Apophis T-9 Years: Knowledge Opportunities for the Science of Planetary Defense - Session 5

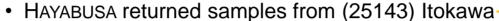
Low-thrust: the fast & flexible path to Apophis

Suditi Chand^{1*}, Matteo Ceriotti², Jan Thimo Grundmann^{1#}, Lars Kesseler³, Iain Moore², Merel Vergaaij², Giulia Viavattene² ¹DLR German Aerospace Center, Institute of Space Systems, Robert-Hooke-Strasse 7, 28359 Bremen, Germany


²University of Glasgow, Glasgow, Scotland G12 8QQ, United Kingdom

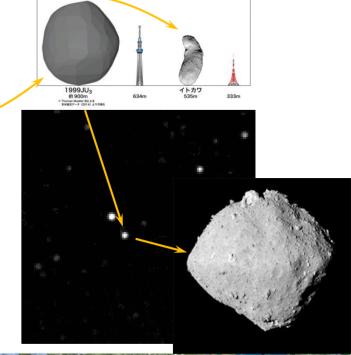
³Levity Space Systems, FH Aachen, University of Applied Sciences, Aachener-und-Münchener Allee 1, 52074 Aachen

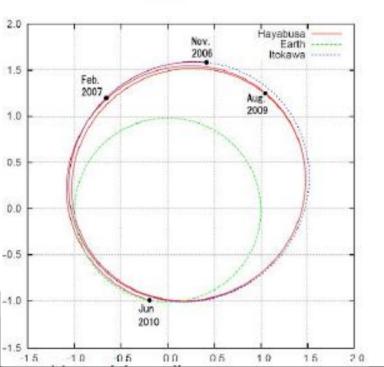
*Suditi.Chand@dlr.de, #jan.grundmann@dlr.de



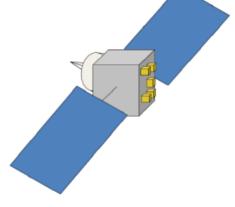
state of the low-thrust art: DAWN – 2-asteroid rendezvous
HAYABUSA &HAYABUSA2 – 1-asteroid sample-return

- DAWN orbited (4) Vesta & (1) Ceres
 - **Δv produced** ≈ **11 km/s** from 425 kg Xe propellant
 - fly-by at (2) Pallas suggested but too marginal, possible fly-by of (145) Adeona not accepted


- Δv capability ≈ 4.0 km/s from 66 kg Xe propellant
- total Δv ≈ 0.4 km/s from 67 kg bipropellant
- ≈ 40 kg used for SEP during mission, yielding 2.2 km/s
- HAYABUSA2 is currently on the way back from carbonaceous PHA (162173) Ryugu
 - Δv capability ≈ 3.2 km/s from 66 kg Xe propellant
 - up to ≈ 3.5 km/s if filled up to 73 kg Xe capacity


common feature:

high-performance electric propulsion


much more is possible by solar-electric propulsion

- Dawn spent some Δv to move between various mapping orbits, the Hayabusas to return samples
 - what's science payload to carry?
 - what's there to repurpose?
 - where are the limits?

SESAME (Maiwald & Marchand, 2016)

- science payload 33 kg (orbiter) + 5* 4.3 kg (landers)
- launch mass 1571 kg
 - ~3x HAYABUSA2, though only moderately larger than DAWN
- payload fraction <3.5 %: ≈ no gain by descoping science
- GTOC-5-like trajectory to **5 NEAs** of ≈200 candidate targets
- primarily astrodynamic target selection
- targets tied to launch date

Property	Value
Departure Date from Earth	21 March 2023
Arrival @ 5 th target	26 February 2030
Total ∆v ——	→ 16.6 km/s
Wet mass	1,571 kg
Xenon fuel mass	451 kg
Bi-propellant mass	125 kg

