
P✉❜❧✐❝❛t✐♦♥s ♦❢ t❤❡ ❉▲❘ elibelibelib
❚❤✐s ✐s t❤❡ ❛✉t❤♦r✬s ❝♦♣② ♦❢ t❤❡ ♣✉❜❧✐❝❛t✐♦♥ ❛s ❛r❝❤✐✈❡❞ ✇✐t❤ t❤❡ ❉▲❘✬s ❡❧❡❝tr♦♥✐❝ ❧✐❜r❛r② ❛t ❤tt♣✿✴✴❡❧✐❜✳❞❧r✳❞❡✳
P❧❡❛s❡ ❝♦♥s✉❧t t❤❡ ♦r✐❣✐♥❛❧ ♣✉❜❧✐❝❛t✐♦♥ ❢♦r ❝✐t❛t✐♦♥✳

❚♦✇❛r❞ ❙❡❛♠❧❡ss ❚r❛♥s✐t✐♦♥s ❇❡t✇❡❡♥ ❙❤❛r❡❞ ❈♦♥tr♦❧ ❛♥❞
❙✉♣❡r✈✐s❡❞ ❆✉t♦♥♦♠② ✐♥ ❘♦❜♦t✐❝ ❆ss✐st❛♥❝❡
❙✳ ❇✉st❛♠❛♥t❡❀ ●✳ ◗✉❡r❡❀ ❑✳ ❍❛❣♠❛♥♥❀ ❳✳ ❲✉❀ P✳ ❙❝❤♠❛✉s❀ ❏✳ ❱♦❣❡❧❀ ❋✳ ❙t✉❧♣❀ ❉✳ ▲❡✐❞♥❡r

❈♦♣②r✐❣❤t ◆♦t✐❝❡

❝ ✷✵✷✶ ■❊❊❊✳ P❡rs♦♥❛❧ ✉s❡ ♦❢ t❤✐s ♠❛t❡r✐❛❧ ✐s ♣❡r♠✐tt❡❞✳ P❡r♠✐ss✐♦♥ ❢r♦♠ ■❊❊❊ ♠✉st ❜❡ ♦❜t❛✐♥❡❞ ❢♦r ❛❧❧ ♦t❤❡r
✉s❡s✱ ✐♥ ❛♥② ❝✉rr❡♥t ♦r ❢✉t✉r❡ ♠❡❞✐❛✱ ✐♥❝❧✉❞✐♥❣ r❡♣r✐♥t✐♥❣✴r❡♣✉❜❧✐s❤✐♥❣ t❤✐s ♠❛t❡r✐❛❧ ❢♦r ❛❞✈❡rt✐s✐♥❣ ♦r ♣r♦✲
♠♦t✐♦♥❛❧ ♣✉r♣♦s❡s✱ ❝r❡❛t✐♥❣ ♥❡✇ ❝♦❧❧❡❝t✐✈❡ ✇♦r❦s✱ ❢♦r r❡s❛❧❡ ♦r r❡❞✐str✐❜✉t✐♦♥ t♦ s❡r✈❡rs ♦r ❧✐sts✱ ♦r r❡✉s❡ ♦❢
❛♥② ❝♦♣②r✐❣❤t❡❞ ❝♦♠♣♦♥❡♥t ♦❢ t❤✐s ✇♦r❦ ✐♥ ♦t❤❡r ✇♦r❦s✳

❈✐t❛t✐♦♥ ◆♦t✐❝❡

@ARTICLE{9372861,

author={S. {Bustamante} and G. {Quere} and K. {Hagmann} and X. {Wu} and P. {Schmaus} and J. {Vogel} and F. {Stulp} and D. {Leidner}},

journal={IEEE Robotics and Automation Letters},

title={Toward Seamless Transitions Between Shared Control and Supervised Autonomy in Robotic Assistance},

year={2021},

volume={6},

number={2},

pages={3833-3840},

url={https://ieeexplore.ieee.org/document/9372861},

doi={10.1109/LRA.2021.3064449}

}



Toward Seamless Transitions Between Shared Control and Supervised
Autonomy in Robotic Assistance

Samuel Bustamante, Gabriel Quere, Katharina Hagmann, Xuwei Wu, Peter Schmaus,

Jörn Vogel, Freek Stulp, Daniel Leidner

Abstract— Assistive robots aim to help humans with impair-
ments execute motor tasks in everyday household environments.
Controlling the end-effector of such robots directly, for instance
with a joystick, is often cumbersome. Shared control methods,
like Shared Control Templates (SCTs) [1], have therefore been
proposed to provide support for robotic control. Moreover,
depending on factors such as workload, system trust or engage-
ment, users may like to freely adjust the level of autonomy, for
instance by letting the robot complete a task by itself.

In this paper, we present a concept for adjustable autonomy
in the context of robotic assistance. We extend the SCT
approach with an automatic control module that allows the user
to switch between Shared Control and Supervised Autonomy at
any time during task execution. As both support modes use the
same action representation, transitions are seamless. We show
the capabilities of this approach in a set of daily living tasks with
our wheelchair-mounted robot EDAN and our humanoid robot
Rollin’ Justin. We highlight how automatic execution benefits
from SCT features, like task-related constraints and whole-body
control.

I. INTRODUCTION

Assistive robots for people with motor impairments are

continually being improved. For instance, the ability of

research prototypes to execute tasks autonomously is steadily

increasing. This enables Supervised Autonomy, where the

human issues high-level control commands to the robot to

autonomously complete a specified task.

Many target users prefer control authority over the robot’s

movements, even if this leads to higher workloads [2].

