Comparative analysis of TMPA and IMERG precipitation datasets in the arid environment of El- Qaa Plain, Sinai

Mona Morsy1,2,3, Thomas Scholten2, Silas Michaelides4,5, Erik Borg6,7, Youssef Sherief8,9, and Peter Dietrich2,3

1Geology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt (monaahmad1985s@yahoo.com)
2Geosciences Department, Faculty of Science, Tübingen University, Tübingen, Germany.
3Department of Monitoring and Exploration Technologies, Helmholtz Center for Environmental Research, Leipzig, Germany.
4Cyprus University of Technology, Limassol, Cyprus.
5ERATOSTHENES Centre of Excellence, Limassol, Cyprus.
6German Aerospace Center, German Remote Sensing Data Center, National Ground Segment, Germany.
7University of Applied Sciences, Neubrandenburg, Geoinformatics and Geodesy.
8Geography Department, Faculty of Arts and Social Sciences, Sultan Qaboos University, Oman.
9Zagazig University, Egypt.

The replenishment of aquifers depends mainly on precipitation rates, which is of vital importance for determining water budgets in arid and semi-arid regions. El-Qaa Plain in Sinai Peninsula is such a region which experiences a constant population growth. The local water budget equilibrium is negatively affected by relatively frequent light rain events. This study compares the 22 performance of two sets of satellite-based data of precipitation and in situ rainfall measurements. The 23 dates selected refer to rainfall events between 2015 and 2018. For this purpose, 0.1° and 0.25° spatial resolution TMPA (TRMM Multi-satellite Precipitation Analysis) and IMERG (Integrated Multi-25 satellitE Retrievals for GPM) data were retrieved and analyzed, employing appropriate statistical 26 metrics. The best-performing data set was determined as the data source capable to most accurately bridge gaps in the limited rain gauge records, embracing both frequent light-intensity rain events 28 and rarer heavy-intensity events. With light-intensity events the corresponding satellite-based data 29 sets differ the least and correlate more, while the greatest differences and weakest correlations are 30 noted for the heavy-intensity events. The satellite-based records best match those of the rain gauges 31 during light-intensity events, when compared to the heaviest ones. IMERG data exhibit a superior 32 performance than TMPA, in all rainfall intensities.