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Abstract

Many approaches for the trajectory generation for dynamical locomotion were developed in
order to handle the hybrid and non-linear nature of locomotion of compliant four-legged
robots. However, applied methods such as Central Pattern Generator, Finite State Ma-
chine, model-predictive control or non-linear optimization approaches do not allow a di-
rect and analytical generation of smoothed CoM trajectories. The Divergent Component of
Motion method is a trajectory generation method which is already successfully applied to
bipedal robots. With this method the direct generation of continuous CoM trajectories of
quadrupedals could provide advanced capabilities for the control of dynamical locomotion
in challenging terrain. The aim of this thesis is to apply the DCM method to a compliant
quadrupedal robot in order to generate CoM and limb trajectories which are executable for
this robot. For this purpose a sequnece of a compact stance description is used to describe
the gait pattern of trotting, pacing and walk without any flight phases. Based on the stance
description the geometric center point of the support polygon is calculated for a heuristic
VRP placement rule. This placement determines the VRP waypoints for the robot Bert
equipped with planar legs. These waypoints are used with the efficient DCM-method to
generate the CoM references. Further, these references are used in combination with a cubic
interpolation of the limb movement to generate the joint references by a resolved motion rate
approach. The implemented DCM-based trajectory generation was tested in a simulation
framework for the trotting and walking Bert. The joints were controlled by a PD-controller
during the simulation. In conclusion, the multi-body simulation results show that DCM can
be used to generate executable references for four-legged compliant robots. However, these
results still need to be validated by experiments on the robot Bert.

Keywords: quadrupedal locomotion, divergent component of motion, trajectory generation,
serial elastic actuators, dynamical locomotion
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Abstract II

Viele Ansätze zur Trajektorien-Generierung für dynamische Lokomotion wurden entwick-
elt, um die hybride und nichtlineare Natur der Lokomotion von elastischen vierbeinigen
Robotern zu berücksichtigen. Angewandte Methoden wie Central Pattern Generator, Finite
State Machine, modellprädiktive Steuerung oder nichtlineare Optimierungsansätze erlauben
jedoch keine direkte und analytische Generierung von glatten CoM-Trajektorien. Die Di-
vergent Component of Motion-Methode stellt eine Methode zur Trajektorien-Generierung
dar, die bereits erfolgreich bei bipedalen Robotern eingesetzt wird. Die mit dieser Methode
einhergehende direkte Generierung von kontinuierlichen CoM-Trajektorien von vierbeinigen
Robotern könnte erweiterte Möglichkeiten für die Steuerung dynamischer Lokomotion in
anspruchsvollem Gelände bieten. Ziel dieser Arbeit ist es, die DCM-Methode auf einen
elastischen vierbeinigen Roboter anzuwenden, um CoM- und End-Effektor-Trajektorien zu
generieren, welche für diesen Roboter ausführbar sind. Zu diesem Zweck wurde eine kom-
pakte Standbeschreibung des Roboters mittels der Kontaktpunkte in Serie verwendet, welche
das Gangbild für trab, pacing oder walk ohne jegliche Flugphasen beschreibt. Basierend auf
der Standbeschreibung wird der geometrische Mittelpunkt des Stützpolygons für eine heuris-
tische VRP-Platzierungsregel berechnet. Diese Platzierung bestimmt die VRP-Wegpunkte
für den mit planaren Beinen ausgestatteten Roboter Bert. Diese Wegpunkte werden in der
effizienten DCM-Methode verwendet, um die CoM-Referenzen zu erzeugen. Weiterhin wer-
den diese Referenzen in Kombination mit einer kubischen Interpolation der End-Effektoren
im Raum verwendet, um die Gelenkreferenzen mit einem Resolved Motion Rate-Ansatz zu
generieren. Das implementierte DCM-Verfahren wurde in einem Simulationsumgebung für
den trabenden und gehenden Roboter Bert getestet. Die Gelenke wurden während der Sim-
ulation durch einen PD-Controller gesteuert. Zusammenfassend zeigen die Ergebnisse der
Mehrkörper-Simulation, dass die DCM-Methode verwendet werden kann, um ausführbare
Referenzen für vierbeinige, elastische Roboter zu erzeugen. Diese Ergebnisse gilt es jedoch
noch durch Experimente auf Roboter Bert zu validieren.
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1 Introduction

1.1 Motivation

The main challenges of locomotion of legged robots are the hybrid and non-linear dynamics
of the system and the constraints of the needed contact forces of the robot with its envi-
ronment. An additional challenging subproblem of the generation of dynamic locomotion is
the design of a real-time control architecture which controls the desired robot body motion
and limb movement in uneven terrain or under unknown forces. Particularly for dynamic
locomotion, the robot has to be continuously in motion during walking or running in order
to avoid falling or tilting. For a suitable interaction with the world, the motion planning for
dynamic locomotion has to provide dynamically and kinematically feasible motion trajecto-
ries for the robot’s body and its limbs.
Therefore, the main topic of this thesis is to investigate the generation of continuous closed-
form trajectories for a quadrupedal robot with Series Elastic Actuators (SEA) in order to
perform dynamic locomotion. The selected method contains the concept of three-dimensional
Divergent Component of Motion point (DCM) and the concept of Virtual Repellent Point
(VRP). These concepts can be applied in order to generate a smoothed center of mass (CoM)
and robot limbs’ trajectories. Moreover, this method has already been successfully applied
to bipedal robots. With this concept it is possible to describe gait pattern as multi-contact
scenarios by an alternating sequence of contact stances on the ground. Therefore, this intu-
itive description of gait pattern with a couple of design parameters should be investigated
and extended for compliant four-legged locomotion. The developed extension will be tested
for dynamic locomotion on the compliant quadrupedal robot Bert. A successful implemen-
tation of the DCM and the VRP concept could result in a reduction of the complexity of the
quadrupedal locomotion model, and could provide a compact and efficient method for the
generation of feasible trajectories for compliant quadrupedal robots on demanding ground.
This has to be validated by experiments on the robot Bert after the implementation.

1.2 State of the Art

This section provides a compact overview of current state of the art on trajectory generation
methods for compliant quadrupedal robots. The research indicates the advantage of com-
pliant elements in the limb mechanism for the generation of dynamic locomotion pattern
(Alexander, 1990; Geyer, Seyfarth, & Blickhan, 2006; Holmes, Full, Koditschek, & Gucken-
heimer, 2006). These elements have the capability to store and to release energy temporally
during the stances Holmes et al. (2006). Furthermore, this enables the quadrupedal robots
to perform faster gaits, like trotting, pacing and dynamic walking compared to static walk-
ing gaits (Lakatos et al., 2018; Spröwitz et al., 2013). The application of passive compliant
actuators in legged locomotion on robots have shown a higher compatibility with different
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grounds and a higher robustness against shocks due to unexpected forces (Hutter et al.,
2012; J. E. Pratt, Krupp, & Morse, 2002).
In the last two decades several research groups developed such quadrupedal robot sys-
tems and trajectory planners for dynamic locomotion (Bledt et al., 2018; Hutter, Gehring,
Hopflinger, Blosch, & Siegwart, 2014; Hutter et al., 2016; Lakatos et al., 2018; Raibert,
Blankespoor, Nelson, & Playter, 2008; Spröwitz et al., 2013). In the following section the
focus will be on approaches of the trajectory generation of these robots. Bellicoso, Jenel-
ten, Gehring, and Hutter (2018) generate CoM trajectories as 5th order polynomial curves
on the robot system ANYmal with series elastic actuators. The splines are calculated by
solving a sequence of non-linear optimization problems to minimize the acceleration of the
CoM motion subject to non-linear inequality constraints for the Zero-Moment Point (ZMP)
(Bellicoso et al., 2018). Furthermore, in this approach the foot placement is realized and
formulated as a quadratic programming problem based on an inverted pendulum model for
legs (Gehring et al., 2013, 2016; J. E. Pratt & Tedrake, 2006). For the foot placement the
next valid capture point is calculated. This point is further used as a stabilizing term in
the above problem with a regularization term for the default feet placement for a foot of
the gait pattern (Bellicoso et al., 2018). The desired reference trajectories are tracked by a
whole-body controller (Bellicoso et al., 2017, 2018).
For a robot with compliant legs as in the approach by Spröwitz et al. (2013), the authors
apply a Central Pattern Generator (a neuronal network or finite state machine which gener-
ates joint trajectories for a desired gait based on input signals) for trotting gait for a robot
with compliant legs. They achieve to produce joint trajectories for an open loop control of
the robot, which performs robust walking on slightly leveled terrain (Spröwitz et al., 2013).
The passively compliant actuated quadrupedal robot Bert performs dynamic gaits from trot-
ting till dynamic walking with a compliant leg mechanism design. This design enables both,
to feature the structure of the dynamics of the Spring-Loaded Inverted Pendulum (SLIP)
model (Blickhan, 1989) and allows a robust control of the robot by a Finite State Machine
and a parameterization of the desired gaits (Lakatos et al., 2018).
Di Carlo, Wensing, Katz, Bledt, and Kim (2018) present a dynamic quadrupedal robot con-
trolled by a convex model-predictive control with an approximation reduced robot dynamics.
The system performs dynamic gaits from trotting with flight phases till gallop (Di Carlo et
al., 2018). The reference trajectory for the body is created to fulfill a desired body orien-
tation and velocity in space, which is commanded by user input (Di Carlo et al., 2018).
Furthermore, a contact sequence for the desired gait is sent by operator input (Di Carlo et
al., 2018).
The authors Bledt et al. (2018) present an approach for the CoM reference position calcu-
lation for the same robot based on an anticipatory weighting-strategy to predict a virtual
support polygon (Bledt et al., 2018).
The application of bipedal motion planning concepts for quadrupedal robots can be used to
reduce the motion planning problem. This can be realized through a formulation identical
to bipedal walking for dynamic gaits like trotting, bounding and pacing, where leg pairs of
the robot act like one virtual leg (Liu et al., 2019; Raibert, Chepponis, & Brown, 1986).
Therefore, an obvious consideration is to extend or implement already successfully tested
bipedal motion planning methods to quadrupedals based on the Linear Inverted Pendulum
(LIP) or the SLIP model for these gaits.
A method for bipedal walking planning is the DCM concept and the VRP concept (s. chap-
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ter 2.5). This concept provides an analytical solution for continuous 3D trajectories of the
robot’s CoM for a desired contact pattern of the feet (Englsberger, Mesesan, & Ott, 2017;
Englsberger, Ott, & Albu-Schaffer, 2015; Mesesan, Englsberger, Garofalo, Ott, & Albu-
Schaffer, 2019; Mesesan, Englsberger, Henze, & Ott, 2017; Mesesan, Englsberger, Ott, &
Albu-Schaffer, 2018; J. E. Pratt et al., 2012; Takenaka, Matsumoto, & Yoshiike, 2009). The
DCM method decomposes the CoM dynamics of the floating base robot, which follow New-
ton’s second law, into two linear first-order dynamics. One of these two dynamics is the
unstable dynamic for the DCM point in space. The other one is the stable CoM dynamic.
The CoM will converge to the DCM point and the VRP will push the DCM away (forward).
In this way, only the unstable dynamics have to be controlled wheras the stable dynamic
can be neglected (Englsberger et al., 2015; Mesesan et al., 2019). The trajectory generation
in this concept is based on defining a series of contact points on the ground (the foot place-
ment) and is followed by a mapping onto VRP waypoints, which are applied for a piecewise
interpolation (1st, 3rd or 5th order polynomial) (Mesesan et al., 2018). The DCM trajec-
tory and CoM trajectory waypoints can be computed by an efficient matrix multiplication,
resulting from the solution of the linear dynamics. Then the trajectories can be obtained by
an interpolation between the waypoints (Mesesan et al., 2018). As a result, the DCM and
VRP concept handles the hybrid dynamics of legged robot motion in a direct and intuitive
way. Consequently the search for a feasible CoM trajectory can be replaced by a manual or
automatic method selection of suitable VRP waypoints (Mesesan et al., 2018). Additionally,
a DCM-controller could be applied to a whole-body-controller of the robot (Mesesan et al.,
2017). Based on the previous method, walking algorithms for bipedal walking and dynamic
multi-contact motion were presented with robust results on leveled or compliant grounds for
a torque-controlled bipedal robot (Englsberger et al., 2015; Mesesan et al., 2019, 2018).

The results of Lakatos et al. (2018) and Spröwitz et al. (2013) show the benefits of robots
designed with intrinsic passive compliance in order to enable dynamic quadrupedal locomo-
tion. The authors present robust control approaches without a trajectory generation for the
CoM (Lakatos et al., 2018; Spröwitz et al., 2013).
However, the generation of feasible continuous CoM reference trajectories provide advanced
capabilities to control dynamic quadrupedal locomotion, for example to ensure stability in
demanding terrain or to increase the versatility. Therefore, an investigation of a directly fea-
sible trajectory generation method (Mesesan et al., 2019, 2018) on complaint quadrupedal
robots could provide a suitable motion planning approach for dynamic quadrupedal loco-
motion. In contrast to other methods, as in Bellicoso et al. (2018), a DCM-based motion
planning would provide directly smoothed CoM and limb trajectories. To achieve this,
heuristic rules based on automatic VRP-selection could be applied.



2 Fundamentals

This chapter covers the used notation in subchapter 2.1 and fundamentals of this thesis. This
includes the basics of legged robot locomotion (section 2.2) and common models of bipedal
(section 2.3) and quadrupedal locomotion (section 2.4). Further this chapter introduces the
DCM method in subchapter 2.5 and gives an overview of the robot Bert (section 2.6).

