also has single step slumping features (Figure S2f). Transverse ridges are also evident 
within some slumping bodies (Figure S2).

Overall, on Vesta and Ceres we noted two types of slump events: (i) slumping areas with multiple deposit 
blocks and transverse ridges. They are specifically observed within the largest crater on Vesta (e.g., the 
Rheasilvia crater covering Vesta's southern hemisphere) and within multiple craters on Ceres (Sintana, 
Toharu, Urvara, Occator, Tupo craters), and (ii) single slumping block features. However, we find handful 
of candidates which have a single slumping block on both, Vesta (only within Occtavia) and Ceres (at the 
north west rim of Dantu and within an unnamed crater located at 43.57, 34.94).

4.1.2. Slides

Slides move along a planar shear surface potentially exposing the upper area of the shear surface after com-
ing to a rest (De Blasio, 2011). The foot of the material may undergo disaggregation and the slide material 
experiences some degree of deformation such as lateral spreading (Otto et al., 2013).

An example of such a slide is seen in Pinaria crater (lat.: −29.54, long.:181.63) on Vesta (Figure 2a). Here, 
we identify multiple areas of slide material deposition on the crater floor. Slides moved downwards from the 
crater rim, covering the crater floor and exposing the surface of failure at the northern crater rim. The oc-
currence and preservation of fragile spur features at the crater rim where the slides originated indicate that 
Pinaria's slides are relatively young. The slide material traveled on a surface with decreasing slope from 40° 
to 20°. The process continued until the deposit reached a slope flat enough to hold the material. Similar to 
Pinaria, an unnamed crater located in the southern part of Ceres (lat.: 22°S, long: 80°W), shows layered piles 
of slide material on the crater floor (Figure 2b) with spurs and boulders near the crater rim. The boulders’ 
sizes are ≥50 m and indicate that parts of the wasted material are composed of brittle substances.

In general, on both bodies, slide features involve the disintegration and spreading of the sliding materi-
al (Figure S3). Usually within this type of mass wasting feature it is challenging to constrain the deposit 
boundaries as material originating from various crater wall locations often intermix leaving no particular 
boundary or spreading margins.

4.1.3. Flow-Like Movements

Large-scale flow-like movements occur when the cohesion between individual wasting particles is limited, 
the particles travel independently within a moving mass (De Blasio, 2011) and material starts behaving like 
a fluid. Fluidized behavior can be caused by melting of volatiles within the material (Schmidt et al., 2017), 
saltation (De Blasio, 2011), acoustic fluidization (De Blasio, 2011; Melosh, 1986), or the presence of trapped 
air bubbles within the material (Shreve, 1966, 1968). While traveling, the moving fragments (granular mate-
rial and/or other consolidated particles) within the material collide with each other and because of friction, 
form multiple striations in the direction of travel on the surface. Upon rest, the deposit morphology appears 
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Mass-wasting 
features Vesta Ceres

Slump Rough, transverse ridges, single and/or multiple heads, 
located inside craters and along large basin rims

Hummocky, single and/or multiple 
heads, identified inside large 
craters

Slide Overlapping deposits, spur and gullies at crest, boulders on 
crater floor

Overlapping deposits, spur and 
gullies, boulders at rim and floor

Flow Small-scale single frontal lobes, gullies or spur at the rim Multiple lobate tongues with furrows, 
thin sheet-like wide fan spreading

