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1  |   ANALYZING FUTURE ENERGY 
SYSTEMS

In order to evaluate strategies for decarbonizing energy 
systems, optimization models are widely used. Since their 
first application in the 1960's,1 these computer tools have 

permanently been compromising between providing a wide 
system's perspective and a sufficient level of detail or gran-
ularity. For effective decision-making, a wide perspective is 
relevant to comprehensively account for the side effects or 
synergies in a system, while the level of detail is associated 
to the capability of assessing concrete, individual measures.
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Abstract
The comprehensive evaluation of strategies for decarbonizing large-scale energy 
systems requires insights from many different perspectives. In energy systems analy-
sis, optimization models are widely used for this purpose. However, they are lim-
ited in incorporating all crucial aspects of such a complex system to be sustainably 
transformed. Hence, they differ in terms of their spatial, temporal, technological, and 
economic perspective and either have a narrow focus with high resolution or a broad 
scope with little detail. Against this background, we introduce the so-called granu-
larity gaps and discuss two possibilities to address them: increasing the resolutions 
of the established optimization models, and the different kinds of model coupling. 
After laying out open challenges, we propose a novel framework to design power 
systems in particular. Our exemplary concept exploits the capabilities of power sys-
tem optimization, transmission network simulation, distribution grid planning, and 
agent-based simulation. This integrated framework can serve to study the energy 
transition with greater comprehensibility and may be a blueprint for similar multi-
model analyses.
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Due to computational or also institutional limitations,2 
improvements toward higher detail or broader scope are al-
ways accompanied by simplifications on the complementary 
side. This trade-off leads to deficiencies, which we refer to as 
granularity gaps in the following.

Established approaches for energy systems planning are 
highly diverse in terms of their spatial, temporal, technologi-
cal, and economic perspective. Current models span from as-
sessments on the household-level and small districts (eg, the 
model presented by Kneiske et al3) up to the modeling of in-
dividual or multiple countries4 and even global systems.5 The 
temporal scale plays a crucial role when it comes to planning 
of infrastructures with lifetimes of several decades on the 
one hand. On the other hand, verifying the operational fea-
sibility and reliability of such infrastructures as well as fully 
exploiting power balancing potentials of batteries require 
short-term system analyses.6 In terms of technology repre-
sentations, models range from detailed process simulations 
up to the coupling of energy sectors and interactions with 
other systems (eg, energy-economy-climate).7 The spectrum 
of economic perspectives comprehends simulations from in-
dividual decision-makers (microeconomic) up to entire econ-
omies (macroeconomic).

The ranges of the four dimensions introduced (space, 
time, technology, and economic perspective) are illustrated 
in Figure  1. There, we outline, from our perspective, a 

categorization of one popular model type which allows stud-
ies on large-scale energy systems: energy system optimiza-
tion models (ESOMs).

1.1  |  Characteristics of large-scale energy 
system optimization models

ESOMs are often applied to study the possible development 
of entire energy systems. For example, Haller et al8 do this 
for Europe including Middle East and North Africa. Their 
large geographic scope allows for investigating the benefits 
from international cooperation, but their low spatial resolu-
tion limits the findings of, for example, concrete measures of 
grid expansion needed for the integration of renewable en-
ergy sources (RES). Compared with Haller et al, more recent 
studies such as Sgobbi et al,9 Child et al,10 Bernath et al11 
are more comprehensive in terms of the technologies consid-
ered. This development is fostered by the trend of analyzing 
multitechnology interactions, especially in energy systems 
with high shares of RES.12 Resulting extensions of the en-
ergy models include other energy sectors (eg, the electrifica-
tion of the heating sector as presented by Bernath et al) or 
the introduction of new technologies (eg, hydrogen as fuel 
and long-term storage option as presented by Sgobbi et al). 
However, the spatial resolution usually remains rather coarse 

F I G U R E  1   Illustration of different spatial, temporal, and technological scales, and economic perspectives of energy system models with a 
categorization of ESOMs
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and the results are limited to the perspective of a central sys-
tem planner.

