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Abstract— When walking at high speeds, the swing legs of
robots produce a non-negligible angular momentum rate. To ac-
commodate this, we provide a reference trajectory generator for
bipedal walking that incorporates predicted centroidal angular
momentum at the planning stage. This can be done efficiently
as the Centroidal Moment Pivot (CMP), Instantaneous Capture
Point (ICP) and the center of mass (CoM) all have closed-
form trajectory solutions due to their linear dynamics. This
is then used to produce smooth, continuous trajectories. We
furthermore provide a lightweight model to estimate angular
momentum as induced during leg swing of the gait cycle.
Our proposed trajectory generator is tested thoroughly in
simulation and has been shown to successfully operate on the
real hardware.

I. INTRODUCTION

Bipedal locomotion is a challenging problem: a high-

dimensional system needs to make and break friction-limited

unilateral ground contacts in order to control underactuated,

nonlinear dynamics that exist in hybrid form. While the

underlying problem features are highly complex, the main

objective can be condensed to making the center of mass

(CoM) track a desired path along which footsteps are placed

for support. The Linear Inverted Pendulum (LIP) model put

forward by Kajita et al. [1] follows this idea by projecting

the general system dynamics to the CoM. In combination

with the concept of the Zero Moment Point (ZMP) from

Vukobratovic et al. [2], locomotion planners result that show

sufficient performance under runtime constraints (e.g. [3]).

The introduction of the Instantaneous Capture Point (ICP)

put forward by Pratt et al. [4] offered a concise formulation

of footstep placement for recovery from external perturba-

tions. Its usage in locomotion planning has seen widespread

application in the planar case (e.g. [5] and [6]) and through

its generalization to the Divergent Component of Motion

(DCM) also the 3D case (e.g. [7] and [8]). The resulting

reference trajectories generated by these planners are then

tracked using feedback controllers that can leverage knowl-

edge of the actual system dynamics. By employing solely

the LIP in the planning stage, these approaches introduce the

assumption of the center of pressure (CoP) coinciding with

the Centroidal Moment Pivot (CMP) and therefore result in
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Fig. 1: Atlas walking over rough terrain. When considering very
dynamic motions, including angular momentum at the planning
stage can be advantageous.

minimization of change in centroidal angular momentum.

This can be at odds with the desired swing leg motion and

unnecessarily constrains the CMP to the support polygon.

The effect of centroidal angular momentum during the

human gait cycle has been studied in [9]. However, there

have only been few attempts to explicitly account for its

effects during the planning stage of bipedal locomotion.

Pratt et al. [4] and Lee et al. [10] discuss extensions to

the LIP that try to model centroidal momenta. Dai et al.

[11] and Herzog et al. [12] put forward methods to include

approximations of the angular momentum to allow for more

consistent motion planning. When aiming at generating fast

and dynamic locomotion for robots with non-negligible mass

distribution in the extremities, the explicit inclusion of these

effects becomes inevitable for improving performance. In

case of bipedal walking, the CMP can offer a straight forward

entry point to include angular momentum during planning.

In this work, we provide an extension to the smooth ICP

reference generator provided by Englsberger et al. [13] that

makes it easy to include angular momentum references at

the planning stage. We furthermore provide an inexpensive

scheme for generating an approximation of the centroidal

torque induced by swing leg motion. A short overview over

the relevant theory is provided in Section II. Section III then

introduces our formulation of the CMP, ICP and the CoM

reference trajectory generators, and shows how we handle

reference adjustment for replanning. Simulation results are

provided in Section IV, while real hardware application is

discussed in Section V. Section VI concludes the paper and

provides a short description of possible future work.
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II. RELEVANT THEORY AND PREVIOUS WORK

The underlying planning algorithm was presented in [14]

based on the the DCM. Under the assumption of constant

CoM height during planning, the DCM is equivalent to the

ICP. In the following, we provide an overview of the relevant

theoretical background.