Table 2 
Summary of Mass Wasting Related Geomorphological Features Identified on Vesta and Ceres
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either in the form of a thin sheet (Schmidt et al., 2017) or multiple lobate tongues at the motion's front de-
pending on the volume of the mass and its spreading efficiency. The striations are the main morphological 
difference to the slides and slumps described in the sections above.
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Figure 1. Examples of rotational slumps on Vesta and Ceres. (a) A slump observed in Octavia crater on Vesta with its 
topographic profile (b). (c) Multiple slump examples observed along Toharu crater's wall on Ceres. The slumps show a 
step-like profile (in d and e) with multiple minor scarps (white dotted line in c) and deposits covering an area of ∼1,000  
and ∼800 km2, respectively. There is ∼1.1 km elevation difference between the western and eastern rim of the crater. 
Black dotted lines in the topographic profiles (b, d, e) represent the presumed subsurface of rupture joining the scarp 
outlined in image (a and c).
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On Vesta, for example, a flow-like movement originates from the south east rim of Rufillia crater (∼15 km 
in diameter) and travels toward the crater floor at a slope of ∼20° generating two frontal lobes (Figure 3a). 
The flow-like movement was probably generated by the impact of a younger crater, potentially the one in 
southeast of the flow feature. The well-preserved morphology of the flow-like feature suggests that it is rel-
atively young. On Ceres, similarly well-defined multiple lobate flow units are evident within and outside of 
the Haulani crater (Krohn et al., 2017). The units include surface characteristics such as high albedo, fine 
grained material, multiple flow units, and streak-like or swirled patterns (Krohn et al., 2017). Other than 
Haulani, there are examples in craters such as Juling, Kupalo, and Urvara (Duarte et al., 2019) also display-
ing similar mass wasting morphologies (Krohn et al., 2017; Schmidt et al., 2017; Scully et al., 2015). In addi-
tion to lobate flow-like features, Ceres also shows prominent impressions of sheet like fans around Xevioso 
(lat.: 0.7, long.: 310.6) and an unnamed crater (lat.:1.92, long.:309.68), covering ∼127  and ∼102 km2 area, 
respectively, masking the surrounding terrain and suggesting it to be related to impact ejecta (Figure 3b). 
A detailed analysis of morphological characteristics of ejecta related flows can also be found in Hughson 
et al. (2019). Fluidized impact ejecta does not necessarily follow the topography (Schmidt et al., 2017) but 
covers the original landscape. Overall on Ceres flow-like features are generally identified in the regions sur-
rounding craters (Chilton et al., 2019; Combe et al., 2019; Duarte et al., 2019; Hughson et al., 2019; Schmidt 
et al., 2017).

Usually this type of mass movement travels longer distances than the other two described, suggesting a low-
er internal friction and/or higher momentum involved in the motion. But there are morphological differ-
ences in flow-like movements on both targeted bodies. On Vesta the majority of flow-like features appears 
as small elongated features with lobate shaped fronts (Figures S4a–S4c), whereas on Ceres a large number 
of sheet-like features expressed as wide fans with multiple lobes at the flow front (Figures S4d and S4e) are 
present.

4.2. Global Distribution of Mass Wasting Features on Vesta and Ceres

We identified a large number of mass-wasting features within the vicinity of craters, basin walls or on 
cliffs. In addition, to the previously identified mass wasting features (29 on Vesta by Krohn et al. [2014]; 
Otto et al. [2013]), we identified 159 further mass-wasting features out of which 74 are slides, 84 flow-like 
movements, and 1 slump feature (in total 188 mass wasting features) located at mid-latitudes on Vesta. In 
addition to our inventory, there are a few more slump blocks distributed frequently within Rheasilvia and 
Veneneia in the southern region of Vesta (Otto et al., 2013) (Figure 4). The strong elevation difference (up 
to ∼20 km high basin walls) makes these regions most favorable for slumping processes. Overall, slumping 
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Figure 2. Examples of slides on Vesta and Ceres. Slides emanating from the rim of Pinaria crater on (a) Vesta. (b) Overlapping slide deposits covering an 
unnamed crater floor on Ceres. Spurs along the crater rim and some larger boulders are evident. The black dotted lines highlight topographic boundaries within 
the slide material.
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blocks are the largest mass wasting features on Vesta. Nevertheless, the large number of slides on Vesta sug-
gests a prominently dry granular behavior noted at a global scale. Both slides and flow-like movements are 
correlated with craters of diameters ranging between ∼2.6  and 53 km (average of 14.88 km).

On Ceres, previous studies reported 150 mass movement features as flow-like movements (Chilton 
et al., 2019; Duarte et al., 2019; Schmidt et al., 2017). Besides these, we identified an additional 35 flow-like 
features, 12 slides and 13 rotational slump (in total 210) features (Figure 5). Flow-like movements are the 
dominant mass wasting process. Overall, the flow-like mass movements are homogenously distributed on 
Ceres. However, the other two mass wasting features, slump and sliding features, are not present in Ceres’ 
polar regions and confined within 0°–60° latitude. Further, slides and flow-like impressions are noted in or 
around craters which have diameters from ∼5.1  to ∼77.8 km (with an average of 26.5 km). Similar to Vesta, 
slumping blocks are also present on Ceres within large craters (average size ∼61.4 km). Usually the flow-
like morphologies are evident within crater floors and along/around crater rims.

