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Abstract

Previous research on friction estimation in robotic joints has been primarily focused on
the dominant contribution of the drive unit friction originating in particular from the
harmonic drive gear. With torque sensors mounted on the joint output side, the fric-
tional effects of the drive units can be compensated by the torque controller to a large
extend. However, in an assembled robot the friction in mechanical parts on the output
side of the torque sensor still affects the actuation performance and leads to permanent
control errors. This work aims at developing a whole-body friction estimation method
that relies solely on internal position measurements of the robot and can capture the
friction state on the output side of the joint torque sensor. Therefore, by comparison
of a model-based acceleration estimate with the measured joint acceleration, obtained
by numerical differentiation of the joint positions, a joint friction estimate can be deter-
mined. A simulation model is designed to evaluate the proposed method. Simulation
results confirm that reliable friction torque estimates can be obtained given a sufficiently
accurate dynamic model of the robot. It is shown that real-world imperfection like sen-
sor noise, vibrations induced by the closed-loop control and inertia modeling errors limit
the performance of the friction estimation in the experiment.
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Kurzfassung

Bisherigere Forschung zur Reibungsschätzung in Robotergelenken hat sich hauptsäch-
lich auf den dominanten Beitrag der Reibung in der Antriebseinheit konzentriert, die
insbesondere vom Harmonic Drive Getriebe ausgeht. Mit auf der Abtriebseite des Ge-
lenks montieren Drehmomentsensoren können die Reibungseffekte der Antriebseinheiten
durch Regelung zu einem großen Teil kompensiert werden. In dem vollständig montierten
Roboter führt die Reibung der mechanischen Bauteile auf der Abtriebsseite des Dreh-
momentsensors jedoch immer noch zu Abweichungen vom gewünschten Regelverhalten.
Diese Arbeit zielt darauf ab, eine Methode zur Schätzung der Ganzkörperreibung zu ent-
wickeln, die ausschließlich interne Messungen der Gelenkposition benötigt und die nicht
ausgeregelte Reibung erfassen kann. Durch Vergleich einer modellbasierten Beschleuni-
gungsschätzung mit der gemessenen Gelenkbeschleunigung, die durch numerische Ablei-
tung der Gelenkpositionen bestimmt wird, kann somit eine Schätzung der Gelenkreibung
ermittelt werden. Die vorgeschlagene Methode wird mittels eines Simulationsmodells
evaluiert. Die Simulationsergebnisse bestätigen, dass bei einem ausreichend genauen dy-
namischen Modell des Roboters zuverlässige Schätzungen des Reibungsmoments ermit-
telt werden können. Es wird gezeigt, dass reale Beeinträchtigungen wie Sensorrauschen,
durch die Regelung hervorgerufene Vibrationen und Modellierungsfehler der Trägheit
des Roboters die Qualität der Reibungsschätzung im Experiment einschränken.
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Chapter 1

Introduction

Legged locomotion is among the most fascinating research topics in robotics and contin-
ues to gain growing public attention. Videos of walking robots reach millions of people
without difficulty with supporters envisioning the next breakthrough in the close future.
At the same time is, what seems natural for humans, regarded as a very difficult problem
for robots. Even with great progress in recent years, today’s robots just barely reach a
fraction of human locomotion capabilities. Many challenges regarding mechanical design,
actuator performance and control theory remain to be solved.
Often, improvements are in particular limited by transferring walking performance achieved
in simulation to real robots. Imperfections of the robot hardware like sensor noise, com-
munication delays, inertia modeling errors and unmodeled joint friction impede real-
world dynamic walking performance. These problems can be overcome to some extend
by developing precise models of the robot and reducing noise and vibration levels as
effectively as possible [6], although some problems remain.
Especially friction can only be modeled insufficiently due to the high complexity of
interactions between two surfaces sliding against each other. Robots equipped with
joint torque sensors, like the one discussed in this work, have the distinct benefit that
the joint torque can be precisely controlled by the closed-loop torque control. Therefore,
the main contribution to the joint friction originating from the motor and in particular
the harmonic drive gear is for the most part compensated by the joint torque controller.
However, friction in other mechanical parts on the output side of the torque sensor
cannot be counteracted and leads to permanent control errors.

1.1 Task description

It is desirable to estimate the entire joint friction without additional sensors. Assuming
that the internal drive unit friction is largely compensated by the torque controller, the
joint friction consists dominantly of friction in mechanical parts on the output side of
the torque sensor. This work aims to develop a whole-body friction torque estimation
method that relies exclusively on the measurements supplied by internal sensors of the
humanoid robot.
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2 Chapter 1. Introduction

1.2 Content outline

The work is organized as follows. Chapter 2 summarizes related work of friction esti-
mation and compensation in the field of robotics. In Chapter 3 an overview of different
friction models is presented. Chapter 4 introduces the humanoid robot TORO and the
dynamic model for walking robots. The whole-body joint friction estimation framework
is derived in Chapter 5. Subsequently, the friction estimation is evaluated in simula-
tion in Chapter 6. Different filter designs are presented in Chapter 7 to reduce noise
and vibration of the experimental data and the friction estimation based on walking
experiments is examined. Chapter 8 concludes the work.



Chapter 2

Related Work

Due to the abundance of physical phenomena that cause friction, model-based friction es-
timation of all kinds strongly relies on preceding measurements of the frictional torque in
a robotic joint. Although some methods can directly estimate the friction model param-
eters based on the inverse dynamic model of the robot, they likewise depend on accurate
measurements of the robot’s state, internal torques and external forces/moments. In the
following, an overview of different friction estimation approaches is presented.

2.1 Test-bed based joint friction estimation

The most straightforward method of determining the friction torque is to use a test-bed
setup with a single joint. Torque sensors can supply precise measurements of the friction
torque in desired parts of the assembly. The friction of different components like the
motor and the harmonic drive gear can be considered separately. Consequently, accurate
static and dynamic friction models with viscous, thermal and load dependencies have
been developed [2, 13, 18]. These models are highly effective at modeling and compen-
sating friction in the test-bed setup. They can also be used to model the friction of the
investigated components in an assembled robot. However, the fixed friction parameters
may change due to assembly precision, lubrication condition and wear of the mechanical
parts. Furthermore, it is not always possible to analyze each joint separately in which
case the friction estimation must be performed on the assembled robot.

2.2 Whole-body friction estimation with end-effector torque
sensors

Most traditional humanoid robots are not equipped with joints torque sensors. They rely
on accurate dynamic models of the robot and its environment in combination with a high-
gain joint position control [5]. Hashlamon and Erbatur [10] use measured ground reaction
forces in combination with a reduced dynamical model to estimate the joint torque. The
friction is calculated as the difference of the supplied torque and the estimated joint
torque. The method is based on the measurement approach when the leg is on the
ground and a model-based friction estimation when the leg is in the swing phase. The
parameters of the friction model are updated adaptively when the foot is in contact.

3



4 Chapter 2. Related Work

2.3 Multibody friction estimation and compensation with
joint torque sensors

A friction observer based on joint torque measurements is presented in [12]. Similar to the
momentum-based collision detection algorithms developed in [4], which observes external
disturbance torques, this approach aims to identify the friction torque on the motor-side.
It is shown that the observer produces an estimated friction torque which is equal to
the low-pass filtered actual friction. Further, using the estimated torque for friction
compensation, it is proven that the observer together with a passivity-based controller
preserves the global asymptotic stability of the system and increases the accuracy of the
robot.