2.1 Notation

In this thesis the following notation is applied to vector variables. Bold symbols represent
vector variables or position vectors in a frame, where s in (2.1)

PsP,k (2.1)

is a vector in the frame {P} from the frame origin of {P} to the point k. If not noted
otherwise, a vector without upper left index is described in the world frame {W}. And
if not otherwise noted, a vector with no first relative right bottom index, have a origin
in the noted frame. Further, bold capital symbols indicate matrices. The homogeneous
transformation and rotation matrices are notated according to Englsberger (2016) in (2.2).[

PsP,k
1

]
= PHJ

[
JsJ,k

1

]
=

[
PRJ

JsJ − JsP
01×3 1

] [
JsJ,k

1

]
(2.2)

The equation (2.2) describes the transformation of a point k in the frame J to the frame P ,
where PHJ ∈ R4×4 is the homogeneous transformation matrix and PRJ ∈ R3×3 is a rotation
matrix, which is orthogonal and has a determinant of 1 (Englsberger, 2016). According to
Englsberger (2016) the inverse of PHJ can be determined to

PH−1
J =

[
PRT

J −PRT
J (JsJ − JsP )

01×3 1

]
(2.3)

In this work the classification by Murray, Li, and Sastry (1994) and the definition by Engls-
berger (2016) is applied to describe velocity vectors.
For this thesis the hybrid velocity is now explained (s. Englsberger (2016) for further infor-
mation). The hybrid velocity P

h νi,k ∈ R6, as a combination of ”linear and angular velocity
of a link j relative to another link i is represented in the coordinate frame that is attached
to link i”(frame {P}) (Englsberger, 2016), has the correlation to the configuration space of
the robot q̇c ∈ RNc with Nc joints,

P
h νi,k = P

hJ i,jq̇c (2.4)

4
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where P
hJ i,j ∈ R6×Nc is the hybrid Jacobian matrix (Englsberger, 2016; Murray et al., 1994).

Thereby a bottom left index is used to indicate the type of velocity. The notation I3x3

indicates e.g. an indentiy matrix ∈ R3×3 and 03×3 is a zero matrix ∈ R3×3.

2.2 Basics of Legged Robot Locomotion

Legged robots are under-actuated free-floating base systems. Free-floating describes the fact
that the robot’s base is not permanently fixed in the environment. Instead it is floating
over the ground. Therefore, the six degrees of freedom (DOF) of the base (three cartesian
coordinates and three rotational coordinates) have to be considered in the dynamic descrip-
tion of such a system. The term under-actuated means that the number of available DOF
of the lower limb (legs) joints, and therefore the available control inputs, are not sufficient
to control all DOF of the system directly, especially the DOF of the base (Ratliff, 2014;
Tedrake, 2020) . In case of a free-floating base robot the DOF of the system, the DOF for
the N actuated joints qa ∈ RN and the six DOF of the base result in equation (2.5),

y =

rbψb

qa

 ∈ R6+N (2.5)

where rb ∈ R3 are the three cartesian translation DOFs and ψb ∈ R3 are the three rotational
DOFs (roll, pitch and yaw). As a result of these characteristics, legged robots have to
generate the necessary forces and torques on the free-floating base by an interaction with
their environment in order to move the base in space as desired. The interaction of the limbs’
end effector generates reaction forces from the contact to the robot (Ratliff, 2014; Wieber,
Tedrake, & Kuindersma, 2016).
As mentioned in the introduction, one of the main challenges of the legged robot locomotion
is to place the lower limbs’ end-effectors in contact with the environment and to control the
actuated joints in a suitable way to avoid tilting or falling. This can be achieved by applying
contact forces on the robot trunk by the limbs. The dynamic equations for a multi-body
legged robot can be described according to Wieber et al. (2016) by the Lagrangain Dynamics
in equation (2.6),

M (y)

 r̈bψ̈b

q̈a

+

 −g03×1

0N×1

+C (y, ẏ) =

(
06×1

τ

)
+

L∑
i=1

JTC,i ·fC,i (2.6)

where M ∈ R(N+6)×(N+6) is the inertia matrix of the robot, C ∈ RN+6 are the coriolis and
centrifugal effects, τ ∈ RN are the joint torques and JC,i ∈ R(N+6)×3 is the i-th contact
Jacobian matrix of the i-th limb in contact, fC,i ∈ R3 is the contact force vector, where L is

the number of limbs in contact and g =
[
0 0 −g

]
∈ R3 is the gravity acceleration vector

with gravity constant g. The contact Jacobians describe the relation between the contact
forces and the DOF of the system.
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Switching between stance (limbs have contact) and swing phases (limbs have no contact)
of the limbs implies for the dynamics in (2.6) a hybrid nature due to the changing contact
events.

2.3 Models of Bipedal Locomotion

A common approach to describe the dynamic of a bipedal (or multiple legged) robot is to
apply template models for the robot and the walking. These template models reduce the
complexity of the real system by using the CoM for the dynamic description. (Kajita & Ott,
2016; Wieber et al., 2016)
Following this, the dynamics of the CoM can be described according to Newton’s second
law,

mẍ = mg + F ext (2.7)

where m is the total mass of the robot, ẍ ∈ R3 is the acceleration of the CoM and F ext ∈ R3

the sum of all forces acting on the CoM without the gravity force. The legged system can
be described as a LIP model, if the legs of a bipedal system are assumed to be mass-less
and linear variable, and if the CoM is fixed on top of the legs and concentrated in a single
point (Kajita, 2019). Therefore, F ext can be considered as the sum of the contact forces in
equation (2.6). Thereby is a further assumption a zero change of angular momentum around
x, during the swing phases (single support; only one leg in ground contact)(Kajita & Ott,
2016).
For example, in this model the limbs are alternately fixed on the ground (foot in stance)
and F ext is acting along the intersection line between the CoM and the Zero Moment Point
(Vukobratović & Stepanenko, 1972) (ZMP) (Sugihara, Nakamura, & Inoue, 2002). The
ZMP represents a point on the ground at which the horizontal moments of the CoM are zero
(Vukobratović, M. and Borovac, B., 2004) and can be considered as a torque free base joint
(Sugihara et al., 2002) (Englsberger, Ott, & Albu-Schaffer, 2013). If the ZMP is within the
contact surface of the stance foot (base of support), this contact is stable (Vukobratović, M.
and Borovac, B., 2004). According to the explanation by Englsberger (2016), the sum of
the external forces on the CoM have to be on a line of action that intersects with the base
of support or has to be designed to fulfill this criterion. Consequently the center of pressure
(CoP) has to be in the base of support. The CoP is the point on a contact surface where the
resultant moment of the contact forces is either zero (Sardain & Bessonnet, 2004) or only
has a component parallel to the surface normal vector (Goswami, 1999). For planar (flat)
contact surfaces (all contact points in one single plane) the CoP is identically to the ZMP
(Hardarson, 2002; Sardain & Bessonnet, 2004).
A restriction of the CoM movement to a horizontal plane gives the decoupled dynamic CoM
equations of the LIP in horizontal direction based on the equation (2.8) by Sugihara et al.
(2002),

[
ẍ1

ẍ2

]
=

g

x3 − rZMP,3

·

[
x1 − rZMP,1

x2 − rZMP,2

]
(2.8)
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where and rZMP ∈ R3 is the position of the ZMP. The intersection of (2.8) in (2.7) gives
the desired limb (leg) force acting on CoM for a CoM and ZMP position.

F ext +

 0
0
−mg

 = m
g

x3 − rZMP,3

·

x1 − rZMP,1

x2 − rZMP,2

0

 (2.9)

An overview of motion planning based on 3D LIP can be found in Kajita (2019). An obvious
restriction of (2.8) is that the CoM can only move on a constant height, due to the dynamics
decoupling based on limited CoM movement (Englsberger et al., 2015; Kajita & Ott, 2016).
To overcome this problem for example Zhao and Sentis (2012) designed a further development
of the LIP model. It is based on a decoupling of the 3D dynamics in sagittal and lateral
motion by a predefined piece-wise linear surface for the CoM movement. The authors planned
the lateral foot placement for given sagittal feet positions and desired sagittal velocities by
a numerical search.
A further extension of the linear inverted pendulum template model is called the SLIP, which
introduces springs in the mass-less legs (Blickhan, 1989; Geyer et al., 2006). Compared
to the LIP, this model allows the modelling of flight phases and therefore running modes
additionally to walking modes with double support phases (Geyer et al., 2006).
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2.4 Models for Quadrupedal Locomotion

The models of bipedal walking and running (inverted pendulum models) can be applied
to the template model-based motion planning of quadrupedal locomotion. Raibert et al.
(1986) report such an approach by combining pairs of legs as one single virtual leg and
applying a 3D one-legged algorithm to the virtual leg (Kajita & Ott, 2016; Raibert, 1990;
Raibert et al., 2008, 1986). Based on this approach gaits like trotting, pacing and bounding
are realizable on quadrupedal robots (Raibert et al., 1986). Furthermore, the ZMP is also
applied in the quadrupedal locomotion models. Identical to the definition of bipedal robots
by Vukobratović, M. and Borovac, B. (2004), the ZMP is also a stability margin for more-
legged dynamical walking and can be used for the motion planning and control, e.g. in
Bellicoso et al. (2018). Where this stability margin is the minimum distance between the
ZMP and the edges of the support polygon (Kajita & Ott, 2016). By that, the support
polygon is constructed by the convex hull of the contact points projections of feet on the
support plane, where the support plane is a plane perpendicular to gravity vector (McGhee
& Frank, 1968). Figure 2.1 shows the construction of the support polygon for a quadrupedal
robot. In general, if the projection of the CoM along the gravity vector to the ground is
within the support polygon, the robot will not tilt and is statically stable (McGhee & Frank,
1968).

{W}
w1

w2

w3

g
x

Figure 2.1: Schematic sketch of the support polygon construction for quadrupedal via the pro-
jection of feet points along the gravity vector (gray arrow) on a support plane. The
support plane (black dotted lines) is orthogonal to the gravity vector and align with
the lowest feet in the world frame {W}. The orange colored lines depict the edges
of the convex hull of the feet points and the green point represents the projection of
the CoM on the support plane. The black dashed lines in the support plane show
the minimum distances of the CoM projection (green dot) to the edges of the support
polygon.
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2.5 Divergent Component of Motion Method

The Divergent Component of Motion (DCM) Method is based on the approach that divides
the second order differential equations of the CoM in a stable and an unstable linear first
order dynamics (Englsberger et al., 2013, 2015; Takenaka et al., 2009).
For this the 3D DCM point is defined by Englsberger et al. (2013) in (2.10),

ξ = x+ bẋ (2.10)

where b =
√

∆zvrp
g

is the time constant of these dynamics and ∆zvrp > 0 is a desired height

of the CoM (Englsberger et al., 2013). Therefore, ∆zvrp can be considered as a kinematic
design parameter (Englsberger et al., 2015) for the walking gait. The DCM point, as a
linear combination of the CoM position and the velocity, is a point in front of the CoM in
its current movement direction. The reordering of (2.10) gives directly for b > 0 the stable
linear first order dynamics of the CoM in (2.11)

ẋ = −1

b
(x− ξ) (2.11)

Equation (2.11) shows that the CoM will follow to the DCM point. The separation in a stable
and unstable part of CoM dynamics starts by the differentiation of (2.10) and inserting (2.7)
and (2.11) in this result. This results in the linear first order dynamics of the DCM coupled
with the CoM coupled as in (2.12).

ξ̇ = −1

b
x+

1

b
ξ +

b

m
(mg + F ext) = −1

b
x+

1

b
ξ +

b

m
F CoM (2.12)

The force F CoM ∈ R3 is the total force acting on the CoM. Figure 2.2 shows the definition
of the DCM point and related forces on the CoM of a legged robot. Thereafter, Englsberger
et al. (2013) introduce a linear encoding of the F ext based on the difference of the CoM
position and the Enhanced Centroidal Moment Pivot point (eCMP) (s. figure 2.2),

F ext =
m

b2
(x− reCMP ) (2.13)

where reCMP ∈ R3 is the position of eCMP. Applying (2.13) to (2.12) results in the from
CoM decoupled dynamics of the DCM.

ξ̇ =
1

b
ξ − 1

b
reCMP + bg (2.14)

For a further simplification of (2.14) for the planning, Englsberger et al. (2013) introduced
the concept of the Virtual Repellent Point. After Englsberger et al. (2015) the VRP encodes
the total force (F CoM) acting on the CoM (Englsberger et al., 2013). With this further force
encoding variable, the VRP in (2.15),
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v = reCMP + [0 0 b2
· g]T = reCMP + [0 0 ∆zvrp]

T = x− b2
· ẍ (2.15)

where v ∈ R3 is the position of the VRP, Englsberger et al. (2013) shorten (2.14) to

ξ̇ =
1

b
(ξ − v) (2.16)

(Englsberger et al., 2013; Mesesan et al., 2018)

x
ẋ

v

rcmp

recmp

F ext

∆zvrp

F g

F CoM

x(t)

ξ
ξ̇

Figure 2.2: Sketch of the definition of DCM and VRP. The VRP is placed with an offset of ∆zvrp
over the eCMP. The total force on the CoM (F ext+m · g) is encoded by the VRP. The
blue items correspond to the CoM, the green to the VRP and the red to the DCM.
Englsberger et al. (2015)

This equation is the unstable linear first order dynamics of the DCM, which is pushed forward
by the VRP, the DCM“diverges”(Englsberger et al., 2017). The decoupled DCM dynamics in
(2.16) allows to design a control law which only has to stabilize the unstable DCM dynamics
and without the need to control the naturally stable CoM dynamics (Englsberger et al.,
2015) in real-time (Englsberger, 2016). Equation (2.15) shows that the first two components
of the VRP and the eCMP are indentical and vertical components of both differ by ∆zvrp
(s. figure 2.2) (Englsberger, 2016). Both, the VRP and eCMP could be interpreted as a
generalization of the ZMP and CMP concept to the three-dimensional space (Englsberger,
2016).
With the assumptions for the planning process reported by (Englsberger et al., 2015) the
reCMP is assumed to be identically to the desired foot point position and the CoP on the
ground and can be replaced by the foot point position rf in (2.15). This allows a selection of a
sequence of VRP waypoints in which the first two coordinates are identically to the desired
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feet placement (not limited on one level height) in order to describe the walk sequence
(Englsberger et al., 2015). A design aspect for the VRP waypoints depending on the desired
feet placement and contact properties of the surface, is to select positions which can act as
a CoM rest position (Mesesan et al., 2017, 2018). Figure 2.3 shows the general planning
and calculation process of the DCM method. A general problem formulation to describe the
multi-contact of a robot can be found in Mesesan et al. (2017). Following this formulation,
a set of L contacts of the robot limbs with the environment can be described as a stance
(Bouyarmane & Kheddar, 2012).