However, directly controlling end-effector poses is cumber-

some, because humans do not naturally represent movements

in terms of end-effector positions in Cartesian space [3].

Therefore, direct control often requires undesirable mode

switches [4] and task failure is probable.

Shared Control methods have emerged as a trade-off: they

efficiently map low-dimensional user input signals to multi-

dimensional goal-directed end-effector movements, enabling

humans to be in full control whilst the robot provides support

for completing the task [5], [6], [7]. However, depending on

factors such as workload, system trust or engagement at the

moment, users may like to freely adjust the level of autonomy

on the fly.

This work is partly supported by the German Research Foundation
(DFG) within the Collaborative Research Center EASE (SFB 1320) and the
Bavarian Ministry of Economic Affairs, Regional Development and Energy
(StMWi) by means of the project SMiLE2gether (LABAY102).

All authors belong to the Robotics and Mechatronics Center (RMC),
German Aerospace Center (DLR), Münchner Str. 20, 82234 Weßling,
Germany. Contact: samuel.bustamante at dlr.de.

Fig. 1: We address the challenge of seamless transitioning between Shared
Control and Supervised Autonomy with our robotic assistants, like EDAN
(right). The State of the Art requires multiple action representations to
switch between modalities (top). In contrast, our representation allows us
to switch autonomy on the input commands x, not the output (H), leading
to smoother transitions (bottom).

In this paper, we extend the spectrum of autonomy avail-

able to users by introducing “Shared Control with Integrated

Autonomy” (SCIA). We aim that SCIA allows users to

seamlessly switch between Shared Control and autonomous

task execution. For instance, a user may start a task in Shared

Control, let the robot complete it with SCIA, and even switch

back to Shared Control again later.

One challenge in achieving seamless switches between

distinct modes in the autonomy spectrum is that they use

different action representations, shown in Fig. 1 (top left).

For instance, our implementation of Shared Control, called

Shared Control Templates (SCTs [1]), is based on multi-

phase geometric representations similar to those in the CARE

framework [8]. In contrast, our framework for autonomous

task planning and execution (Action Templates [9]) integrates

geometric planning with declarative knowledge, specified in

the Planning Domain Description Language [10]. Adjustable

autonomy as a switch between Shared Control and Super-

vised Autonomy is thus a non-trivial integration problem.

To this end, SCIA extends our SCTs framework to provide

an autonomous mode, and therefore both use the same under-

lying action representation, as seen in Fig. 1 (bottom left).

This enables seamless transitions between Shared Control

and Supervised Autonomy. More concretely, the module



responsible for autonomously completing the task, the so-

called automaton, is provided with the same shared control

interface as the user. In other words, SCTs are agnostic to

whether the input comes from the user or the automaton.

We show how SCIA enables seamless switches to Su-

pervised Autonomy on a set of experiments on our EMG-

controlled Daily AssistaNt (EDAN), a wheelchair-robot re-

search platform depicted in Fig. 1 (right). EDAN provides

Shared Control using as input either a 3DoF joystick or

surface electromyography (sEMG) signals, and SCTs. Fur-

thermore, SCT skills reason about objects and their frames

of interest, and are fully defined in task space. This enables

multiple robots to use the same skill with either control

mode. As a proof of concept we transfer a pouring skill

developed for EDAN to our humanoid Rollin’ Justin.

In summary, our contributions in this paper are: (i) pro-

viding a concept for seamless transitions between Shared

Control and Supervised Autonomy in the context of robotic

assistance; (ii) extending SCTs with a framework to enable

these seamless transitions, as in Fig. 1; and (iii) showing

how this framework enables Supervised Autonomy within

an SCT skill in a set of experiments with our robots EDAN

and Rollin’ Justin, displaying the seamless switches.

II. RELATED WORK

1) Shared and Traded Control: Shared Control implies

that the robot control variables are jointly controlled by the

human and the system, either proportionally, or split along

degrees of freedom of motion. The problem of switching

between Teleoperation, Shared Control and Autonomy is a

recurrent topic in robotic manipulaton, and is also referred

to as Traded Control.

As early as in 1989, Hayati and Venkataraman designed

a robotic system with Shared and Traded Control capa-

bilities [11]. Later, Kortenkamp et. al. [12] argued that

seamless transitions between teleoperation and autonomy are

difficult because the robot cannot know how the environ-

ment changes while the human is in control. Inagaki [13]

suggested that control should be adapted dynamically, based

on environmental factors (like safety) in different contexts.

Later, Abbink et. al. [14] proposed a set of design guidelines

for human-automation interaction, suggesting a system in

which the human user ”always remains in control, but
can experience or initiate smooth shifts between levels of
automation”.

In the context of household robotic assistance, Dragan and

Srinvasa [5] developed a Traded Control method as a mixture

of intent inference, autonomy, and Shared Control: first, the

intention of the user while on teleoperation is inferred. Then,

the user input is mapped to the end-effector space, where an

arbitration with the autonomy module of the robot takes place

through a blending function. This formalism has been widely

used, for instance by Muelling et. al. [15] on a brain-robot

interface with integrated autonomy on multiple activities

of daily living. Gopinath et. al. [7] integrated it in their

framework for autonomy customization, which enables users

to tune the autonomy capabilities of the system based on

their task preferences. Javdani et. al. use a similar framework

in which the robot assists an open-ended manipulation task,

while it discovers the goal of the user [6]. In contrast to these

works, our design of an autonomy trigger relies entirely on

the human’s explicit wish to trade control, and the trading of

commands happens in the user input space, not in the robot

configuration nor the task space (see Fig. 1).