2.4 Direct multibody parameter estimation

This method differs from the aforementioned models by directly determining the dy-
namic parameters of robots like inertia and friction using a least-squares optimization
[8, 9]. The key idea is that the inverse dynamics are linear in the minimum parameters.
These so-called base or lumped parameters are defined to be the minimum number of
parameters from which the inverse dynamic model can be computed. By sampling the
inverse dynamic equations while the robot is following a specific trajectory, an over-
determined linear system can be constructed. The least-squares solution of the system
of equations is found by the use of the pseudo-inverse. This model is dependent on joint
acceleration, which is determined by numerical differentiation. It is therefore sensitive to
noise and vibrations in the joint velocity. Moreover, the identification method requires
parametrically exciting trajectories, such that the least-squares problem is well condi-
tioned. In the case of friction estimation, it means that the robot needs to move through
a large enough velocity range to get an accurate estimate of all friction phenomena.

2.5 Problem definition

Joint friction estimation is studied intensively for actuator components that have a major
contribution to the friction in a robotic joint, i.e. the motor and the harmonic drive gear.
Especially for joints with a high transmission ratio, a well identified and modeled friction
behavior helps to significantly improve the position tracking accuracy. The friction of
the drive units can be determined separately. Even if the model is not ideal, in torque-
controlled robots with link-side joint torque sensors, a sufficiently fast control approach
in combination with the friction compensation can keep the torque error to a minimum.
However, motor and harmonic drive gear are not the only contributors to the joint
friction. There are bearings and for some joints motion transmission mechanisms on the
output side of the torque sensor for which the friction behavior cannot be determined
or controlled. Furthermore, there might be torque offsets resulting from the calibration
routine. This work aims at developing an estimation model that can observe the friction
torque and torque offsets in a fully assembled robot.



Chapter 3

Friction Models

Friction is present in all mechanical parts that are in contact and opposes their motion. It
plays an important role in the design of many control systems as it can lead to unwanted
deviation from the desired control quality. Friction can cause permanent control errors,
stick-slip motion or limit cycles if neglected. Especially for robotic systems with strongly
varying velocities, high-precision positioning tasks and many velocity reversals, a well
identified friction model can significantly improve the actuation performance. There
exist many different approaches to friction modeling, which can generally be divided
into two categories: static and dynamic friction models.

3.1 Static friction models

Static friction models describe the friction torque τf as a static function of velocity. In
past centuries models of different complexity have been developed that each describes
certain components of the frictional behavior.
The earliest model describes a friction torque that opposes the motion of two bodies
relative to each other and is independent of velocity. It is known as Coulomb friction
and given by:

τf = τc sgn(q̇), (3.1)

where the parameter τc specifies the magnitude of the piecewise constant Coulomb fric-
tion. The friction torque at zero velocity is not defined which results in a discontinuity
at rest.
The viscous friction describes the velocity-strengthening part of the friction torque. It
originates from the viscosity of lubricants that resist the motion of solid bodies in contact
with the fluid or between adjacent layers of the fluid itself. In its simplest representation
the friction torque is given as a linear function of velocity:

τf = τv q̇, (3.2)

with τv defining the slope of the viscous friction.
The Stribeck friction accounts for the phenomenon that the friction torque close to the
standstill has a negative derivative with respect to the velocity. At rest, it is higher
than the Coulomb friction and decreases continuously from the static friction level. The

5



6 Chapter 3. Friction Models

Stribeck effect is also called the velocity-weakening part of the frictional behavior. It is
most commonly modeled by an exponential function:

τf = sgn(q̇)
(
τc + (τs − τc)e−|q̇/vs|δs

)
. (3.3)

Here τs is the static friction torque, vs the Stribeck velocity and δs the exponent pa-
rameter of the Stribeck non-linearity. Different vales for δs are suggested in [14], in this
work the Gaussian parametrization with δs = 2 is selected [1, 18].

3.2 Dynamic friction models

The static friction models describe friction as a function of steady velocities. However,
experiments exhibit frictional effects that cannot be represented by static models. This
includes phenomena like microslip or presliding displacement, hysteretic behavior and
varying breakaway torque. These effects can be captured by dynamic friction models
which use additional states to describe the friction torque in terms of differential equa-
tions. A well known dynamic friction model in robotics is the LuGre model [3]. Dynamic
models are employed when the friction torque is accurately measurable and there is a
need for precision beyond the capabilities of the static models [7, 13, 18]. For this work,
however, the determination of the friction torque itself is afflicted with uncertainty, such
that the static friction models are entirely sufficient and the dynamic models are merely
mentioned for completeness.

3.3 Friction models in simulation

All static friction models described above, except pure viscous friction, are discontinuous
at the origin due to the use of the signum function sgn(x) to determine the direction of
the friction torque. A simulated friction model that incorporates more than the velocity-
strengthening effect of the viscous friction has to deal with the computational challenges
presented by this discontinuity. Very small time steps are required to accurately de-
termine the sign change of the velocity. When the simulation rate cannot be adjusted
and very small time steps are infeasible, a different approach is needed to avoid oscilla-
tions due to rapidly changing friction torques in the vicinity of the discontinuity. It is
suggested to weaken the discontinuity and define a continuous model as

τf = τv q̇ + tanh(aq̇)
(
τc + (τs − τc)e−|q̇/vs|δs

)
+ τos, (3.4)

with the coefficient a specifying the slope of the hyperbolic tangent function. The pa-
rameter τos considers an offset torque which may originate from calibration errors.
The friction model is further simplified by defining τs = (1 + S)τc, where the parameter
S determines the relative size of the Stribeck curve:

τf = τv q̇ + τc tanh(aq̇)
(
1 + Se−|q̇/vs|δs

)
+ τos. (3.5)

The presented model is selected to cover the relevant friction phenomena expected in
the robotic joint. It is a combination of the aforementioned static models combining
Coulomb, viscous and Stribeck friction and contains the additional torque offset term.
The choice of a friction model in simulation is arbitrary, however, the specific model
aims at good comparability of the simulation and experimental results in Chapter 6 and
Chapter 7, respectively.



Chapter 4

The Humanoid Robot TORO

In the following, a brief introduction of the mechanical design and dynamic model of the
torque-controlled humanoid robot TORO is presented.

4.1 Overview of TORO’s mechanical design

Being able to roughly manipulate the same workspace as humans and use the same
principles of locomotion, TORO has a much human-like physique. Its total weight
measures 79.2 kg with a height of 174 cm. The robot has 25 torque-controlled revolute
joints, 6 in each limb, and one additional joint in the waist. The 2 revolute joints in
the neck are position-controlled. An overview of the fundamental dimensions and joint
configuration is given in Fig. 4.1. The joints were built with drive units and electronics
from the KUKA-LWR1 arm. They consist of a RoboDrive brushless DC motor with
safety break and incremental motor position sensor, a Harmonic Drive gear unit, a
torque sensor and an absolute output position sensor. The motor type and gear ratio
vary between joints depending on the torque requirement. The particular specification
for each joint is given in Table 4.1.
Relevant for the friction estimation are mechanisms that are placed on the output side
of the torque sensor, like the parallel bar mechanism in TORO’s ankles. To decrease the
shank’s inertia and realize a slim ankle design, the ankle pitch motor (F) is located close
to the knee. The friction and backlash caused by this mechanism, like that of all other
mechanical parts and bearings mounted on the output side of the torque sensor, are not
measurable by any of TORO’s sensors.