σ = {cl | l = 1..L} (2.17)

Where a contact

cl = (pc,Rc) (2.18)

is defined by a contact point pc ∈ R3 and the orientation of the contact frame Rc ∈ SO(3),
where the third coordinate is identical to the surface normal at the contact Mesesan et al.
(2017). Mesesan et al. (2017) define a VRP way point for each stance which can be chosen
to describe a walking sequence by a sequence of stances. Solving equations (2.11) and (2.16)
with a selected polynomial spline interpolation function fϕ from Englsberger et al. (2017)
for the VRP in (2.19) gives the solutions for the DCM and CoM trajectory according to
Englsberger et al. (2017) in (2.20) and (2.21). Thereby, a selected VRP waypoint sequence
V = [v1. . .vn]T ∈ Rn×3 is applied with n waypoints.
Thereby the desired references for VRP, DCM and CoM are interpolated segmentally be-
tween the start waypoints (vϕ,0, ξϕ,0,xϕ,0) and the end waypoints (vϕ,Tϕ , ξϕ,Tϕ ,xϕ,Tϕ) of a
segment. A segment ϕ of nϕ segments is defined as fixed-VRP or a transition-VRP phase.
During a fixed phase, the VRP waypoint is not changing and during a transition phase the
VRP is interpolated to the next waypoint. The duration of a segment is determined by Tϕ.
To ensure consistent trajectories the end points of the current segment correspond to the
start points of the next segment. The following equations (2.19) till (2.21) can be found in
Mesesan et al. (2018).

vϕ(t) = (1− fϕ(t))vϕ,0 + fϕ(t)vϕ,Tϕ (2.19)

ξ(t) = αϕ,ξ(t)vϕ,0 + βϕ,ξ(t)vϕ,Tϕ + γϕ,ξ(t)ξϕ,Tϕ (2.20)

x(t) = αϕ,x(t)vϕ,0 + βϕ,x(t)vϕ,Tϕ + γϕ,x(t)ξϕ,Tϕ + δϕ,x(t)xϕ,0 (2.21)

where

αϕ,ξ(t) = 1− σϕ(t)− e
t−Tϕ
b (1− σϕ(Tϕ) (2.22)

βϕ,ξ(t) = σϕ(t)− e
t−Tϕ
b ·σϕ(Tϕ) (2.23)

γϕ,ξ(t) = e
t−Tϕ
b (2.24)

σϕ(t) =

p∑
k=0

(
bk

(k)

fϕ(t)

)
(2.25)
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αϕ,x(t) =

(
1− ρϕ(t)− 1− ρϕ(0)

e
t
b

− e
t
b − e− tb

2e
Tϕ
b

(1− σϕ(Tϕ))

)
(2.26)

βϕ,x(t) = ρϕ(t)− ρϕ(0)

e
t
b

− e
t
b − e− tb

2e
Tφ
b

σϕ(Tϕ) (2.27)

γϕ,x(t) =
e
t
b − e− tb

2e
Tϕ
b

(2.28)

δϕ,x(t) = e−
t
b (2.29)

ρϕ(t) =

bp/2c∑
k=0

(
b2k

(2k)

fϕ (t)

)
(2.30)

In this notation
(k)

fϕ(t) means the k-th time derivation of the interpolation function. This
function has to be selected according to the reported properties in Englsberger et al. (2017).
Furthermore, with the design choices for an ensuring continuity for standing-to-walking
transition, as reported by Englsberger et al. (2017), and the terminal constraint ξn,Tϕ = vn
(i.e. the robot will stop at this waypoint) the sequence of VRP waypoint vwp ∈ R3 can be
computed in equation (2.31)

vwp =


I3×3 03×3 · · · 03×3

Aξ,0(1 : 3, :)
0n−3×3 0n−3×3 In−3×3 0n−3×3

03×3 · · · 03×3 I3×3


−1 

v1

v1

vfree
vn

 (2.31)

where

Aξ,0 = (I3n×3n −Aγ ·Aback)
−1

· (Aαβ +Aγ ·Atc) (2.32)

Aγ =


γ1,ξ(0)I3×3 03×3 · · · 03×3

03×3
. . . . . .

...
...

. . . . . . 03×3

03×3 · · · 03×3 γnϕ,ξ(0)I3×3

 (2.33)

Aback =


03×3 I3×3 03×3 . . . 03×3

...
. . . . . . . . .

...
...

. . . . . . 03×3
...

. . . I3×3

03×3 . . . . . . . . . 03×3

 (2.34)
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Aαβ =


α1,ξ(0)I3×3 β,ξ(0)I3×3 03×3 · · · 03×3

03×3
. . . . . . . . .

...
...

. . . . . . . . . 03×3

03×3 · · · 03×3 αnϕ,ξ(0)I3×3 βnϕ,ξ(0)I3×3

 (2.35)

Atc =


03×3 · · · · · · · · · 03×3

...
. . .

...
...

. . .
...

... 03×3 03×3

03×3 · · · · · · 03×3 I3×3

 (2.36)

and Aξ,0(1:3,:) denotes the first three rows of the matrix Aξ,0. Further, the vector vfree ∈
R3 · (n−3) are the waypoints which can be freely selected for the walk planning. The terminal
constraint for DCM results in a stop of the DCM at the end of the planned trajectory
(Englsberger et al., 2015). Mesesan et al. (2018) present a compact computation way to
determine the needed waypoints for the DCM reference Ξ = [ξ1. . . ξn]T ∈ R3n×3 and the
waypoints for the CoM reference X = [x1. . .xn]T ∈ R3n×3 in equations (2.20) and (2.21).
First, equation (2.20) is evaluated for t = 0 and equation (2.21) is evaluated for t = Tϕ.
Second, the equations are formulated in matrix form for all segments by using the matrix
S0 = [In−1×n−1,0n−1×1] to select the start points and ST = [0n−1×1, In−1×n−1] to select the
end points of the segments. Third, the linear systems are solved for the DCM and CoM
waypoint matrices shown in equations (2.37) and (2.38)

Ξ =
[

ΞCV
Ξcξ
] [ V

ξTn,Tϕ

]
(2.37)

X =
[
XCV

Xcξ
Xcx

]  V
ξTn,Tϕ
xT1,0

 (2.38)

where

ΞCV = (I3×3 − STo ΓξST )−1ST0 (AξS0 +BξST ) (2.39)

Ξcξ = (I3×3 − ST0 ΓξST )−1

[
0n−1×1

1

]
(2.40)

XCV = (I3×3 − STT∆xS0)−1
·STT (AxS0 +BxST + ΓxST

ΞCV ) (2.41)

Xcξ = (I3×3 − STT∆xS0)−1
·STT (ΓxST

Ξcξ) (2.42)
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Xcx = (I3×3 − STT∆xS0)−1
·

[
1

0n−1×1

]
(2.43)

and the matrices Aξ, Bξ, Γξ, Ax,Bx, Γx and ∆x ∈ Rnϕ×nϕ in the above mentioned equa-
tions are square and diagonal. These matrices include for the DCM waypoints the values of
functions (2.22) to (2.24) evaluated at t = 0 and for the CoM waypoints the function values
(2.26) to (2.29) evaluated at t = Tϕ. The initial constraint for the start CoM waypoint is
selected to x1,0 = v1. (Englsberger et al., 2015) Mesesan et al. (2018)
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Select alternating sequence of foot
positions on the ground

rfi or σi, i = 1...n

According to these stance/single
foot positions, choose a sequence of

n VRP waypoints V =
[
v1...vn

]T
which can act as CoM rest position
(eq. (2.15))with a selected value
design variable ∆zvrp

Select as starting condition:
x1,0 = v1, ξn,Tϕ = vn

Extend V to needed sequence of
fixed and transition duration

V =
[
v1,v1,v2,v2...,vn,vn

]T
and

choose a belonging vector of
duration times

Compute with eq. (2.31) continuity
ensuring VRP waypoints
(standing-to-walking)

ξϕ,0 = ξϕ−1,Tϕ

vϕ,0 = vϕ−1,Tϕ

xϕ,0 = xϕ−1,Tϕ

Compute with eq. (2.37) and
eq. (2.38) the DCM and CoM
waypoints

Interpolate piecewise between
waypoints V ,Ξ,X with eq. (2.19),
eq. (2.20) and eq. (2.21) and time t

v(t) ξ(t) x(t)

V

x1,0, ξn,Tϕ

Ξ,X

Select spline interpolation
function fϕ

V

V

fϕ

fϕ fϕ

Figure 2.3: Calculation flow of the DCM method. The boxes are calculation steps and the arrows
indicate the calculation flow and the needed signals or variables.
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2.6 The compliant quadrupedal Bert

The legged robot system Bert is a quadrupedal with serial elastic actuators (G. A. Pratt &
Williamson, 1995), which is designed to feature the structure of the dynamics of the SLIP
(Lakatos et al., 2018).Figure 2.5 shows a image of the applied robot system Bert. Figure 2.4
and table 2.1 show the kinematic and mechanical properties of Bert. The robot has eight
actuated joint DOF, two DOF for each planar leg, and it can perform dynamical gaits like
pronk, trot and dynamic walk (Lakatos et al., 2018).

{T}
h2

a

a

h1

h3

t1

r1

r2

r4

r3

t2

Figure 2.4: Schematic representation of kinematic parameters of the robot Bert. The frame {T} is
the trunk frame, where t1 is the positive forward direction. The hips align in the same
plane of the trunk (t1t2) and the 2-DOF planar front legs are placed symmetrically to
the hind legs. The positive direction of the rotation vector of the joints points is in the
positive direction of t2. The legs are encoded with RF: right front, LF: left front, RH:
right hind and LH: left hind, where r1 ∈ R3 is the LF-, r2 ∈ R3 is the RF-, r3 ∈ R3 is
the LH- and r4 ∈ R3 is the RH-foot point position.

The mechanical properties (leg position, robot design and inertias) are designed to be sym-
metric in order to match the eigenmode for a vertical bouncing motion of the robot (Lakatos
et al., 2018). The hind legs are placed symmetric to the front legs. Furthermore, the robot
legs are encompassing two equal length leg segments and two servo drives, their positions
are controlled by a PD-law via pulse width modulation (Lakatos et al., 2018). The system is
working at a rate of 1 kHz and trunk orientation is measured by inertial measurement unit
(Lakatos et al., 2018). The trunk position is measured by an optical tracking system and
the leg mass ml ≈ 0.1 kg is much smaller than the trunk mass mt ≈ 2.4 kg (Lakatos et al.,
2018). The motor positions are θ ∈ R8 and ordered according to [LF RF LH RH].
Furthermore, the final joint vector q ∈ R8 contains two DOF for each leg in the same order
as θ. Figure A.1 in the appendix shows a sketch of an articulated robot leg and the placed
joints. The CoM of the robot can only be placed in the sagittal plane, caused by the planar
leg design (Lakatos et al., 2019; Seidel, Hermann, Gumpert, Loeffl, & Albu-Schaffer, 2020).
Therefore the base features two translational and two rotational DOF (Lakatos et al., 2019,
2018; Seidel et al., 2020). With this restriction, the earlier described kinematic properties
as well as the assumption that angular velocity of the motor rotors depends only on own
spinning (de Luca & Book, 2016), the general dynamic equations (2.6) for the quadrupedal
result in (2.44),
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Table 2.1: Kinematic and dynamic parameters of the robot Bert

Symbol Name Value
h1 absolute offset in t1 0.165 m
h2 absolute offset in t2 0.103 m
h3 absolute offset in t3 0.032 m
a leg segment length 0.08 m
m total mass 2.875 kg
k spring stiffness of joint 2.7 Nm/rad
q1,lb lower limit of hip joint (front legs) -75 deg
q1,ub upper limit of hip joint (front legs) 105 deg
q3,lb lower limit of knee joint (front legs) -120 deg
q3,ub upper limit of knee joint (front legs) 120 deg
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(2.44)

where B ∈ R8×8 is the constant and diagonal motor inertia and τmotor ∈ R8 are the motor
torques.

Figure 2.5: The applied robot Bert



3 From Bipedal to Quadrupedal
Locomotion

This chapter describes the application of the DCM method to quadrupedal locomotion. It
is divided in four subsections. The first section 3.1 contains the problem formulation of
quadrupedal locomotion, followed by the section 3.2 which covers the gait definition and a
possible placement strategy for the VRP waypoints used for the motion planning. The third
section 3.3 covers the model-based trajectory generation planning and the last section 3.4
treats the topic of joint reference generation.

3.1 Problem Formulation

For the dynamical quadrupedal locomotion, or in general every dynamical legged locomo-
tion, the robot system has to solve generally two tasks.
First, to place the robot’s feet in a suitable sequence on the ground which supports a con-
tinuous forward locomotion of the robot. Therefore, the robot has to hold its feet in these
suitable positions during the stance phases of the limbs, with regard to ground unevenness
or other interactions with the environment (e.g. additional forces) in order to avoid tilting
or falling. Second, the robot has to control the desired walk sequence in real-time, in order
to move to the desired position in space.
With the basics of legged locomotion mentioned in chapter 2 in mind, we can identify two
necessary main components to solve these tasks:

� Generation of dynamically and kinematically feasible CoM and limb trajectories.

� Control of limb movements to ensure that the desired trajectories are maintained.