2) Supervised autonomy: Supervised autonomy tradition-

ally includes two elements: First, declarative knowledge,

in the form of symbols, allows the robot to generate an

abstract high-level plan. Second, procedural knowledge, in

the form of geometrical operations, supports the robot to

produce low-level motion plans and execute them. Linking

these two knowledge types is non-trivial; two examples of

successful applications are the Cognitive Robotics Abstract

Machine [16] and the Action Templates [9].

Although Supervised Autonomy representations feature a

geometric description of actions, its calculation and execu-

tion is constrained by a high-level planner. With long horizon

planners like Action Templates, planning times are often

large, which may lead to problems for autonomy switches.

In order to have seamless switches of autonomy, we argue

that the plan does not only have to be correct (i.e. it solves

the task) nor geometrically smooth, but also immediate. This

is a complex technical challenge.

In the context of constraint-based action representations in

robotics, there has been work on generating robot autonomy

behaviors. For instance Bartels et. al. [17] developed an

action representation with constraints for planning, as well

as a control system for autonomous task execution. Berenson

et. al. [18] proposed Workspace Goal Regions, which define

robot goals as intuitive volumes in the workspace, and

planners to achieve them. Both of these approaches resulted

in rich geometric definitions for motions, but only an agent

exploited them as there is no human in the loop. Also

notably, Pérez-D’Arpino and Shah [19] proposed a scheme

for autonomous task execution with task-related constraints,

and allowed a supervising human to make adjustments to

motion plans in teleoperation.

III. SHARED CONTROL TEMPLATES

We build upon Shared Control Templates (SCTs), which

we originally proposed in [1] and summarize in Fig. 2. In

SCTs, a human operator controls the movements of the robot

using either a 3D joystick or an sEMG-based interface [20].

Exploiting knowledge of the task and the objects in the

world, the robot assists the user by mapping input commands

to task-relevant robot motions. This provides an intuitive

solution of the task.

A. Components
We summarize below the key aspects of this framework,

and develop the building blocks of SCIA.

1) SCT input: The user input is an input command xt,

with x ∈ ℜ3. The rationale for using ℜ3 is that it allows

either translational or rotational motions, and it works well

with our target users using sEMG sensors (see [21] for more

information).



Fig. 2: A schematic of our Shared Control pipeline, and how SCIA connects
to the existing infrastructure. We show the original formulation of Shared
Control Templates, featuring a Finite State Machine (below) for the robot
task pour liquid (taken from [1]). The user (top left) can issue commands
x ∈ ℜ3 to move the robot. We show its components x1, x2, x3 and how
they are mapped to motions of the bottle, described in detail in the text. We
introduce in this paper an Automaton, depicted in the top right, whose goal
is to finish the task given by a task definition. The automaton is deactivated
by default, but can be activated if the user presses a button, and likewise
deactivated again. The automaton generates commands on the same space x
as the user, which effectively means that the robot takes control over. When
the automaton is active, the user command is silenced.

2) Finite State Machines (FSMs): A Shared Control

Template is defined as a Finite State Machine (FSM, see

Figure 2). The key elements of the framework are states and

transitions between them. Each state represents a different

skill phase. Transitions between states are triggered when

certain pre-defined events between the objects of interest

in the workspace occur. Example: In Figure 2, transitions

depend on the distance between the mug and the bottle. The

SCT thus continually monitors the distance D between the

two objects, and will change the state as this distance reaches

pre-defined thresholds. Distance is only one example, and

we discuss more transition modalities options (like forces)

in Section IV-A.1.

3) Input Mappings with Active Constraints: Each state

in the FSM defines an Input Mapping (IM), which maps

low-dimensional user inputs x to task-relevant end-effector

motions. Example: During the first skill phase in Figure 2

(translational control), the components of x are mapped to

the translation of the grasped thermos, and the user thus

controls the translation of the bottle in space. In the state

rotate tip, user inputs x1 and x2 map to rotations of the

bottle, and x3 to its vertical translation. Input Mappings

ensure that the end-effector makes task-relevant movements,

leaving the user in full control of decisions and the speed of

robot motions. In many cases, it is also necessary to limit

the range of movement, for instance to avoid collision or

tipping the bottle over too far. Such limits are implemented

as Active Constraints (AC), which are geometric limits

affecting the robots end-effector pose (see [1] for details).

Example: during the states tilt towards target and rotate tip
the maximum tilt angle of the bottle is enforced as an Active

Constraint, to avoid spilling liquid on the table.

IMs and ACs define the manifold of allowable end-effector

poses on a given state, M(s), where M ⊆ SE(3) and s
is a state of the FSM. In other words, each state defines

a different manifold. We refer to the collection of M(s)
as the Shared Control Manifold of a task. Furthermore, the

mapping of the user command is of special interest for us.

We formalize this as follows: while in state s at an end-

effector pose Ht−1, given a user command xt the Shared

Control Template outputs a new pose Ht in Cartesian space,

Ht = ϕs(xt, Ht−1), (1)

where ϕ : (ℜ3, SE(3)) → SE(3) is the combination of IMs

and ACs. Furthermore, by definition, ϕ fulfills the following

property:

Ht−1 ∈ M(s), → ϕs(xt, Ht−1) ∈ M(s). (2)

This property reflects the principle of Shared Control:

through a low-dimensional user input, the robot actions

stay on a Shared Control Manifold, effectively reducing the

number of DoF the user has to control.

