Quantifying Synergy between Software Projects
using README Files Only

Roxanne El Baff
Institute for Software Technology
German Aerospace Center (DLR)

Oberpfaffenhofen, Germany
roxanne.elbaff @dlr.de

Abstract—Software version control platforms, such as GitHub,
host millions of open-source software projects. Due to their
diversity, these projects are an appealing realm for discovering
software trends. In our work, we seek to quantify synergy
between software projects by connecting them via their similar
as well as different software features. Our approach is based
on the Literature-Based-Discovery (LBD), originally developed
to uncover implicit knowledge in scientific literature databases
by linking them through transitive connections. We tested our
approach by conducting experiments on 13,264 GitHub (open-
source) Python projects. Evaluation, based on human ratings of
a subset of 90 project pairs, shows that our developed models
are capable of identifying potential synergy between software
projects by solely relying on their short descriptions (i.e. readme
files).

Index Terms—repository mining, natural language processing

I. INTRODUCTION

The growing amount of open-source software projects range
from small experimental software to large-scale and continu-
ously advancing systems. Many of such projects are available
on public repository hosting platforms such as GitHub that do
not only provide functionalities for managing source code but
also include tools for documentation and collaboration.

Thus, repository hosting platforms are not only technical
means but can also be considered as an agglomeration of
ideas and knowledge scattered over several projects. However,
exploring this vast amount of information manually is beyond
human capacity.

Several applications assisting users in exploring software
repositories aim at finding similar repositories to one’s own
repository, e.g. [1]-[3]], helping to identify alternative imple-
mentations, explore related projects, or identify plagiarism.
However, when focusing solely on similarities, searchers are
trapped in their search bubbles and are rarely exposed to
develop something new based on repositories that complement
their work. Thus, in this paper, we propose an approach
for exploiting distributed software knowledge in repository
platforms, which is inspired by Literature-Based Discovery
(LBD) [4]. LBD uncovers implicit knowledge and synthesizes
hypotheses from scientific literature databases by identifying
complementary information sources (i.e., publications). The

DOI reference number: 10.18293/SEKE2021-162

Sivasurya Santhanam
Institute for Software Technology
German Aerospace Center (DLR)

Cologne, Germany
sivasurya.santhanam @dlr.de

Tobias Hecking
Institute for Software Technology
German Aerospace Center (DLR)

Cologne, Germany
tobias.hecking@dlIr.de

e.g. Conduct significant tests e.g. Conduct poshoc Analysis

Common
Features

Unique
Features B

Repository B
Potential synergy?

Benefits from ,Features B“ Benefits from , Features A”

Fig. 1. Two repositories are related by a common set of features. There is a
potential synergy since both can extend the feature set of the other.

general idea is to seek possible transitive relationships between
concepts mentioned in different publications. For example, if
concepts A (e.g., a disease) and B (e.g., an enzyme) are found
to be often related to a concept C (e.g., a drug) respectively,
but no relationship between A and B has been reported so far,
one can hypothesize that there is also a relationship between
A and B which is worth to be explored.

In this paper, we adopt the idea of LBD to quantify a
synergy score between project pairs taking into account, both,
software feature similarities and differences. For example, Fig-
ure (1| illustrates a simplified scenario of two repositories with
a potential synergy. Repository A has two features: (1)“pre-
process data for significance tests”, and (2) “conduct signif-
icance tests”. Whereas, Repository B has only feature (2) as
common one and an additional feature: (3) “conduct post-
hoc analysis”. As we see, these two repositories can benefit
from each other because they share a common feature, and
each is missing one feature from the other. Accordingly, we
ask the question: How can one discover software repositories
that are similar to some extent but different enough to expand
each other’s functionality so that they can be the basis for new
developments?

Our approach solely relies on information extracted from
repositories’ publicly available readme file because it is a
common practice, in high-quality open-source projects, to
summarize the main project information in such files. More
precisely, we use existing natural language techniques to
model the software features of each project, then we quantify

the synergy between each project pair by defining a new
synergy ranking method.