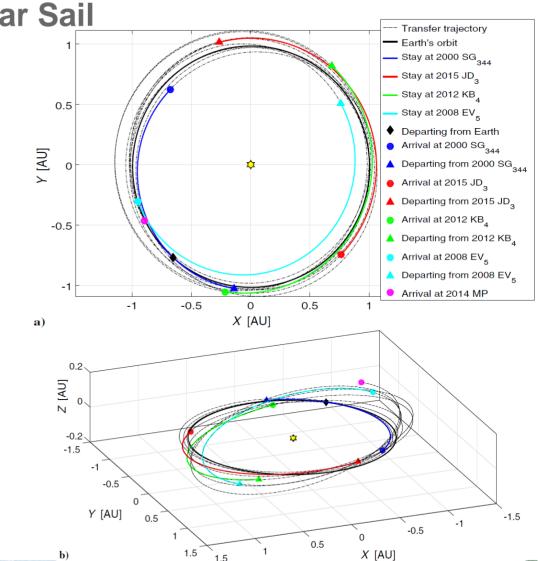
Table 7: Mission parameters of SESAME

Target	Absolute	Orbit	Observation
Body Data	Magnitude (H)	Condition Code (OCC)	opportunities prior launch
2001QJ ₁₄₂	23.4	6	2012
2000SG344	24.8	2	none
2009OS ₅	23.6	5	2014-2020
2007YF	24.8	5	2021
1999AO ₁₀	23.9	6	2018, 2026

Table 8: Mission target data

Body	Arrival Date	Departure Date	Time of Flight (d)	Duration of Stay (d)
Earth	-	21 Mar 2023	316	1 -
$2001QJ_{142}$	31 Jan 2024	22 Jul 2024	444	173
2000SG ₃₄₄	9 Oct 2025	8 Mar 2026	384	150
2009OS ₅	27 Mar 2027	28 Sep 2027	445	185
2007YF	16 Dec 2028	19 May 2029	283	154
1999AO ₁₀	26 Feb 2030	4 Sep 2030	314	190

Table 9: Trajectory data

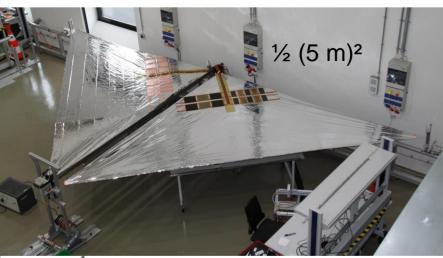

same idea, different method:

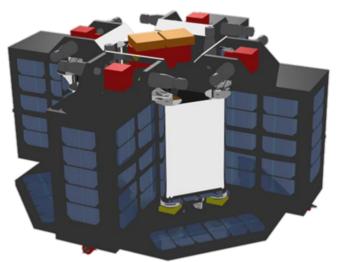
Multiple NEA Rendezvous by Solar Sail

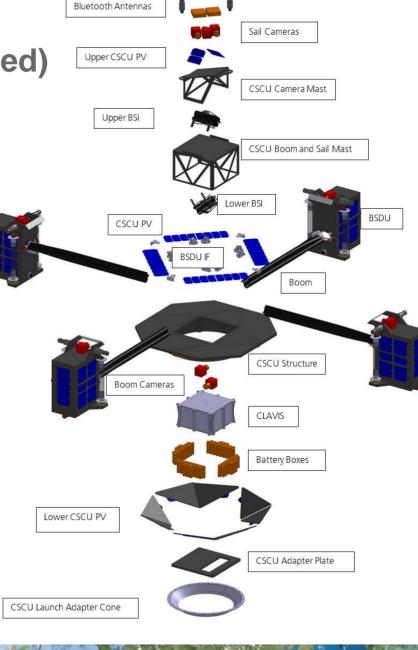
• solar sail propulsion is not limited by the amount of fuel carried

- then what's the next limit? how well it is designed, built, tested, flown & fixed
mechanisms have been fixed in space w/o astronauts around: e.g. Voyager 1 scan platform

- recent studies (Peloni et al., 2016-2018) demonstrate
 - 5 NEA stays for ≥100 days, each, in 10 years
 - accumulated $\Delta v > 50$ km/s @ $a_c = 0.2$ mm/s²
 - → asteroid-oriented target selection is feasible
 - → at-launch & in-flight target change capability
- target-flexible Multiple NEA Rendezvous for planetary science was identified as a mission type uniquely feasible with solar sail already by the GOSSAMER Roadmap Science Working Groups

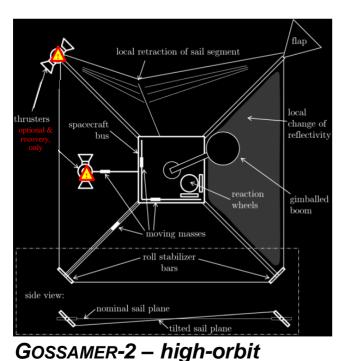



figures: Peloni et al.