4.2 Floating base model

This Section gives a brief overview of the floating base model for legged robots. Starting
from the dynamic model of a stationary robot, the constraint equation of motion of a
robot with a floating base is derived.

1A lightweight robot (LWR) originally developed at DLR for which the KUKA Roboter GmbH ac-
quired licensing in 2004.

7



8 Chapter 4. The Humanoid Robot TORO

Figure 4.1: Overview of TORO’s dimensions and joint configuration [6]

Table 4.1: Overview of TORO’s joint specification [6]

joint motor gear ratio q̇max τmax range [°]

A - hip roll ILM85 160 110 °/s 176 Nm ±45..±90
B - hip pitch ILM70 160 157 °/s 100 Nm -115 .. 90
C - hip yaw ILM70 160 157 °/s 100 Nm ±120
D - knee ILM85 100 176 °/s 130 Nm ±105
E - ankle roll ILM50 160 120 °/s 40 Nm ±19.5
F - ankle pitch ILM85 100 176 °/s 130 Nm ±45
G - waist ILM70 160 157 °/s 100 Nm ±120
H - shoulder 1 ILM70 160 157 °/s 100 Nm ±120
I - shoulder 2 ILM70 160 157 °/s 100 Nm -15..180
J - shoulder 3 ILM50 160 120 °/s 40 Nm ±105
K - elbow ILM50 160 120 °/s 40 Nm 0..148
L - wrist 1 ILM50 160 120 °/s 40 Nm -145..118
M - wrist 2 ILM50 160 120 °/s 40 Nm ±105
N - neck yaw MS106T 225 270 °/s 8.4 Nm ±90
O - neck pitch MS106T 225 270 °/s 8.4 Nm -30..90



4.2. Floating base model 9

4.2.1 Dynamic model: From fixed base to floating base

As indicated by the name, robots with a floating base differ from their stationary com-
panions known from factory floors by the ability to freely move around. In the case
of legged robots, they are able to walk on two or more legs. Most industrial robots
are attached to the ground and actuated in every degree of freedom. The equations of
motion for these fully actuated robots can be written as

M(q)q̈ + h(q, q̇) = τ + τ ext. (4.1)

Here M is the inertia matrix, h contains Coriolis and centrifugal forces, as well as gravity
and friction forces. The vectors τ and τext are the joint and external forces/torques,
respectively. It is assumed that every force that is applied on the robot or exerted by
the robot itself is counteracted by the rigid connection to the ground.
By detaching the robot from the environment, it can now freely move around and thus
gains an additional six degrees of freedom. To account for these, the state of the free
floating base is added to the robot’s configuration. It is described by the position xbase ∈
R3 and orientation Rbase ∈ SO(3) of the body frame relative to the world frame. The
hip functions as the base link to which the body frame is attached. In the base state
vector qbase ∈ R6 the orientation is represented in local coordinates αbase ∈ R3, e.g.
roll-pitch-yaw angles. Combined with the joint position qjnt ∈ Rn the variables are
concentrated into a single state vector:

q =


xbase

αbase

qjnt

 =

qbase

qjnt

 ∈ R6+n. (4.2)

With the base no longer connected to the ground, the absorption of reaction forces by
the environment is lost. For every contact the robot makes with its environment, there
is an equal and opposite force acting on the robot itself. For simplicity, it is assumed
that all external forces act at the end-effector frames. Then τ ext simplifies to

τ ext = J(q)T W, (4.3)

where J ∈ Rm×n is the Jacobi matrix2 and W ∈ Rm is the Cartesian wrench, a six-
dimensional vector of external Cartesian forces and torques.
The additional six degrees of freedom of the base cannot be controlled directly. Thus,
the robots with a floating base belong to a class called underactuated systems, for which
the equation of motion is given by

M(q)q̈ + h(q, q̇) = ST τ + JT W. (4.4)

The matrix S = [0n×6 In×n] is a selection Matrix, that selects only the bottom n
components of τ , which can be actuated directly.

2Supposing the forward kinematics x = ϕ(q) is a local mapping between the configuration space
q ∈ Rn and an m-dimensional task space x ∈ Rm. Then the velocity transformation between these
spaces is given by: ẋ = dϕ(q)

dt
= ∂ϕ(q)

∂q q̇ = J(q)q̇, where J(q) is the Jacobi Matrix. Considering that
power is independent of representation, it can be shown that: Px = ẋTW = q̇TJTW = q̇T τ = Pq and
thus τ = JTW.
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4.2.2 Contact constraints on the robot

As the robot is not floating in space, it needs to make contact with its environment.
For walking, it is assumed that the feet are in contact with the ground without slipping.
More precisely, the task space position of the foot in contact is constant in the contact
phase. This leads to a constraint on the task space velocities: ẋ = Jq̇ = 0. Since the
equation of motion relates torques and external forces to accelerations, another time
derivative of the constraint is needed. It yields: ẍ = Jq̈ + J̇q̇ = 0.
The constraint equation of motion is given by:

M(q)q̈ + h(q, q̇) = ST τ + JT W
Jq̈ = −J̇q̇.

(4.5)

It consists of 6 + n+m equations in as many unknowns and fully describes the under-
actuated robot in contact with its environment.



Chapter 5

Whole-body Joint Friction
Estimation

In this Chapter the friction torque estimation based on the constraint dynamic equations
of the robot is derived.

5.1 General method

The joint friction torque on the output side of the torque sensor is not directly mea-
surable, therefore it needs to be estimated through a quantity that depends upon the
desired variable. As described in Chapter 4 the equation of motion of the robot relates
torques and external forces to accelerations. The vector h in (4.5) can be explicitly
written as

h = Cq̇ + τ g − ST τ fric, (5.1)

with C being the Coriolis and centrifugal matrix, τ g the vector of gravitational forces
and torques and τ fric the joint friction torques. Inserting (5.1) in the constraint equation
of motion (4.5) yields:

Mq̈ + Cq̇ + τ g = ST (τ j + τ fric) + JT W
Jq̈ = −J̇q̇.

(5.2)

Therefore, the acceleration q̈ is directly dependent on the joint friction torque τ fric. In
order to determine τ fric, an estimate of the acceleration without the unknown friction
torque is calculated and compared to the measured acceleration, obtained by numerical
differentiation of the robots state q. Assuming a sufficiently accurate dynamic model,
the resulting difference in acceleration originates from the joint friction torque.