4.3. Geomorphologic Measurements

4.3.1. Effective Coefficient of Friction

The friction between the wasting particles has a significant influence on the traveling distance of the mate-
rial. A common way to describe the friction within a mass movement is to analyze the effective coefficient 
of friction (H/L). We plot the effective coefficient of friction of the different types of mass wasting features 
identified on Vesta and Ceres against their run-out length (L) which can be assumed as a proxy for a mass 
movement's volume (Figure 6). Here, we compare H/L and run-out length (L) and additionally show the 
drop-height (H), indicated by the size of the data point. In Figure 7, we compare the effective coefficient 
of friction (H/L) with spreading width (W) on Vesta and Ceres. From Figures 6 and 7, we observe the fol-
lowing trends: (1) the effective coefficient of friction (H/L) of landslides on both Vesta and Ceres follows 
an approximate linear decrease with run out length (L) in a double logarithmic plot; (2) for a given run-out 
length, there is no strong relation between run-out length and the friction coefficient on Vesta and Ceres 
(e.g., a range of values is observed for each value of L); (3) the drop height (H) is lower on Ceres than on 
Vesta possibly because of the higher topographic relief on Vesta (∼40 km elevation difference overall on 
Vesta compared with 14.5  km on Ceres); and (4) material traveling ≥10  km is more common on Ceres 
compared with Vesta with the longest travel distance being ∼66.4 km on Ceres and ∼60.6 km on Vesta, 
despite Ceres’ smaller topographic range. On Vesta the southern hemisphere has a prominent difference 
in elevation because of the large impact basins Veneneia and Rheasilvia which cause high drop heights for 
wasting materials.
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Figure 3. Flow-like movements observed on Vesta and Ceres. (a) A tongue-like flow in Rufillia crater on Vesta and (b) a thin sheet-like flow nearby Xevioso 
(center crater in which surroundings are highlighted with black dotted lines) and an unnamed (partially visible in the upper center of b) crater on Ceres. 
The sheet-like flow appearance is common on Ceres and possibly related to ejecta depositions and regolith volatile content (Hughson et al., 2019; Schmidt 
et al., 2017). The black dotted lines indicate the extent to which material has traveled. The white dotted lines highlight super imposing furrows.
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The range of H/L for each of the three categories on Vesta and Ceres is provided in Table 3. Slides and 
flow-like movements evenly cover the entire range of measured run-out lengths (L) 0.57–23 km on Vesta 
(Figure 6). Slumps appear to have larger run-out length (10–60 km) possibly because of their comparatively 
large size. The slope of the least squares fit of a power function to the data (linear in log-log plot) of each 
morphological class was estimated. To understand the relation between two parameters (here H/L with L) 
in quantitative manner we derived the slope of least squares fit. The slope in these diagrams shows how 
strongly the effective coefficient of friction changes when the run-out length increases. A steep slope means 
that the effective coefficient of friction decreases with run-out length at a higher rate compared with a less 
steep slope in these diagrams. This rate of decreasing effective coefficient of friction may hint at the differ-
ent processes which could also be caused by different materials such as volatiles acting within the moving 
masses. On Vesta the slope is as follows; slump: −0.69 ± 1.15, slides: −0.40 ± 0.12, and flow-like move-
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Figure 4. Global distribution of classified mass wasting features on Vesta. For a comprehensive analysis, we have also 
included and categorized mass wasting features identified by Krohn et al. (2014) and Otto et al. (2013) in the southern 
region. Additional features found and analyzed in this work are marked as dots. The classification map was prepared 
using a LAMO mosaic in Mollweide projection.