A. LIP dynamics and the ICP
The ICP is a transformation of the CoM state defined as

ξξξ = xxx+
1

ω0
ẋxx, (1)

where ξξξ = [ξx,ξy]
T

is the ICP position, xxx= [x,y]T is the CoM

position, and ω0 =
√

g/ΔzCoM is the pendulum constant for

the LIP. Reordering (1), we find the CoM dynamics as

ẋxx = ω0 (ξξξ − xxx) . (2)

The CoM therefore has stable first order dynamics and

converges towards the ICP. Differentiating (1) and using

Newton’s 2nd law, we find the ICP dynamics as

ξ̇ξξ = ω0 (ξξξ − rrrCMP) . (3)

The CMP encodes the total linear force acting on the CoM

FFFCoM = mω2
0 (xxx− rrrCMP) . (4)

Considering (3), the ICP displays unstable first order dy-

namics and diverges from the CMP. An ICP tracking control

law can then be formulated to yield closed-loop stable ICP

dynamics together with inherently stable CoM dynamics.
In an effort to guarantee feasibility of the CoP trajectories,

Englsberger et al. presented a smooth DCM and VRP refer-

ence trajectory generator in [13]. A smooth VRP reference

is achieved by using spline interpolation between VRP

waypoints, and its corresponding DCM reference through

integration. During the planning stage, ZMP and CMP refer-

ences coincide based on the assumption of negligible angular

momentum.

B. Momentum-based control
The underlying momentum-based control framework is

described in detail in [15]. A quadratic program (QP) is

used to find optimized joint accelerations and ground reaction

wrenches based on the desired motion tasks, ground contact

information and a centroidal momentum objective. During

walking, the QP tries to achieve the desired control CMP

through linear momentum rate of change and to follow

the reference swing leg motion. Conventional approaches

based on LIP dynamics assume a massless swing leg during

planning and therefore choose the reference CMP to coincide

with the reference CoP. When applied to a multi-body

robot with distributed masses, this can lead to degraded

performance.
In the following, we therefore introduce a reformula-

tion of the waypoint-centric approach provided in [13] to

a polynomial-centric approach that explicitly incorporates

angular momentum references, together with a light-weight

approximation of angular momentum initialized by a three

mass model simplification of the overall robot model.

III. SMOOTH ICP REFERENCES GENERATION

CONSISTENT WITH ANGULAR MOMENTUM OBJECTIVES

This section provides the formulation of the CMP, ICP

and CoM reference trajectory generators. To avoid clutter,

we make use of the decoupled nature of the LIP dynamics

and write corresponding equations in their scalar form. They

can then be applied in both x and y direction. We furthermore

show how to adjust the CoP reference to account for footstep

replanning or tracking error.

A. CMP reference generation

As shown in [16], the CMP can be expressed as the sum

of the ZMP and the moment about the CoM

rCMP,x = rZMP,x +
τy (rrrCoM)

FGR,z

rCMP,y = rZMP,y− τx (rrrCoM)

FGR,z
,

(5)

where τττ (rrrCoM) is the CoM torque and FFFGR the ground

reaction force. Assuming flat ground walking, the CoP coin-

cides with the ZMP and will be used in its place. The CoP

and angular momentum reference can then be considered

separately in the CMP generation. Following the smooth

trajectory generation put forward in [13], we express both

terms using splines. The combination of the two separately

generated references is then a simple addition of the coef-

ficients. We formulate the CMP reference trajectories as a

series of nφ smooth splines over the preview horizon. Each

spline rCMP,re f ,φ is of order nCMP and can be represented as

rCMP,re f ,φ
(
tφ
)
=

nτ

∑
j=0

a jt
j
φ +

nCoP

∑
j=0

b jt
j
φ =

nCMP

∑
j=0

p jt
j
φ

= tttT (
tφ
) · pppφ ,

(6)

where tφ is the local time on segment φ , ttt
(
tφ
)

is its

vectorized form and pppφ is the vector of polynomial

coefficients. The latter consists of the individual CMP

coefficients p j expressed as a linear combination of the

torque coefficients a j and the CoP coefficients b j on

segment φ , such that nCMP = max{nτ ,nCoP}. Separating the

constant coefficients vector from the time-varying vector

in this form will be advantageous for the ICP reference

generation. For readability, we will drop the segment index

φ from the polynomial coefficient vector and simply write ppp.