For the trajectory generation, the desired limb and CoM movements have to be designed to
give the possibility to fulfil the constraint of the force F ext. Therefore, the line of action of
F ext has to pass through the base of support. A possible generation approach, the DCM
method, was summarized in chapters 1.2 and 2.5. This method is employed to generate the
CoM references for quadrupedal locomotion in this thesis.
First, the dynamical locomotion of quadrupedals has to be considered for the application of
the DCM method. Second, a suitable gait definition has to be formulated. Third, a VRP
placement has to be designed. In the following, we make these simplifying assumptions in
order to provide a problem description which can be used to solve the above mentioned tasks:

18
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Assumption 3.1.1 (foot point) All contacts of the robot’s stance feet rf,i are foot points with
one single point of contact on the ground (or environment).

This is a good approximation of small robot feet. Furthermore, the robot can only apply
contact forces whose projections along the contact normal vector are positive, i.e. only push
on the ground, and not apply a contact moment. Figure 3.2 shows the assumptions and
definitions made for a quadrupedal robot. Furthermore, it is assumed:

Assumption 3.1.2 (point mass with mass-less legs) The mass of the robot legs is neglected
and the robot can be considered as point-mass, which is concentrated in the CoM of the trunk.

The multi-body system of the quadrupedal can be described by a LIP model. In this model,
the force F ext on the CoM is the resulting force of the external forces. The intersection point
of the line of action for this force with the base of support is the joint base of the LIP model,
i.e CoP or ZMP.
Quadrupedal robots (with a minimum number of 12 DOF for a six DOF floating base) can
perform a wide range of gaits and transitions between these (s. chapter 1.2). In general, one
can distinguish between static and dynamical quadrupedal locomotion, which are shown in
figure 3.1. In the static locomotion the robot is always balanced, i.e with the definition in
chapter 2.4 the CoM projection is within the support polygon at each time point. In the
static gait walk, e.g. the robot shifts only one leg per step.

dynamicalstatic

Figure 3.1: Schematic definition of static and dynamical locomotion for quadrupedal in forward
movement. The left part of the figure shows the static state, which is true for gaits
like walk. The right part represents dynamical locomotion, which is hold for gaits
like trotting or pacing. The gray lines between the foot points with ground contact
determine the convex hull of the contact feet (base of support) and the black cross
indicates the vertical projection of the CoM to a support plane (s. 2.4).

However, in the dynamical locomotion more than one leg are in the swing phases and there-
fore the support polygon is reduced to a connection line between the contact feet. This holds
for gaits like trotting, pacing, dynamical walk or bounding (Lakatos et al., 2018). In this
case the intersection point of the resulting force with the ground is to be placed and to be
held on this line or point. The robot has to be in continuous forward motion, in order to
avoid falling. Alternatively, the robot has to move in a CoM position (configuration) which
allows the robot to stop safely, i.e. in a static configuration (static equilibrium). These static
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equilibrium configurations are considered for the later motion planning. The motivation for
this selection is based on the consideration of possible robot stances for a rest position.
This is similar to the definition of multi-contact-locomotion for bipedal robots according to
Mesesan et al. (2017, 2018). Therefore, following Mesesan et al. (2018) (see section 2.5), a
possible rest position will be selected to plan a desired VRP vi. In the CoM rest position
the external force is

F ext,i = −mg (3.1)

as ẍ = 0. This represents the desired external force. Together with the gravity effect it has
to be encoded by the VRP (F CoM = m

b2
(x− v)).

The CoM rest position of the robot is defined in the following:

Assumption 3.1.3 (Projection of CoM on horizontal plane) If a configuration of the robot
exists without slipping in the contact points for a static equilibrium, mẍ = 0, with no angular
momentum around x and x is over the base of support, the projection of the CoM on the
support plane will be within the support polygon in (2.4).

Assumption 3.1.3 holds true in case of a flat or slightly uneven ground, i.e in the best case
all contact points are co-planar and all feet apply a contact force which is in the specific
friction cone and is (or have components) parallel to the gravity vector (Bretl & Lall, 2008).

F ext,i

reCMP

x

fC,2

fC,4

fC,3

fC,1

g

Figure 3.2: Definitions on a quadrupedal for DCM. The forces fC,i are the contact forces. These
forces cause the desired F ext,i for the i-th planned eCMP reCMP . For the i-th stance
F ext,i has to pass through the desired eCMP. The gray vector represent the next desired
eCMP after the transition.

In this case the convex hull of the contact points in space builds the base of support and
the foot points’ projection on a horizontal plane builds a sufficient approximation of this
area. Furthermore, the CoP is contained in the convex hull of the contact points (Wieber et
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al., 2016) and can be considered as the average of their contact points position, where the
positions are weighted by the magnitude of their contact forces (Hardarson, 2002). Therefore,
according to Wieber et al. (2016), a necessary condition for the static equilibrium on flat
ground is that the projection of the CoM along g lies within the boundaries of the planar
convex hull of the contact points in space (also for support planes with a surface normal
vector which is not parallel to g).
One has to note that the CoM projection is not equal to the eCMP, which is assumed to
be identical to the CoP for VRP planning by Englsberger et al. (2015), in particular, the
planned eCMP has to be within the base of support Englsberger (2016). But in a possible
rest position the CoP is identical to the CoM projection on the real plane of the convex hull
of contact points (Hardarson, 2002). In this thesis the assumption 3.1.3 is considered for the
foot point projection (s. chapter 2.4). Following the above mentioned points, the following
assumption 3.1.4 is considered:

Assumption 3.1.4 (Planar ground) The ground is entirely flat or slightly uneven that all
contact points are nearly in one contact plane.

The transition from one VRP waypoint to the next is placed between two swing phases
for the motion planning. Hence, the quadrupedal has at least three legs in contact with
the ground, i.e the robot is potentially in static equilibrium or can stop. Consequently, the
eCMP (CoP) could be designed to be in the convex hull of contact points and the robot
would be alternating between these stable rest positions. Of course, the robot can tilt in
the dynamical phases of a gait (just two feet in contact) and therefore the eCMP has to be
placed within in the support polygon, i.e on the line between these two contact points.
In summary, points within the support polygon or on the edge of a support polygon are
applied for the planned VRP sequence for walking on a slightly uneven terrain. The base of
support is determined by projection of the foot points to a support plane perpendicular to
the gravity vector. The VRP waypoints are constructed with these points as possible eCMP
and by equation (2.15).
The definitions and assumptions introduced here form the basis for the following chapters.

3.2 Gait Definitions

This section is dedicated to an approach that describes gait planning (also called step plan-
ning) for the DCM method, based on the quadrupedal gaits: walk, trotting, pacing and
dynamical walk (Lakatos et al., 2019, 2018; Seidel et al., 2020). Firstly, the basic gait for
static locomotion is described, namely the static walk. Depending on the kinematics of the
quadrupedal robot, the robot lifts one leg per step in order to achieve a forward movement
of the CoM over a sequence of steps. Figure 3.3 shows the fall pattern of an example walk,
where two single steps are shown without the return in a final stance. A final stance is
defined as the stance in which the front leg parallel and the hind legs are parallel. After this,
based on definitions for the walk are the dynamic gaits are described.
In the walk only one leg is swinging and a step can be determined by the phases of time in
which the leg swings and the time in of full contact on the ground in which the robot shift
in the next rest position (s.chapter 3.1).
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Figure 3.3: Gait definition scheme of the static walk. The top figure is the fall pattern of the walk,
where the gray and black bars indicate the contact time with the ground. TDS is the
double support time duration and TSS is single support time duration. The bottom
figure shows a stance sequence of two single steps of the walk. The unit vectors t1 and
t2 indicate the horizontal trunk plane and t1 points in the robot forward direction.
The black cross in the bottom figure shows a possible eCMP position in the support
polygon and the transition during the double support phases. ∆xstep is value used for
the foot point shifting in t1.

These times are now defined similar to definition for the bipedal walking (compare Engls-
berger et al. (2015)) as:

Definition 3.2.1 (double support) The time duration in which transition from a CoP ref-
erence point or VRP waypoint to the next is placed is the double support and have the
duration time TDS. This time duration corresponds to the transition phase of the VRP tra-
jectory in chapter 2.5.

Definition 3.2.2 (single support) The time duration in which a CoP reference point or VRP
waypoint is constant (fixed) is the single support and have the duration time TSS. During



From Bipedal to Quadrupedal Locomotion 23

this duration time the limbs are swinging from one contact point pc,li to the next pc,li+1
,

l = 1...4 and i = 1...n (s. chapter 2.5). This time duration correspond to fixed phases of the
VRP trajectory in chapter 2.5.

The duration time of a step (step time) is the sum of the duration time of double support
and single support phase. In the determined static walk the foot points are shifted with a
fourth of the desired step length. For this the forward step variable is introduced:

Definition 3.2.3 (step length) The step length slen is the displacement of a contact point to
its next contact point in trunk forward direction. Thereby is the variable ∆xstep the half
step length and is the displacement between the both front foot points or hind foot points in
forward direction (s. figure 3.4).

A further needed variable is the desired step height which is defined as:

Definition 3.2.4 (step height) For the foot point movement during the single support, the
variable ∆hstep is the desired step height in the vertical direction (w3) at the half of the du-
ration time.

Figure 3.3 shows in the bottom a stance sequence for two single steps of the proposed static
walk with a possible selection of the eCMP (CoP) positions in the support polygon. For the
static walk the half of ∆xstep is used as displacement between the foot points respectively.
Based on the sequence of stances in Figure 3.3 the sequence of single support, start and end
stances is defined in equation (3.2).

Σ =
{
σ1 ... σn

}
(3.2)

This sequence contains the stances according to equations (2.17) and (2.18), and is used in
the further motion planning for the VRP placement. If a contact for a limb is not in the
current stance cl 6∈ σi ∧ cl ∈ σi−1, then the limb is detached from the environment. If a
limb contact appears new in cl ∈ σi ∧ cl 6∈ σi−1, then it is attached to environment, and
the contact is held in contact, if cl ∈ σi ∧ cl ∈ σi−1, (Mesesan et al., 2017). Otherwise the
contact is detached. A quadrupedal with four legs, and thus four limbs, can maximum have
four limb contacts with the environment (s. definition 3.2.2). This applied stance description
allows directly to determine between which stances and contact points in space a limb has
later to be interpolated.
The dynamic gait trotting and pacing can be described according to Raibert et al. (1986),
where diagonal pairs (trotting) or lateral pairs (pacing) of the legs are considered as a virtual
single leg. These pairs are swinging synchronously and showed in the fall pattern in figures
3.4 and 3.5. The above present description based on stance also allows to determine these
dynamic walking gaits, i.e. without any flight phases (= no single limb contact). In the gaits
discussed so far, the fall pattern is designed with duration times and the specific touch down
sequence for the gait. These duration times can be selected arbitrarily in order to modify the
gait properties for changing requirements, e.g. for new terrain requirements, gait transition
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or motion modification, and the specific kinematic requirements of the legged robot.
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Figure 3.4: Gait definition scheme of the trotting walk. The top figure is the fall pattern of trotting,
where the gray and black bars indicate the contact time with the ground. TDS is the
double support time duration and TSS is single support time duration. The bottom
figure shows a stance sequence of two single steps. The unit vectors t1 and t2 indicates
the horizontal trunk plane and t1 points in the robot forward direction. The black
cross in the bottom figure shows a possible eCMP position in the support polygon and
the transition during the double support phases. ∆xstep is value used for the foot point
shifting in t1.

The dynamical walk can be defined by a touch down sequence: left hind, left front, right
hind, right front, similar to the above static walk, whereby the next foot point is lifted before
the next foot touches down (Lakatos et al., 2018). Therefore, the dynamical walk has phases
with only two feet in contact and is not statically stable at all times (Lakatos et al., 2018)
compared to the walk in figure 3.3.
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Figure 3.5: Gait definition scheme of the pacing walk. The top figure is the fall pattern of pacing
gait, where the gray and black bars indicate the contact time with the ground. TDS
is the double support time duration and TSS is single support time duration. The
bottom figure shows a stance sequence of two single steps. The unit vectors t1 and
t2 indicates the horizontal trunk plane and t1 point in the robot forward direction.
The black cross in the bottom figure shows a possible eCMP position in the support
polygon and the transition during the double support phases. ∆xstep is value used for
the foot point shifting in t1.

The definitions in 3.1 requires that a VRP waypoint has to be chosen, which have a eCMP

(remark (2.15): reCMP = v −
[
0 0 ∆zvrp

]T
), which is in the support polygon. With the

above stance sequence definition (eq. (3.2)), a VRP waypoint is defined for each stance by
the geometric center gσ ∈ R2 of its support polygon in (3.3)

vi =

[
gσ,i
0

]
+
[
0 0 ∆zvrp

]T
(3.3)
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3.3 Trajectory Generation

Based on the stance definition and the determination of the VRP, the DCM method from
section 2.5 can be applied to generate a continuous and smoothed CoM reference for a desired
robot motion determined by steps in 3D space. For this purpose, the algorithm of figure 2.3
is used. The spline interpolation function fϕ in Englsberger et al. (2017) has to be selected,
according to the desired interpolation degree p . Figure 3.6 shows the resulting trajectories
for a robot in trotting gait, p = 1 and the example value in table 3.1. The limbs (s. figure
3.7) are interpolated during the single support phases between the contact points with a
cubic function (s. Englsberger et al. (2017)).
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Figure 3.6: Interpolation example of the trajectory method for p = 1. The reference created for
the values in table 3.1 and a forward trotting robot. The green lines indicate the
VRP, the red lines the DCM and the blue lines the CoM, the solid lines indicate the
interpolation in the forward direction (w1), the dashed lines the horizontal direction
(w2) and the dotted lines the vertical direction (w3). The detail shows the standing-
to-walking condition realized by (2.31). The lines in the second and third direction are
constant due to the limitation of the applied robot (s .chapter 2.6)

Thereby the interpolation in the third direction (vertical direction) is split in two segments
with an additional waypoint in the desired step height ∆hstep at the half time of the duration
(s. defintion 3.2).
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Table 3.1: Parameters for example trajectory generation

Variable Value
∆zvrp 0.17 m
TDS 0.2 s
TSS 0.3 s

gait type trotting

Figure 3.7 shows a reference generation example of the interpolation degree of 5 for fϕ in
combination with the desired limb interpolation (3rd degree). The quantities of the VRP,
DCM and CoM are constant in the second and the third direction, because the robot Bert
(s. chapter 2.6) can only place the CoM in one plane and therefore the second and third
coordinate are constant in an ideal trotting walk.