Figure 5. Global distribution of classified mass wasting features on Ceres. In earlier studies, mass wasting features 
were exclusively classified as flows (Chilton et al., 2019; Duarte et al., 2019; Schmidt et al., 2017). The classification map 
was prepared using a LAMO mosaic in Mollweide projection.
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ments: −0.33 ± 0.15(Table 3, Figure 6a). All three categories are consistent by having a negative slope which 
means that the effective friction of coefficient (H/L) tends to decrease with increasing run-out length (L), 
which can be assumed as a proxy for the mass movement's volume; however, looking at the large error to the 
fits, the trend is not strong. Likewise, the fitted slope of all types of mass movements on Ceres is as follows; 
slump: 0.82 ± 2.80, slides: −0.22 ± 0.09, and flow-like moments: −0.08 ± 0.06 (Table 3, Figure 6b). Similar 
to Vesta, on Ceres slide and flow-like features have negative correlations between their effective coefficient 
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Figure 6. Landslide mobility on (a) Vesta and (b) Ceres. Shown is the measurement of the friction coefficient (H/L) versus the run-out length (L) of the 
three different types of mass movements. (a) For each category the least squares power law fit between H/L and L yields a slope as follows on Vesta: slump: 
−0.69 ± 1.15 (yellow dashed-dotted line), slide: −0.40 ± 0.12(red dashed-dotted line), flow-like movements: −0.33 ± 0.15 (blue dashed-dotted line). The 
combined slope including all types is −0.44 ± 0.11 (black dashed-dotted line). (b) Similarly, the slopes on Ceres are: slump: 0.82 ± 2.80 (yellow dashed-dotted 
line), slide: −0.22 ± 0.09 (red dashed-dotted line), flow-like movements: −0.08 ± 0.06 (blue dashed-dotted line). In addition to our measurements we also 
included data from Duarte et al. (2019) and Schmidt et al. (2017). Their slopes are 0.31 ± 0.27 and 0.0 ± 0.14, respectively. On Ceres the slope of H/L versus L 
for all type of landslides combined is −0.03 ± 0.05. The gray shaded area is to highlight the range of H/L values for a given L and is for orientation only. The size 
of the dots corresponds to the drop height. x and y axis are in logarithmic scale. Measurements adopted from earlier studies are highlighted in a lighter shade.

Figure 7. Deposit width versus landslide mobility. Illustrated is the friction coefficient versus the deposit width. Earlier 
measurements of the friction coefficient (Duarte et al., 2019; Schmidt et al., 2017) are added. The least squares power 
fit between H/L with W yields slopes as follow: Vesta: −0.10 ± 0.13, Ceres: 0.38 ± 0.21, data from Schmidt et al. (2017): 
−0.68 ± 0.27 and Duarte et al. (2019): −0.48 ± 0.14. The deposit width was measured from the supporting information 
provided in the mentioned publications. Note, both axes are in logarithmic scale.
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of friction and run-out length. On both planetary bodies, the slumping fit shows a relatively high value of 
error which may be influenced by the small number of data points. In the case of Mars and Earth, the H/L 
values range from 0.1 to 0.3 for rock avalanches and 0.01 to 0.1 for saturated terrestrial submarine landslides 
(Quantin et al., 2004). The slides and flow-like movements on Vesta and Ceres appears less confined and 
cover a wider range of H/L values. Furthermore, the different gravitational pull and atmospheric condition 
on the planets and the asteroids makes a direct comparison unreasonable.

There is a prominent distinction between slides and flow-like features in terms of mobility on Ceres; slides 
terminate at shorter distances (average: ∼3.3 ± 0.07 km), whereas flow-like movements have maximum 
extent up to ∼66.4 km (average: ∼11.05 ± 10.2 km) on Ceres. This is not observed for Vesta (maximum de-
posits extend ∼16.1 km with average 4.98 ± 3.61 km). However, the range of H/L values is similar on Vesta 
and Ceres (Vesta: 0.03–1.61, Ceres: 0.02–1.67) regardless of their length.

In addition, we have also analyzed the relationship between the deposit width (W) and friction coefficient 
(H/L) of mass-wasting features (Figure 7).This provides information about the spreading efficiency of the 
wasting material perpendicular to the direction of movement. When determining the least squares power fit 
to the H/L versus W plot in double logarithmic scale, it was observed that for Vesta the slope is −0.10 ± 0.13 
and in the case of Ceres the slope is 0.38 ± 0.21, but the correlation is not strong. By plotting the coefficient 
of friction (H/L) against the width (W) of the deposit, we can demonstrate that mass movement features 
on Vesta generally do not spread as much as on Ceres, where width up to ∼7.5 km on average is commonly 
measured. This implies that the deposits on Ceres are more mobile in terms of lateral disintegration com-
pared with Vesta. These conditions may be favorable for generating multiple lobate features or sheet like 
fluidized spreads which are one of the most prominent features on Ceres.