GOSSAMER solar sail technology development (qualified)

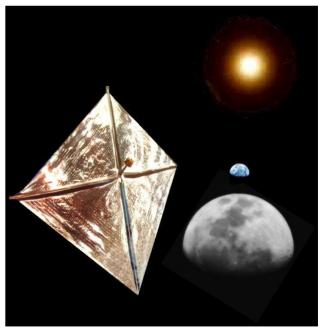
- the 3-step DLR-ESTEC GOSSAMER Roadmap to Solar Sailing was set up in 2009 to develop key technologies for science missions
- 1st step: Gossamer-1 EQM was built & qualification tested
- development was stopped after reaching TRL 5
- a PFM design was ready to proceed
- a launch opportunity was available
- all-launchers load envelope

≈30...≤37.6kg, 79·79·50 cm³



Unner S-Rand Antennas

the road ahead for solar sailing


(...alas, 't was one of those...:-)

the Gossamer Roadmap: step 2 – control step 3 – proving the principle

...that was the idea...

 $(\uparrow 2009 - 12014)$

GOSSAMER-3 – all-up proof test & science mission readiness demonstrator

- (20...25 m)² sail area
- orbit where solar radiation pressure is dominant high LEO, MEO, GTO, >GEO

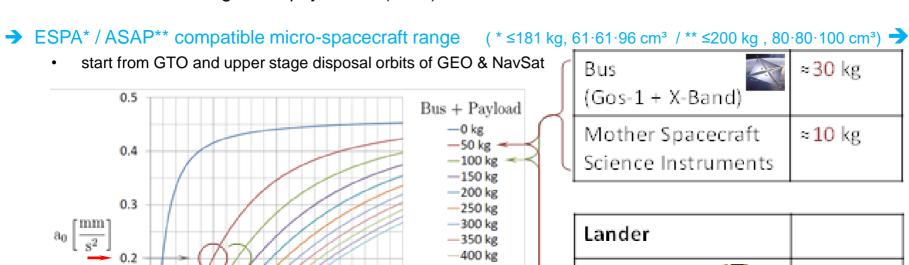
attitude & thrust vector control evaluation

- implementation of several to "all" control methods and all relevant mechanisms
- find out what's the best ...

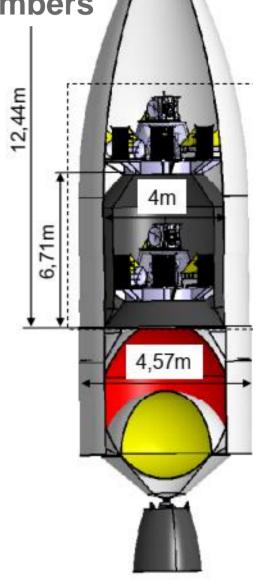
- (50 m)² sail area
- initial orbit high enough to spiral out (sail up)
- applies best control method(s) of Gossamer-2
- prove that sails can operate science missions
 - imager & maybe a tiny science-like payload, e.g. sail-environment interaction (~1kg total)