1) CoP trajectory: The CoP reference trajectories are

generated through spline interpolation between waypoints.

Similar to [17], CoP waypoints are placed in the heel and

toe of each footstep. To allow for a more nuanced control of

the reference, additional waypoints are placed in the ball of

the foot and at the centroid of the double support polygon.

Letting l ∈ {heel,ball, toe1, toe2,cent} denote the waypoint

type, we define the respective locations for footstep i as

rrrCoP,i,l = ccci +K1
l (ccci+1− ccci)+K−1

l (ccci− ccci−1)+δδδ i,l , (7)

where ccci is the centroid of the i-th footstep, K1
l and K−1

l
are step length offset factors for the next and previous step
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CoP waypoint placement

Fig. 2: Footstep plan with reference CoP waypoints (blue) and
support polygon (dotted grey). Top: single support (SS). Bottom:
double support (DS) with adjusted CoP waypoint (red).

length respectively, and δδδ i,l is a tunable offset to alter the

gait dynamics. Ball and toe CoP waypoints are associated

with the single support (SS) phase, whereas heel and centroid

CoP waypoints are associated with the double support (DS)

phase. Every swing and transfer phase is therefore split into

at least 2 segments, a structure that will be exploited in

Section III-D to ensure continuity between successive plans.

The planned time duration for moving from one waypoint

to the next waypoint is a parameter tuned as a percentage

of the swing or transfer durations. The trajectory segment

connecting consecutive waypoints is generated using spline

interpolation, as in [13], based on the formula

rrrCoP,φ
(
tφ
)
=

(
1− fφ

(
tφ
))

rrrCoP,φ ,0 + fφ
(
tφ
)

rrrCoP,φ ,T , (8)

where rrrCoP,φ ,0 = rrrCoP,φ
(
tφ ,0

)
is the segment’s initial CoP,

rrrCoP,φ ,T = rrrCoP,φ
(
Tφ

)
is the segment’s final CoP, and

fφ
(
tφ
)

is a function of pre-defined order that continuously

interpolates from 0 to 1 with appropriate terminal derivatives

set to zero. Previous approaches often employed a constant or

linear reference CoP during planning. Here, we use a linear

interpolating function to ensure reference continuity, while

retaining comparability with previous implementations.

2) Angular momentum: In order to estimate the rate of

change of angular momentum, the robot is approximated

using the three mass model taken from Takenaka et al. [18].

Here, the robot is represented via lumped masses at the main

body mbody, the swing leg mswing and the stance leg mstance
(Fig. 3). A prediction of the centroidal angular momentum

can then be generated based on estimations of the lumped

masses’ trajectories. Here, we model these trajectories using

quintic splines under boundary constraints. For the main

body on segment i, we impose the boundary conditions

x̂xxbody,i(ti,0) = rrrCoP,i,cent x̂xxbody,i(Ti) = rrrCoP,i+1,cent ,

˙̂xxxbody,i(ti,0) = ˙̂rrrCoP,i,cent ˙̂xxxbody,i(Ti) = ˙̂rrrCoP,i+1,cent ,

¨̂xxxbody,i(ti,0) = 000 ¨̂xxxbody,i(Ti) = 000,

(9)

where ˙̂rrrCoP, j,cent =
rrrCoP, j+1,heel−rrrCoP, j,toe2

t j+1,heel,0−t j,toe2,0
denotes the average

velocity of shifting the CoP from one foot to the next. For the

mbody

mstance

mswing

rrrCoP

Ground

Fig. 3: Three mass model with lumped masses for the main body,
mbody, the stance leg, mstance, and the swing leg mstance.