1.2  |  The granularity gaps

Successful energy policies rely on the implementation of 
concrete strategies. Finding such strategies with the corre-
sponding level of detail, for example on a local municipal-
ity level, often remains elusive, especially in those studies 
that rely on broad scope models. At first glance, a direct 
straight-forward approach would be deriving local strategies 
by breaking down the actions identified from the global and 
national level. Although such top-down approaches exist,13 
they ignore two crucial aspects.

First, in markets (such as within the European Union), 
decisions cannot simply be instructed top-down. They are 
rather made by the interaction of various stakeholders with 
heterogeneous interests. This self-interested stakeholder be-
havior leads to investment decisions and operation strategies 
that may strongly deviate from the desired optimal system 
states. This aggregation bias (also caused by market imper-
fections) is well-known in economic modeling theory,14 and 
sometimes called “behavioral complexity of actors”15 in the 
context of energy system modeling. Hereafter, we refer to it 
as “economic granularity gap,” in line with the wording of 
the other granularity gaps treated.

Second, ensuring an efficient power supply with renew-
able resources requires adequately dimensioned power trans-
mission infrastructure and—given the increasing penetration 
with decentral power generators and loads16—distribution 
infrastructure. However, even on the coarsest level, the trans-
mission grid, the accordingly required network simulation 
studies exceed the spatial resolution of ESOMs. Therefore, 
transferring their findings to concrete implementation strat-
egies for the real grid (including integration measures in the 
distribution grid) turns out to be much costlier than antici-
pated or even technically infeasible. Cost underestimations 
have been observed, for example, for the integration of de-
central technologies such as prosumers.17 In order to over-
come infeasible system states, bottom-up approaches (such as 
cellular approaches presented by Lehmann et al18) are help-
ful, but they do not guarantee yielding the intended system 
designs, especially with regard to affordability, reliability, or 
sustainability. These are issues arising from the “spatial gran-
ularity gap.”

Closely linked to the spatial granularity gap is the trade-
off between long-term investment planning and operation of 
the energy system's components. Validating or optimizing 
the latter is only possible if both the spatial and the temporal 
scale are sufficiently detailed. Although especially ESOMs 
provide extensive temporal scales to sufficiently capture 
the fluctuating availability of RES while also enabling 

investment planning,19 “temporal granularity gaps” still exist. 
For example, this is triggered by the idea of introducing real-
time pricing tariffs20 in the power market or if effects of local 
short-term fluctuations of RES on the operational feasibil-
ity and affordability of decentral power generators are to be 
investigated.21

Now, the crucial question is how to address these granu-
larity gaps without compromising the desired broad scope. 
As mentioned above and detailed below (Section 2.1), in-
creasing the granularity of a particular scale automatically 
results in the need for more accuracy on another.

2  |   HOW TO BRIDGE THE 
GRANULARITY GAPS?

Strategies for bridging granularity gaps, based on the afore-
mentioned unidirectional top-down or bottom-up approaches, 
exhibit strong limitations. In response, iterative approaches 
are becoming more promising. These can be realized endog-
enously by increasing model resolutions or exogenously by 
model coupling.

2.1  |  Increasing resolutions in energy 
systems analysis

Increasing model resolutions can be realized by yielding, 
for example, sufficient spatial resolutions to simulate ef-
fects in real transmission grid infrastructures. Cranking-up 
the resolution only makes sense if, at the same time, the 
underlying phenomena or technologies are modeled ap-
propriately, for instance extending power flow modeling 
by voltage constraints.22 And still, breaking down high-
level decisions to the local level remains challenging. This 
would always call for even better resolutions to capture 
distribution grids. In this case, differentiation between in-
dividual system components becomes more important (as 
opposed to coarse technology-aggregations) and thus, deci-
sions of heterogeneous actors gain in relevance and should 
be incorporated, too.