4) SCT output: The template outputs end-effector poses

Ht, represented as homogeneous transformation matrices,

that are sent to the robot’s low-level controller. Both EDAN

and Justin use a Cartesian impedance controller for the

LWR arms. EDAN also includes a whole-body controller

that coordinates the motion of the wheelchair (2DoF) and the

modified [20] arm (8DoF) to follow the target pose Ht. More

details on this approach are given in Iskandar et. al. [22].

5) Summary: An SCT supports the user in achieving a

task by providing object and task-aware mappings and con-

straints for each state of the skill, whereby the FSM monitors

progress and triggers transitions between the different phases.

To ease development, an entire SCT is stored in a YAML file,

which can be adapted and modified without knowledge of the

underlying robot control framework (see [1] for examples).

IV. SHARED CONTROL WITH INTEGRATED AUTONOMY

Our key idea for enabling seamless transitions between

shared control and autonomous modes is to implement

autonomy within an SCT. Instead of using a different action

representation, we reuse the SCT, and define an automaton
module that can provide input commands to the SCT, as

illustrated in Fig. 2. During a task in SCIA the robot always

stays within an SCT, and the input can be switched forth

and back between the user and the automaton1. This means

that the SCT is agnostic to whether a command x comes

from either of them, and applies the same state transitions,

input mappings, active constraints and whole-body control

irrespectively.

A. Autonomous Execution within a State

Given a set of planned states with its different transitions,

and IM/ACs in each state, the main question for autonomous

execution of the task is: which sequence of input commands

should be generated to pass through the different states and

complete the task? Expressed from the perspective of the

current state: which input commands enable the transition

to the next state in the FSM? We describe next how the

automaton generates these commands.



Fig. 3: Two examples of our framework’s loss function. In a), the transition
from state s to s+1 depends of the Euclidean distance ‖D‖ ∈ ℜ1 between
the mug and the bottle. Using this metric, we can compare three different
bottle positions in the real line, being bottle 3 the closest to the transition
and bottle 1 the farthest. In a different example, b), the transition does not
depend on the Euclidean distance, but rather on the angle θ of the bottle.
Projecting the angle into the real line we see that here bottle 3 is the closest
to the transition, and bottle 1 the farthest.

1) Loss function: The automaton’s immediate aim is to

arrive at an end-effector pose where a transition to the next

state s + 1 will be valid. We formalize this with a distance

metric, D ∈ ℜ, that relates the current state with the event

of a transition. We show two examples in Fig. 3. In a),

D corresponds to the Euclidean distance ‖D‖ between the

mug and the bottle. As the bottle (in hand) approaches the

goal, the transition will happen when it reaches a threshold,

denoted by a dashed line. Similarly, in b), D refers to the

rotation angle θ of the thermos. More interestingly, in both

cases we show how this metric allows to evaluate three

different bottle poses, giving the automaton clear knowledge

of when it is getting close to the next target state.

We define this metric as a loss,

L = Ds+1
s

(H), (3)

in order to evaluate which poses H can bring the robot

closer to the goal. Note therefore that L will be influenced

by the automaton’s choice on input space x, given (1).

Metric choice: Recall that this transition metric can be

any measurable scalar variable that relates any two frames

of interest in the workspace2. To name a few examples, the

SCT programmer can define a transition as a threshold in

(a) the vertical distance between the hand of the robot and

the handle of a drawer; (b) the Euclidean distance between

tip of spoon and the base of a pot; or (c), an Euler angle

between the fingers and a faucet.

Wrenches: Transitions can also be based on end-effector

wrenches, instead of kinematic goals. For instance, the SCT

skill release bottle expects a vertical force when the object

hits the table, and only then proceeds with subsequent states.

The goal of the user is, therefore, to make the end-effector

move in the direction of the expected force. In those states,

the mission of the automaton is to produce commands that

result in end-effector motions close to this desired trajectory.

More formally, the automaton loss is defined as an angle

1Examples of the switching while on a task sequence are available in the
attached video.

2This is similar to some related work in constraint-based action represen-
tations [17].

between the motion direction resultant of a command xt,

and a vector in the desired motion direction.

2) Local Optimization: With a distance metric, the goal

is to find the best command to transition to the next state for

any state and end-effector pose. This can be formalized as

an optimization problem:

x∗
t

= arg min
x

Ls+1
s

(Ht). (4)

We emphasize two points from Equation 4:

1) We minimize the loss with respect to the user com-

mand even though it is defined as a function of a frame

H . Therefore we need to use the mapping from (1).

2) Recall that the automaton does not plan a series of

commands: it greedily chooses the optimal command

at each time step. In motion planning, such a greedy

command generation could be prone to local minima.

There are two main reasons to explain the success of this

procedure in the context of shared control templates. First,

the motions are not complex, as they are generated within

one state of the finite state machine. A simple point-to-point

operation in input space often suffices to successfully traverse

a state. Second, the search takes place in the 3D input space

and not in the configuration space of the robot because it is

easier to solve the task there. This intuition comes from (2):

by searching on input space x, using ϕs, we guarantee that

the robot will stay within the manifold M(s). This greatly

limits the search space, because poses in M(s) have a higher

chance of solving the task than any random pose in SE(3).

The main idea behind Shared Control is that it assists the

human by allowing simple low-dimensional inputs to achieve

a complex task. In our design of SCIA, the autonomous

task execution benefits from this dimensionality reduction

as well: not only it allows to seamlessly trade autonomy,

but it also keeps the trajectories smooth, prevents collisions

due to the Active Constraints, and reduces the risk of local

minima. In short, we argue that the feasibility of using

such a simple greedy algorithm is a feature of the shared

control framework, highlighting that approaches facilitating

control for humans also simplify command generation for

algorithms.