We conduct our experiments on more than 13K GitHub
software repositories with Python as the main programming
language and having a readme file written in English. We
evaluate our models based on human ratings, which shows that
our approach successfully identifies synergy between project
pairs.

Altogether, our contribution is threefold:

« A new view on exploring synergy quantification between

repositories to inspire new ideas.

« A novel approach that combines existing natural language
techniques to extract relevant information from reposi-
tories’ descriptions, and ranking techniques to quantify
synergy between pairs of projects.

o Experimental evidence that synergy between software
projects can be detected automatically.

Our work can be used, among others, for recommenda-
tion systems, or discovery-based systems from large software
projects pile. For reproducibility, the code is publicly available:
https://github.com/DLR-SC/repository-synergy.

II. RELATED WORK
A. Recommendation of software repositories

Previous works in the repository mining community focus
already on developing approaches for software recommenda-
tions by either using the metadata of GitHub repositories (e.g.,
stargazes, readme files, ...) such as Zhang et al. [3]], or by
using software artifacts (e.g., software packages, code, ...)
such as McMillan et al. [[I]. Others focus on categorizing
software repositories and readme files, which helps to better
perceive a massive pile of data and grasp the content faster
(Prana et al. [5]], Sharma and Thung et al. [2], ...).

Zhang et al. [3] built a recommendation system called
RepoPal. They detect similar repositories using three different
heuristics based on readme files and stargazing. They assume
that two repositories are likely to be similar based on three
measurements: 1) readme files with similar content, 2) repos-
itories starred by users of similar interests, and 3) repositories
starred together within a short period by the same user. Their
recommendation system outperform CLAN (Closely reLated
ApplicatioNs) [1]. McMillan et al. [1]] developed an approach
for automatically detecting similar applications for a given
Java application based on packages and class hierarchy.

Our goal and methodology differ from Zhang et al. [3]. In
our approach, we exploit not only software similarities but also
differences which we believe can inspire for new directions.
Moreover, our methodology is different: we exploit the implicit
knowledge between software projects based only on readme
files instead of relying on different metadata.

B. Cataloging software repositories

Another strand of research in repository mining essential
to our work is categorizing software repositories’ thematic
analysis of readme files.

GitHub creates showcases where they manually catalog a
set of repositories on a certain topic. Sharma et al. [2]] semi-
automatically expanded such showcases. Using 10K reposito-
ries with readme files, they first extract the most descriptive
section in the readme file by selecting the one with the highest
cosine similarity value with the repository short description on
the top of the repository landing page on GitHub. They then
feed all these descriptions to a Latent Dirichlet Allocation
using the Genetic Algorithm model, where they manually
analyze topics into meaningful categories. This work indicates
that readme files are already used in existing research to
deduce the software features of a software repository. Also,
using a topic modeling algorithm is common for clustering
readme files and hence software repositories. In this work,
we use similar techniques within our approach. However, we
identify sections reflecting the software features in readme
files using an existing classifier, READMEClIassifier, trained
by Prana et al. [5]. [5] systematically classify each section
of a readme file to categories reflecting its purpose (see
Section for more details).

III. APPROACH

The following section outlines our approach to quantify
synergies between software repositories, which consists of a
pipeline with three steps, as shown in Figure

A. Software Features Extraction

The first step extracts the repositories’ descriptions of
software features (Figure [2]1). To do that, we identify these
sections by using the existing multi-label classifier, READ-
MEClassifer, built by Prana et al. [5]], which labels readme
file sections. READMECIassifer was trained on 4k manually
annotated readme file sections from 393 repositories with an
F; score of 0.75 where each section was categorized into one
or more of eight different categories. The What category is
identified based on headings (e.g., About) or based on the
text at the beginning of a README file. Sections describing
a comparison to another software artifact with respect to
performance, flexibility, and simplicity are categorized as
Why. Other categories describe other metadata not related to
software features. Prana et al. [5] combined What and Why
into one label (Why sections were rare < 3%), WhatWhy, to
train their READMEClassifier.