5.2 Solving constraint dynamics to estimate accelerations

In the following derivation, the equation (5.2) is concertized for the humanoid robot
TORO with its 27 joints, resulting together with the 6 base coordinates in a system
of 33 + m equations. The friction estimation is performed for the 25 torque-controlled

11



12 Chapter 5. Whole-body Joint Friction Estimation

joints. The 2 position-controlled joints in the neck need to be considered separately.
In the torque-control approach, there is no torque supplied for these joints. However,
a non-zero torque is required to keep the head in the desired position. In the friction
estimation, it is assumed that there is no relative motion between the head and the upper
body. Therefore, the additional constraint q̈pc = 0 is applied to the robot’s dynamic
equations in the following way. The selection matrices

Stc =
[
025×6 I25×25 025×2

]
and Spc =

[
02×31 I2×2

]
(5.3)

are used to separate the torque and position-controlled joint torques τ tc ∈ R25 and
τ pc ∈ R2, respectively. The friction torque is also divided into two categories. Here,
only the friction torque τ fric,tc ∈ R25 for the torque-controlled joints exists, for which
the friction estimation is performed. As the friction of the position-controlled joints
cannot be estimated, the friction torque τ fric,pc ∈ R2 is assumed to be zero. To improve
readability, the friction torque of the torque-controlled joints τ fric,tc is denoted τ f for
the remainder of this work. Combined with the task space constraints in (5.2) the full
constraint equation of motion is given by:

Mq̈ + Cq̇ + τ g = ST
tc(τ tc + τ f ) + ST

pcτ pc + JT W (5.4a)
Jq̈ = −J̇q̇ (5.4b)
Spcq̈ = 0. (5.4c)

In the following derivation, the unknown friction term ST
tcτ f is neglected to obtain the

reference acceleration estimate without frictional effects. Both constraints (5.4b) and
(5.4c) are linear equality constraints of the form Jc(q)q̈ = b(q, q̇) and can therefore be
combined to a single constraint:

Mq̈ + Cq̇ + τ g = ST
tcτ tc + JT

c λ (5.5a)
Jcq̈ = b (5.5b)

with

Jc =

 J

Spc

 and b =

−J̇

0

 q̇ and λ =

W

τ pc

 . (5.6)

The vector of constraint forces and torques λ ∈ R(m+2) can be interpreted as a set of
Lagrange multipliers. With the constraint equations, the resulting system consists of
33 +m+ 2 equations in as many unknowns. The goal is to reduce the constraint system
to its original 33 equations in 33 unknowns. It is achieved by first determining the vector
of Lagrange multipliers using the constraint equation. With M being symmetric positive
definite and therefore invertible, equation (5.5a) can be solved for

q̈ = M−1
(
ST

tcτ tc + JT
c λ−Cq̇ − τ g

)
(5.7)

and inserted in the constraint equation (5.5b):

JcM−1
(
ST

tcτ tc + JT
c λ−Cq̇ − τ g

)
= b

⇒ JcM−1JT
c︸ ︷︷ ︸

A

λ = b + JcM−1
(
Cq̇ + τ g − ST

tcτ tc

)
. (5.8)
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In order to solve for the generalized vector λ, matrix A needs to be invertible. Like
M, M−1 is also symmetric positive definite. The selection matrix Spc only adds two
independent columns to Jc. Hence, the invertibility of A depends on J. In general, the
matrix JM−1JT ∈ Rm×m is invertible if the task space dimension m is equal or lower
dimensional than the dimension of the configuration space n and J has at least rank m.
Then A ∈ R(m+2)×(m+2) is invertible and λ can be written as

λ =
(
JcM−1JT

c

)−1 (
b + JcM−1

(
Cq̇ + τ g − ST

tcτ tc

))
. (5.9)

Now the constraint forces and torques are expressed by only known quantities. Inserting
equation (5.9) back into (5.5a) and solving for q̈ gives an estimate of the accelerations:

q̈est = M−1 JT
c

(
JcM−1JT

c

)−1
b

+ M−1
(

I− JT
c

(
JcM−1JT

c

)−1
JcM−1

)
︸ ︷︷ ︸

N

ST
tcτ tc

+ M−1
(

JT
c

(
JcM−1JT

c

)−1
JcM−1 − I

)
︸ ︷︷ ︸

−N

(
Cq̇ + τ g

)
.

(5.10)

Matrix N is the null space projection matrix which ensures that the constraints on con-
tact/foot and joint space accelerations are satisfied by removing the generalized torque
components that act on the constraints.

5.3 Joint friction torque estimation

The vector of measured accelerations q̈msr is obtained by numerical differentiation and
includes the in (5.4a) stated friction term ST

tcτ f . A friction estimate can be calculated
through the difference of the measured acceleration and the estimated acceleration:

∆q̈ = q̈msr − q̈est = M−1N ST
tcτ f . (5.11)

In the following, the friction torque estimation is discussed for different support condi-
tions. The null space projection matrix N has rank 33− (m+ 2). In the single support
phase, due to the constraint (5.4b), one foot of the robot is fixed to the ground. In this
case, the constraint space dimension m equals 6, lowering the rank of matrix N to 25.
As a result of the free floating base, there are still enough degrees of freedom to move
each joint individually and a tree structure similar to classical fixed-based robots is ob-
tained. The robot is balancing on one leg and the base frame located at the hip can be
considered as the task space. The equal dimension of the leg’s configuration space nleg

and base frame space dim(qbase) suggests, apart from singularities, a unique mapping
between the configuration space and the base frame task space: nleg = dim(qbase) = 6.
As a consequence, a given joint acceleration difference should yield a unique friction
torque. However, Matrix M−1N is of reduced rank. The rank deficiency can readily be
resolved by selecting only the equations of the 25 torque-controlled joints for which τ f

exists. The remaining system of equations is given by:

∆q̈tc = ST
tcq̈msr − ST

tcq̈est = StcM−1NST
tc︸ ︷︷ ︸

M−1
mod

τ f . (5.12)
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The inverse of M−1
mod can be uniquely determined and an exact solution is found. The

joint friction torque in the single support phase is given by:

τ f =
(
StcM−1EST

tc

)−1

︸ ︷︷ ︸
Mmod

∆q̈tc. (5.13)

In the double support phase, both feet are on the ground and the constraint space
dimension m equals 12. A closed-loop kinematic is obtained and the mapping from
configuration space to base frame task space is under-determined. That means any
feasible base frame task can be realized while additional degrees of freedom remain in
the null space of the mapping. Thus, the same acceleration difference can be produced by
multiple different friction torques. As a consequence, the matrix M−1

mod becomes singular
and the system of equations (5.13) has multiple solutions. A particular solution can be
found using a pseudo-inverse but it is not exact. It finds the minimum norm solution to
the system of equations. In the particular case, it yields the minimal friction to achieve a
given acceleration difference, which is not the correct solution in most cases. Therefore,
the friction torque cannot be accurately estimated in the double support phase.



Chapter 6

Simulation

Extending the existing simulation environment of the humanoid robot TORO, a fric-
tion model and estimation framework based on the method described in Chapter 5 is
implemented in Matlab Simulink. There are two different simulators, one realized in
Simulink and the other is part of an external software platform called OpenHRP (Open
Architecture Human-centered Robotics Platform). Both are employed to evaluate the
friction torque estimates based on the predefined friction model in Chapter 3.

6.1 Validation of friction torque estimation with Simulink
simulation

The Simulink simulator solves the forward dynamics in a similar way as in Chapter 5
by constraining task space acceleration to compute external forces. A forward Euler
integration method is used to compute velocities and positions. All other signals are
returned without measurement noise and time delays. Therefore, this simulation is
especially suitable to investigate the friction estimation under ideal conditions.