In other words, increasing the spatial granularity au-
tomatically leads to the need of higher technological reso-
lutions which then also calls for a more detailed economic 
perspective.

Achieving such resolutions is extremely challenging, not 
only from a modeling perspective (eg, required inputs, inter-
disciplinarily) but also from a computational perspective (eg, 
runtimes and data handling). The authors of several recent 
publications focus on this issue and strive for a more effi-
cient treatment of the temporal scale, often using clustering 
algorithms.23 Although there are further attempts to tackle 
computational limitations, including the application of high 
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performance computing,24 fully integrated tools are not avail-
able yet.25

2.2  |  Model coupling in energy 
systems analysis

An alternative to increasing resolutions of a particular ESOM 
is model coupling. Following the argumentation of,26 this 
way of bridging granularity gaps has two important advan-
tages. First, a multitude of interchangeable models prevents 
modelers from methodological lock-in effects that can occur 
when an established model is developed and applied for a 
long time but cannot evolve appropriately with upcoming re-
search questions. Second, model coupling allows the incor-
poration of detailed findings from diverse domain-specific 
tools. Hence, top-level system planning can be accompanied 
by more detailed models, effectively addressing granularity 
gaps.

In the following, we focus on granularity gaps specif-
ically occurring when it comes to the planning of load-
balancing technologies across all levels in the power grid. 
Therefore, we introduce three modeling approaches to ex-
tend the capabilities of techno-economic (top-level) power 
system planning: transmission network simulation, distri-
bution grid planning, and agent-based simulation of mi-
croeconomic actor decisions. Note that while the following 
is mostly discussed from the power system's perspective, 
similar use cases exist for the other energy sectors, which 
are also represented in an ESOM.

2.2.1  |  Transmission network simulation

The main objective for coupling network simulation stud-
ies (as performed, eg, by European Transmission System 
Operators27) to ESOMs is to incorporate information on 
feasibility constraints for transmission system operation 
and planning. This is usually done in an iterative manner: 
Network simulation studies provide power flow constraints 
for top-level unit commitment and/or extension planning. 
Based on top-level results, the constraints then are updated 
by further network simulation studies.

In simple terms, power flow problems for existing or can-
didate grid infrastructures are solved22 in order to obtain con-
straints related to transmission adequacy and power system 
security. The ESOM then trades-off grid expansion measures 
against other, competing flexibility-providing technologies.

Established modeling tools developed for simulation and 
planning of power networks are available.28,29 However, ap-
propriate solving routines can also be conducted with more 
general software packages such as MATLAB30 or Python 
frameworks.31

While the above mainly refers to electricity grids, similar 
comments apply to modeling of gas networks,32 which are of 
increasing importance.33

2.2.2  |  Distribution grid planning

Many high-level energy decisions, for example shares of 
rooftop PV, heat pumps, or mobility occur on the distribution 
grid level to which ESOMs are blind. Here, the objective of a 
model coupling is to capture the impact of ESOM decisions 
on the distribution level and thus its rebound effect caused by 
the corresponding adaptation costs.

For the analysis of distribution grids, detached from the 
ESOM, domain-specific tools become essential. This is dif-
ferent to the transmission level, where by justifiable simpli-
fications concerning modeling of power flows (eg, by using 
DC-power flow34) an integration to an ESOM is still possi-
ble, as computational constraints are not exceeded and the 
model complexity remains manageable. Relevant tools au-
tomatically analyze, optimize and find solutions for imbal-
anced distribution grids. Examples are EDisGo,13 SNOP35 or 
pandapower Pro.36 The latter, for instance, identifies voltage, 
transformer and line problems and solves them by the use 
of heuristic approaches. This includes not only conventional 
solutions such as line and transformer replacements, but also 
innovative measures such as regulated distribution transform-
ers or autonomous network re-configuration.