performance: the magic Multiple NEA Rendezvous & landers numbers

Gossamer-1 technology based

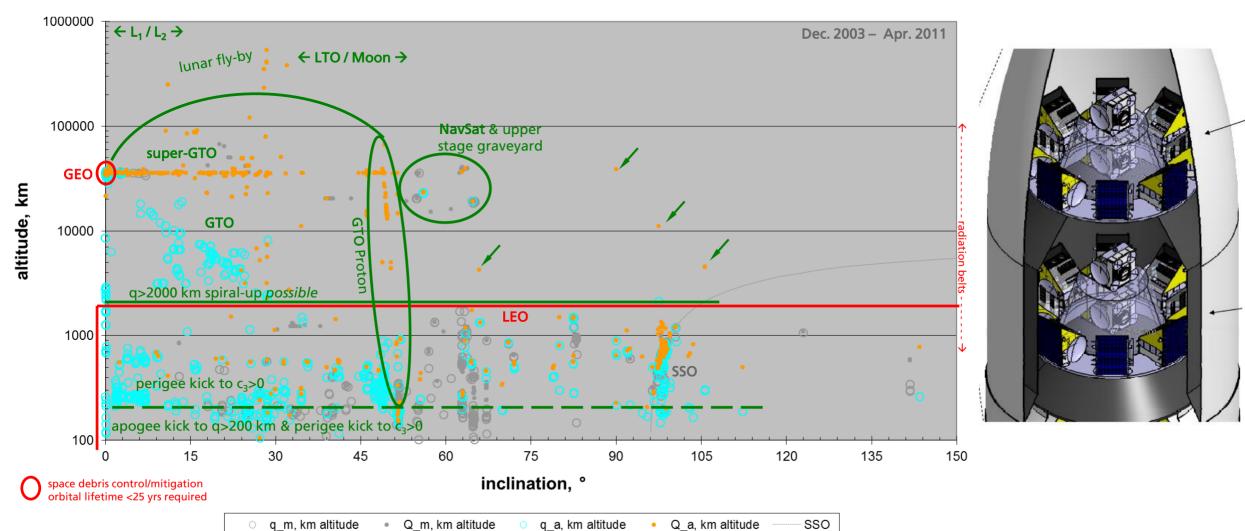

0.1

- 0.2 mm/s² & 50 kg bus & payload \rightarrow (50 m)² membrane
- 0.2 mm/s² & 100 kg bus & payload \rightarrow (70 m)² membrane
- 0.2 mm/s² & 150 kg bus & payload \rightarrow (85 m)² membrane


150

100

Sail Edge [m]


	Lander	
	PHILAE	98 kg
	SPS Lander	100 kg
Ī	1 MASCOT	10 kg
	5 MASCOTs	50 kg +10 kg support equipment

where to start from?

- piggy-back launch opportunities for solar sails

- launch opportunities repeat with synodic period of 7.8 years
- many studies assume unrealistically high acceleration
- realistic in now-term/near-term techology: 0.2...<0.3 mm/s²
- sanity check: impulsive Δv in range of DAWN or SESAME but beyond capability of the HAYABUSAS

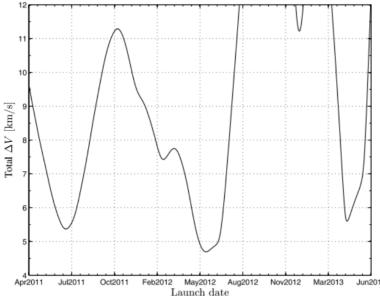
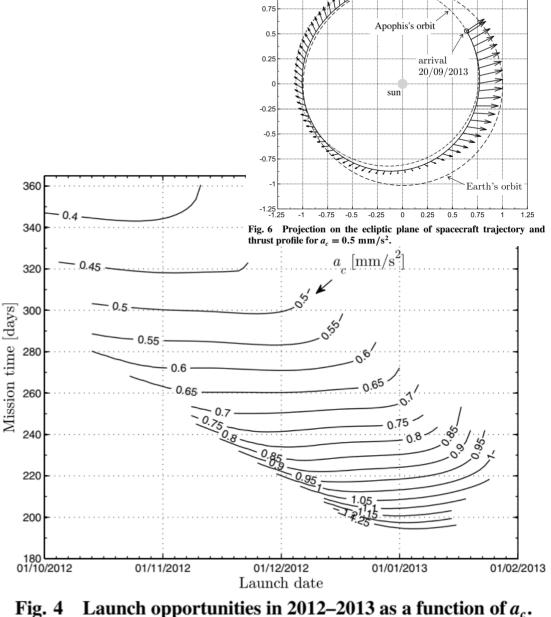
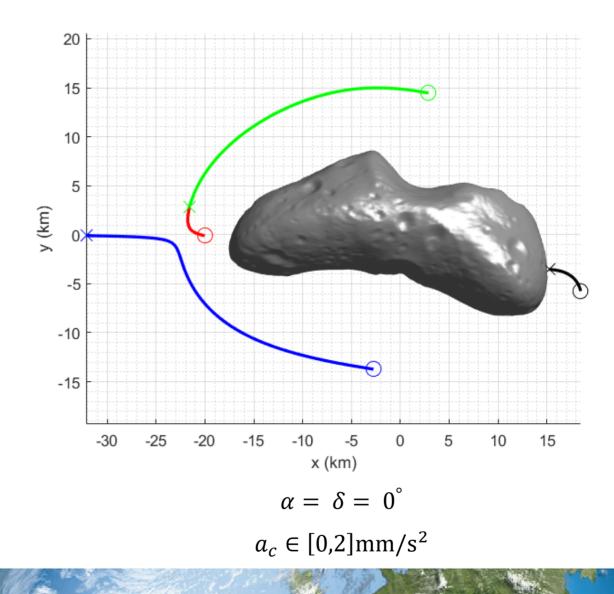