Unfortunately, due to the heuristic nature of the Active

Constraints, there is not a clear way for inverting ϕs from (1),

nor is it simple to obtain a gradient. It is nevertheless straight-

forward to evaluate the mapping at any point. We therefore

define a sampling-based Evolution Strategy, described next.

3) Stochastic commands: The scale (i.e., the 2-norm)

of the 3D command x correlates with the length of the

movement on a given time t (and therefore with the speed

of the action). Without loss of generality, we disentangle

the scale and the direction of the command by modeling

it as a unit vector in ℜ3. We are interested in finding the

direction that minimizes the loss, and set the scale as a hyper-

parameter of the algorithm, γ ∈ (0, 1]. This is analogous to

the process we follow with human commands, because the

gain of the input devices (e.g., the sEMG amplifier) can be

tuned according to user’s preference.



We generate a pool of n candidate commands that we use

to find the best direction in (4). As sampling randomly from

the whole unit sphere is highly inefficient and can miss the

minima, we aim to reduce the sampling manifold. We model

the sampling pool as a von Mises-Fisher (vmF)3 distribution,

xt ∼ vMF (µx, κ), (5)

from which we sample4 the candidate commands. We thus

introduce two parameters, the mean vector µx and the

concentration scalar κ (cf. Fig. 4).

κ = 50 κ = 2 κ = 0.1

Fig. 4: Effect of the concentration parameter on vMF samples (n = 200).
The red line is µx.

4) Evolution Strategy: The choice of these parameters is

of special interest: κ relates to the exploration noise around

the mean µx. It is desirable to increase n, but it is limited on

the computational power available. Fixing these parameters

would either make the automaton slower, or hinder the way

it explores and generalizes to different scenarios.

For this reason we devised an Evolution Strategy that

adapts µx and κ during task execution. We summarize it

in Algorithm 1 and explain it next:

Algorithm 1 Algorithm for the automaton to complete a task

after an autonomy button press

Input: Current end effector pose H0. Number of samples n. Percentage of
elite samples pelite. Goal state m, and plan through states 1...2...s...s+
1...m. Scaling parameter γ.

Output: Commands in user input space x

1: Initialize µx and κ
2: while not on goal state m do
3: Sample n unit vectors xi from vMF (µx, κ)
4: for each xi do
5: compute the resulting frame Hi = ϕs(γxi, Ht−1)
6: Li = Ds+1

s (Hi)
7: end for
8: x

∗ = arg minx L
9: Take the pelite best performing samples as xelite

10: Given the current µx, estimate a new concentration κ from xelite
11: Estimate a new µx from xelite
12: Clip κ in the range [0.1, 100]
13: Issue the robot command γx∗

14: end while

Step zero: Once the autonomy button is pressed, the

automaton initializes µx as a unit vector in the direction

between the task frames of interest (e.g. the end-effector and

the task target) and κ = 3. Step one: the agent takes n

3The vMF distribution is an analogous of a 2D normal distribution
projected to a sphere, and it restricts the co-variance contours to be only
circular.

4We use an implementation of the spherical distribution that includes
rejection sampling [23].

vMF samples from (5). Step two: the automaton evalu-

ates the mapping and the loss in (1) & (3) for all the samples

(scaled by γ), and takes a percentage pelite = 20% of the

best-performing samples 5. Step three: the automaton

estimates a new κ based on the spread of the elite samples

given the current µx (i.e., the mean that generated them), and

then it estimates a new µx based only on them6. Intuition:
If the mean direction performs really well in minimizing

the loss, these elite samples will be concentrated around the

mean, the confidence of the automaton on this command

direction will be high, and κ should increase; if it does not,

the elite samples should be sparse and point towards the

minima, therefore κ should decrease to allow the agent to

explore. Step four: the automaton issues the command

that minimizes the loss (given (4), and scaled by γ), and

begins again with step one by taking n samples with the

new parameters. The automaton will keep updating µx and

κ throughout the task7. Furthermore, we clip κ to the range

[0.1, 100] to prevent excessive crunching or spreading.

To illustrate these concepts, we show the automatic com-

pletion of a grasping task on EDAN in Fig. 5. The Evolution

Strategy described here rapidly converges into a command

direction that solves the task, but it still allows the robot to

react when the task requires a change of direction, and thus

explore (and generalize to) new scenarios.

B. Task completion
Given that the automaton can now transverse a single SCT

state, the process for automatic task completion is as follows:

During Shared Control, the robot has symbolic knowledge of

the user goal. In the case of EDAN, it is either because the

user explicitly introduced it on the tablet GUI, or because

the robot inferred it. EDAN has an inference pipeline that

uses a robot vision system and position heuristics [20]. An

example of an inferred task is: if there is a mug on the table
and the user is driving a filled bottle towards it, perhaps the
user wants to start pouring some liquid.

Given this goal and information, the robot can follow the

SCT and knows the set of transitions necessary to achieve

the desired goal. As an example, if during the pouring task

in Fig. 2 the goal is to rotate the tip (state 3) and the robot

is in translational control (state 1), the robot will get a plan:

first go to state 2, then go to state 3.

If the human is commanding the actions of the robot

in Shared Control, the automaton will be ready to start

finishing the task. If the human presses the SCIA button, the

robot immediately queries this plan. Instantly, it retrieves the

current state s and the sets of transitions it needs to reach the

goal; then, it starts producing input commands autonomously

as explained before. Since the robot does not require re-

planning, we posit that this transition is seamless. We show

5We set the value of pelite the initial κ empirically. We argue κ = 3 is
reasonable as it allows to explore a significant portion of the sphere.