swing and the stance leg we impose the boundary conditions

x̂xxswing,i(ti,0) = ccci x̂xxswing,i(Ti) = ccci+2,

x̂xx(n)swing,i(ti,0) = 000 x̂xx(n)swing,i(Ti) = 000,

x̂xxstance,i(ti,0) = ccci+1 x̂xxstance,i(Ti) = ccci+1,

x̂xx(n)stance,i(ti,0) = 000 x̂xx(n)stance,i(Ti) = 000,

(10)

with n ∈ {1,2}. For the vertical component of the swing

leg motion, a quadratic polynomial parameterized using the

maximum height above the ground, zmax, is used

x̂xxz,swing,i(t) = 4τ (1− τ)zmax. (11)

Here, τ = t
Tswing

denotes the normalized swing time. The

resultant lumped mass trajectories are then used to compute

the estimated centroidal angular momentum trajectory from

LLL = ∑
f oot

m f oot
(
x̂xxbody− x̂xx f oot

)× (
˙̂xxxbody− ˙̂xxx f oot

)
, (12)

where f oot ∈ {swing,stance}, and x̂body and x̂ f oot denote

the segmented trajectories. The lumped masses can then be

tuned based on the real system to minimize disagreement

between (9) and (15). A fast Fourier transform is used to

speed up the calculation of the polynomial cross product.

The angular momentum contribution to the CMP in (6) can

then be computed by differentiating the segmented trajectory

resulting from (12) and using it in (5).

B. ICP reference generation

Using the resulting CMP reference trajectories from the

previous section, we can integrate the unstable ICP dynamics

from (3) backwards in time. The resulting ICP reference

trajectory formulation on segment φ is provided as

ξre f ,φ
(
tφ
)
=

n

∑
j=0

ω− j
0

(
ttt( j)T (

tφ
)− ttt( j)T (

Tφ
)

eω0(tφ−Tφ )
)
· ppp

+ eω0(tφ−Tφ )ξre f ,φ
(
Tφ

)
,

(13)

where ttt( j) is the jth time vector derivative and Tφ the final

time. Analogously to [13], we group the time-dependent
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terms as vectors αααφ
(
tφ
)
, βββ φ

(
tφ
)

and scalar γφ
(
tφ
)

ξre f ,φ
(
tφ
)
=

(
αααφ

(
tφ
)−βββ φ

(
tφ
)) · ppp+ γφ

(
tφ
)

ξre f ,φ
(
Tφ

)
,

αααφ
(
tφ
)
=

n

∑
j=0

ω− j
0 ttt( j)T (

tφ
)
,

βββ φ
(
tφ
)
=

n

∑
j=0

ω− j
0 ttt( j)T (

Tφ
)

eω0(tφ−Tφ ),

γφ
(
tφ
)
= eω0(tφ−Tφ ).

(14)

C. CoM reference generation

Based on the ICP reference trajectory derived in the

previous section, we can now integrate the stable CoM

dynamics from (2) forward in time to find a closed form

solution provided by

xre f ,φ
(
tφ
)
=
(

αααCoM,φ
(
tφ
)−βββ CoM,φ

(
tφ
)) · ppp

+δCoM,φ
(
tφ
)(

ξre f ,φ
(
Tφ

)−αααφ
(
Tφ

) · ppp)
+ γCoM,φ

(
tφ
)

xre f ,φ
(
tφ ,0

)
,

αααCoM,φ
(
tφ
)
=

n

∑
i=0

n

∑
j=i

(−1)i ω− j
0 ttt( j)T (

tφ
)
,

βββ CoM,φ
(
tφ
)
=

n

∑
i=0

n

∑
j=i

(−1)i ω− j
0 ttt( j)T (

tφ ,0
)

eω0(tφ ,0−tφ ),

γCoM,φ
(
tφ
)
= eω0(tφ ,0−tφ ),

δCoM,φ
(
tφ
)
= eω0(tφ ,0−Tφ ) sinh

(
ω0

(
tφ − tφ ,0

))
,

(15)

where tφ ,0 is the segment’s initial time. This analytic formula-

tion can then be used to gain better insights into the intended

motion and to preview possible CoM constraint violations.