6.1.1 Friction estimation under different support conditions

As a first test, a friction torque based on the model in (3.5) is applied to a single joint.
Because the knee joints have one of the largest velocity ranges, the target friction torque
is added to the commanded torque of the right knee. Instead of obtaining q̈msr by
numerical differentiation, a ground truth acceleration is calculated in the same way as
the estimated torque in (5.10), but with the additional friction. The friction estimate
in the single support phase is determined with (5.13). As described in the previous
Chapter the matrix M−1

mod cannot be inverted in the double support phase due to the
torque redundancy, as multiple combinations of joint friction torques can yield the same
acceleration difference ∆q̈tc. Thus the following optimization problem is constructed to
resolve the redundancy:

min
τf

1
2(∆q̈tc −M−1

modτ f )T W(∆q̈tc −M−1
modτ f ) + 1

2τ T
f λτ f , (6.1)

15
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where λ and W are diagonal weighting matrices. The term 1
2τ T

f λτ f is added to the
objective in order to penalize high torque values. The resulting friction torques for the
single and double support phase are plotted in Fig. 6.1 for a total of 5 steps of the robot.
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Figure 6.1: Friction torque estimation with target friction in the right knee

It can be observed that the estimated friction torque in the single support phase can be
recovered exactly. The friction torque in the knee precisely follows the target friction
and all other estimated torques are zero. In the double support phase, however, the plot
displays various measures of friction resulting from the non-unique map between torques
and accelerations as expected. Therefore, in the following observations, only the single
support phase is selected for friction estimation.

6.1.2 Sensitivity towards phase delays

To get a more realistic estimation of the achievable real-world performance of the algo-
rithm, the measured acceleration needs to be determined by numerical differentiation as
no acceleration sensors are available. Two basic types of discrete time derivatives are
considered here: central and backward finite differences [15]. The central difference

ẏ[tn] = y[tn+1]− y[tn−1]
2∆t (6.2)

gives a better approximation of the derivative at a discrete time tn, but it relies on future
data that is not available in a real-time system. The backward difference

ẏ[tn] = y[tn]− y[tn−1]
∆t (6.3)

is realizable in a real-time system. However, a causal discrete derivative in a real-
time application is always accompanied by a phase shift. The sensitivity of the friction
estimation with regard to the phase delay is investigated in Fig. 6.2. The friction torque is
still applied to the right knee only. In the left support phase, that is when the right leg is
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above the ground, the friction torque of the right knee can be recovered very accurately
for all derivative schemes. Especially when plotted over joint velocity (Fig. 6.3), the
tracking error can be observed clearly in the support phase of the right leg. Here, the
small phase shift of the backward discrete derivative causes a notable deviation from
the desired friction torque. It results from the fact that the supporting leg feels a much
greater inertia than the swinging leg. The friction torque is given by τ f = Mmod∆q̈tc

(eq. (5.13)), in the support phase, a smaller difference in acceleration multiplied by a
larger inertia must yield the same friction as in the swing phase of the leg. This results
in a considerable sensitivity of the friction estimation in the support phase as for some
joints there are up to three orders of magnitude difference in the diagonal elements of
the mass matrix Mmod between the support and the aerial phase of the leg.
There is no feedback from the friction estimation to the robot control system, therefore
all other input signals of the friction model can be delayed to correct for the phase shift of
the backward discrete derivative. This leads to a more accurate friction approximation at
the cost of decimating the real-time ability. Since the friction estimation is not designed
to be real-time capable due to reasons discussed in Chapter 7, it can be readily tolerated.
Hence, also the central derivative as an offline discrete differencing scheme leads to an
increase in accuracy over the backward derivative. Its finite time step is twice as long as
the time step of the backward derivative, though it still gives a better approximation of
the joint acceleration. Nevertheless, this shows a considerable sensitivity of the method
towards phase delays. For the further proceeding, especially with regards to filtering, it
is important to prevent unidirectional distortions of the signal in the time domain.
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Figure 6.2: Comparison of discrete derivative schemes plotted over time
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6.2 OpenHRP robot simulation environment

The next step towards experimental identification is using the OpenHRP simulation
environment. It is a virtual humanoid robot platform consisting of a multibody simulator
with contact and collision computation between arbitrary polyhedral objects [11].

6.2.1 Estimation sensitivity in more realistic simulation

The signals obtained from the OpenHRP interface are outputs from simulated sensors
like gyroscope, force torque sensors, position encoders and joint torque sensors. Due
to the more realistic and complex simulation approach, they are not as clean as the
signals from the previous simulator but still without significant noise, except for the
lift-off and touch-down interval of the feet. In these moments the contact constraints are
instantaneously removed or enabled which leads to a sudden change in velocity if it is
not close enough to zero already, and thereby high accelerations. Moreover, the added
friction torque amplifies this effect because it hinders very slow velocities before the
contact occurs. Therefore, the first 0.10 and the last 0.05 seconds of the single support
phase are excluded from the friction estimation. As previously observed, Fig. 6.4 shows
that the estimation method is overly sensitive in the stance phase and a small error
in acceleration difference amplifies to a significant deviation in the estimated friction.
However, the friction torque can still be obtained accurately using only the swing phase
of the walking cycle as displayed in Fig. 6.5a. The friction torque is applied not only to
the knee as before but to all leg joints in Fig. 6.5b. By comparison of the two figures, it
can be confirmed, that there is no interference between the joints, and each joint friction
can be distinguished from another.

6.2.2 Parameter identification

In order to determine the performance of the friction estimation, a non-linear least-
squares optimization is performed to identify the parameters of the friction model and
compare them to the previously defined target values. The parameters are chosen to
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Figure 6.3: Comparison of discrete derivative schemes plotted over joint velocity
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Figure 6.4: Friction estimation of the right knee in OpenHRP Simulation
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Figure 6.5: OpenHRP friction estimation of the right knee in the leg’s in swing phase
with (a) friction applied to the right knee only and (b) friction applied to all leg joints

match the torque level of the individual joint and avoid oscillations caused by the con-
troller due to high friction torques. The optimization can be formulated as

p̂ = min
p

N∑
i=1

(τ f,mdl(q̇,p)− τ f,est(q̇))2 , (6.4)

where p ∈ Rj is the vector of j friction model parameters. The solution to the curve
fitting problem is obtained using a trust-region-reflective algorithm available in the Mat-
lab optimization toolbox. The results are listed in Table 6.1 for TORO walking straight
ahead. While walking straight, some of the joints are not experiencing high enough joint
velocities to clear the Stribeck part of the friction curve. It is therefore not possible to
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estimate the respecting parameters in that case. This can be improved by additionally
walking sideways and increasing the step height and length. However, with larger steps,
the control of the robot gets more challenging and signals increasingly more noisy. In
Table 6.2 a compromise between larger steps to incorporate higher joint velocities and
the prevention of overly noisy signals has been found. The step length accounts for
0.3 m forward and 0.25 m sideways. It can be observed that the parameter error can
be significantly reduced if all joints cover a high enough velocity range to replicate all
friction phenomena in the friction curve.
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Table 6.1: Identified friction model parameters and corresponding error to the target
value for TORO walking straight ahead (1-6: right leg, 7-12: left leg)

joint Fv Fc S vs τos a

target 0.2 0.8 0.2 0.2 0.8 40

2 - hip pitch 0.1950 0.7528 0.1992 0.1988 0.7526 39.3728
error [%] 2.50 0.37 0.40 0.60 0.35 1.57

3 - hip yaw 0.2308 0.7403 0.2106 0.1967 0.7470 40.5316
error [%] 15.40 1.29 5.30 1.65 0.40 1.33

8 - hip pitch 0.1872 0.7581 0.2012 0.1849 0.7550 37.6777
error [%] 6.40 1.08 0.60 7.55 0.67 5.81