5. Discussion
The global distribution of the identified classes of mass movements illustrates that both Vesta and Ceres 
have a diverse range of materials at the surface and in their subsurface, resulting in three different mass 
wasting types. The mass wasting features are present on both bodies but show some similarities (transverse 
ridges, overlapping slide deposits, boulders and spurs/gullies, brittle material in deposit, lobate tongue-
like flow features, single/multiple step like slump, albedo variations) and differences in their morphologies 
(conglomerate lobate features, hummocky surfaces, sheet-like wide fans). Comparing the global mapping 
of Vesta and Ceres, slides are the most commonly identified mass wasting type on Vesta, whereas flow-like 
movements are dominant on Ceres. This is consistent with the fact that Vesta is a dry brittle body (Jaumann 
et al., 2012) and Ceres is rich in water ice (Prettyman et al., 2017; Schmidt et al., 2017).

5.1. Role of Physical and Chemical Conditions of Surface Material

On Vesta most of the slumping blocks are identified within the southern latitudes (Krohn et al., 2014; Otto 
et al., 2013). The high elevation difference and steep slope (∼40°-10°) (Jaumann et al., 2012) in this region is 
thought to be favorable for slump formation on Vesta. Slumping behavior is also common within cohesive 
materials that have the tendency to collapse when reaching a critical abundance of water or has critical 
slope (angle of repose) on Earth or Mars (Varnes, 1978). Usually a block of slumping material includes 
cohesive substances like clay, lithic clasts, igneous rocks, organic minerals and materials enriched in water 
(Varnes, 1978). In the case of Ceres, VIR observations identified carbonates, phyllosilicates and ammoni-
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Mass-wasting features

Vesta Ceres

H/L range Fitted slope H/L range Fitted slope

Slump 0.05–0.15 (mean 0.13 ± 0.06) 0.69 ± 1.15 0.05–1.54 (mean 0.31 ± 0.59) 0.82 ± 2.80

Slide 0.04–0.61 (mean 0.30 ± 0.29) −0.40 ± 0.12 0.02–0.92 (mean 0.43 ± 0.25) −0.22 ± 0.09

Flow 0.03–1.02 (mean 0.30 ± 0.22) −0.33 ± 0.15 0.06–1.67 (mean 0.13 ± 0.17) −0.08 ± 0.06

Table 3 
Summary of H/L Range and Their Fitted Slope for All Types of Mass Wasting Movements Identified on Vesta and Ceres
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ated clays with OH and/or H2O mixed within the surface materials possibly explaining the occurrence of 
slumping on Ceres (Ammannito et al., 2016; Chilton et al., 2019; De Sanctis et al., 2017; Rivkin et al., 2006). 
Various processes can affect the cohesion between particles of the surface material by weakening bonds. 
On Ceres, a putative process reducing the material's cohesive strength involves the formation of fracture 
networks generated either by impact shock wave or from the occasional heating cycle during Ceres’ histo-
ry (Chilton et al., 2019). Most slumping blocks on Ceres are in the mid-latitudes where ice rich materials 
are possibly present at several meters depth (Bland et al., 2016; Chilton et al., 2019; Prettyman et al., 2017; 
Schmidt et al., 2017). This may influence the cohesion within the wasting material allowing slumps to occur 
more frequently in this region. Overall, on Vesta the slumping blocks are correlated with terrain conditions 
(high altitude, steep slope), whereas on Ceres slumping features are best explained by the surface composi-
tion (presence of clays, water ice; Ammannito et al., 2016; Chilton et al., 2019).

Slides are a form of mass movements involving brittle and granular-like behavior. Such materials are com-
mon on dry Vesta (Otto et al., 2013) and subsequently they are the most abundant mass wasting features 
on Vesta. The Vestan mineralogy data collected by visible and infrared spectra shows that the majority of 
the crust consists of dry eucritic basalts and pyroxene (De Sanctis et al., 2012; Prettyman et al., 2013) which 
has brittle composition. In the case of Ceres, we have identified craters with granular-like slide behavior 
near the mid-latitudes. The slide behavior is identified inside craters which have depth from ∼0.7 to 1.8 km 
within ±60° latitude. A possible explanation for the high concentration of slides in the mid-latitudes of 
Ceres is the lower abundance of water ice within the regolith in these regions (Prettyman et al., 2017). 
GRaND has detected the ice layer within 1 m of the depth at equator and near to surface at poles on Ceres 
(Prettyman et al., 2017). The lower ice table depth in the lower latitudes may have caused the upper material 
layer (which is involved in mass wasting processes) to be drier and thus less cohesive, preferentially gener-
ating slides rather than flow-like or slumping features. Thus, distribution of fragmented slides within the 
mid-latitude points to a relatively brittle ice-rock rich regolith on Ceres, assuming that the depth of the ice 
layer along with presence of brittle material is the main cause for slides on Ceres, whereas global presence 
of eucrite and pyroxene dry regolith can be the potential cause for slide on Vesta.