Fig. 8 Required ΔV as a function of launch date for two-impulse maneuver.

Artificial Equilibrium Points (AEP)

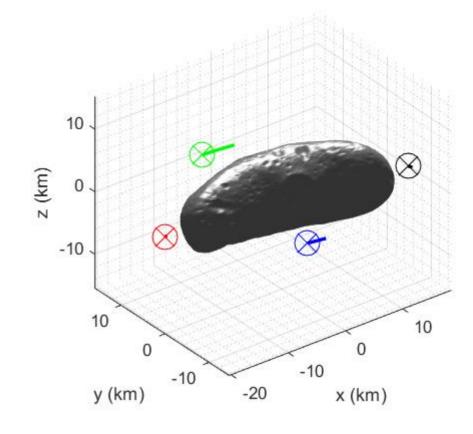
• model asteroid: (433) Eros


sail attitude fixed.

position of each AEP changes with a_c

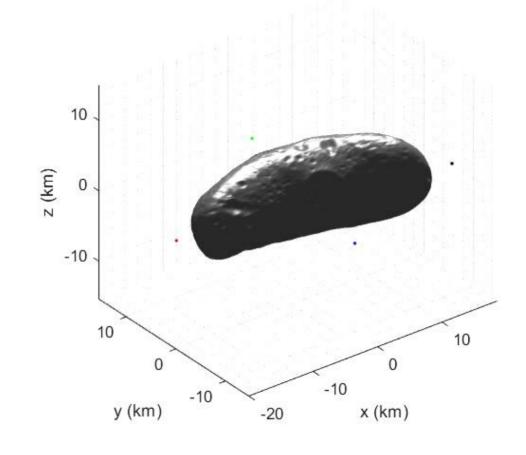
• circles: initial point

• crosses: final point


 AEPs 1 and 3 "collide and disappear" at critical value of characteristic acceleration (a_c = 0.87 mm/s² for Eros)

shifting of AEPs during asteroid rtation

- effect of the Sun rotating around the asteroid in the body-fixed frame
- sail attitude is fixed
- one full rotation of the asteroid
 - circles: initial point
 - crosses: final point
- as expected, these points are the same as the Sun returns to the initial point


$$\alpha = \delta = 0^{\circ}$$

$$a_c = 0.2 \text{ mm/s}^2$$

accessible volume for AEP hovering


- video shows sail performance and sail attitude create the range of positions available for AEPs
- time frozen at the initial time so that the position of the Sun remains fixed
- AEPs 1 and 3 collide at a_c= 0.87 mm/s² and so their associated range of AEPs disappear
- Note: only small number of sail attitudes shown, lines outline volume of possible AEPs.

$$\alpha \in [0,90]^{\circ}$$
, $\delta \in [0,360]^{\circ}$

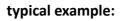
$$a_c \in [0,2] \text{mm/s}^2$$

Apophis Small SEP Performance Summary

Technology Status

- SEP is already very flexible:
 wide operation possibilities with established systems ——
- Performance is "freely chosen" (within limits) based on a few high-impact parameters.