6Since there is no closed form solution for a maximum likelihood
estimator of the concentration parameter, we use an empirical approximation
provided by Dhillion and Sra [24].

7Only to be reset in specific cases like task completion, or moments in
which the user input is blocked to wait for the robot to finish another motion.



Fig. 5: Grasping task on EDAN. We show the robot’s measured trajectory (left), the user/automaton commands (center) and photos of EDAN while
grasping (right). In segment AB, the user explores the Shared Control Manifold, choosing from where to grasp. Notice that the end effector rotates towards
the direction of the object, as defined in the grasping SCT skill. During this time the automaton (center) is ready on the background, and we show in gray
the command it would execute if the autonomy would be started. This happens in B, then the automaton issues commands to finish the task. In BC, κ
(center) increases rapidly and stays in the maximum as the confidence in the task direction is high. In CD a change of the task direction happens, and κ
briefly decreases to allow the automaton to explore more parts of the command space. The user and automaton commands are scaled by the same factor
γ = 0.25. We emphasize how the user may stop the automaton commands with a click at any time during execution.

this in Fig. 5. The robot starts moving in the direction that

solves the task as soon as the user presses the autonomy

trigger. Therefore, the SCIA procedure circumvents what

is a known problem in adaptive autonomy, precisely that

autonomous agents cannot keep track of what the human

is doing during teleoperation [12]. Additionally, the user can

seamlessly regain control from the robot. This will happen

if either they request it within an SCT execution (e.g. with

another button press) or if the automaton finishes the task.

This simple procedure can be used to enable robots to

autonomously complete different tasks. Currently, our robots

can use Shared Control with Integrated Autonomy on several

activities of daily living. We show some examples in Fig.

5(right) and Fig. 6. We discuss the pitfalls of the local planner

in Section VI.

Whole-body control: SCTs support whole-body control

of the robot platform while the user is in control, which

increases the workspace and reachability of the robot [22].

The automaton can also use these features when it is in

control (e.g. moving EDAN’s wheelchair to open a drawer).

V. EXPERIMENTS

We present and discuss two sets of experiments with our

robots EDAN and Rollin’ Justin. These experiments aim

to show how SCIA enables Supervised Autonomy after

a button press, focusing on testing efficiency (set 1) and

robustness (set 2) of the autonomous agent. Furthermore, we

show the generality of the method by showing an example

of two robots using the same skill. All runs of the automaton

start in Shared Control and switch to Supervised Autonomy

after a button press at the start of the trial. The experiments

on EDAN were conducted with an RGB-D-based perception

pipeline for detecting and estimating the pose [20] of the

bottle, the mug, and the drawer.

A. Experiment set 1: Speed test
To measure the difference, we collected 10 successful

trials with the automaton (triggered by the experimenter),

and 10 successful trials with an expert human (EH). EH is

part of the authors, does not have any motor impairment,

and has previous experience with SCTs. EH was instructed

to solve the task as quickly as possible.

The task was a grasp & pour experiment on EDAN with

the following parameters: Phases: Grasp bottle from the

table, lift it, pour actual water in the mug, retreat from the

mug. Initialization: Hand, mug and bottle in fixed positions.

Success criteria: No collision with the bottle, no water

spilling, and water is transferred to the mug.

The results are shown in Table I. Task times are calculated

so that a fair comparison is possible, for instance by leaving

out those SCT skill states in which the experimenter had to

press the autonomy button, and also those in which EDAN

would move without a user command (for example, states

that silence the user input while the robot would orient itself).

TABLE I: Comparison of execution times (s), µ ± σ over 10 trials.

Task Expert human Automaton

Grasp (p > 0.05) 1.87 ± 0.25 2.06 ± 0.12
Pour, approach (p < 0.001) 7.10 ± 1.08 5.71 ± 0.08
Pour, retreat (p > 0.05) 8.22 ± 1.26 8.70 ± 1.01

Discussion: In one case (Pour, approach), the Automaton

was significantly faster than the EH (non-parametric unpaired

two-sided Mann–Whitney U-test), and in the others there was

no significant difference. This confirms that the Automaton

performs at least as good as the human or better, which we

expect to be an important factor for acceptance.

B. Experiment set 2: Activities of the daily living

The other key aspect of seamless autonomy is the ability

to complete a task successfully, from a good range of starting

positions where the user could trigger it. We aim therefore to

evaluate the automaton performance on different tasks while

being triggered from controlled bounding boxes. Since the

SCTs automatically orient the robot end-effector during the



Pour Pour Release Open drawer

Fig. 6: Daily living tasks our robots can complete using the automaton.

task, we fixed the starting orientation of the robots. We now

describe the task phases, success criteria, and initialization.

EDAN pour. Phases: While a bottle is grasped, ap-

proach the mug, pour a small rubber ball from the bottle to

the mug, and then move away. Initialization: Mug in random

position on a bounded surface in the table. EDAN’s hand

starting position in a random position on a bounded surface.

Wheelchair position fixed. Success Criteria: The rubber ball

is transferred successfully, no significant collision between

the robot (or the bottle) and the mug.

Justin pour. Phases: Same as EDAN, using the same

SCT skill with little parameter adaptation. Initialization: Mug

and platform position fixed. Justin hand starting in a random

position in a bounded surface. Success Criteria: Same as

EDAN.

EDAN pick & place. Phases: Grasp bottle from the

table, lift it a few centimeters, move down, release it and

move away. Initialization: Bottle in random position in a

control surface in the table. EDAN’s hand starting position

in random position in a bounded surface. Wheelchair po-

sition fixed. Success Criteria: No collision with the bottle

and bottle grasp not extremely titled, in the experimenter’s

judgment. Bottle upright after releasing.