D. Reference adjustment for continuity

Updating the footstep plan re-initializes the ICP backward

iteration algorithm. Without actively enforcing boundary

constraints on smoothness, consecutive updates to the plan

can result in discontinuous references. For example, early

swing termination due to premature foot touchdown will

leave a gap between the achieved final swing reference ICP

and the following initial transfer reference ICP. In order to

guarantee smoothness of the ICP reference, we recompute

the CMP reference to offset this initial discontinuity. This is

achieved by shifting the CoP waypoint at the end of the

current transfer phase’s first segment as shown in Fig. 2

(bottom), thus generating new polynomial coefficient vectors

on the first and second transfer segment. We enforce the

following smoothness constraints up to the kth derivative,

where k = �nCMP/2�:
• C1: ICP transition between first transfer segment and

previous final swing segment, ξξξ 0,0 = ξξξ−1,T .

• C2: CoP transition between first transfer segment and

previous final swing segment, rrrCoP,0,0 = rrrCoP,−1,T .

• C3: CoP transition between first transfer segment and

second transfer segment, rrrCoP,1,0 = rrrCoP,0,T .

• C4: CoP transition out of the second transfer segment,

rrrCoP,2,0 = rrrCoP,1,T .

Here we use the notation ξξξ φ ,tφ with φ = 0 referring to the

first (initial) transfer segment. When starting from stance,

conditions C1 and C2 are both set to the corresponding

current CoP values. Due to condition C4, the adjustment

will only affect the first two transfer segments of the current

plan and the remaining segments will be left untouched.

The linear system of equations to be solved for ensuring

smoothness of the jth derivative is given by⎡
⎢⎢⎢⎢⎢⎣

ξ ( j)
−1,T − γ( j)

0,0γ1,0ξ1,T

r( j)
CoP,0,0

0

r( j)
CoP,1,T

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

ΔΔΔ( j)
0,0 γγγ( j)

0,0 (ΔΔΔ1,0)

ttt( j)T

0,0 000

−ttt( j)T

0,T ttt( j)T

1,0

000 ttt( j)T

1,T

⎤
⎥⎥⎥⎥⎥⎥⎦
[

p̃pp0

p̃pp1

]
(16)

where ΔΔΔφ ,tφ = αααφ ,tφ −βββ φ ,tφ . Solving for the adjusted poly-

nomial coefficient vectors of the first two segment, p̃pp0 and

p̃pp1, we can define the general adjusted polynomial coefficient

vector for each segment as

pppad j,φ =

{
p̃ppφ , φ ∈ {0,1}
pppφ , otherwise.

(17)

Using these adjusted vectors and leveraging linearity in the

coefficients, the adjusted ICP trajectory takes the form

ξre f ,ad j,t = ΔΔΔt ·
(

pppad j +aaa
)
+ γtξre f ,ad j,T , (18)

where we dropped the explicit dependence on φ to avoid

clutter and aaa is the stacked polynomial coefficient vector of

the torque reference, as introduced in Section III-A.

E. ICP control

The desired control law is then formulated on the CMP

level, similar to [13]. It consists of a feed-forward term

using the reference CMP and a feed-back term accounting

for reference ICP tracking errors. To account for replanning,

the adjusted references introduced in the previous section are

employed. The control CMP is given by

rrrCMP = rrrCMP,ad j,φ +
(
III +KKKξ ω−1

0

)(
ξξξ −ξξξ ad j,φ

)
, (19)

where KKKξ is a positive definite gain matrix. To avoid un-

reasonably large control inputs, the control CMP is limited

to lie within an enlargement of the support polygon grown

0.06m in every direction. This value offered a good trade-off

between allowing sufficient angular momentum and rejecting

noisy sensor data.