Lastly, on both, Vesta and Ceres, the majority of the flow-like features are located within the vicinity of 
crater ejecta and/or crater rims. When correlated to impact ejecta, the flow-like features are present at a 
global scale on both asteroids. Usually, flow-like movements follow the downhill direction however; this 
movement can sometimes be diverted because of the high mobility of materials affected by the impact. 
Earlier studies of impact related melt production on Vesta (Williams, O'Brien, et al., 2014) suggest that lo-
bate flows are impact-derived and associated with melt displacement of high velocity impacts (8–10 km/s). 
Another study finds that the presence of highly shocked and fractured material correlates with the presence 
of flow-like features within the Rheasilvia basin in the southern hemisphere of Vesta (Otto et al., 2013). 
Moreover, impact flow movements are also present on much smaller and dry asteroids including (433) Eros 
(H/L = ∼0.03–0.1) (Cheng et al., 2002; Sullivan et al., 2002) and (21) Lutetia (H/L = ∼0.4 (Elbeshausen 
et al., 2012; Massironi et al., 2012). Whereas sheet-like spreading is more commonly identified on Ceres 
and associated with the presence of water ice in the subsurface (Chilton et al., 2019; Combe et al., 2019; 
Schmidt et al., 2017). According to GRaND's observations, the presence of shallow subsurface ice (Pret-
tyman et  al., 2017) at mid-latitudes and above (∼≥50°) correlates with the abundance of flow features 
(Schmidt et al., 2017). Further, hydrodynamic models suggest low velocity impactors within the asteroid 
belt (average ∼5 km/s velocity; Marchi et al., 2013). At this velocity, impact melts on Vesta may achieve 
temperatures >1000 K (Marchi et al., 2013) and melt the regolith, whereas on Ceres these impactors may 
only generate ∼300 K which can melt crystalline ice or liberate OH present within the regolith (Bowling 
et al., 2019; Marchi et al., 2016). Thus, the contrast in the morphology of flow-like mass wasting movements 
on Vesta and Ceres may be because of the difference in rheology within these two temperature regime. 
Flow-like mass wasting behavior can be associated with both impact melt and impact-driven mobility as 
well as post-impact surface temperature and volatile regolith content on Vesta and Ceres.

Both slides and flow-like movements are identified within craters of diameters ranging from ∼2.6  to 53 km 
on Vesta and ∼5.1 –77.8 km on Ceres. However, considering their average value (14.9 ± 10.6 km on Vesta 
and 26.5 ± 23.2 km on Ceres), it is evident that the majority of these features occur within smaller craters 
which are naturally more abundant (Gou et al., 2018; Hiesinger et al., 2016; Liu et al., 2018) on both asteroid 
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surfaces. There does not seem to be a correlation between crater size and mass-wasting feature abundance. 
One thing that is interesting though is that the mass wasting features occur in comparatively larger craters 
on Ceres than on Vesta. The difference in the size of craters might be because of the fact that (i) large im-
pact craters might have been blanketed by the ejecta of the Rheasilvia and Venetia impact basins (Marchi 
et al., 2012; Otto et al., 2013; Reddy et al., 2012) and thus are not present on the surface and/or; (ii) because 
of the lower-resolution LAMO data available for the analysis of Ceres (a factor of ∼3 less than on Vesta) that 
may disguise small-scale features.

5.2. Landslide Effective Coefficient of Friction

The contrast in the morphology of mass movements on Vesta and Ceres may be quantified statistically by 
comparing properties of landslide mobility. The effective friction coefficient can be correlated to rheological 
properties. A previous measurement of friction coefficients (Schmidt et al., 2017) suggests similar behavior 
of Cerean flows to flows on Saturn's icy moon Iapetus. The large range of friction coefficients at a given 
run-out length is explained by the presence of slippery ice at the surface of motion on Iapetus (Singer 
et al., 2012). Our investigation shows that a large range of friction coefficients is present on Vesta as well as 
Ceres (Figure 6). Given that Vesta's regolith is dry, slippery ice theory cannot be the only explanation for a 
wide range of friction coefficients. Instead, a complex combination of various geological processes is prob-
ably involved in planetary mass wasting processes.