Figure 3.7: Example of the trajectory method for p = 5. The reference created for the values in
table 3.2 and a forward trotting robot. The green solid line indicates the VRP, the
red line the DCM and the blue line the CoM in the first coordinate. The dashed lines
are the second direction and the dotted lines are the third direction. The gray lines
indicate the limb reference of legs 1 and 4. The black lines indicate the limb reference
of legs 2 and 3. The solid black and gray lines are the interpolation in the forward
direction (w1), the dashed lines the horizontal direction (w2) and the dotted lines are
the vertical direction (w3).
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Table 3.2: Parameters for example trajectory generation in figure 3.7

Variable Value
∆zvrp 0.16 m
TDS 0.1 s
TSS 0.4 s

∆xstep 0.06 m
∆hstep 0.03 m
nsteps 6

gait type trotting

3.4 Joint Reference Generation

The previously shown trajectory generation method gives the reference for the CoM and the
limbs.
These references can be applied to the joint reference generation by the resolved motion rate
approach. In this solution method for the inverse kinematic problem, the Jacobian matrices
of the robot are used in a pseudo inverse J+ ∈ RN×m in combination with a feedback of the
error signal ∆rf of the task coordinated as reported by Siciliano (1990) and Siciliano et al.
(2003) in a transformation q̇ = J+(ṙf + ∆rf ).
Further W

h JW,T ∈ Rm×N is the hybrid Jacobian of the trunk link of the robot, where m is the
number of task DOF, and W

h JW,ki is the hybrid Jacobian of the shank link of a robot’s leg.
And rfid ∈ R3 is the desired foot point position in the world and ṙfid ∈ R3 is the desired
velocity of this foot point. Furthermore, xd ∈ R3 is the desired CoM position and ẋd ∈ Rm

is velocity in the world frame. With the propagation formula (Englsberger, 2016) the hybrid
Jacobian of rf,i can be determined to

W
h JW,fi =

[
I3x3 −WRki [kirk,fi×] WRT

ki

03x3 I3x3

]
W
h JW,ki (3.4)

where kirk,fi = [0, 0,−a]T , [r×] is the skew operator for a three-dimensional vector and
WRki is the rotation matrix between a shank link and the world. Now the relative Jacobian
between the trunk link and the foot point result in

W
h JT,f =


W
h JW,f1
W
h JW,f2
W
h JW,f3
W
h JW,f4

−

W
h JW,T
W
h JW,T
W
h JW,T
W
h JW,T

 (3.5)

Equation (3.5) can be divided in two parts. The first part comprises the columns which
describe the transformation of the base DOF. The second part are the N columns, JA,
which describe the transformation of the actuated DOF. The pitch angle velocity feedback
is used for a compensation of the trunk pitch rotation.

W
h JT,f = [.., jpitch,JA] (3.6)
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The pseudo inverse can be calculated with equation (3.7), where D and W are the diagonal,
square regularization and weighting matrices.

J+ = (Wh JA
T W W

h JA +D)−1
·
W
h J

T
A W (3.7)

These above mentioned equations can be applied to calculate with the current foot point
and CoM position the desired joint velocity q̇d to

q̇d = J+ {ṙfd − ẋA,d +K1 [(rfd − xA,d)− (rf − xA))] + jpitchq̇pitch} (3.8)

where q̇pitch is the current pitch angular velocity, K1 ∈ Rm×m is a diagonal, square gain
matrix and

rf(d) =

rf1(d)

...
rf4(d)

 ∈ Rm (3.9)

ṙf(d) =

ṙf1(d)

...
ṙf4(d)

 ∈ Rm (3.10)

xA,(d) =

x(d)

...
x(d)

 ∈ Rm (3.11)

ẋA,(d) =

ẋ(d)

...
ẋ(d)

 ∈ Rm (3.12)

are the stacked position and velocity vectors of the CoM and foot points. The damping
matrix entries are selected to small values (e.g. of 1e-12) in order to prevent singularity
issues. The presented formula is later applied to provide the joint reference for a point-to-
point control. For that, the given joint velocity reference is numerically integrated in the
framework. Figures A.2 and A.3 in the appendix show a reference example for the values in
table 3.2 based on the applied method.



4 Implementation of the Method

This chapter contains a short description about the implementation of the DCM method for
quadrupedal locomotion on the robot Bert. It is divided in three parts. First, the imple-
mentation framework and the model is described in subchapter 4.1, followed by a summary
of the motion planning in section 4.2. Finally the applied motion control is presented in
subchapter 4.3.

4.1 Robot model description and Framework

In order to test and simulate the formulated DCM-based method a model of the robot Bert
(s. chapter 2.6) is implemented into an existing Simulink model. The robot’s kinematic
model is thereby described and defined by a XML-based Universal Robotic Description For-
mat (URDF) file (Sucan & Kay, 2019) (s. in appendix A.4). In the Simulink model the
LucaDynamics-library (DLR’s custom dynamics library) is used to provide forward kine-
matic functions and values of the state variables of the robot (y, ẏ etc.).
The Simulink model (s. appendix A.4) has five subsystems and figure 4.1 shows a schematic
overview of the model. The numerical calculation of the robot model is placed in the block
robot. The step size must be selected to 50 µs or smaller for a stable calculation of the multi
body model.

Augmentation

High Level Control

(s. chapter 4.2)

- trajectory Planer()

(s. chapter 3.3)

- compute Desired-

Joint Speed()

(s. chapter 3.4)

Low Level Control

(s. chapter 4.3)

robot

- robot model

Luca Dynamics

- motor model

- spring model

plotting system

feedback (y, ẏ, τ ,θ, θ̇, ...)

τmotor
τ d

x, ẋ

W
h Jrobot

WHrobot
qd, q̇d

Figure 4.1: Overview of the extended Simulink model. The bold titles are the names of the sub-
system blocks and the arrows show the applied signals. WHrobot represent the global
matrix of the homegenues transformation matris of the robot links and W

h Jrobot repre-
sent the global hybrid Jacobian matrizes of the robot links. The robot model of Bert
has 9 links.

This block comprises the LucaDynamics model function (robot multi-body dynamics, con-
tact model (s. (2.44))), the motor model and spring model of the joints (s. appendix

30
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A.3.1). The block Augmentation (AUG) contains the augmentation of the feedback bus of
the robot’s model block and provides kinematic and dynamic information. These signals
contain the homogeneous transformation matrices from the link frames to the world frame,
the hybrid Jacobian matrices of the links and the CoM values in the world frame. The next
block High Level Control (HLC) includes an extension of the reference generation presented
in this thesis. The extension encompasses two versions. The first version is an open loop
approach, which applies a simple analytic inverse for each planar robot leg (s. A.1) for the
joint reference. The second version applies the method presented in chapter 3.4. The motor
control for the simulation model is placed in the block Low Level Control (LLC)s and apply
the desired joint reference. The last block Plotting System represents a subsystem for the
signal plotting and output of these for later documentation.
The kinematic model of the robot is formulated in the file URDFrealBert2.urdf and allows
a simulation of the robot Bert version greyBert with eight DOF (s. chapter 2.6) with a
floating base of three DOF (rb1 , rb2 , ψb2). The DOF of the roll angle is neglected for simula-
tion, because only a small angle movement was observed. The floating base is placed in the
origin of trunk frame with an equal orientation (s. figure 2.4). The foot point of each leg is
modeled by one small capsule.
The extension of the framework allows to command a number of steps for the robot in trunk
forward direction and to perform these steps. The robot moves from an initial stance to a
final stance with parallel front and hind feet.
The Simulink model controller.slx (s. in the appendix A.4) contains an existing control
framework for greyBert (control environment of Lakatos et al. (2019, 2018); Seidel et al.
(2020)) and is extended in this thesis (sub-model trajgen walking.slx ). This framework
could be applied for experiments. Furthermore, MATLAB functions are implemented as
a workaround for the used LucaDynamcis forward functions, because no library for these
functions exists for the processor of the Bert robot yet.

4.2 Motion Planning

The extension of the framework consists of two main MATLAB function blocks. The first
one is called the trajectoryPlaner. In this block the reported DCM functions of chapter 2.5
are implemented (s. folder DCMfunctions and MultiContactPlaner). It calculates for given
parameters of the user control bus a desired stance sequence in space in forward body di-
rection, i.e. the quantities v(t), ξ(t),x(t), ẋ(t), rf (t) and ṙf (t). The time step ∆t is chosen
equal to 1 ms and the interpolation between the way points (s. figure 2.3) is calculated at
each time step. Thereby the iteration from one to the next waypoints of X,Ξ and V is
based on the time duration phases Tϕ. In the subsequent simulation, the duration times for
the double and single support phases are selected globally. In the implementation the set
duration times and contact points are mapped to the needed number of fixed and transition
phases in order to realize steps represented by the selected stances. After the designated
number of steps has been completed, the system can be triggered again and applies the
current stance as a new initial stance σ1.
The robot Bert can only place the CoM in the sagittal plane and thus can only control the
CoM in this plane (s. chapter 2.6). Therefore the VRP planning is implemented accord-
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ing to the procedure greyBert VRP planning in A.2. In that, the geometric center of the
support polygon is projected along the forward trunk direction and ensures no violation of
the stability margin. The stability margin is selected as minimum distance to the next sup-
port polygon edge in the case of stance with more than two contact feet. Furthermore, two
functions are implemented for the VRP placement based on the above described procedure
(s. chapter A.2) in which one function always considers the stability margin and the other
continuously places the next VRP forward, i.e. places the eCMP on a support polygon edge
in the cases that the last VRP is on the edge or the next VRP waypoint can not be placed
behind the last one. This leads to no planned backward movement of the CoM, but involves
the risk of tilting, since this point is not a suitable rest position for a static equilibrium
(compare chapter 2.4 and 3.1). Therefore this should and is only set for stances which are
not the finial stance or the start stance, because in the other stances one point of the base
of support chosen as planned eCMP (or CoP) (s. chapter 3.1).
The contact forces are considered to be feasible with the definitions and assumptions (s.
chapter 3.1) made for the real Bert robot, i.e. be within the friction cone for the assumed
ground surface and be always fC,i3 ≥ 0.
The second main MATLAB-function block is called the computeDesiredJointSpeed, which
contains the calculation according to chapter 3.4. The current CoM and foot point position
is thereby calculated by the forward kinematic in equations (4.1) and (4.2), where ∆hCoM
is the offset vector of the trunk frame origin to the CoM.[
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4.3 Motion Control

The selected control law for the point-to-point control of the robot’s joint reference (s.
chapter 3.4) in simulation is a proportional-derivative (PD)-law according to de Luca and
Book (2016) for robots with flexible joints in absence of gravity. Latter can be assumed for the
leg swing-phases, because the mass of the legs can be neglected (s. chapter 3.1). Further, with
this control law it is desired to stabilize the desired equilibrium state q = θ = qd = θd, q̇ = θ̇
(de Luca & Book, 2016). This control approach is chosen for a first investigation of the
generated joint trajectories in the simulation. The control law is determined to

τmotor = KP (θd − θ)−KDθ̇ (4.3)

where KD ∈ RN×N and KP ∈ RN×N are positive-definite and symmetric gain matrices de
Luca and Book (2016).
Further, the desired motor position θd is determined with the right side of equation (4.4) for
the contact stance needed joint torque τ d = KP (qd− q) +KD(q̇d− q̇), where Ks ∈ RN×N

is the symmetric (diagonal and with entries of k) spring stiffness matrix.

τ = Ks(θ − q) → θd = K−1
s τ d + qd (4.4)
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The above equation are implemented, because the already implemented motor model in the
simulation require a desired motor torque which is the reference for τ (s. appendix A.3.1).
The joint springs of the SEA are assumed to be linear in robot system and the gain value
identified for the greyBert (s. chapter 2.6) are reported in table 4.1.

Table 4.1: Values of KP and KD for the robot Bert

Symbol Description Value
kp1 Gain for hip joints 16 Nm/rad
kp3 Gain for knee joints 1.6 Nm/rad
kd1 Damping gain for hip joints 3.375e-2 (Nm · s)/rad
kd3 Damping gain for knee joints 4e-3 (Nm · s)/rad
kd13 Damping gain between joints 4.8e-3 (Nm · s)/rad

The present motor controller runs in the simulation at 1 kHz. The values in table 4.1 are the
results of a manually tuning in order to achieve an equilibrium state for constant commanded
joint values. Note that equations (4.3) and (4.4) are only planned to apply in the simulation,
because in the real robot system a position based controller is already implemented.
The real Bert controller applies a motor position control-law for θd, i.e. only require a desired
motor position. For the later experiments will be θd = qd applied with respect to de Luca
and Book (2016).



5 Simulation

In this chapter selected simulation results are reported for the trotting gait and walk gait.
These simulation runs were chosen to show the observed behavior of the robot model in
combination with the present motion planning and control 1. The chapter is divided in three
parts. In the first section 5.1 the simulation base is described, followed by results of the
trotting gait 5.2. In section 5.3 results of the static walk are reported.