9 - hip yaw 0.0000 0.8234 0.1112 0.1799 0.7538 39.2904
error [%] 100.00 9.79 44.40 10.05 0.51 1.77

target 0.2 1.0 0.2 0.2 1.0 40

1 - hip roll 2.1435 0.4372 1.5603 0.1994 1.0037 41.3749
error [%] 971.75 56.28 680.15 0.30 0.37 3.44

4 - knee 0.1990 1.0017 0.1987 0.1966 0.9997 39.1141
error [%] 0.50 0.17 0.65 1.70 0.03 2.21

7 - hip roll 2.4518 0.5627 0.9846 0.1557 0.9954 41.2369
error [%] 1125.90 43.73 392.30 22.15 0.46 3.09

10 - knee 0.1984 1.0032 0.1974 0.1954 0.9991 38.7153
error [%] 0.80 0.32 1.30 2.30 0.09 3.21

target 0.2 0.1 0.2 0.2 0.1 40

5 - ankle roll 0.1881 0.1035 0.1649 0.1966 0.0995 39.787
error [%] 5.95 3.50 17.55 1.70 0.50 0.53

11 - ankle roll 0.1310 0.1220 0.0108 0.0864 0.1007 37.4309
error [%] 34.50 22.00 94.60 56.80 0.70 6.42

target 0.2 0.2 0.2 0.2 0.2 40

6 - ankle pitch 0.2000 0.2002 0.1999 0.2017 0.2005 39.5751
error [%] 0.00 0.10 0.05 0.85 0.25 1.06

12 - ankle pitch 0.2000 0.2002 0.2002 0.2013 0.2002 39.3951
error [%] 0.00 0.10 0.10 0.65 0.10 1.51
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Table 6.2: Identified friction model parameters and corresponding error to the target
value for TORO walking both sideways and straight (1-6: right leg, 7-12: left leg)

joint Fv Fc S vs τos a

target 0.2 0.8 0.2 0.2 0.8 40

2 - hip pitch 0.1985 0.7512 0.2028 0.1965 0.7515 40.4450
error [%] 0.75 0.16 1.40 1.75 0.20 1.11

3 - hip yaw 0.1807 0.7599 0.1870 0.1906 0.7476 40.3447
error [%] 9.65 1.32 6.50 4.70 0.32 0.86

8 - hip pitch 0.1970 0.7528 0.1997 0.1876 0.7510 41.0006
error [%] 1.50 0.37 0.15 6.20 0.13 2.50

9 - hip yaw 0.2193 0.7415 0.2140 0.2035 0.7518 40.0092
error [%] 9.65 1.13 7.00 1.75 0.24 0.02

target 0.2 1.0 0.2 0.2 1.0 40

1 - hip roll 0.1655 1.0135 0.1883 0.1957 1.0031 39.5902
error [%] 17.25 1.35 5.85 2.15 0.31 1.02

4 - knee 0.1999 1.0003 0.2049 0.1968 0.9996 36.8372
error [%] 0.05 0.03 2.45 1.60 0.04 7.91

7 - hip roll 0.1646 1.0183 0.1761 0.1992 0.9959 40.3043
error [%] 17.70 1.83 11.95 0.40 0.41 0.76

10 - knee 0.1998 1.0011 0.2036 0.1957 0.9996 36.5593
error [%] 0.10 0.11 1.80 2.15 0.04 8.60

target 0.2 0.1 0.2 0.2 0.1 40

5 - ankle roll 0.1991 0.1005 0.1960 0.1939 0.0995 39.8036
error [%] 0.45 0.50 2.00 3.05 0.50 0.49

11 - ankle roll 0.2010 0.0994 0.2060 0.2054 0.1004 39.6981
error [%] 0.50 0.60 3.00 2.70 0.40 0.75

target 0.2 0.2 0.2 0.2 0.2 40

6 - ankle pitch 0.1998 0.2003 0.1974 0.2009 0.2005 39.4428
error [%] 0.10 0.15 1.30 0.45 0.25 1.39

12 - ankle pitch 0.2002 0.2000 0.1990 0.2023 0.2004 39.5248
error [%] 0.10 0.00 0.50 1.15 0.20 1.19



Chapter 7

Experimental Evaluation

As described in the previous Chapter, the friction torque applied in simulation can
be accurately recovered. Unfortunately, in experiments, the identification method is
exposed to real-world imperfection such as sensor noise, communication delays, modeling
errors of robot inertia’s and link and joint elasticities [6]. The experimental data is
available in a log-format from which all necessary quantities of the friction estimation
can be computed offline. The advantage of an offline friction estimation is that a zero
phase filter can be applied to the desired signals which does not introduce a phase delay.

7.1 Filter design

Two filter types are presented in the following Section. The first is a symmetrical FIR
filter designed specifically to minimize the 2-norm error of polynomials fitted locally to
the data. The second is an IIR filter for which the zero phase property is obtained by
the combination of forward and reverse filtering.

7.1.1 Savitzky-Golay filter

A least-squares polynomial smoothing, which is also known as Savitzky-Golay filter, is
suggested to reduce noise and high-frequency oscillations while maintaining the shape
and height of the low-frequency waveform [17]. The general idea of this lowpass filter is
to fit a kth-order polynomial

p(n) =
k∑

i=0
ain

i (7.1)

to a window of length L = 2N + 1 equally spaced data points x[n] centered at n = 0 by
the method of linear least squares.

23
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The full system of equations for the L estimated data points x̂[n] can be written in terms
of p(n) as

x̂[−n]
...

x̂[−1]
x̂[0]
x̂[1]
...

x̂[n]



=



a0 + a1(−n) + a2(−n)2 + · · ·+ ak(−n)k

...

a0 + a1(−1) + a2(−1)2 + · · ·+ ak(−1)k

a0 + a1(0) + a2(0)2 + · · ·+ ak(0)k

a0 + a1(1) + a2(1)2 + · · ·+ ak(1)k

...

a0 + a1(n) + a2(n)2 + · · ·+ ak(n)k



(7.2)

and converted to matrix notation:

x̂ =



1 −n (−n)2 . . . (−n)k

1
...

... . .
. ...

1 −1 (−1)2 . . . (−1)k

1 0 0 . . . 0
1 1 12 . . . 1k

1
...

...
. . .

...

1 n n2 . . . nk




a0
...

ak

 = Ta. (7.3)

A optimization problem that minimizes the weighted square of the error (x̂ − x) is
formulated as

min
a

1
2(aT TT − xT )W(Ta − x). (7.4)

The solution is given by the W-weighted pseudo-inverse of T:

a =
(
TT WT

)−1
TT Wx, (7.5)

with W being a diagonal matrix containing the weights w of the individual data points.
Here, the matrix W is the identity matrix, but other distributions are possible, e.g. a
symmetrical bell-shaped curve. It is important to note that the weights must also be
symmetric about the central point to retain the zero-phase property of the filter.
Multiplying T from the left yields the Savitzky-Golay estimates:

x̂ = T
(
TT WT

)−1
TT Wx = Bx. (7.6)

Only the central point of the estimated data x̂ is retained. It is given by evaluating p(n)
at the central point n = 0, which is equal to the 0th polynomial coefficient:

y = x̂[0] = p(0) = a0. (7.7)