We use this classifier to extract sections with the label
WhatWhy for each repository, which describes the software
features within it. In the next steps, we only use repositories
having a readme file with WhatWhy section(s).

B. Software Features Modelling

Topic modeling is an unsupervised machine learning tech-
nique that automatically analyzes text data to determine cluster
terms for a set of documents (in our case, readme files). Each
document is assigned a weighted sum of topics. And each
topic is represented by a set of terms and the probability of
this term for a specific topic.

https://github.com/DLR-SC/repository-synergy

Transformed Software Features into Modelled Features

Software Features

Repository-Readme Pair B
per Repository

Clustered Repositories

/Readme file

Sections describing
software features

o

‘ _Topic
b

1. extract
Software
features

2. cluster software
features using
topic modeling

ONONO
0OA) - |0AR) (AER

THRET

Initial Set of Software
Repositories

Repository-feature Representation

Topic term

repository-pairs score

“repon-repol 0.28

o —

repo 1-repo 2
represent

3. rank/score 0.21

repository-pairs
forsynergy
association

Synergy Discovery using Modelled Features

Fig. 2. Proposed approach of synergy discovery consisting of three steps: 1) Software features extraction, 2) software features modeling and 3) synergy

scoring using a ranking algorithm.

1. Inverse Feature Overlaps

M =exp(-X" x X)
F1

F2 F3 F4
08 1 1
06 08 1
1 08 03 08
0.8 0.2

F3 F4

3. Repository Similarities

o=XxXT
Rl R2 R3 R4 RS
06 02 0 O 0
02 02 04 01 0

’ R3|0 04 1 030
° e R4 |0 01 03 0.6 0.7
RS |0 0 0 071

Fig. 3. The three matrices used by the ranking algorithms: 1) matrix M for
inverse features overlaps, 2) matrix X for repository feature combinations and
3) matrix O for features overlaps of repositories.

In this step (Figure 2]2), we apply a topic modeling al-
gorithm only on the readme file sections from Section [[II-A]
to cluster them into topics (i.e, set of terms) which yields
readme-ferm association. The outcome of this step is a numeric
vector representation for each repository. More formally, given
a set of repositories R, we extract a set of characteristics of
features F. A repository a can be represented by a vector
2@ € RIFl where each of its elements 2!*) denotes the
association strength of the repository to feature (topic) i.

C. Synergy Quantification

Now that we have a vector representation for each reposi-
tory, we describe here the approach for finding software project
pairs with synergies using these vectors.

As mentioned previously, we base our synergy scoring on
the ABC model of Literature-Based-Discovery. In the domain
of software projects, A, B, and C represent software features.
We first formalize the problem, and we define three require-
ments for our synergy scoring approach. We then suggest
a random walk-based ranking function for repository pairs,
which comply with these requirements.

1) Problem formalisation: From the previous step, each
repository « is represented by a vector x® e RIFI with
elements z, ; giving the association strength of a to feature 1.
All vectors are assembled as the rows of the repository-feature
matrix X € R‘R‘Xmﬂ An example is shown in Figure 2.

2) Synergy Scoring Requirements: Synergy is a subjective
notion; therefore, we suggest three main requirements for
quantifying synergy between software project pairs:

« R1 - Potential trend. Two software projects should each
bring features that were not combined by many other
projects before (create a new trend). More formally, high
values m; ; in the inverse feature overlap matrix M =
exp(—XTX) EI (Figure 1) has high values for features
pairs that are not frequently present in the same projects.

+ R2 - Potential complementary features. For two soft-
ware projects a and b to bear potential to create new
directions when combined, it is required that one has
strong associations to a subset of features for which
the other has weak associations. This means for two
complementary repositories a and b 3; jer Zai T
Ay i L Azq; L Axp; 1. The dissimilarity, and thus the
potential to have complementary features, of repositories
is summarized in the matrix X~ =1 — X.