5.1 Simulation base

Due to the reported restriction of the applied robot system (s. chapter 2.6) only the trotting
and walk gait were considered and tested. In the pacing gait, the robot has to move the CoM
also in its transverse plane, because the planned eCMP are placed alternating on the line of
support of the lateral foot points, which are in stance (s. chapter 3.2). A CoM movement
in the transverse plane can not be controlled by the robot Bert (s. chapter 2.6). The simu-
lation of these trotting and walk gaits had the purpose to test the kinematic and dynamical
realization of the present method for the robot Bert. Therefore, the model’s behavior was
investigated using the present stance-based gait definition and the DCM-generated CoM
references. Afterwards, experiments should be conducted on the real robot system.
The robot model was placed in an initial position short of the ground and its t1t3-plane
was set identically to the w1w3-plane. At the start of the simulation the robot was dropped
on the model ground. After the time required to reach a steady standing, i.e. no strong
movement of the feet, the system was manually triggered to start walking. This caused the
robot to perform the desired number of steps.
The described design parameters (s. chapter 3.2) of the DCM-based motion planning were
tuned during the simulation process. The aim of the tuning was to find a parameter set
which allows the robot to achieve the planned references of the CoM and the limbs. Sum-
marized, these design parameters of the gaits are:

� TSS ← duration of the single support phase, i.e. duration in which the limbs are swing-
ing and the VRP is constant. In this thesis TSS is constant and equal for all single
support segments during walking.

� TDS ← duration of the double support phase, i.e. duration in which the the VRP
transition is performed. In this thesis TDS is constant and equal for all double support
segments during walking.

� ∆zvrp ← kinematic design parameter of the desired average height of the CoM over the
ground. This parameter also determines b, the time-constant of the DCM dyanmics

1The simulation data of all performed runs can be found in the project folder (s. appendix A.4)
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(s. (2.16)), due to b =
√

∆zvrp
g

.

� p← the degree of the interpolation function fϕ, which is applied for the interpolation
between the VRP waypoints. A degree of 5 is recommended to increase the smoothness
of the VRP, DCM and CoM trajectories and also for smoothed motor/joint torques,
since the differentiability of the VRP trajectories increases with higher degrees (En-
glsberger et al., 2017).

� ∆xstep ← design parameter for the stance planning. The parameter determines the
offset between two contact points of the front or hind leg pairs in the forward direction
(s. chapter 3.2). For pacing and trotting this parameter can be selected to half of the
desired step length. For the walk this parameter can be selected to a fourth of the step
length. In this thesis the parameter is set globally and equally for all single steps.

� ∆hstep ← design parameter for the stance planning. This parameter determines the
desired step height (s. chapter 3.2), which is used for interpolation in the vertical
direction. In this thesis the parameter is set globally and equally for all single steps.

Note that the parameters TDS, TSS,∆xstep and ∆hstep have not been set to constants for all
steps in the motion planning.
In this work, however, constant parameters are used for each simulation run to investigate
the behavior of the robot model when walking on a planar ground for different parameter
sets.

5.2 Simulation results of the Trotting Gait

In this section the results of a selection of simulation runs are reported for the trot gait.
Figure 5.1 shows the plotted results of the VRP signal in the first and second direction in
the world frame of run 40 in table 5.1. Thereby, the real quanities of v(t) was calculated by
equation (2.15) and for this the CoM acceleration was approximated with the MATLAB-
gradient(). This was applied in all subsequent VRP plots, too. The VRP oscillates around
the desired VRP reference (constant waypoint) in the single support phases and follows the
reference in the transition phases (double support). Moreover, the plot shows an overshot
with each VRP waypoint transition phase. Figure 5.4 shows the quantities of the VRP,
DCM and CoM in the first and third direction. In this plot (and in the other plots of run 40,
too) the first 0.5 s show the dropping of the robot model on the ground and the transient
oscillation. After the robot model ends with the step sequence, the VRP converges to the
desired reference.
Furthermore, figure 5.2 shows the recorded DCM point of this run and figure 5.3 shows the
records of the CoM calculated from the multi-body model and the CoM of the trunk link.
The CoM of the trunk and the DCM calculated with this CoM are in the DCM and CoM
plots reported (e.g. s. figures 5.3 and 5.2). The trunk CoM record is shown in the CoM
plots, because its position is applied as reference in the joint reference generation (s. chapter
3.4). This is based on the model simplification of mass-less legs (s. chapter 3.1) and the
assumption that only the CoM of the trunk is the relevant mass. Quantities caused by the
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trunk CoM are plotted as brighter lines in the figures. The CoM of the trunk shown in figure
5.3 is close to the reference in third direction. But with each step the trunk CoM sinks a few
millimeters in and then moves towards the reference. The CoM of the whole system (dark,
solid line) is ≈ 1.5 mm lower than the trunk CoM and shows the same behavior in the third
direction. Both CoMs show the same behavior in the first position and velocity direction.
In figure 5.2 the signal which is caused by the trunk CoM oscillates around the reference
in the third direction. In the first direction one can see that the DCM overshots with the
double support phase (compare also to figure 5.4). This corresponds to the overshot of the
CoM after the double support phase. In the double support phase the robot moves its CoM
forward, but too far and the system steers it back after the overshot. This slowing down
during the single support phases leads to the desired minimum velocity being exceeded.

Figure 5.1: Simulation record of the VRP of the trotting walk in the first (w1) and second direction
(w2). The green solid line represents the calculated VRP in the first direction (forward)
and the dashed line represents the VRP in the second direction (horizontal). The gray
lines indicate the VRP reference. This plot corresponds to run 40 in table 5.1.
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Figure 5.2: Simulation record of DCM of the trotting gait. The red solid line represents the DCM
in the first direction (w1, forward). The dashed line indicates the DCM in the second
direction (w2, horizontal) and the doted lines indicates the DCM in the third direction
(w3, vertical). The dark red lines correspond to a DCM calculation based on the
whole-body CoM. The brighter red lines represent the DCM calculated for the trunk
CoM. The gray lines represent the applied DCM reference. This plot corresponds to
run 40 in table 5.1.



Simulation 38

Figure 5.3: Simulation record of the CoM of the trotting gait. The top plot shows the record of
the CoM in the first direction (w1, forward). The solid lines represent the positions
and the dashed lines represent the CoM velocity in the first direction. The bottom
plot shows the record of the CoM in the third direction (vertical). The solid lines are
the positions and the dashed lines are the CoM velocity in the third direction. In both
plots the blue dark lines represent the quantities of the CoM for the whole multi-body
model (trunk mass + leg masses). The brighter blue lines represent the quantities of
the CoM for the trunk mass and the gray lines indicate the applied CoM reference.
On the right is the scale of the velocity. This figure corresponds to run 40 in table 5.1.
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Figure 5.4: Plot of the quantities VRP (green lines), DCM (red lines) and CoM (blue lines) in the
first (w1) and third (w3) direction. The solid lines represent the first direction and the
doted lines represent the third direction. On the right is the scale of the quantities in
the third direction. The gray lines indicate the references. This figure corresponds to
run 40 in table 5.1.

Moreover, figure 5.5 reports the recorded limb movement of run 40 in the world frame.
The control was able to follow the foot point references with a delay of a few milliseconds.
Furthermore, the robot model holds the foot points at the desired position during the stance
phases of the legs. However, the desired reference in the vertical direction were not achieved.
Figure 5.5 shows the joint reference and the recorded values of the signals. The values for
the hip joints were sufficiently tracked. The same applies to the knee joints in the swing
phases. In the stance phases (foot has contact with ground) the values provided by the joint
generation method were not achieved.

Table 5.1: Parameters for selected simulation runs

Run ∆zvrp TDS TSS ∆xstep ∆hstep nstep p gait type
40 0.16 m 0.05 s 0.4 s 0.04 m 0.03 m 6 5 trotting
46 0.16 m 0.1 s 0.2 s 0.06 m 0.03 m 6 5 walk
65 0.17 m 0.4 s 0.5 s 0.05 m 0.02 m 6 5 trotting
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Figure 5.5: Simulation records of the robot limbs in run 40 in the world frame. The upper plot
shows the values of the front legs (LF, RF). The bottom plot shows the values of the
hind legs (LH, RH). The blue lines represent the first (w1) direction and the red lines
the third (w3) direction. The solid lines correspond to the left legs and the dashed
lines to the right legs. The gray lines indicate the references. This figure corresponds
to run 40 in table 5.1.
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Figure 5.6: Simulation records of the robot’s leg joints in run 40. The upper plot shows the values
of the front legs (LF, RF). The bottom plot shows the values of the hind legs (LH,
RH). The blue lines represent the hip joints (q1) and the red lines the knee joints (q3).
The solid lines correspond to the left legs and the dashed lines to the right legs. The
gray lines indicate the references. This figure corresponds to run 40 in table 5.1.

On average, the DCM follows the desired reference and converges in the final stance to the
final VRP. The CoM (of the trunk and the whole system) follows the reference in the first
and third direction (w1, w3), but the CoM velocity oscillates strongly during the single sup-
port phase (s. figure 5.3) and overshots at the end of a double support phase. The desired
average maximum CoM forward velocity was 0.15 m/s and the record average maximum
forward velocity was around 0.20 m/s at a step length of 0.08 m and a step time of 0.45 s.
For run 65 larger TDS and TSS were selected (s. table 5.1), a lower step height and a higher
half step length compared to run 40. Figure 5.8 shows the VRP during the simulation. For
a better visualization of the model’s behavior during the performed trotting gait the model’s
dropping to the ground was cut out. Figure 5.7 shows an example of the three first steps
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of the trotting robot model of the simulation of run 65. The robot started in an initial
stance and with a double support phase (s. figure 5.11). The stills show the sequence of the
alternating single and double support phases.
The VRP still oscillates around the reference in the single support phases, but also in the
double support phases. However, the strong overshot at end of the double support phases
does not occur in the first direction compared to the above presented simulation. In figure
5.9 the DCM has smaller oscillations in the first direction compared to 5.2 and is closer to the
references. During the single support phases (time duration in which the VRP is constant,
s. figures 5.11 and its detail plot 5.12, the DCM still oscillates. The CoM figure 5.3 shows
the recorded CoM in the first direction close to the reference. During the single support
phases one can see the same behavior in run 40. However, the slowing down of the CoM is
stronger here and leads to a short backward movement of the CoM (s. figures 5.10 and 5.12).

1.40 2.02 2.50 2.77

3.45 3.78 4.28 4.82

Figure 5.7: Sequence of stills of the simulation run 65 for the first three steps. The sequence begind
in an initial stance and with a double support. After this, the alternating sequence of
the double support phases (all four legs in stance) and single support phases (two legs
in stance) are shown till the fourth single support. The bottom numbers indicate the
time point of the stills corresponding to the plots of run 65 in seconds.
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Figure 5.8: Simulation record of the VRP of the trotting walk in the first (w1) and second direction
(w2). The green solid line represents the calculated VRP in the first direction (forward)
and the dashed line represents the VRP in the second direction (horizontal). The gray
lines indicate the VRP reference. This plot corresponds to run 65 in table 5.1.

Figure 5.9: Record of DCM of the gait walk. The red solid line represents the DCM in the first
direction (w1,forward). The dashed line indicates the DCM in the second direction
(w2, horizontal) and the doted lines in the third direction (w3, vertical). The dark red
lines correspond to a DCM calculation based on the whole-body CoM. The brighter
red lines represent the DCM calculated for the trunk CoM. The gray lines represent
the applied DCM reference. This plot corresponds to run 65 in table 5.1.
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Figure 5.10: Record of CoM of the gait walk. The top plot shows the record of the CoM in the
first direction (w1, forward). The solid lines represent the positions and the dashed
lines represent the CoM velocity in the first direction. The bottom plot shows the
record of the CoM in the third direction (w3, vertical). The solid lines represent the
positions and the dashed lines the CoM velocity in the third direction. In both plots
the blue dark lines represent the quantities of the CoM for the whole multi-body
model (trunk mass + leg masses). The brighter blue lines represent the quantities of
the CoM for the trunk mass and the gray lines indicate the applied CoM reference.
On the right is the scale for the velocity. This figure corresponds to run 65 in table
5.1.
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Figure 5.11: Plot of the quantities VRP (green lines), DCM (red lines) and whole-body CoM (blue
lines) in the first and third direction. The solid lines represent the first direction and
the doted lines represent the third direction. On the right is the scale of the quantities
in the third direction. The gray lines indicate the references. This figure corresponds
to run 65 in table 5.1.

Figure 5.12: Detail plot of plot 5.11. This plot shows quantities VRP (green lines), DCM (red
lines) and whole-body CoM (blue lines) in the first direction (w1) for the first two
seconds. The solid lines represent the first direction. On the right is the scale of the
quantities in the third direction. The gray lines indicate the references. This figure
corresponds to run 65 in table 5.1.

Figure 5.13 shows the limb movement during simulation 65. The plots show the same delay
behavior as for the simulation of run 40. However, the model is here closer to the reference
in the third direction and the feet movement in the first direction is smoother than in the
previous run. After trying to take off a foot, one can see that the front feet detach a few ms
to late from the ground. This is also true for the hind legs, but with a smaller effect for the
movement in the first direction.
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This behavior can be seen in the simulation run 40, too (s.figure5.5).
The joint record in figure 5.14 shows the same characteristics as in the previous simulation
run. However, an improvement in the stance phases of the legs (compare 2.5 s till 3.5 s in
bottom plot of figure 5.14, i.e. in the stance of RH) and in the swing phases of the legs is
noticeable.

Figure 5.13: Records of the robot limbs in run 65 in the world frame. The upper plot shows the
values of the front legs (LF, RF). The bottom plot shows the values of the hind legs
(LH, RH). The blue lines represent the first direction and the red lines the third
direction. The solid lines correspond to the left legs and the dashed lines to the right
legs. The gray lines indicate the references. This figure corresponds to run 65 in table
5.1.
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Figure 5.14: Records of the robot leg joints in run 65. The upper plot shows the values of the
front legs (LF, RF). The bottom plot shows the values of the hind legs (LH, RH).
The blue lines represent the hip joints (q1) and the red lines the knee joints (q3). The
solid lines correspond to the left legs and the dashed lines to the right legs. The gray
lines indicate the references. This figure corresponds to run 65 in table 5.1.