An output value y[t] for every data point in a sample is calculated by moving the ap-
proximation interval across the input signal x[t]. At each point, a polynomial is fitted
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to the window of L data points and evaluated at the central location. Generally, the
filter window need not be symmetrical about the central point, which can be useful for
approximating the first and final n values of the filtered signal. However, this leads to
a nonlinear-phase filter and is neglected in this work as there are always enough (more
than n) data points at the beginning and end of the signal which are excluded in the
friction estimation. Therefore, the filtered data is only calculated for the part of the sig-
nal with enough data points to the left and right to assure a symmetrical window about
the center point. For this part, a more convenient computation method is introduced in
the following.
Savitzky and Golay [16] found that the process of fitting a polynomial to a window of
L sample points and evaluating the resulting polynomial at a single point within the
window is equivalent to determining the weighted sum of the L sample points with a
fixed set of convolution parameters. This set of parameters is the impulse response h[n]
of the filter. It can be calculated once for a window of length L, a polynomial of order
k and weighing factors w. The output values y[t] can then be computed by the discrete
convolution:

y[t] =
N∑

m=−N

h[m]x[t−m]. (7.8)

For the calculation of x̂[0], the central value of x̂, only the center row of B in equation
(7.6) is needed. It is independent of the input data and represents the impulse response
h[n] for a certain choice of L, k and w. By convolution with an input signal, it yields the
filtered output signal in a single operation. Again, the signal edges need to be treated
differently if correct results are required here. For this thesis, however, the steady-state
part of the filtered signal achieved by the above convolution is sufficient.
Conveniently the numerical derivatives of the filtered signal can be readily calculated
by this method. For this, the polynomial is replaced by its desired derivative and the
impulse response scaled by powers of the finite time step.
From a frequency-domain point of view, the cutoff frequency of the Savitzky-Golay filter
depends on the window length L, polynomial order k and weighting vector w. This is
further discussed in Section 7.2 in comparison to the butterworth filter.

7.1.2 Butterworth filter

An alternative to the above filter design is to use a central derivative algorithm (e.g. eq.
(6.2)) to obtain the acceleration and pass the signal through an IIR lowpass butterworth
filter in both the forward and backward direction. In this way a non-causal zero phase
filter is achieved. This can readily be executed using the filtfilt function in Matlab. The
butterworh filter is designed to have a maximally flat frequency response in the pass
band, which is desirable to retain the shape and magnitude of the low frequencies. In
order to tune the lowpass filter, a Fast Fourier Transform (FFT) is performed on the
estimated acceleration. Calculated by the forward dynamics model and therefore less
disturbed, it yields a good approximation for the cutoff frequency of the butterworth
filter. Figure 7.1 shows the FFT of the estimated acceleration of the knee and the hip
pitch joint to be exemplary for all other joints. There are no distinguishable frequency
peaks beyond 10 Hz, which will be the cutoff frequency assumption for the measured
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Figure 7.1: Fast Fourier Transform of the estimated joint acceleration of (a) knee and
(b) hip pitch joint

acceleration filter. With a sampling rate of 1000 Hz, the normalized cutoff frequency is
equal to ωc = 0.02×π rad

s .

7.2 Experimental results

Due to considerably higher noise and vibration levels in the experimental data, a trade-
off between minimum distortion of the desired signal and maximum noise attenuation
needs to be found. In order to investigate the effect of the filter on the friction estimation,
it is first applied to simulation data for which the target friction is known. Figure 7.2
shows the estimated friction of the right knee (undistorted in Fig. 6.5a) for various filter
designs. With decreasing cutoff frequency the filter starts to deform the lower frequencies
and especially the Stribeck curve is affected. The two filter designs in Fig. 7.2c and
Fig. 7.2d have a comparable cutoff frequency and display a very similar deformation of
the frequencies in the Stribeck part of the friction curve. However, the Savitzky-Golay
filter preserves the shape of the even lower frequencies better than the butterworth filter.
This can be seen by the convergence of the Savitzky-Golay-filtered friction to the friction
target for higher joint velocities.
Figure 7.3 shows the estimated and measured acceleration of the right knee joint during
a step with the right leg in the swing phase. It is displayed for a simulation (Fig. 7.3a)
and an experiment (Fig. 7.3b) with the same walking parameters, i.e., double and single
support time and step-length and height. The single support time measures the full
0.8 s, but the calculation is only performed for the central 0.6 s due to spikes in the
acceleration during lift-off and touch-down of the foot.
In the experiment, a significantly higher acceleration estimate can be recorded compared
to simulation, whereas its shape shows similarities. A possible approach to explain
higher acceleration estimates in the experiment is that greater tracking errors result in
higher desired/commanded torques, which contribute to the acceleration estimate. If
the joints of the real robot, however, are stuck in friction, they cannot follow this fast



7.2. Experimental results 27

−2 −1 0 1 2

0

1

2

joint velocity q̇ in rad/s

fr
ic

tio
n

to
rq

ue
τ f

in
N

m

filtered
target

(a) S-G filter, L=11, ωc = 0.32×π rad
s
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(b) S-G filter, L=51, ωc = 0.066×π rad
s
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(c) S-G filter, L=151, ωc = 0.022×π rad
s
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(d) Butterworth filter, ωc = 0.02×π rad
s

Figure 7.2: Filtered estimated friction torque of the right knee with unweighted Savitzky-
Golay filter of order 4 and varying window length (a)-(c) and 6th-order lowpass butter-
worth filter applied in forward and reverse direction (d)

recovery strategy. Partly as a consequence, the measured and filtered acceleration is
smaller in the experiment than in simulation. Thus far, simply a higher friction torque
in the experiment can be supposed. However, there are more subtle differences that
prevent the friction curve, i.e., when plotted over velocity, from looking much alike.
Figure 7.4 illustrates that, if the dynamic model of the robot is exact, the difference
between estimated and measured joint acceleration ∆q̈ and joint velocity q̇msr have
always opposite signs. This must be true as the frictional torque τ f = Mmod∆q̈tc, with
Mmod being positive definite, dissipates energy. The power extracted by friction from
the system is negative:

Pf = q̇T
tcτ f < 0. (7.9)

The velocity and acceleration difference graphs in Fig. 7.4a intersect exactly at zero and
have opposite signs everywhere else, which guarantees that the friction torque plotted
over velocity also intersects the origin and the extracted power is negative. For the
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(a) Simulation data: q̈msr filtered with S-G filter with window length L = 151
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(b) Experimental data: q̈msr filtered with S-G filter with window length L = 151

Figure 7.3: Comparison of estimated and measured acceleration for the right knee in
simulation (a) and experiment (b)

experimental data in Fig. 7.4b, the intersections of the two graphs do not occur at zero
and there exist periods for which the estimated friction generates positive power, which
conflicts with the energy conservation principle and is therefore incorrect. Additionally,
the unfiltered acceleration is displayed in both figures. It can be observed that the
unphysical friction torque estimates do not originate from filtering, as the intersections of
the graphs are not significantly changed by the Savitzky-Golay filter for both simulation
and experiment. Additionally to Fig. 7.2, which showed that the low frequencies were
not affected by the filter, this suggests that the erroneous friction torque must be caused
otherwise, for instance by modeling errors of inertia parameters.
In order to investigate the influence of inaccurate inertia parameters in simulation, the
friction torque is calculated with slightly varying mass matrices. In particular, the mass
matrices of the robot’s i individual rigid bodies are modified to approximate an inexact
dynamic model for the friction estimation, whereas the mass matrices for the forward
dynamics, that is the simulation, remain unchanged. In the unconstrained case, a single
rigid body has 6 degrees of freedom (3 Cartesian positions and 3 rotations) resulting in
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(a) Simulation
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(b) Experiment