X is always row normalized.
ZFor the sake of simplicity we denote exp(—XTX), the element-wise

application of the exponential function to the negative values of the matrix
XTx

o R3 - Similarities between projects. R1 and R2 alone are
not sufficient to discover the synergy between software
project pairs because they can lead to matches between
projects from very different domains and purposes. Thus,
two projects that benefit from each other should also
have some common characteristics. This can be expressed
by the row-normalised repository-feature overlap matrix
O ¢ RIFXIEl (Figure [33).

3) Synergy Scoring as Ranking functions: We define a
synergy ranking function for pairs of software repositories
that comply with the requirements defined above based on
a restricted random walk on a heterogeneous graph of reposi-
tories and features similar to the ones shown in Figure 3] when
the matrices are treated as transition probability matrices.

The transition probability matrices P(X) ~ X and
P(XT) ~ XT assign probabilities to go from a repository to
a feature or vice versa, respectively. The probability of moving
from a feature node in the graph (Figure[3]1) to another feature
node is given by P(M) ~ M.

The idea of random walk-based ranking is that a random
walker starts at a repository a and randomly jumps to an
associated feature ¢ with probability p(x, ;). In the next step,
it jumps, with probability 1 — d, to another repository that is
also affiliated with feature 7, which accounts for commonalities
between the two. With probability d, it jumps (or explores)
another feature not well related to ¢ and j by moving
according to the probability p(m; ;)p(z, ;). From there, it
discovers another repository b with high affiliation to feature
Jj (according to the probability p(z; ;)). The resulting matrix
equation for synergy scores of all repository pairs is:

Qrw = (1 - PX)P(XT) + d(P(X)P(M) o X P(XT) (1)

The jumping probability d can be adjusted to balance be-
tween finding similar repositories and exploring new features.

IV. EXPERIMENTS

In this section, we first describe the dataset used in our
experiments (Section and then we describe our experi-
ments.

A. Data

For our experiments, we exploit GitHub open-source repos-
itories. We use GitHub repositories because of the availability
of the data and tools to extract their metadata and readme files.
We limit the extracted repositories to one main programming
language, Python, to control the variability of programming
language—software features dependability, which is outside the
scope of our work. We use the latest dum[ﬂ from the GHTor-
rent dataset (Gousios, 2013 [6]). To ensure high repository
quality, we rely on the number of “Watchers” (> 50)
for each repository. “Watchers” are GitHub users who have
asked to be notified of activity in a repositoryE] So, the high

3At the time of writing this paper: |https://ghtorrent.org/downloads.html
dump mysql-2019-06-01.

4Watchers definition is stated here:
github-forks-collaborators-watchers/.

https://www.metrics-toolkit.org/

TABLE I
PRE-PROCESSING OF THE 20,590 SOFTWARE REPOSITORIES FROM
GITHUB.

Prepossessing Repositories Readme
Sections

19,797 169,521
14,065 28,932

13,264 24,988

repositories with readme files
repositories with WhatWhy sections
repositories with English WhatWhy content

number of watchers reflect repositories with high quality or
ones relevant to the community. Also, to ensure recency, we
fetch repositories that are still available on GitHub, and were
updated in the recent year. Lastly, we fetch the readme files
using PyGithulf] where we end up with 20,590 repositories’
readme files.

B. Software Features Extraction

As mentioned in Section [[II-A] we classify 20,590 readme
files containing 169,521 sections using the READMEClIassi-
fier. Table[[|shows the total number of repositories and sections
after each pre-processing step. Based on the READMECIas-
sifier, only 14,065 have at least one WhatWhy section. We,
then, filter out the non-English sections by using the lang-
detect Python library [[7]. We end up with 13,264 readme files
(24,988 WhatWhy sections), which are used in the subsequent
steps.