On average, the DCM in simulation run 65 follows the desired reference and converges in
the final stance to the final VRP. The CoM (of the trunk and the whole system) closely
follows the reference in the first and third direction (w1, w3), but the CoM velocity oscillates
strongly during the single support phase, which leads to a back movement of the CoM (s.
figure 5.10). Furthermore, the CoM overshots at the end of a double support phase. The
desired average maximum CoM forward velocity was ≈ 0.125 m/s and the record average
maximum forward velocity was ≈ 0.16 m/s at a step length slen of 0.10 m and a step time
of 0.9 s.
The model was able to perform the desired number of steps in the above presented simu-
lations of the trotting gait. However, the desired joint reference in the stance of a leg was
not achieved for the knee joints and a oscillating of the quantities (VRP, DCM and CoM)
occurred, which could be reduced by a larger step time, especially with a larger TDS.
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5.3 Simulation results of the Walk Gait

In this section the results of a simulation run for the walk gait are reported. Figure 5.15
shows the plotted results of the VRP signal of run 46 in the world frame in table 5.1. The
signal in forward direction (first direction) shows a strongly oscillating VRP (or eCMP)
along the references.

Figure 5.15: Record of the VRP of the gait walk on the ground. The green solid line represents
the calculated VRP in the first direction (w1, forward) and the dashed line shows
the VRP in the second direction (w2, horizontal). This plot corresponds to run 46
in table 5.1. The gray lines indicate the VRP reference. The applied waypoints were
determined with the continuous forward version of the method introduced in chapter
4.2.

Furthermore, figure 5.16 shows the recorded DCM of this run and figure 5.17 shows the
records of the CoM of the whole system and the CoM of the trunk link. The VRP plot in
the forward direction indicates a shift after the end of the six global steps (six global steps
are equal to 24 single walk steps). This becomes clear in the DCM plot (s. figure 5.16).
The DCM is also oscillating strongly around the reference. The same is valid for the CoM.
However, the CoM is closely to the reference in the first single step of a leg, but it also shifts
away toward the end.
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Figure 5.16: Record of DCM of the gait walk. The red solid line represents the DCM in the first
direction (w1, forward). The dashed line shows the DCM in the second direction (w2,
horizontal) and the third direction (w3, vertical). The dark red lines correspond to
a DCM calculation based on the real CoM. The brighter red lines indicate the DCM
calculated for the trunk CoM. The gray lines represent the applied DCM reference.
This plot corresponds to run 46 in table 5.1.
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Figure 5.17: Record of CoM of the gait walk. The top plot shows the record of the CoM in the
first direction (w1, forward). The solid lines represent the positions and the dashed
lines represent the CoM velocity in the first direction. The bottom plot shows the
record of the CoM in the third direction (w3, vertical). The solid lines represent
the positions and the dashed lines represent the CoM velocity in the third direction.
In both plots the blue dark lines represent the quantities of the CoM for the whole
multi-body model (trunk mass + leg masses). The brighter blue lines represent the
quantities of the CoM for the trunk mass and the gray lines indicate the applied CoM
reference. On the right is the scale for the velocity. This figure corresponds to run
46 in table 5.1.
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Figure 5.18: Plot of the quantities VRP (green lines), DCM (red lines) and CoM (blue lines) in the
first and third direction. The solid lines represent the first direction and the doted
lines represent the third direction. On the right is the scale of the quantities in the
third direction. The gray lines indicate the references. This figure corresponds to run
46 in table 5.1.

The limb and joint movement are shown in figures 5.19 and 5.20. The limb movement follows
approximately the references. The plot of the limbs (s. figure 5.19) shows the insufficiently
tracked feet movement in the third direction. Additionally, it shows a delay compared to
the references and back slipping at the beginning of a swing phase. It is striking that there
is an increasing shift between the recorded foot points and the desired references. This is
more pronounced in the movement of the hind feet. As in the trotting gait, it can also be
shown for the walk (s. figure 5.20) that the hip joint reference could be tracked accurately
compared to the knee joints. In case of the walk, a large offset between the references and
the record for the knee joints occurs.
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Figure 5.19: Records of the robot limbs in run 46 in the world frame. The upper plot shows the
values of the front legs (LF, RF). The bottom plot shows the values of the hind legs
(LH, RH). The blue lines represent the first direction and the red lines the third
direction. The solid lines correspond to the left legs and the dashed lines to the right
legs. The gray lines indicate the references.
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Figure 5.20: Records of the robot leg joints in run 46. The upper plot shows the values of the
front legs (LF, RF). The bottom plot shows the values of the hind legs (LH, RH).
The blue lines represent the hip joints (q1) and the red lines the knee joints (q3). The
solid lines correspond to the left legs and the dashed lines to the right legs. The gray
lines indicate the references.

Figure 5.21 shows an example of a walk cycle for the walk gait (take off of LF − RH −
RF −LH) of the simulation run 46. The robot started in an initial stance and with a double
support phase (s. figure 5.11). The stills show the subsequent sequence of the alternating
single and double support phases of the individual steps.
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1.50 1.771.53 1.80 2.03

2.20 2.27 2.40 2.60 2.73

Figure 5.21: Sequence of stills of the simulation run 46 for the first walk cycle of the four legs
(take of: LF −RH−RF −LH). The sequence begins in an initial stance and with a
double support. After this the alternating sequence of the double support phases (all
four legs in stance) and single support phases (three legs in stance) are showed till
the touch down of LH and movement in the double support (last still). The bottom
numbers indicate the time point of the still corresponding to the plots of run 46 in
seconds.

In the appendix results of a walk simulation with a VRP placement are reported, which use
the gσ for the VRP waypoints planning.
The simulation of the walk gait showed strong oscillations in the quantities (VRP, DCM and
CoM) and shifting away from the references. Furthermore, the tracking of the desired joint
references was not sufficient for the knee joints.



6 Discussion and Conclusion

6.1 Summary and Discussion

The goal of this thesis is to adapt the already successfully applied DCM method from bipedal
locomotion to quadrupedal locomotion. The DCM method (s. fundamental chapter 2.5)
allows to handle the bipedal locomotion problem of the generation of CoM trajectories in
an analytical and efficient way. The solution for this locomotion problem are kinematically
and dynamically feasible CoM and limb trajectories. In chapter 3.1 the basic approach of
the DCM method is applied to the problem formulation of quadrupedal locomotion. For
quadrupedal walking, just as for bipedal walking, a feasible resulting force on CoM for a
given possible stance (support area) has to be found, in order to ensure a stable contact
and a forward motion of the CoM. Or, equivalently, a feasible step area for a foot has to be
found to support a desired CoM motion. Thereby the applied simplification of the multi-
body floating base system is the LIP template model. In this model the line of action of the
resulting force on the CoM has to point through the base of support.
For quadrupedal walking on mainly planar ground an appropriate point in the support poly-
gon has to be chosen as a desired eCMP for the VRP waypoint planning. The support
polygon is calculated as the convex hull of the projection of the contact feet on a plane per-
pendicular to the gravity vector, i.e. the support plane, in this thesis. With the assumption
that each point in this support polygon is a projection of a suitable CoM rest position (grav-
ity compensation and no additional perturbation and forces acting) on the support plane,
the center of the support polygon can be chosen as a desired eCMP.
Thereby, a suitable eCMP (or CoP) for the motion planning would be a point in the base of
support. However, in this thesis a point in the above mentioned support polygon is selected
for VRP waypoint planning. The first two coordinates of the desired VRP waypoint are
set equally to the first two coordinates of this selected point. A desired CoM trunk height
∆zvrp is added to the third coordinate of the chosen point. Such a point can directly be
determinated in the case of three legs in stance and is limited for the robot Bert to be in
the sagittal trunk plane. The VRP placement has to be limited, because the robot can only
control the CoM in this plane and the chosen VRP position determines the interpolation of
the CoM trajectory in space. In the present planning, the motion planning is always able to
select an appropriate point of the support polygon for the VRP way point planning.
However, for an arbitrarily uneven ground (i.e. not all contact points are co-planar) the
assumptions made in this thesis (s. chapter 3.1) are not valid and the true support area of
the quadrupedal has to be calculated (Bretl & Lall, 2008) for each planned stance in order
to find a projection point for a CoM rest position. Implementing a solution to this problem
goes beyond the scope of the work. Nevertheless an overview of possible solutions is provided
below.
The authors Bretl and Lall (2008), for example, present an approach to test the membership
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of desired CoM positions in the projection of the nonlinear convex support area. Another
approach could be to approximate the support area (or polygon) for the planning, according
to Lakatos et al. (2018) and select a point of this area as the planned eCMP. Furthermore,
a pseudo-CoP on a hyperplane could be computed for the convex hull of the contact points
in space and be selected for this support area, e.g. as in Sardain and Bessonnet (2004)
reported. A further solution approach for the VRP/eCMP planning could be to constrain
the desired eCMP to be in a potentially stable support polygon, as in the method applied
by Winkler et al. (2015), or in the base of support (Winkler, Farshidian, Pardo, Neunert, &
Buchli, 2017).
The gait definition (s. chapter 3.2) in this thesis is based on the stance description in Bou-
yarmane and Kheddar (2012) (Mesesan et al., 2017). According to the gait-specific touch
down sequences, a stance sequence of the robot can be determined. For this purpose, the
number of required stances for one step is derived from the fall pattern of the trotting, pac-
ing and walk gait. The step sequence is designed to start in an initial stance and ends in
a final stance with parallel front legs and parallel hind legs. The spatial shift distances in
the forward direction are determined by the design variable ∆xstep. The stance according
to double support or single support is mapped to desired duration times of the trajectory
segments. In this thesis, the time duration for the fixed and transition segments are selected
globally with fixed values. Further, a globally desired trunk CoM height ∆zvrp is applied for
the motion planning. The definitions of the DCM method (s. chapter 2.5) allow a place-
ment of desired eCMP at different ground levels (Englsberger et al., 2015). However, in this
thesis walking on a flat ground is assumed. The developed gait description and application
of the DCM-method in this thesis result in a very compact gait description that requires
only a few parameters (TDS, TSS, ∆zvrp, p, ∆xstep, ∆hstep) for the motion planning. The
motion planning can provide the desired CoM trajectories in a compact and analytical way
for further planning and control. In conclusion, this gait description can be used to specify
any trot, pace or walk pattern, with at least one limb in contact with the ground in each
stance. It is also conceivable to describe a gait pattern that includes a transition between
these gait types using the present planning method. The determined static walk gait in this
thesis is no dynamical gait (s. chapter 3.1), but can be applied as a base for a dynamical
walk description. For this purpose, an additional time parameter could be used to determine
the time point before the next foot point touches down at which the next foot point has to
lift off. The realization of the dynamical walk would provide a more stable dynamical gait
compared to the trotting gait, because in dynamic walking there is a period of time when
three feet are in contact with the ground (Lakatos et al., 2018).
In order to test the present application of the DCM method to quadrupedal locomotion,
an exiting simulation framework was extended for a multi-body model of the robot Bert.
This DCM-based framework was applied for a simulation to investigate the kinematic and
dynamic possibilites on the robot Bert for the first time, as far as the author is aware. The
framework allows the robot to perform a desired number of steps forward (or backward). Due
to the kinematic restrictions of the robot (s. chapter 2.6), the simulation used a floating-base
with two DOF in the robot’s sagittal plane and a possible pitch rotation of the trunk link.
The selected simulation runs (s. chapter 5) show a possible application of the DCM method
to quadrupedal robots and the generated CoM trajectories. Thereby, the results in chapter
5 show that the CoM is able to follow the DCM and oscillates around the references. This
leads to a CoM oscillating close to the reference. The generated limb and CoM trajectories
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(for trotting and static walk) are tracked by the position-controlled joints, where desired
joint positions are provided by a resolved motion approach (s. chapters 4.2 and 4.3). The
applied control method for the simulation was not be able to follow exactly the reference (s.
figures 5.6 and 5.20). This could be due to an insufficient consideration of the elasticities of
the SEA in the control approach. Additionally, only the transformation of the rigid torque
to a desired motor position (s. chapter 4.3) used in the simulation, could be insufficient to
close the discrepancy between motor position and link position in stance for flexible joint.
This issue is noted in Seidel et al. (2020) for the robot Bert and has to be considered in
following experiments.
Furthermore, the un-constraint contact force, i.e. the forces are considered to be suitable
in this thesis (s. chapter 3.1), could be the reason for the oscillations (s. VRP and DCM
plots in chapter 5.2). For this reason, the implicit assumption of sufficient and well-designed
contact forces during the leg stand could be an oversimplification. In addition, the applied
manual control parameter tuning for gain matrices showed a trend to instability for larger
values than those in table 4.1 in combination with the joint reference generation method.
Additionally, too large values for the gain matrix K1 result in instabilities.
The performed simulations show that for TDS ≥ 0.5s the magnitude of the oscillation are
reduced.
In the performed simulation runs, the motion planning and motion control always provided
references, which were within the kinematic ranges (s. chapter 2.6) and lower than the
maximum absolute joint velocity (10 rad/s (Lakatos et al., 2018)) of the robot (s. appendix
A.3.2).
The achieved average forward velocities of the trotting gait were lower in the simulation
than the reported results of the robot Bert according to Lakatos et al. (2018). The foot
point tracking in the simulation plots shows that the robot was able to perform the desired
movement. During the swing phases of the legs the movement has a delay compared to the
references. The reason for this is a too late release of the feet from the ground and a failure
to adjust to the absolute reference.
A further restriction is the limitation of CoM movement in the sagittal robot plane. This
reduces the theoretical possibilities of the CoM planning compared to a quadrupedal with 12
actuated DOF. Therefore, the VRP (or eCMP) placement is limited to be on the direct for-
ward line of the trunk. A 12 DOF quadrupedal with a possible point selection or constraint
on the full base of support would allow further investigations of a DCM-based gait design.
For this purpose, a step planning parameter could be applied for the foot point shift distance
in the horizontal robot trunk plane. In addition, the globally selected duration times of the
trajectory limit the investigation of impacts of these design parameters on motion behavior.
For this reason, the motion planning with varying time duration of the single and double
support phases has to be further investigated. Mesesan et al. (2017) present an approach for
an automatic multi-contact transition planer for the DCM method to humanoid (bipedal)
robots. This approach could be adapt for DCM-based planning method for quadrupedal
robots. An investigation of such an approach for DCM-based quadrupedal locomotion could
provide insight into the use of varying duration times on challenging ground (uneven or
compliant ground).
The main advantage of the DCM method, namely to control the unstable DCM instead of
the naturally stable CoM dynamic, was not applied in this thesis. The further design and
application of the reported DCM-tracking control for bipedal robots according to
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Englsberger et al. (2017) and Englsberger et al. (2015) to quadrupedal robots could improve
the reference tracking of the present DCM-based quadrupedal motion planning in the fu-
ture. This is associated with the further application of a step adjustment method for uneven
terrain, which is already reported for bipedal locomotion (Englsberger et al., 2017, 2015).
The existing control framework of the robot Bert (s. chapter 4.1) was extended with a
DCM-based trajectory generation for subsequent experiments. However, due to the Corona
pandemic, final tests and the performance of the planned experiments were not possible. The
application of a whole-body torque control approach could offer an alternative to the control
approach used in this thesis. Such a control approach, e.g. the applied control framework
in Mesesan et al. (2019) for a bipedal, would allow to optimize the base accelerations, joint
accelerations and the contact forces with subject to the kinematic and dynamic constraints
of the robot. For a future application of such a control approach the realization on the robot
Bert has to be examined. A further control alternative for a trajectory control could be a
feedback linearization approach for robots with flexible joints according to de Luca and Book
(2016). Here, too, the possibility of implementation on the robot Bert has to be considered
and tested.