IV. SIMULATION RESULTS

A. Ideal Planning

In the following we compare the proposed planner to the

continuous double support (CDS) planner, the continuous

heel-to-toe shift (HT) planner (both [17]) and the smooth ICP

planner put forward in [13]. Based on the ideal LIP equation,

we generate ICP reference trajectories for a 5-step straight

walking plan. The step plan parameters are m = 150kg, tSS =
0.6s, tDS = 0.2s, lstep = 0.5m and wstep = 0.25m, while the

initial and final transfer times are both 1s. Based on Fig. 4, it
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ẋcom [m] ẏcom [m]
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Fig. 4: Comparison of CDS (green dotted), HT (blue dotted), smooth ICP (black) and smooth ICP with angular momentum (red) trajectory
generators. An ideal 5-step straight walking plan with parameters tSS = 0.6s, tDS = 0.2s, lstep = 0.5m and wstep = 0.25m was used.
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Fig. 5: Top to bottom: CDS, HT, smooth ICP, smooth ICP with
angular momentum. The reference CMP (blue), ICP (red) and CoM
(green) are shown as projections on the ground plane.
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Fig. 6: Comparison of weight normalized energy EEE for the four
planners: CDS (green), HT (blue), smooth ICP (black) and smooth
ICP with momentum estimation (red). The latter reduces the cumu-
lative energy required during the gait cycle visibly.

is visible that the proposed planner results in a more dynamic

motion than the ones ensuing from the other planners. Along

the x-direction, the estimation-based compensation of swing-

leg angular momentum decreased ground reaction forces in

x during the swing phase considerably and renders them

close to zero. It follows that the center of mass acceleration

is reduced and less work is done against the CoM inertia.

Referring to Fig. 4, both ICP and CoM motion along x is

much more linear during gait. While the effect of momentum

compensation is less in the frontal plane, a reduction in y-

sway is still visible. Fig. 5 displays the reference trajectories

projected to the ground plane. Comparing the two bottom

rows, the effect of accounting for swing leg momentum on

the CMP (blue) is clearly visible, while the CoM (green)

is shifted less from side to side. Based on the LIP model,

the external energy requirements of the resulting gaits can

be computed from the ground reaction forces and the CoM

velocity as an indicator of gait smoothness [19]. Fig. 6

provides the weight normalized energies. It can be observed

that the proposed planner yields a significantly more efficient

locomotion pattern than the other planners. This can be

ascribed to both the reduced cumulative jerk of the CoM

trajectory and the more dynamic gait with less CoM sway.

B. Atlas Simulation

We tested the proposed planner’s performance in

simulation on Boston Dynamics’ Atlas robot using IHMC’s

Simulation Construction Set (SCS). The scenarios we

evaluated were undisturbed straight walking, force-disturbed

straight walking and force-disturbed side stepping. Each step

plan was parameterized with the default values used in the

previous section for ideal planning: swing time tSS = 0.6s,

transfer time tDS = 0.2s, step length lstep = 0.5m and step
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width wstep = 0.25m. The results are presented below.

1) Straight Walking: Our plan consisted of 5 forward

steps with an initial standing-to-walking transition and a

final walking-to-standing transition. The resulting measured

ICP, ground reaction forces and weight normalized external

energy can be observed in Fig. 7. Similarly to the ideal

planning case, the measured ICP exhibits a much more

linear movement along x when angular momentum is

accounted for, while side to side sway is slightly reduced

(top row). Looking at the ground reaction forces, it is

visible that force magnitudes are greatly reduced during the

swing phase, while on average the instantaneous impact

force during transition into double support shows a higher

peak. As the peak forces are only encountered for a very

short duration and the percentage increase in magnitude

is small, we were unable to see a degraded performance

of the planner with angular momentum compensation

enabled. As our current angular momentum model looses

accuracy during the transfer phase, we furthermore believe

that these instantaneous peaks could be mitigated by

incorporating a more extensive model. Judging by the

bottom row, the required external energy is visibly lowered

for aforementioned reasons and the proposed planner seems

to outperform previous versions.

2) Disturbed Straight Walking: In order to evaluate ro-

bustness, we simulated forward walking under force dis-

turbances for all four planners on a 8-step plan. During

walking, the robot is first subjected to a force acting along y,

Fy =−40N, followed by a force acting along x, Fx = 100N.