2.2.3  |  Agent-based simulation of 
microeconomic actor decisions

Energy system planning often assumes that all actors are mo-
tivated by minimizing the total system costs, while in reality 
they follow their own principles. Incorporating such micro-
economic actor behavior is the objective of model coupling 
using agent-based models (ABMs). In an ABM, actors are 
modeled as autonomous agents with individual attributes, be-
haviors, and relationships to other agents as well as to their 
environment.37 By simulating the behaviors and interactions 
of individual agents at the micro-level, the system behavior 
emerges at macro-level.38,39 This—more realistic—system 
behavior can then be transferred to ESOMs in order to, for 
example, evaluate discrepancies from a hypothetic cost-
minimized system.

In the context of modeling energy markets, this approach 
is implemented, for example, in the EMLab model.40 EMLab 
models power companies as agents which sell their power 
on the energy markets and perform investment decisions re-
garding new power plants. The objective of the model was to 
analyze the aggregate effects of these investment decisions, 
for example, on CO2 mitigation targets, while evaluating 
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different policy scenarios and designs of the European elec-
tricity markets. Another example is AMIRIS,41 an ABM of 
the German power market focusing on the market integration 
of RES. Thereby, special consideration is given to the influ-
ence of political framework conditions on the operation and 
profitability of energy technologies.

3  |   MODEL COUPLING VIA 
AUTOMATED WORKFLOWS: AN 
EXEMPLARY COUPLING CONCEPT

Domain-specific models can be coupled with ESOMs by ei-
ther soft- or hard coupling. Soft coupling means that inde-
pendent models interact by exchanging input and output data. 
Hard coupling denotes the integration of the domain-specific 
models, resulting in an extended ESOM. Existing literature 
on model coupling approaches42 reports several challenges 
concerning soft coupling of established models. These are, 
for example, inferior performance due to communication 
overhead or difficulties in documentation and reproducibil-
ity of the integral model execution. However, as access and 
domain-specific knowledge for the application of modeling 
tools usually are distributed across institutions, soft coupling 
is rather established than hard coupling. Nevertheless, hy-
brid models that typically combine bottom-up and top-down 

energy modeling approaches are representatives for hard 
coupling.43

In our opinion, a more favorable compromise between 
soft- and hard coupling is the integration and interlinkage of 
existing models in reproducible workflows that can be dis-
tributed across institutional boarders. Dedicated workflow 
tools developed for design processes in aerospace and ship-
yard industry enable the automated execution of highly itera-
tive or data-intensive multimodel simulations and thus allow 
quasi hard coupling of the corresponding tools.44

In reaction to the challenges related to (a) addressing 
the granularity gaps by (b) a performant and reproducible 
model coupling approach, we propose a multimodel concept 
to comprehend the analysis of large-scale power systems 
with ESOMs by transmission network simulation, distribu-
tion grid planning and agent-based simulation of the power 
market.

Figure 2 shows how each of the particular models can be 
characterized in terms of spatial, economic, and technologi-
cal focus.

Besides convergence issues, the major challenge, espe-
cially of bi-directional model coupling, is data management 
and compatibility (ie, allowing the outputs of a particular 
model to be inputs for another). In the following, we further 
discuss these challenges of providing insights from domain-
specific models to the top-level ESOM.

F I G U R E  2   Characterization of the proposed multimodel approach for analyzing decarbonization strategies of power systems
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3.1  |  Incorporating aspects of transmission 
adequacy and security

In order to include power transmission aspects such as trans-
mission adequacy and system security in power system plan-
ning, the preparation of data for power flow analyses poses 
a challenging prerequisite. This applies to the compilation of 
complete and consistent transmission grid datasets, including 
electrical network parameters. A spatial disaggregation of 
ESOM output data requires geo-coordinates of substations. 
Coupling in the opposite direction is less cumbersome as it 
mostly comes down to spatial aggregation of costs or techni-
cal parameters, such as power transfer distribution factors.45

Available transmission grid data models can be catego-
rized as open models46 and proprietary models provided 
by transmission system operators, eg, in the context of grid 
planning.47 The former are mainly based on OpenStreetMap 
(OpenStreetMap48 or have been applied to maps provided 
by transmission system operators49 and therefore need to 
make assumptions on electrical parameters. Opposed to this, 
proprietary models contain real electrical parameters and 
information about power generators, but they usually lack 
geo-locations. A complete grid dataset can be obtained by 
first matching proprietary and open grid data models with 
geo-information from open power plant databases50 and then 
estimating transmission line lengths from electrical param-
eters. Missing geo-coordinates then can be estimated by 
triangulation.

