PLANETARY DEFENSE GROUND ZERO: MASCOT’S VIEW ON THE ROCKS – AN UPDATE BETWEEN FIRST IMAGES AND SAMPLE RETURN

Tra-Mi Ho(1), Ralf Jaumann(2), Jean-Pierre Bibring(3), Matthias Grott(4), Karl-Heinz Glaßmeier(5), Aurelie Moussi(6), Christian Krause(7), Ulrich Auster(5), Volodymyr Baturkin(1), Jens Biele(7), Federico Cordero(8), Barbara Cozzoni(7), Clement Duda(6), Cinzia Fantinati(7), Christian D. Grimm(1), Jan Thimo Grundmann(1)*, Maximilian Hamm(4,9), Jeffrey Hendrikse(14), David Herčík(10), Kağan Kayal(7), Jörg Knollenberg(4), Oliver Küchemann(7), Caroline Lange(1), Michael Lange(11), Laurence Lorda(6), Michael Maibaum(7), Yuya Mimasu(12), Tatsuaki Okada(12), Katharina Otto(4), Cedric Pilorget(3), Josef Reill(13), Takanao Saiki(12), Kaname Sasaki(1), Markus Schlotterer(4), Nicole Schmitz(4), Stefan Schröder(4), Nawarat Termtanasombat(14), Nortbert Tóth(1), Yuichi Tsuda(12), Stephan Ulamec(7), Friederike Wolff(4), Tetsuo Yoshimitsu(12), Christian Ziach(14), and the MASCOT Team

(1) DLR German Aerospace Center, Institute of Space Systems, Robert-Hooke-Strasse 7, 28359 Bremen, Germany – Tra-Mi.Ho@dlr.de
(2) Freie Universität Berlin, Institute of Geological Sciences, Berlin, Germany
(3) Institute d’Astrophysique Spatiale, Orsay, France
(4) DLR, Institute of Planetary Research, Berlin, Germany
(5) IGEP, Technische Universität Braunschweig, Braunschweig, Germany
(6) Centre National d’Etudes Spatiales (CNES), Toulouse, France
(7) DLR, Institute of Space Operations, Cologne, Germany
(8) Telespazio VEGA, Darmstadt, Germany
(9) Institute for Mathematics, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany
(10) Institute of Atmospheric Physics, Czech Academy of Sciences, Czech Republic
(11) DLR, Institute of Composite Structures and Adaptive Systems, Braunschweig, Germany
(12) JAXA, Institute of Space and Astronautical Science, Sagamihara, Japan
(13) DLR, Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany
(14) consultants to DLR, Institute of Space Systems, Bremen, Germany

Keywords: asteroid surface properties, planetary defense, MASCOT, (162173) Ryugu, HAYABUSA2

ABSTRACT

At 01:57:20 UTC on October 3rd, 2018, after 3½ years of cruise aboard the JAXA spacecraft HAYABUSA2 and about 3 months in the vicinity of its target, the MASCOT lander was separated successfully by from an altitude of 41 m. After a free-fall of only ≈5 m, MASCOT made first contact with C-type near-Earth and potentially hazardous asteroid (162173) Ryugu, by hitting a big boulder. MASCOT then bounced for ≈11 m, in the process already gathering valuable information on mechanical properties of the
surface before it came to rest. It was able to perform science measurements at 3 different locations on the surface of Ryugu and took many images of its spectacular pitch-black landscape. MASCOT’s payload suite was designed to investigate the fine-scale structure, multispectral reflectance, thermal characteristics and magnetic properties of the surface. Somewhat unexpectedly, MASCOT encountered very rugged terrain littered with large surface boulders. Observing in-situ, it confirmed the absence of fine particles and dust as already implied by the remote sensing instruments aboard the HAYABUSA2 spacecraft. After some 17th of operations, MASCOT’s mission ended with the last communication contact as it followed Ryugu’s rotation beyond the horizon as seen from HAYABUSA2. Soon after, its primary battery was depleted. We present a broad overview of the recent scientific results of the MASCOT mission from separation through descent, landing and in-situ investigations on Ryugu until the end of its operation and relate them to the needs of planetary defense interactions with asteroids. We also recall the agile, responsive and sometimes serendipitous creation of MASCOT, the two-year rush of building and delivering it to JAXA’s HAYABUSA2 spacecraft in time for launch, and the four years of in-flight operations and on-ground testing to make the most of the brief on-surface mission.