Both forces are being applied at the robot’s chest for a

duration of 1s. Both the HT planner and the smooth planner

without angular momentum do not withstand the first force

and the controller fails to stabilize the system. The CDS

planner manages to withstand the first force by not breaking

contact with its swing foot throughout the duration of force

application, but fails to withstand the second force. Only

the smooth planner with momentum compensation remains

stable and carries out the entire plan. Fig. 8 provides the

measured ICP along x and y, as well as the corresponding

footholds (red) adjusted from the nominal footholds (grey).

3) Disturbed Side Stepping: In order to gain insights

into possible directionality of the planners’ performances,

we tested side stepping under force disturbances. The plan

encompassed 10 steps, while forces were applied along y,

Fy = −100N, and x, Fx = 70N for a duration of 1s each.

Based on Fig. 9, it can be observed that the CDS planner

(green), the HT planner (blue) and the smooth ICP planner

(black) failed to complete the task. The impact of the first

force pushed the robot into a configuration from which it

was unable to recover in all three cases. Only the smooth

ICP planner with angular momentum (red) successfully

completed the task and therefore seems to offer the greatest

robustness under the conditions tested.
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Fig. 7: Top to bottom: comparison of measured ICP ξξξ , ground
reaction forces FFFGR and weight normalized energy EEEnorm. Angular
momentum estimation (red) reduces the required sagittal force
during swing visibly and in turn reduces the external energy
requirements of the gait.
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(green), HT (blue), smooth ICP (black) and smooth ICP with
momentum estimation (red). Only the latter was able to complete
the task. Its adjusted footsteps are shown in the bottom right.
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completion. Its adjusted footsteps are shown in the top right.
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V. EXPERIMENTAL RESULTS

The proposed planner with momentum compensation was

successfully tested on the physical Atlas humanoid robot.

Atlas was able to perform flat ground walking, including

aggressive turning, sidestepping and backward walking. We

were furthermore able to perform step up and step down, as

well as traversing both a setup of randomly oriented cinder

blocks and a gravel pit (see accompanying video). The new

planner therefore met all the benchmark requirements to

be run continuously on the real hardware. Below, we show

data obtained from executing an 8-step plan on flat ground,

parameterized using swing time tSS = 0.9s, transfer time

tDS = 0.35s, step length lstep = 0.25m and step width wstep =
0.25m. Based on Fig. 10, it can be observed that the angu-

lar momentum profile predicted from the very lightweight

implementation of Section III-A.2 offers a reasonable ap-

proximation to the actual angular momentum. Because our

main focus was on the sagittal plane, the prediction is better

along x than it is along the y direction. Considering this

angular momentum reference in the trajectory generation

resulted in the CMP and ICP reference trajectories provided

in left column of Fig. 10. The desired values are tracked

sufficiently well and little disagreement between them and

the recorded data is observed. Furthermore, the estimated

external energy required for the step plan is provided in

its weight normalized form and seems to be in general

agreement with the simulation results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an extension to the smooth

ICP planner proposed in [13] that incorporates predicted

centroidal angular momentum trajectories at the planning

stage. We were able to reformulate the planner from be-

ing linear in the waypoints to being linear in the spline

coefficients. This allowed us to write the reference CMP

trajectory as a simple addition of reference CoP and reference

angular momentum coefficients. Integrating the resulting

formulation twice resulted in a closed form representation

for both the reference ICP and reference CoM trajectories.

Furthermore, we provided a very lightweight approximation

to the centroidal angular momentum profile during the gait

cycle that worked sufficiently well to reduce the external

energy requirements of the tested gait. The proposed planner

can work on both an online estimation of angular momentum

or a pre-planned trajectory taken e.g. from animation. It

was thoroughly tested in a simulation of Boston Dynamic’s

Atlas humanoid robot and successfully deployed on the

real hardware. Future work will include the incorporation

of a more sophisticated angular momentum approximation

scheme capable of capturing higher order dynamic interac-

tions and that offers a more accurate prediction during the

transfer phase of gait.
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