EDAN drawer opening. Phases: Open the drawer a

few centimeters with active whole-body control. Initializa-
tion: Wheelchair position arbitrarily set by the experimenter.

Hand position fixed with respect to the wheelchair (not to

the drawer). Success Criteria: Open drawer, robot forces not

exceeding a safety threshold.

We report in Table II the success rate of both robots.

Similarly, we show the robot trajectories for EDAN’s pick

& place and pouring tasks in Fig. 7, which illustrates the

bounded surfaces we used.

TABLE II: Success rate of Activities of the Daily Living. The task was
performed on EDAN unless stated otherwise.

Task Number of trials Successful trials

Pour (with EDAN) 45 44 (98%)
Pour (with Justin) 15 14 (93%)
Grasp and Release 15 14 (93%)
Drawer opening 15 15 (100%)

Discussion: Table I and Figure 7 highlight that the au-

tomaton is effective in performing tasks of daily living, and

we validate our approach with two real robotic systems. We

show the capabilities of the system to allow switching from

Shared Control to Supervised Autonomy and finish tasks in

different settings, including a moving platform with whole-

body control, and demonstrate the generality of the concept

by transferring it to a different robotic system. This switch

Fig. 7: Robot motions (top view) during two activities of the daily living.
We depict the starting EE positions in circles (green in successful trials, red
otherwise). We show in A. the pouring motion relative to the detected mug
position (black circle, centered on (0,0)), and in B. the grasping motion
relative to the bottle position (idem). Note that the target (mug and bottle
respectively) was not located on a fixed position but on a random place
of the workspace (see text for details), and we center it for illustration
purposes. We do not show the retreat from pouring motion in A. and the
release motion in B.

is seamless. In comparison, if the system were to stop the

SCT and switch to an autonomy representation as in Fig.1

(e.g. the Action Templates) switching would be slow since

a full motion plan is required, and back and forth transitions

are difficult as the semantic state could not be easily shared

between representations.

However, we have found empirically that the automaton

success depends on whether it is started by the user in

a feasible position or elsewhere. As an example, if the

pouring movement in Fig. 7A. would start south west of

the control volume, often it would lead to task failure. This

is despite the fact that the automaton could find a task-space

trajectory towards the goal, and that it would lie on the

Shared Control Manifold, because the robot would have had

limited manipulability or the motion results in self collision.

We discuss these shortcomings in the next Section.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel concept for

human-triggered adjustable autonomy in the context of as-

sistive robotics, by expanding the Shared Control Templates

framework to include Shared Control with Integrated Au-

tonomy. Using the same action representation, users can

seamlessly switch between Shared Control and Supervised

Autonomy for task completion. In particular, we have shown

how the formalism of SCTs with its virtual fixtures allow a

black-box optimizer, the automaton, to fulfill a complex ma-

nipulation goal using local optimization. Such a framework

allows the autonomous agent to keep track of the actions of

the human (in Shared Control) and switch instantly if needed.



SCTs reason in task space and are object-centric. This

facilitates the transfer of skills between robots. However,

it entails that they are unaware of limitations of specific

robots, for instance limited manipulability. In future work, we

will account for manipulability by including workspace and

joint limits of the specific robot platform in the automaton

loss. We will then also enable avoidance of obstacles that

are not relevant to the task, and are thus not addressed by

the Active Constraints. This is included in motion planners

like CHOMP [25] or STOMP [26]. Finally, we will further

integrate the automaton with our user inference modules, and

aim to increase the planning horizon of the autonomy.

This article focuses on the technical contribution of pro-

viding a framework that enables seamless switching between

control modes. Our next step is to focus on the impact that

this has on the usability of shared control, by conducting

extensive user studies.

ACKNOWLEDGMENTS

The authors thank the EDAN and Rollin’ Justin teams at

DLR for productive discussion and continuous support, spe-

cially Adrian S. Bauer, Annette Hagengruber, Hanna Riesch,

Maged Iskandar, Milena Eisemann and Ulrike Leipscher.

REFERENCES

[1] G. Quere, A. Hagengruber, M. Iskandar, S. Bustamante, D. Leidner,
F. Stulp, and J. Vogel, “Shared control templates for assistive robotics,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 1956–1962.

[2] D.-J. Kim, R. Hazlett-Knudsen, H. Culver-Godfrey, G. Rucks,
T. Cunningham, D. Portee, J. Bricout, Z. Wang, and A. Behal, “How
Autonomy Impacts Performance and Satisfaction: Results From a
Study With Spinal Cord Injured Subjects Using an Assistive Robot,”
IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, vol. 42, no. 1, pp. 2–14, Jan. 2012. [Online].
Available: http://ieeexplore.ieee.org/document/5941028/

[3] D. Bullock, S. Grossberg, and F. H. Guenther, “A Self-Organizing
Neural Model of Motor Equivalent Reaching and Tool Use
by a Multijoint Arm,” Journal of Cognitive Neuroscience,
vol. 5, no. 4, pp. 408–435, Oct. 1993. [Online]. Available:
http://www.mitpressjournals.org/doi/10.1162/jocn.1993.5.4.408

[4] L. V. Herlant, R. M. Holladay, and S. S. Srinivasa,
“Assistive teleoperation of robot arms via automatic time-
optimal mode switching,” in 2016 11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). Christchurch,
New Zealand: IEEE, Mar. 2016, pp. 35–42. [Online]. Available:
http://ieeexplore.ieee.org/document/7451731/

[5] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism
for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, pp. 790–805, June 2013. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364913490324

[6] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, and
J. A. Bagnell, “Shared autonomy via hindsight optimization for
teleoperation and teaming,” The International Journal of Robotics
Research, vol. 37, no. 7, pp. 717–742, June 2018. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364918776060

[7] D. Gopinath, S. Jain, and B. D. Argall, “Human-in-the-loop
optimization of shared autonomy in assistive robotics,” IEEE
Robotics and Automation Letters, vol. 2, no. 1, pp. 247–254, Jan.
2017. [Online]. Available: https://doi.org/10.1109/lra.2016.2593928

[8] M. Behery, “A knowledge-based activity representation for shared
autonomy teleoperation of robotic arms,” RWTH-Aachen University,”
Master’s Thesis, 2016.