INTRODUCTION

On October 3rd, 2018, the Mobile Asteroid Surface Scout, MASCOT, successfully completed its 17-hours mission on the ~km-sized C-type potentially hazardous asteroid (162173) Ryugu. Investigating the surface and its thermal properties, looking for a magnetic field, and imaging the stark landscapes of this dark rubble pile, it contributed valuable close-up information before the surface sampling by its mothership, HAYABUSA2.

MASCOT SYSTEM

DLR in collaboration with the French space agency, CNES, has developed the Mobile Asteroid Surface Scout, MASCOT, a small asteroid lander which packs four full-scale science instruments and relocation capability into a shoebox-sized 10 kg spacecraft. It carries the near-IR soil microscope, MicrOmega (MMEGA), a high dynamic range black-and-white camera with night-time multicolour LED illumination (MasCAM), a 6-channel thermal IR radiometer (MARA), and a fluxgate magnetometer (MasMAG).

The MASCOT Flight Model (FM) was delivered to JAXA mid-June 2014 and was launched aboard the HAYABUSA2 space probe on December 3rd, 2014, to asteroid (162173) Ryugu. MASCOT is an organically integrated high-density constraints-driven design. The design, integration and testing of MASCOT followed a fast-paced Concurrent Assembly Integration Verification (C-AIV) approach. After preparatory studies, it was completed in 2 years from Preliminary Design Review (PDR) on June 6th, 2012 (the day of the Venus transit) to delivery of the Flight Model (FM) in July 2014 for integration and final joint testing with HAYABUSA2.

Science Instruments aboard MASCOT

MicrOmega is a near-infrared imaging spectrometer/microscope for the study of mineralogy and composition at grain scale. It acquires 3D (x,y,λ) microscopic image-
cubes of an area approximately \((3 \text{ mm})^2\) in size with a spatial sampling of \((25 \text{ μm})^2\) in
\((128^2\text{ pixel})^2\) images. For each pixel, the spectrum is acquired in contiguous spectral
channels covering the range 0.99 to 3.55 μm with spectral sampling better than 40
cm\(^{-1}\) and a signal-to-noise ratio of 100, over the entire spectral range.

\textit{MasCAM} uses a clear filter 1 Mpixel Si-CMOS sensor with high dynamic range
imaging capability covering a \((60°)^2\) field of view, pointed slightly down to image an
area in front of the lander. Multiple observations during the day are used for detailed
studies of the reflection and scattering properties of the surface. During daytime,
images are black-and-white. At night, colour images are taken using 4-channel IR-
RGB LED illumination.

\textit{MARA} is a 6-band multispectral thermal infrared radiometer, covering
wavelengths from 5 to 100 μm. In addition to a clear filter, the remaining channels are
narrow-band filtered and can be adapted to a thermal infrared instrument aboard the
orbiter.

\textit{MasMAG} is a vector compensated three-axis fluxgate magnetometer consisting of
a digital electronics board and a sensor head. It has a long heritage from previous
space missions. Due to the extreme conditions the design covered in these missions,
the sensors can be mounted outside of the temperature controlled compartment.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1.png}
\caption{The MASCOT Landing Module}
\end{figure}

\textbf{REFERENCES}

\textbf{MASCOT science & mission update}

Science \textit{Special Issue The MASCOT Lander exploring NEA Ryugu – The mission and
its outcome.}

and references therein
MASCOT design & hardware

MASCOT Instruments

MASCOT Bus

Advanced MASCOTs and related Small Landers

MASCOT follow-on designs

C. Lange et al., (2021) MASCOT Asteroid Nanolanders: From Ryugu and Didymoon towards Future Missions at ‘2021 PDC', Apophis 2029, and Beyond, IAA-PDC-21-08-YY (this conference)

Future Mission Concepts involving MASCOTs

A. Herique et al., Acta Astr., https://doi.org/10.1016/j.actaastro.2018.03.058
Future Mission Concepts involving MASCOTs for Planetary Defense & NEO Mining

Future Mission Concepts involving MASCOTs at the PDC 2021

C. Lange et al., (2021) MASCOT Asteroid Nanolanders: From Ryugu and Didymoon towards Future Missions at ‘2021 PDC’, Apophis 2029, and Beyond, IAA-PDC-21-08-YY (this conference)

M. Ceriotti et al., How we beat 2019 PDC to NYC by 2 years, within 2 years, 2 years ago, IAA-PDC-21-08-YY (this conference)


~~~

follow our progress during the PDC 2021 at our PublicFolder
https://gla-my.sharepoint.com/:f:/g/personal/i_moore_3_research_gla_ac_uk/Eg1BG6xoL1J9i89EEGYOABFNltyvTJ8d4PrLXHZkQ?e=sXLol2