To explore the theory of slippery ice on Ceres, we test whether the amount of energy released during the 
mass movements would be sufficient to create melt. The required energy to melt a kilogram of ice is calcu-
lated using the (Turnbull, 2011) equation,

    m p f aE C T T (1)

where Cp = specific heat capacity of ice at constant pressure (2.108 kJ/kg/K),

Tf = freezing temperature of ice (273.15 K),

Ta = surface temperature on Ceres (150 K) (Bland et al., 2016), and

ζ = latent heat of fusion (334 kJ/kg) (Turnbull, 2011).

We estimate the specific energy released during the mass movements using the drop height (H = 0.11–
4.60 km) and the gravitational force on Ceres (g = 0.27 m/s2),

 .rE gH (2)

This estimate assumes that the entire energy stored in the gravitational potential will be converted into 
heat and is thus an upper limit to the real values. Our estimations of Er for all movements on Ceres range 
between 0.03 and 1.24 kJ/kg. The specific energy required for melting pure ice is ∼594 kJ/kg, which is sig-
nificantly higher than the estimated energy released during mass wasting processes on Ceres. It is therefore 
unlikely that substantial amounts of ice melted during mass wasting processes on Ceres, however, it is pos-
sible that higher temperatures are reached along the landslide bases (Beddingfield et al., 2020). In addition, 
the presence of carbonates within the material may also reduce the melting temperature of the mixture 
(Chilton et  al.,  2019). Thus, the melting of water ice cannot be excluded as possible cause for fluidized 
movements, but it is probably a minor effect considering the difference in required and provided energy. 
Nevertheless, note that the above explained calculation does not include the energy released because of the 
impact. Similar ideas of ice melting cannot be applied to Vesta's flow-like movements as it lacks substantial 
amounts of volatile materials in the regolith (Jaumann et al., 2012).

We also compared the friction coefficient of mass wasting features of Vesta and Ceres to other icy plane-
tary bodies (Figures 8 and 9). Previous studies (Schmidt et al., 2017; Singer et al., 2012) have compared the 
effective coefficient of friction of mass wasting flows with Mars and Earth, however, these bodies have sig-
nificantly larger gravitational acceleration (g). To examine the role of volatiles in the regolith, we compare 
the H/L range of Vesta and Ceres mass movements with those of planetary bodies of similar g including 
Iapetus (0.22 m/s2), Rhea (0.29 m/s2), and Charon (0.27 m/s2) in Figure 8. To provide a better visual per-
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spective, we have also plotted the data shown in Figure 8 individually for Vesta and Ceres in Figure 9 high-
lighting each mass wasting category on Vesta and Ceres individually. The icy bodies are much colder than 
Vesta and Ceres and consist predominantly of volatiles. Even though Vesta is a comparatively dry asteroid, 
the effective coefficients of friction fall within a similar range as the other icy bodies which have substantial 
amounts of volatiles and comparatively lower surface temperatures (Figures 8 and 9). We show that flow-
like and sliding movements on Vesta have a similar range in H/L values, but are shorter in comparison to 
landslides on Rhea, Iapetus and Charon (Figure 9). Whereas on Ceres, the flow-like mobility is similar to 
the other planetary bodies, the slides also terminate at shorter distances. It should be noted that the lower 
limit of L values of the icy bodies is likely influenced by the generally lower image resolution available for 
these bodies.
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Figure 8. Comparison of landslide mobility on planetary bodies with similar surface accelerations. The identified mass 
wasting features on Vesta and Ceres are compared with lobate blocky landslides on Iapetus, intra-crater slides on Rhea 
(Singer et al., 2012), and long run-out slides on Charon (Beddingfield et al., 2020). Small Vesta landslides exhibit similar 
friction coefficients as the rest of the ice rich planetary bodies. Note that different image resolutions lead to differences 
in the ranges of measured H and L values.