[9] D. S. Leidner, Cognitive Reasoning for Compliant Robot
Manipulation, ser. Springer Tracts in Advanced Robotics. Cham:
Springer International Publishing, 2019, vol. 127. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-04858-7

[10] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “PDDL, The Planning Version
Domain Definition Language. Version 1.2,” Yale Center for Computa-
tional Vision and Control, AIPS-98 Planning Competition Committee,
Tech. Rep., 1998.

[11] S. Hayati and S. T. Venkataraman, “Design and implementation of a
robot control system with traded and shared control capability,” in Pro-
ceedings, 1989 International Conference on Robotics and Automation,
1989, pp. 1310–1315 vol.3.

[12] D. Kortenkamp, R. P. Bonasso, D. Ryan, and D. Schreckenghost,
“Traded control with autonomous robots as mixed initiative interac-
tion,” in AAAI Symposium on Mixed Initiative Interaction, 1997, pp.
89–94.

[13] T. Inagaki, “Situation-adaptive autonomy: Trading control of authority
in human-machine systems,” in Automation technology and human
performance: Current research and trends. Lawrence Erlbaum
Associates, Inc., 1999, pp. 154–159.

[14] D. A. Abbink, M. Mulder, and E. R. Boer, “Haptic shared
control: smoothly shifting control authority?” Cognition, Technology
& Work, vol. 14, no. 1, pp. 19–28, Nov. 2011. [Online]. Available:
https://doi.org/10.1007/s10111-011-0192-5

[15] K. Muelling, A. Venkatraman, J.-S. Valois, J. E. Downey, J. Weiss,
S. Javdani, M. Hebert, A. B. Schwartz, J. L. Collinger, and J. A.
Bagnell, “Autonomy infused teleoperation with application to brain
computer interface controlled manipulation,” Autonomous Robots,
vol. 41, no. 6, pp. 1401–1422, Aug. 2017. [Online]. Available:
http://link.springer.com/10.1007/s10514-017-9622-4

[16] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mosenlechner,
D. Pangercic, T. Ruhr, and M. Tenorth, “Robotic roommates making
pancakes,” in 2011 11th IEEE-RAS International Conference on
Humanoid Robots. Bled: IEEE, Oct. 2011, pp. 529–536. [Online].
Available: http://ieeexplore.ieee.org/document/6100855/

[17] G. Bartels, I. Kresse, and M. Beetz, “Constraint-based movement
representation grounded in geometric features,” in 2013 13th IEEE-
RAS International Conference on Humanoid Robots (Humanoids).
Atlanta, GA: IEEE, Oct. 2013, pp. 547–554. [Online]. Available:
http://ieeexplore.ieee.org/document/7030027/

[18] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J. Kuffner,
“Manipulation planning with workspace goal regions,” in 2009 IEEE
International Conference on Robotics and Automation. IEEE, 2009,
pp. 618–624.

[19] C. Pérez-D’Arpino and J. A. Shah, “C-learn: Learning geometric
constraints from demonstrations for multi-step manipulation in shared
autonomy,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 4058–4065.

[20] J. Vogel, A. Hagengruber, M. Iskandar, G. Quere, U. Leipscher,
S. Bustamante, A. Dietrich, H. Hoeppner, D. Leidner, and A. Albu-
Schäffer, “Edan - an emg-controlled daily assistant to help people with
physical disabilities,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020.

[21] J. Vogel and A. Hagengruber, “An sEMG-based Interface to
give People with Severe Muscular Atrophy control over Assistive
Devices,” in 2018 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC).
Honolulu, HI: IEEE, July 2018, pp. 2136–2141. [Online]. Available:
https://ieeexplore.ieee.org/document/8512689/

[22] M. Iskandar, G. Quere, A. Hagengruber, A. Dietrich, and J. Vogel,
“Employing Whole-Body Control in Assistive Robotics,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Macau, China: IEEE, Nov. 2019, pp. 5643–5650. [Online].
Available: https://ieeexplore.ieee.org/document/8967772/

[23] E. Fraenkel, “Kent distribution,” 2017. [Online]. Available:
https://github.com/edfraenkel/kent distribution

[24] I. S. Dhillon and S. Sra, “Modeling data using directional distribu-
tions,” The University of Texas at Austin, Tech. Rep., 2003.

[25] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko,
M. Klingensmith, C. M. Dellin, J. A. Bagnell, and S. S.
Srinivasa, “CHOMP: Covariant Hamiltonian optimization for
motion planning,” The International Journal of Robotics Research,
vol. 32, no. 9-10, pp. 1164–1193, Aug. 2013. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364913488805

[26] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
2011 IEEE International Conference on Robotics and Automation.
Shanghai, China: IEEE, May 2011, pp. 4569–4574. [Online].
Available: http://ieeexplore.ieee.org/document/5980280/