C. Software Features Modelling

In this section, we transform the 13,264 readme files, that
include only what-why sections, into a numeric vector by
using topic modeling techniques, as described in Section [II[-B
We use Mallet latent Dirichlet allocation (LDA) [8]], [9]. We
choose the optimal % (pre-set number of topics) configuration
based on the coherence value, which assesses the quality of the
learned topics by measuring the degree of semantic similarity
between high-scoring terms in a topic.

LDA is a generative probabilistic model for a collection
of discrete data such as text corpora (here, readme files).
The model defines a set of topics to describe a corpus. Each
document is modeled as a finite mixture over an underlying
set of topics that are represented as a mixture of terms. Here,
the association vectors of a what-why section of a repository’s
readme file to topics build the repository-feature matrix X
used in the next phase.

First, we pre-process the readme files by removing the
stop-words and lemmatizing the content. After that, we train
Mallet LDA on the readme files (WhatWhy sections) where
the number of topics (k) must be predefined. So, we train
models with k ranging between 4(ﬂ and 150 topics. To define
the optimal k, for each value, we calculate the average of topic
coherence [10] values of the inferred topics. Figure [plots the

SPyGithub library: https:/github.com/PyGithub/PyGithub!
%We do not go below 40 because we need a handful of features for the
synergy scoring later.

https://ghtorrent.org/downloads.html
https://www.metrics-toolkit.org/github-forks-collaborators-watchers/
https://www.metrics-toolkit.org/github-forks-collaborators-watchers/
https://github.com/PyGithub/PyGithub

Coherence Value
o
o
B

Number of Topics

Fig. 4. Coherence values generated for each number of topics, k, trained
using Mallet latent Dirichlet allocation (Mallet-LDA).

TABLE II
DISTRIBUTION OF README FILES FOR THE TOP 5 TOPICS (EACH
REPRESENTED BY THE TOP KEYWORDS).

LDA
Topic Readme Files Number
model, train, dataset 856
image, target, alt 553
tool, scan, attack 526
page, html, content 484
api, application, request 454

average of the coherence values for different k. As we see, the
topics are most coherent where k = 45. Also, Table [lI| gives
a sample of the topics’ terms.

D. Synergy Quantification

Using the modeled features from LDA, we apply here the
ranking algorithm, random walk, with different configurations
of the jumping probability d, d = [0.0 — 0.5]. Using each
configuration, we calculate the score of each repository-pair,
sorted in descending order, in our dataset. We evaluate these
models in the next Section (V).

V. EVALUATION

A first observation is that random walk-based ranking with
a larger jumping probability (d > 0.2) results in a similar
set of repositories 7, that are rated to have high synergy
with any other repository r,. Therefore, we only evaluate
1) a model with random-walk jumping probability d = 0.0
(focusing on similarity only), 2) with jumping probability
d = 0.2 to see the effect of exploring similar yet more different
features, and 3) random selection of repository pairs (baseline).
We hypothesize that our models (1 and 2) identify synergy
between repository pairs better than the random pair selection.

Due to the absence of ground truth data and comparable
methods, we conducted a study where we asked programmers
with good proficiency in English (the language of readme files)
and high knowledge of Git and Pytho to rate repository pairs
regarding their potential for bearing synergy’| We created a
dataset of 90 repository pairs containing 30 non-overlapping
top picks of the three models mentioned above (d = 0.0, d =

7Raters studied for their bachelor/masters degree in English and have > 3
years experience in Python.

8Evaluation web application: https://synergy-annotation.herokuapp.com/
reposynergy with username: seke202/ and password: seke2021.

0.2, random selection). The 90 pairs were divided into three
different batches, where each batch contained ten pairs of each
model. Each batch was rated by three different raters. As a
result, we obtained 270 evaluations.

As shown in Table we asked our raters to evaluate
each repository pair by reading their readme files and then
answering two questions. In question 1, we ask if there is a
synergy between the pair. The possible answers ranged from
None to Strong. Also, the raters briefly explained the rationale
of their choices (question 2). The formulation of questions and
the rating guidelines were refined in a pilot study prior to the
main evaluation.