For the spatial disaggregation of ESOM output data on 
generation, appropriate distribution factors are needed. Such 
factors could be derived using actual power plant contribu-
tions to the power balance of a country. However, their va-
lidity is limited as they are subject to the actual state of the 
(transforming) power system. Disaggregation may also be 
performed by means of an optimization algorithm. To this 
end, country-specific ESOM instances are required that fully 
capture the spatial resolution of the transmission grid.

3.2  |  Incorporating costs for decentral 
technology planning in the distribution grid

Challenges related to the coupling of the distribution grid 
planning with the top-level system are twofold. The first is 
the generalization and spatial upscaling of grid expansion 
measures (which are usually examined for representative, 
particularly selected distribution grids) to a nationwide cost 
indicator, which can then be considered in an ESOM.

The second challenge is the corresponding downscal-
ing. Decentral technologies (renewable energy sources, heat 
pumps, and charging stations) can be assigned to low, me-
dium, and high voltage distribution grids. Missing nation-
wide distribution grid data, the lack of uniform standards, and 

region-specific geographical conditions imply a high degree 
of freedom in assumptions regarding the spatial distribution 
and dimensioning of devices (eg, many roof-top photovolta-
ics vs one free-field photovoltaic plant).

An approach to meet the upscaling challenge is to reduce 
the highly location-dependent solution space and determin-
ing analogies in terms of decentral technology capacities. In 
Meinecke et al,51 the authors present a methodology to derive 
representative benchmark grids which take this aspect into 
regard. These grid models are used instead of real networks' 
datasets to obtain relations between grid reinforcement costs 
and the share of new producers and loads for different urban, 
sub-urban or rural areas. To scale-up from benchmark grid-
specific expansion cost to nationwide quantities, a mapping is 
required to match geographical regions, such as municipali-
ties, to the corresponding benchmark grid. Criteria for appro-
priate clustering approaches are the ratio between supplied 
and total area of a municipality or the population density.52

In order to solve the downscaling problem, probabilistic 
approaches in terms of grid planning provide a way to deal 
with unknown future penetrations of decentral technologies. 
The idea is to distribute those randomly within the previously 
mentioned representative benchmark grids and examine the 
required grid expansion multiple times to obtain average and 
robust costs.53

3.3  |  Incorporating aspects of 
microeconomic actor decisions

Concerning coupling ABM to ESOMs, challenges arise 
from dealing with different system boundaries while having 
significant overlaps when modeling similar phenomena or 
mechanisms (eg, power plant dispatch). In particular, this is 
related to selecting those outputs of an ESOM that only affect 
the agents' simulation framework (eg, the power market) and 
to ensure that deviations between model outputs describing 
congruent phenomena are due to the differences in economic 
granularity (rather than the different system boundaries).

A way to tackle the challenge of different system bound-
aries is a model harmonization. This requires the ABM to be 
executed in a mode where actor-specific features (eg, incom-
plete information) are disabled. Hence, if equally parameter-
ized (eg, by using the same techno-economic parameters), 
both models should show a congruent system operation and, 
thus, (sub-) system costs.54

From this starting point, the influence of actors' be-
havior can be investigated by agent-based simulation. Due 
to the increasing market penetration, trending examples 
are prosumers trying to maximize the self-consumption 
of photovoltaic-battery systems55 and future heat pump 
owners who react on real time-pricing signals.56 If the 
operation of such technologies is accordingly fixed in an 
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ESOM, increasing system costs (compared with the mac-
roeconomic optimum) are expectable. This cost difference 
(also interpretable as measure for the economic granularity 
gap) is subject to the regulatory framework conditions of 
the ABM and thus allows for investigations on adapting 
the regulation regime, for example, to incentivize system 
alignment of decentral actors.