Figure 7.4: Acceleration difference and velocity of the right knee in simulation (a) and
experiment (b)

an individual inertia matrix Mi ∈ R6×6. In a first approximation, the elements of each
mass matrix Mi are scaled equally.
Figure 7.5 shows the friction estimation for the right knee calculated with different
scaling factors. The friction curve is truncated in order to avoid the noisy lift-off and
touch-down phase of the leg and therefore the decreasing velocity branch does not return
to the origin. It can be observed that the friction curve is shifted down for lower inertia
and up for higher inertia. The friction torque between different steps of the robot varies
slightly and branches for increasing and decreasing velocities start to separate, although
the general shape of the friction curve is mostly preserved. This shift due to inaccurate
inertia, however, conflicts with the displacement of the friction curve as a result of torque
offset induced by an erroneous sensor calibration routine.
To separate the sensitivity towards modeling errors of mass and moment of inertia, the
eigendecomposition of matrix Mi is calculated and only the eigenvalues corresponding
to either mass or moment of inertia are scaled. The matrix is then transformed back to
its original basis. By modifying only the mass properties of the individual rigid bodies
very similar results as in Fig. 7.5 are obtained, as the mass corresponds to the dominant
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(c) 1.2 ∗Mi

Figure 7.5: Friction estimation with equally scaled individual rigid body mass
matrices Mi
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(c) 1.2 ∗ Ii

Figure 7.6: Friction estimation with equally scaled principal moments of inertia Ii of the
individual rigid body mass matrices Mi

eigenvalues of matrix Mi. Since the mass of a rigid body can be precisely measured
and compared to the model, significant mass modeling errors are unrealistic (except for
deviation of the center of gravity). The results of modified inertia properties are shown
in Fig. 7.6. The vertical displacement of the friction curve is no longer present, yet the
separation for increasing and decreasing velocities is more pronounced.
A similar friction curve is discovered for some joints in the experiment with the real
robot. In Fig. 7.8 the friction torques obtained from experimental data for the right
knee and ankle pitch joint are shown. Both friction curves exhibit separate branches for
increasing and decreasing velocity similar to the simulation. The results for the right
knee in Fig. 7.7a are additionally shifted up, which can be caused by either a torque
offset or a mass modeling error. Due to real-world imperfections, both plots display
unphysical friction torques, which would generate positive power. It can be concluded,
that an exact friction calculation relies strongly on an accurate dynamical model of the
robot.
For other joints the separation of the friction curve for increasing and decreasing ve-
locities is not as pronounced. Nevertheless, despite filtering the influence of real-world



7.2. Experimental results 31

−1 0 1

−2

0

2

4

joint velocity q̇ in rad/s

fr
ic

tio
n

to
rq

ue
τ f

in
N

m

(a) Right knee joint

−1 −0.5 0 0.5 1

−1

0

1

2

3

joint velocity q̇ in rad/s

fr
ic

tio
n

to
rq

ue
τ f

in
N

m

(b) Right ankle pitch joint

Figure 7.7: Friction torque estimation for the right knee (a) and ankle pitch (b) joints
in the experiment

imperfections like noise and vibration is still present, especially for the left hip pitch
joint in Fig. 7.8b. For these joints, the difference between the right and the left side is
apparent, although the same filter parameters are used. The ankle roll joint shown in
Fig. 7.8a is for the most part unaffected by inertia modeling errors because the mass
and moment of inertia of the foot are small and it is not influenced by other joints.
In general, this would also apply to the ankle roll joint, but its actuator is mounted
under the knee and additionally affected by the inertia and inaccuracy of the parallel
bar mechanism.
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(a) Ankle roll joints

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−5

0

5

10

joint velocity q̇ in rad/s

fr
ic

tio
n

to
rq

ue
τ f

in
N

m

right
left

(b) Hip pitch joints

Figure 7.8: Friction torque estimation for ankle roll (a) and hip pitch (b) joints in
experiment
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7.3 Discussion

The joint friction identification of the real robot is restricted by the real-world imper-
fections described in the previous Section. Since the method relies on the difference of
measured and estimated joint acceleration, already high noise and vibration levels are
increased by the second numerical time derivative of the joint positions. This can largely
be compensated by the suggested filter designs.
Other phenomena limit the performance of the friction estimation to a greater extend
by producing a frictional torque that generates positive power, which violates the energy
conservation principle. It has been shown that these unphysical friction torques appear
also in a simulation with an imprecise inertia model of the robot. Furthermore, the
observed separation of the friction curve for increasing and decreasing velocities arises
similarly in the simulation with an inexact model. This suggests, that the unphysical
results for the experimental data originate from an insufficiently accurate inertia model
although other causes, like unmodeled temperature and load dependency of the friction
torque and sensor decalibration during the experiment cannot be completely excluded.
With prevailing uncertainty in the friction torque estimation, a parameter identifica-
tion as described in Section 6.2.2 is not beneficial. An identification of the dynamic
parameters of the robot, like inertia and friction, as described in Section 2.4 should be
performed. The obtained results can be compared to the existing inertia model and
improved if needed. With a more accurate dynamic model, the friction estimation de-
scribed in this work should be repeated to examine if the unphysical friction torque
estimates can be eliminated. When successful, the described parameter identification
can be conducted and the resulting friction model used for friction compensation to
improve the performance of the robot.



Chapter 8

Conclusion and Outlook

In this work a whole-body joint friction estimation method based on the acceleration
difference between measured acceleration derived via numerical differentiation of joint
positions and an estimated acceleration calculated through the constraint dynamic equa-
tions of the robot is developed.
At first, related work and an overview of commonly used friction models in robotics
were presented. The mechanical design of the humanoid robot TORO has been out-
lined briefly and the dynamic model of walking robots was introduced. In Chapter 5
the whole body friction estimation method was derived in consideration of contact con-
straints imposed on the robot. In the subsequent Chapter, the obtained method was
evaluated in simulation by both directly solving the constraint forward dynamics and the
use of an external simulation within the OpenHRP software platform. Different support
conditions and numerical differentiation schemes and their influences on the friction es-
timation have been investigated. A parameter identification via non-linear least-squares
optimization has been performed to validate the performance of the friction estimation
in different walking conditions. For the use of experimental data, different filter designs
have been examined to find a compromise between minimum distortion of the signal and
maximum noise/vibration attenuation. Finally, the experimental results were discussed.
In the simulation, it was shown that if the dynamic model of the robot is sufficiently
accurate, the friction estimation returns reliable results. Nevertheless, real-world imper-
fections like sensor noise, vibrations and inaccurate inertia modeling or merely the error
introduced by numerical differentiation expose different sensitivities of the estimation
method. It is found that reliable results can be obtained in simulation for all joints by
calculating the joint friction torque in the leg’s swing phase. The friction estimation in
the experiment is shown to be limited by real-world imperfections.
In future work, the derived friction estimation method should be repeated with an im-
proved inertia model of the robot to investigate its influence on the friction torque
estimation of the experimental data. Furthermore, a direct dynamic parameter estima-
tion as described in Section 2.4 can be performed to validate the existing inertia model
and obtain an estimate of Coulomb and viscous friction parameters from a different
approach.
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