Table [V] shows that the majority agreement (2 out of 3)
between our human raters is very high when synergy intensity
is considered. However, the full agreement between all 3 raters
is often not achieved, which indicates that there is a degree of
subjectivity in human judgment.

VI. RESULTS

Table shows the count of the synergy evaluations for
repository pairs selected by the different models. We observe
that repository pairs picked randomly have only 23% (21
annotations) of annotations indicating synergy, whereas the
repository pairs generated by our models have higher synergy
reports of 66% and 58% for models 1 and 2, respectively.
The difference to the baseline is significant with regard to
the non-parametric Kruskal-Wallis Test [11] (not normally
distributed data), p < 0.001. This was further confirmed in
a post-hoc analysis using the Mann-Whitney test [12] with
Bonferroni correction that showed that the repository pairs
generated by model 1 and model 2 are significantly rated with
higher synergy than the random pairs at p < 0.001 and effect
sizes, r, of 0.30 and 0.39 respectively. However, the difference
between models 1 and 2 is not significant. Table shows
examples of repository pairs rated high by our models.

While overall, model 1 (d = 0.0), focusing on similarities
of project pairs, have a higher agreement with human ratings,
a closer look at the highest rated pairs by humans from the
entire evaluation set shows a different picture. We define the
discovery rate, dr(pop), as the intersection of repository pairs
belonging to the top p (p € [0,1]) fraction of repository
pairs ranked by human annotators (toppyuman) and the algo-
rithm (topaigo) relative to the number of top pairs, that is:
dr = W, where n is the number of all pairs
in the evaluation dataset. For model 1, dr(piop < 2) = 0.0.
While for model 2 (d = 0.2), dr(pwp = 0.1) = 0.1
and dr(pi,p = 0.15) = 0.08. This indicates that model 2
incorporates differences of features more strongly. Contrarily,
model 1 scores higher synergy for pairs that have more
redundancies, which makes them more obvious to the raters.

VII. CONCLUSION

This paper explored a novel approach for discovering syn-
ergies between software projects that may inspire innovations.
To this end, we adapted the idea of Literature-Based Discovery
(LBD), which aims at uncovering implicit knowledge by

https://synergy-annotation.herokuapp.com/reposynergy
https://synergy-annotation.herokuapp.com/reposynergy

TABLE III
THE QUESTIONS THAT OUR RATERS HAD TO ANSWER AFTER READING THE readme FILES OF TWO REPOSITORIES.

Questions

Answers

1. I see that there is synergy between the 2 repositories

a. None — No complementary or common features

b. Weak — More common features than complementary
c. Somewhat — Some features can be merged
d. Strong — Clear complementary features that lead to a new project

2. Explain your choice(s) (Keep it short)

Free text

TABLE IV
EXAMPLES OF REPOSITORY PAIRS MAJORLY ANNOTATED AS HAVING STRONG SYNERGY (CLEAR COMPLEMENTARY FEATURES THAT LEAD TO A NEW
PROJECT), RANKED BY LDA -RW FOR d = 0.0 AND d = 0.2.

Jumping Probability Repository 1

Repository 2

d=0.00

d=0.2

Flexible and scalable Django authorization backend Core common behaviors for Django models, e.g.
for unified per object permission management

Timestamps, Publishing, Authoring, Editing and
more.

Python scripts and documentation for generating to- Blender python addon to increase workflow for

pographically accurate Minecraft maps from histori- creating minecraft renders and animations

cal map scans

TABLE V
MAJORITY AND FULL AGREEMENT BETWEEN HUMAN SCORING FOR
REPOSITORY PAIRS SELECTED BY DIFFERENT MODELS.

Synergy Synergy vs.