BUS Capability & Implementation

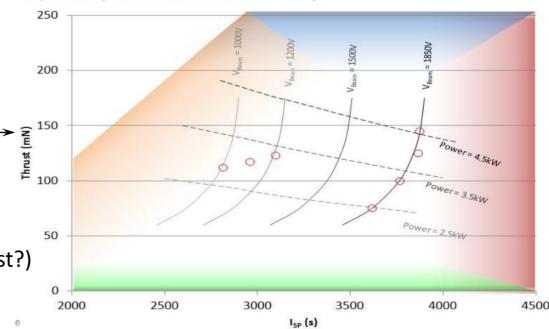

High-Impact Parameters:

- Available solar power:
 - thrust & I_{sp} scale directly but differently with input power
- Beam voltage: thrust ←TRADE→ I_{sp}


Programmatic Considerations & Trades

- Choice is based on desired mission outline (go for higher I_{sp} or thrust?)
 - → Available propellant fixed? (tank & spacecraft size, mass?)
 - → Available time?
 - → If SmallSat and lots of time
 - → If SmallSat and no time

- \rightarrow go for high Isp \rightarrow low-power ok \rightarrow small design impact \rightarrow fast development & low-cost achievable
- \rightarrow go for high Thrust \rightarrow high power needed \rightarrow design impact \rightarrow fast development but high cost



(≈TRL 8)

Apophis Small SEP Performance Summary

Apophis Mission 2029

- → SEP will be
 - → more COTS (thus more available and lower in cost)
 - → more effective (reduced heat dissipation)
 - → more reliable (less degradation)
- → Biggest limiting factor (today and in the future) is electrical power, NOT the technology.
- → Cost might always be between 10-30% of total.

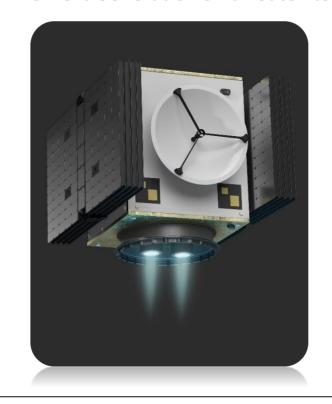
ESKIMO SmallSat Performance Examples

- → 150kg class ESKIMO (as is) reaches ΔV=3.5km/s (3500 I_{sn}, 14kg propellant)
 - ... 12mN using 600W (2x 300W) currently-developed SEP.
 50kg P/L.
 ~~10-15M€ incl. Launch (2029-2026).
- → 150kg class ESKIMO (P/L=Propellant+) reaches ΔV=10.5km/s (3500 lsp, 40kg propellant)
 - ...12mN using 600W (2x 300W) currently-developed SEP. 25kg P/L. ~~12-17M€ incl. Launch (2029-2026).
 - ...24mN using 1200W (4x 300W)
 currently-developed SEP. 25kg P/L. ~~18-25M€ incl. Launch (2029-2026).

THRUST \uparrow - Transfer-Time \downarrow Available TIME and therefore THRUST is the SEP system driver.

The SEP system itself is NOT the cost-driver, but the Solar Generator (THRUST scales with power). Solar Generator designs (and cost?) do not evolve much anymore.

Assumption: Double power → Double thrust → 1.5x cost? (Assuming Solar Generator is ~~50% of cost) → Trades are difficult and depend on hard requirements. Many design constellations are possible.


In summary, SEP has much potential and a huge mission-performance-range between a very fast and low-cost COTS-bolt-and-fly design and a well-optimized, dedicated spacecraft.

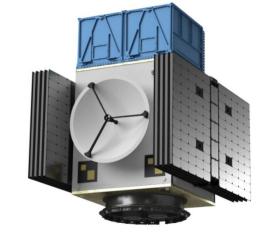
LEVITY: ENABLING THE NEXT SPACE MARKETS

ESKIMO: The Next Generation Small Satellite Platform

- 150kg-class, 1m³ small satellite platform
- Specifically designed to address orbits beyond GEO including Moon missions.
- Electric propulsion system, flexible payload accommodation and -interfacing
- The platform can also act as a kickstage, transporting small satellites and offering deep space relay services at the target environment.
- A convenient ready-to-use platform for any commercial and scientific mission within low-mass, low-cost concepts.

High Available Power - Up to 1.3kW 100W Guaranteed to Payload at Any Time

More than 10 GB of Data Per Day from Low Lunar Orbit Using Commercial Ground Stations


Deep Space Radiation Tolerance

A plug-and-play solution for instruments

Transporting Cube-and Smallsats

LEVITY

PAYLOAD ENVELOPE INCL. ADAPTERS 300l | 50kg | 32U