6.2 Conclusion

This thesis presents the first investigation - as far as the author knows - of an application of
the DCM method from bipedal to quadrupedal locomotion. For this purpose, the common
gaits trotting, pacing and static walk are described as an example for the step planning in
the proposed stance description. As a result, the simulation performed in this thesis shows
the possibility of an application of the DCM-based trajectory generation to quadrupedal
robots. The implemented DCM-based motion planning can set a foundation for further
investigations and extensions of the DCM application to quadrupedal robots.
A possible further extension could be a DCM-tracking control and whole-body-torque-control
in combination with a fast and efficient support area-based VRP planning. Another possible
extension could be a step adaption to generate suitable CoM trajectories also for challenging
terrain under perturbations. An investigation of impacts of the SEAs on the DCM-based
gait parameters could provide more insights to this kind of motion planning. Moreover, the
fundamentally implementation of the dynamical walk gait could be tested and extended.
Finally, an extension of the robot Bert to 12 actuated DOF (3 DOF for each leg) would
improve the possibilities of the DCM-based motion planning and future extensions of the
present approach.
However, these results still need to be validated by experiments on the robot Bert.
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A Appendix

A.1 Robot Leg

Figure A.1 shows a sketch of the planar robot leg with the DOF of the motors for the SEAs.

q3 = q2 − q1
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q3 = q2 − q1

Figure A.1: Schematic sketch of one planar leg of the robot Bert. The joints q1 and q2 act as
pully and result in the knee joint q3. The hip joint is affected by the joint q1 and the
motor position θ1 (black parts). The gray parts are affected by both SEAs. The linear
torsion springs have the stiffness k. (Lakatos et al., 2018)

The two joint DOF of a leg are coupled by equation (A.1), where q3 is the resulting knee
joint DOF and only q1 and q2 are actuated by the SEAs (Lakatos et al., 2018), where q1 is
the hip joint DOF.

q3 = q2 − q1 (A.1)

From equation (A.1) follows directly the joint torque τ3 for one leg in equation (A.2).

τ3 = τ2 − τ1 = k(θ2 − q2)− k(θ1 − q1) = k((θ2 − θ1)− (q2 − q1)) (A.2)
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A.2 VRP placement

In this section the VRP placement procedure is reported.
Procedure greyBert VRP planning correspond to the function vrpPlacementHyperplaneGe-
omertric XX() in the folder MultiContactPlaner (s. appendix A.4). The function vrpPlace-
mentHyperplaneGeomertric XX() contiFor in the same folder calculates the VRP waypoints
continues forward, i.e. the next VRP waypoints is always equal or fore the last VRP in the
forward direction. The difference between these functions are that the latter violates the
static stability margin, which only results in a different behavior in case of the gait static
walk. The function vrpPlacementHyperplaneGeomertric ideal() applies only gσ for the VRP
planning. The function vrpPlacementHyperplaneGeomertric ideal() applies only gσ for the
VRP planning.
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Procedure greyBert VRP planning

input: Σ, etrunk (unit vector of the robot trunk)
output: V = [v1...vn]T

foreach σ of Σ do
vi ← [gσ, ∆zvrp] ;

end
v1 ← v1 ;
for i = 2 to n− 1 do

determine the number of contact nc in σi ;
determine the direction vector of d← vi − vi−1 ;
dsign ← determine the sign of the projection of d in etrunk ;
if nc == 2 then

if vi on the forward line: vi−1 + dsign5etrunk ∧ dsign > 0 then
vi ← vi

end
else

project vi−1 on the line pointing form vi−1 forward until an intersection with
support line

end

end
if nc >2 then

if vi on the forward line: vi−1 + dsign5etrunk ∧ dsign > 0 then
vi ← vi ;

end
else

if vi not on the forward line: vi−1 + dsign5etrunk ∧ dsign > 0 then
project vi on the forward line ;

end
if vi not on the forward line: vi−1 + dsign5etrunk ∧ dsign < 0 then

project vi on the forward line ;
shift vi until minium distance to a support polygon edge is violated;

end

end
if vi on the forward line: vi−1 + dsign5etrunk ∧ dsign < 0 then

shift vi forward until the minium distance to a support polygon edge is
violated ;

end

end
else
vi ← vi

end

end
vn ← vi+1 ;
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A.3 Simulation

This section contains extended information about the used simulation framework and sim-
ulations results.
The simulation runs presented in chapter 5 were selected from the runs performed. All other
runs can be found in the remote project folder (s. appendix A.4).

A.3.1 Further Information of the simulation Bert model

The already implemented motor model in the simulation requires a desired motor torque
which is the reference for τ and integrates twice equation (A.3) in order to provide θ.

θ̈ = B−1(τmotor − τ ) (A.3)

The already implemented spring model computes the torque joint by

τ = Ks(θ − q) +Ds(θ̇ − q̇) (A.4)

where Ds ∈ RN×N is the square and diagonal damping gain matrix with value of 1.1499
Nm · s/rad for the hip SEAs and a value of 0.6123 Nm · s/rad for the knee SEAs. These
values were selected for a critical damping to solve a simulation issue. This problem was
caused by the contact model of the framework and could have occurred due to the small
total mass of the robot. This caused the robot to be pushed in the positive vertical direction
(bouncing), resulting in forward and backward slippage in case of no damping in the spring
model.
Note that in the simulation the model applies q3 (s. chapter A.1) for the calculation. The
real robot applies a position control for the joint angles q1 and q2. Therefore q2 can be
computed with (A.1) in the experiments and with respect to (A.2).
The entries of B are selected to 0.0001 kg ·m2, because the applied Bert motors are assumed
to have a small moment of inertia.
Furthermore, an already implemented friction model at joint torque level (Coulomb friction
by an offset and viscous friction by a linear gain) can be activated in the Simulink model.
The values are selected to 0.0 for the coulomb friction and to -0.02 for the viscous friction.
For the entries of the weighting matrix W in chapter 3.4 a value of 100 is selected and the
entries for the gain values of the first and second task coordinate of K1 are selected to 8
and for third coordinate to 12.

A.3.2 Joint Reference

Figure A.2 shows a plot of the joint velocity in a simulation run for the method introduced
in chapter 3.4. The plot in figure A.2 shows the corresponding joint reference to figure A.2.
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Figure A.2: Desired joint velocity resulting by the implemented method for an example parameter
set in chapter 3.4. The joint velocities are not violated the absolute maximum of 10
rad/s.

Figure A.3: Desired joint angles resulting by the implemented method for an example parameter
set in chapter 3.4. The joint limits in chapter 2.6 are not violated.



Appendix 68

A.3.3 Further results

Figure A.4 shows the plotted results of the VRP signal of run 46 in table 5.1 for a ideal VRP
placement, i.e. with the gσ as planned eCMP.

Figure A.4: Record of the VRP of the gait walk in the first and second direction of the world
frame with an ideal VRP placement. The green solid line represents the calculated
real VRP in the first direction (forward) and the dashed line shows the VRP in the
second direction (horizontal). This plot corresponds to run 46 in table 5.1. The gray
lines indicate the VRP reference and the applied waypoints were determined by gσ.

Furthermore, figure A.5 shows the recorded DCM of this run and figure A.6 shows the records
of the true CoM and the CoM of the trunk link.
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Figure A.5: Record of DCM of the gait walk with ideal VRP placement in the world frame. The
red solid line represents the DCM in the first direction (forward). The dashed line
shows the DCM in the second direction (horizontal) and the third direction (vertical).
The dark red lines correspond to a DCM calculation based on the whole-body CoM.
The brighter red lines indicate the DCM calculated with the trunk CoM. The gray
lines represent the applied DCM reference. This plot corresponds to run 46 in table
5.1, where the VRP waypoints are gσ (s. figure A.4).
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Figure A.6: Record of CoM of the gait walk in the world frame. The top plot shows the record of
the CoM in the first direction (forward). The solid lines represent the positions and
the dashed lines represent the CoM velocity in the first direction. The bottom plot
shows the record of the CoM in the third direction (vertical). The solid lines represent
the positions and the dashed lines represent the CoM velocity in the third direction.
In both plots the blue dark lines represent the quantities of the CoM for the whole
multi-body model (trunk mass + leg masses). The brighter blue lines represent the
quantities of the CoM for the trunk mass and the gray lines indicate the applied CoM
reference. The right scale is for the scale for the velocity. This plot corresponds to
run 46 in table 5.1, where the VRP waypoints are gσ (s. figure A.4).

The limb and joint movement are shown in the figures A.7 and A.8.
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Figure A.7: Records of the robot limbs in run 46 with ideal VRP placement in the world frame.
The upper plot shows the values of the front legs (LF, RF). The bottom plot shows
the values of the hind legs (LH, RH). The blue lines represent the first direction and
the red lines the third direction. The solid lines correspond to the left legs and the
dashed lines to the right legs. The gray lines indicate the references, where the VRP
waypoints are gσ (s. figure A.4).
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Figure A.8: Records of the robot leg joints in run 46 with ideal VRP placement. The upper plot
shows the values of the front legs (LF, RF). The bottom plot shows the values of the
hind legs (LH, RH). The blue lines represent the hip joints (q1) and the red lines the
knee joints (q3). The solid lines correspond to the left legs and the dashed lines to the
right legs. The gray lines indicate the references, where the VRP waypoints are gσ (s.
figure A.4).

A.4 Data folder

This section shows the main part of the structure of the data folder, which contains the
required files and the simulation results. The remote project folder can be found on the
Github-project web page: https://rmc-github.robotics.dlr.de/wagn-mk/BertSave .

BertSave:

� DCMfunctions ← folder with the implemented DCM functions
� MultiContactPlaner ← folder with the implemented framework functions
� Bert Johannes Exper GreyBert3dof.slx ← is the extended Simulink model with the

current implementation:
– MATLAB function block trajectoryPlaner()
– MATLAB function block computeDesiredJointSpeed()

� init.m ← MATLAB-program which initializes the simulation environment
� InitialParBert 77.m ← MATLAB-program which initializes the robot parameters and

is called by the Simulink InitFcn-Callback
� FilesForExperBert ← files for the prepared experiments

– controller.slx ← Simulink model of the Bert control framework extended with
MATLAB function blocks-based workaround of the needed LucaDynamics func-
tions
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– trajgen walking.slx ← Simulink sub-model with implemented DCM-based trajec-
tory generator

– buses.mat ← file of the Bert Simulink buses with the LucaDynamics bus
– main.m ← MATLAB-program which initialize the controller and calls the file

init Bert DCM.m. This file initializes the needed parameters for the DCM method
in the experiment.

– CallLDfunctions.m ← MATLAB-program to create the workaround functions of
the LucaDynamics functions

– Bert LD ← folder with the LucaDynamics workaround MATLAB-functions for
3 DOF Bert created by the MATLAB-program CallLDfunctions.m

� models ← folder with the sub folder stl and urdf
– urdf ← folder with the created URDF files for the robot in the simulation and

further model version of the robot Bert:
* URDFrealBert2.urdf
* ·

* ·

* ·

– stl ← folder with the CAD-files to visualize the robot model
� Run10.mat ← MATALB - workspace save of the simulation run
� Run11.mat ← MATALB - workspace save of the simulation run
� ·

� ·

� ·

A.5 Applied Software

This section lists the applied software for this thesis and other resources.

Software used for the creation of this thesis:

� MiKTeX Version 20.10 ← applied LaTeX enviroment
� TeXstudio 3.0.1 (git 3.0.1) ← applied LaTeX Editor enviroment
� Inkscape 1.0.1 (3bc2e813f5, 2020-09-07) ← applied to generate the figures
� MATLAB® Version 9.8.01.1359463 (R2020a) Update 1 ← applied for programming

and evaluation of simulation results

Software used for the simulation:

� MATLAB® 9.1.0.960167 (R2016b) Update 6
� Simulink® Version 8.8
� LucaDynamics Library Version 0.3.50 for osl42-x86 64

Hardware used for the simulation:

� Computer system:
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– openSUSE Leap 15.1 Kernel Version: 4.12.15-lp151.28.52-default 64-bit
– 8xIntel® Xeon® CPU E5-1620 v3 @ 3.50 GHz
– 7.7 GiB of RAM
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