4  |   DISCUSSION

Previous studies show that both the increase of the resolu-
tions in ESOMs and the model coupling represent options 
with partly high methodological and resource challenges.

In our opinion, model coupling concepts are urgently 
required to enable evaluations of large-scale future en-
ergy systems from interdisciplinary perspectives. The al-
ternative, namely continuing individual development of 
domain-specific models and enlarging their scopes and thus 
resolutions may cause an ever-increasing complexity of 
these models aligned with unnecessary challenges in terms 
of maintainability or even comprehensibility. But, we are 
also of the opinion that model coupling should not be an 
end in itself because implementing the required interfaces is 
costly (as elaborated for our exemplary use case in section 3). 
Therefore, establishing persistent couplings is more prefera-
ble compared with the still common one-way soft couplings.

Automated workflows are the core of our suggested solu-
tion and represent a middle-way between hard coupling and 
soft coupling concept. They are based on preconfigured 
peer-to-peer networks coordinating both model-calls and 
data exchange. In this way, the individual models are still 
executed on their established IT-infrastructure but there are 
integral work flows that can be started from each point of 
the peer-to-peer network. This contributes to overcome re-
curring cross-institutional communication barriers, as well 
as to keeping interdisciplinary expertise that is needed to 
maintain complex models which have been developed over 
years. Transparency and traceability of such multimodeling 
approaches improve, because the overall data processing is 
centrally stored and documented in defined workflows which 
also allow an easier reproducibility of the scientific outcome.

Downsides of establishing cross-institutional work-
flows are additional efforts for the setup of the peer-to-peer 
network (eg, adapting IT infrastructures such as firewall 
rules). The proposed concept is therefore best used for ex-
tensive model coupling rather than simple unidirectional 
couplings. Furthermore, the convergence of multimodel 
coupling can prove challenging and, still, bridging granu-
larity gaps is clearly only possible within the scope of the 
chosen models.

5  |   CONCLUSION

Modeling approaches for energy system planning are subject 
to the trade-off between claiming holistic perspectives and 
providing sufficient granularity for decision-making. The 
models used for analyses of large-scale energy systems are 
affected by granularity gaps. These gaps exist between dif-
ferent domains of energy systems research and appear across 
several model dimensions.

Especially for policy strategies, granularity gaps between 
what needs to be considered (and, thus, modeled) and the 
transferability into real actions or policies become evident. 
Frequently applied approaches for bridging them, such as 
coupling of established models or increasing resolutions of 
individual models, suffer from insufficient reproducibility 
and difficulties in maintainability, respectively. We presented 
a novel concept based on automated and cross-institutional 
workflows for bridging granularity gaps, as a promising 
perspective for future research. We outlined this approach 
with selected model types that are particularly relevant for 
merging different perspectives on the power system's trans-
formation. In this way, we addressed two major challenges in 
modeling the decarbonization of large-scale power systems: 
rendering granularity gaps comprehensible and making nec-
essary multimodeling approaches executable in a traceable 
and efficient way.

Our particular concept of multimodel coupling allows 
combining top-level investment decisions in the power sys-
tem with costs and constraints associated to the spatial gran-
ularity such as arising with technology integration in the 
transmission and distribution grids. Integrating the behavior 
of decentral actors also enables the identification of appro-
priate regulatory regimes in order to reduce the economic 
granularity gap.

In summary, our general suggestion to tackle the chal-
lenge of bridging granularity gaps is bringing together inter-
disciplinary perspectives and associated models via model 
coupling using automated workflows to benefit from the ad-
vantages of both soft coupling and hard coupling.
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