Figure 9. Comparison of landslides classes with other planetary bodies. (a) On Vesta, slides and flow-like movements behave similar to the lobate flows of 
Iapetus and Charon. However, both the movements on Vesta show shorter run-out lengths. (b) On Ceres, flow-like movements behave similar to the rest of the 
icy bodies however, slides terminate on shorter distances compared with Iapetus, Rhea, and Charon.
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We conclude that the presence of volatiles cannot be the single mechanism in the reduction of the effective 
coefficient of friction, because we did not observe lower values for the icy bodies and Ceres compared with dry 
Vesta. Instead, mass wasting measurements follow a common trend with degreasing H/L values for increasing 
L. Although the low number of landslides detected on some of the icy bodies may bias this observation, the icy 
bodies appear to have comparatively high H/L values (toward the upper end of the range at a given run-out 
length). This may hint at the temperature having a more significant influence on landslide mobility than previ-
ously thought.

6. Summary

1.  We have mapped, analyzed, and classified landslides on Vesta and Ceres to derive a relationship 
between landslide morphology, coefficient of friction, and mobility. By choosing two bodies with 
similar surface accelerations, we were able to focus on the regolith volatile content on affecting these 
parameters.

2.  We have identified three common types of mass wasting features on Vesta and Ceres: slumps, slides 
and fluidized movements. There are some similarities (overlapping deposit pile, transverse ridges, mul-
tiple head slumping features, striations, lobate bulges), and differences (abundance of steps like slump 
deposits, conglomerate lobes, furrows, alcove-like sheets), which we attribute primarily to a varying 
degree of volatile content on Vesta and Ceres. Further, we also mapped these features at a global scale 
on both asteroids. In total, the mapping database includes 188 mass wasting features on Vesta and 210 
on Ceres.

3.  Various types of mass wasting process carved some of distinct geological impressions which have re-
shaped the surface of Vesta and Ceres. Huge slumps have distorted the crater rims because of collapse of 
material, and has significant influence on the surface elevation, contributing toward geologically chaotic 
terrain. Sliding material has produced spur/gully like fragile features at the crater walls and given rise 
to an albedo dichotomy which can be easily detectable on Vesta even today. Large-scale alcove fan-like  
deposition has been wrapped in and around cerean craters, concealing the original topography and  
average slope of the neighboring regions on Ceres.

4.  The identified mass wasting features occur on slopes including in or around craters, basin walls or 
on cliffs. On Vesta, slide and fluidized features are located nearby smaller craters (average 14.8 km), 
whereas on Ceres the majority of these characteristics are identified within relatively larger crater 
(average 26.5 km). Slump characteristics are generally associated with larger craters on both bodies.  
On Ceres, the pole regions do not show any obvious evidence of slumps and slides but they are  
evident within mid-latitudes, supporting the speculation of vertical variations of ice in the outer shell. 
Vesta has predominantly dry granular-like slides, whereas on Ceres fluidized mass wasting behavior 
is dominant.

5.  Based on the comparison of run out length (L) and spread width (W) on Vesta and Ceres, we show that 
mass wasting features on Vesta become immobile on shorter distances and spread less, whereas Cerean 
mass movements are voluminous, extend up to longer distance and cover larger areas. We suggest  
that the deposit emplacement is influenced by the difference in impact-induced surface temperature 
achieved because of contrast in material composition and volatile content. Compared with this, terrain 
conditions seem to have no significant effect on these values.

6.  The effective coefficient of friction varies significantly for a given run-out length or width on both bodies.  
A general decrease in friction coefficient is observed for larger L values as expected from observations 
from other planetary mass wasting features. Both bodies have a similar range of friction coefficients 
(even though Vesta is dry and Ceres is rich in water ice). Thus, the determination of H/L alone may not 
be sufficient to identify volatile content in mass wasting material. A combined analysis with geomorpho-
logic characteristics is required.

7.  Comparing the friction coefficient of Vesta and Ceres with cold ice-rich planetary bodies of similar  
gravitational acceleration (Iapetus, Charon, and Rhea), we find similar H/L values regardless of the 
volatile content of the regolith involved and deduce that the temperature, which is much lower on the 
other ice rich planetary bodies compared with main belt asteroids Vesta and Ceres, may have a more 
significant influence on H/L on the ice rich planetary bodies than the volatile content.
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Data Availability Statement
Image and topographic data used in this work are available at the Small Bodies Node of the Planetary Data 
System (for link refer Section 2). Derived data products are available via Figshare: R. Parekh (2020) Data 
for “Influence of Volatiles on Mass Wasting Processes on Vesta and Ceres”.7z (https://doi.org/10.6084/m9.
figshare.13466642.v1). Measurement results are listed in the supporting information.
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