Intensity No Synergy

Majority Full Full

LDA - Random Walk (d=0.0) 80% 20% 50%

LDA - Random Walk (d=0.2) 83% 20% 57%

random baseline 100% 50% 57%
TABLE VI

COUNTS OF THE RATED SYNERGIES FOR THE 90 REPOSITORY PAIRS IN
OUR DATASET, FOR EACH ALGORITHM (LDA RANDOM WALK WITH
d =0.0, WITH d = 0.2 AND random BASELINE). EACH PAIR WAS RATED BY
THREE RATERS.

Synergy w Has Synergy

Intensity

012 3No Yes
Algorithm
LDA - Random Walk (d=0.0) 31 122522 31 59
LDA - Random Walk (d=0.2) 38 1525 12 38 52
Baseline random 69061104 69 21

exploring similarities and differences of knowledge artifacts,
to the software domain. Based on human rating evaluation
for identifying synergy between pairs of software projects
showed that it is possible to quantify synergy using projects’
readme files only. Our results indicate that models focusing
on similarities to identify synergy are slightly higher rated by
humans.

However, in the original spirit of Literature-Based Dis-
covery for novelty identification, it is acceptable that not
every new knowledge combination leads to a useful finding.
The same applies to systems that use our approach. If the
aim is to build a discovery system that assists in identifying

new directions for novel developments, one would put more
emphasis on differences in software features. The developed
methodology is, however, flexible enough to be configured to
identify repository pairs that serve similar purposes.

REFERENCES

[1] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in 2012 34th International Conference on Soft-
ware Engineering (ICSE). 1EEE, 2012, pp. 364-374.

[2] A. Sharma, F. Thung, P. S. Kochhar, A. Sulistya, and D. Lo,
“Cataloging GitHub Repositories,” in Proceedings of the 2Ist
International Conference on Evaluation and Assessment in Software
Engineering - EASE’17. Karlskrona, Sweden: ACM Press, 2017,
pp. 314-319. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
3084226.3084287

[3] Y. Zhang, D. Lo, P. S. Kochhar, X. Xia, Q. Li, and J. Sun, “Detecting
similar repositories on GitHub,” in 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering
(SANER). Klagenfurt, Austria: IEEE, Feb. 2017, pp. 13-23. [Online].
Auvailable: http://ieeexplore.ieee.org/document/7884605/,

[4] D. R. Swanson, “Undiscovered public knowledge,” The Library Quar-
terly, vol. 56, no. 2, pp. 103-118, 1986.

[5] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo, “Cate-
gorizing the Content of GitHub README Files,” Empirical Software
Engineering, vol. 24, no. 3, pp. 1296-1327, Jun. 2019. [Online].
Available: http://link.springer.com/10.1007/s10664-018-9660-3

[6] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories, ser.
MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 233-236.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2487085.2487132

[7]1 S. Nakatani, “Language detection library for java,” 2010. [Online].
Available: https://github.com/shuyo/language-detection

[8] D. M. Blei, A. Y. Ng, and M. L. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993-1022,
2003.

[9] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[10] M. Roder, A. Both, and A. Hinneburg, “Exploring the space of topic
coherence measures,” in Proceedings of the eighth ACM international
conference on Web search and data mining, 2015, pp. 399—408.

[11] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance
analysis,” Journal of the American statistical Association, vol. 47, no.
260, pp. 583-621, 1952.

[12] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50-60, 1947.

http://dl.acm.org/citation.cfm?doid=3084226.3084287
http://dl.acm.org/citation.cfm?doid=3084226.3084287
http://ieeexplore.ieee.org/document/7884605/
http://link.springer.com/10.1007/s10664-018-9660-3
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://github.com/shuyo/language-detection

	Introduction
	Related Work
	Recommendation of software repositories
	Cataloging software repositories

	Approach
	Software Features Extraction
	Software Features Modelling
	Synergy Quantification
	Problem formalisation
	Synergy Scoring Requirements
	Synergy Scoring as Ranking functions

	Experiments
	Data
	Software Features Extraction
	Software Features Modelling
	Synergy Quantification

	Evaluation
	Results
	Conclusion
	References

