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Abstract

Programming by Demonstration (PbD) is an intuitive method to transfer knowledge
from a non-expert human teacher to a robot. To allow the non-expert user to intu-
itively understand what the robot has learned from the demonstration, we propose
a framework that detects online which skills the human is demonstrating and builds
from that a graph that describes how the task is performed. The skill recognition
is achieved by a segmentation algorithm that combines symbolic skill segmentation,
which makes use of pre- and postconditions to identify skills, with data-driven seg-
mentation, which uses Support Vector Machines to learn to classify the skills from
data. The framework is thus able to detect force-based skills in addition to manip-
ulation skills, to allow the flexible use of robots in assembly production lines. The
intuitiveness of the framework is evaluated in a user study that compares the task
graph representation of our framework to the time-line based representation of an
existing PbD framework that does not make use of skill recognition.



2



CONTENTS 3

Contents

1 Introduction 5
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work 9
2.1 Programming by Demonstration . . . . . . . . . . . . . . . . . . . . . 9
2.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Movement Primitive Segmentation . . . . . . . . . . . . . . . 11
2.2.2 Skill Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Human-Robot Interaction . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Skill Based Task-Graph 25
3.1 Skill Segmentation Algorithm . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Data Driven Segmentation . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Combined Segmentation . . . . . . . . . . . . . . . . . . . . . 33
3.1.4 Adaption for Online Segmentation . . . . . . . . . . . . . . . 38

3.2 Segmentation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Interactive Task Programming Framework 43
4.1 Teaching Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Execution Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Editing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Reload Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Delete Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Quit Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 User Study 49
5.1 Compared Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Task descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Laboratory Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Online Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.7 Discussion User Study . . . . . . . . . . . . . . . . . . . . . . . . . . 57



4 CONTENTS

5.7.1 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.7.2 Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.7.3 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion 63
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A User Study Questionnaire 65

List of Figures 71

Bibliography 75



5

Chapter 1

Introduction

The recent years have shown a shift in the production cycle from large product
batches to small ones, as the demand for customized products grows. At the same
time, automation of the production cycle has become a major goal for many com-
panies, as robots become more versatile and cheaper, and their use thus becomes
attractive in labour intense production chains. These two trends combined lead to
the demand of robots that learn new tasks fast and efficiently, in order to keep up
with the changing production cycle. But this stands in contrast to the traditional
use of robots, where a robot expert implements code that the robot performs for long
periods of time. This hinders fast changes, as the people working in the production
often lack the background to implement these changes themselves, and experts must
provide the code instead.
Thus teaching robots new tasks without having to implement code has become a
much researched topic. This aims to give people without a background in robotics,
such as shop-floor workers, the ability to teach robots, thus enabling them to execute
small changes in the robots’ programs themselves. To allow the use of robots in a
wide variety of production line scenarios, the robots must be capable of learning
a large range of manipulation actions from the human teacher. Common tasks for

Figure 1.1: A robot sanding
a surface [Rob21].

Figure 1.2: A robot drilling a
hole [ABB21].
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robots, such as sanding a surface, as shown in Fig. 1.1, or drilling holes, as shown
in Fig. 1.2, require the robot to perform actions in contact with its environment.
Therefore, to enable the shop-floor workers to teach the robot these tasks, the robot
must be able to identify the contact actions shown by the teacher, such as sliding
over a surface or pressing against an object. This still remains a challenge, as it re-
quires a detailed and diverse examination of the teacher’s demonstration, to ensure
that the robot extracts correctly how to perform the task itself.
Furthermore, while a large body of work focuses on the technical side of providing
learning mechanics for the robots, only in recent years the focus also shifted on con-
sidering the humans who are expected to become teachers for the robots. Because
regardless of how good the robot’s learning mechanism is, if the human teacher is
unable to provide the necessary demonstrations, the robot will fail to perform the
task correctly. Therefore it is necessary to consider where challenges for the teacher
lie, and instead of only focusing on the robot’s learning capabilities, to provide the
teacher with a complete framework focused on making the teaching experience as
intuitive, effortless and enjoyable as possible.

1.1 Problem Statement

The aim of this thesis is to provide an interactive robot programming framework,
that is focused on the teacher’s needs, while ensuring that the robot is capable of
learning how to perform a large variety of tasks. Therefore, the focus of this thesis
is twofold: On the one hand, it lies on the robot’s ability to identify which steps
are necessary to perform a task, so that it is then able to execute the task. As this
framework is designed to enable the use of robots in production lines, the robot must
be able to learn a large selection of contact-based interactions with its environment,
thus allowing it to flexibly operate tools and manipulate objects.
On the other hand, the teacher’s role is also considered. As the intended users for
this framework are non-robotic experts, the framework should enable them to be
good and effective teachers, without requiring a steep learning curve. This requires
an intuitive and comprehensible representation of the robot’s knowledge, giving the
users the necessary feedback to understand what the robot is learning. Therefore,
this thesis aims to solve the following challenges:

• How can we represent a robot’s knowledge such that:

– the robot can learn a large variety of contact-based manipulation actions

– the robot’s knowledge is intuitively understandable for humans

– the robot’s knowledge can be corrected and expanded by the teacher in
an interactive fashion

• How can we design a framework focused on the teachers needs, such that:
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– it is intuitive to use

– it communicates the robot’s knowledge correctly to the human teacher

– it provides the necessary feedback for the teachers to perform the teaching
to the best of their abilities

The first points address how the robot’s knowledge is encoded. There are many
approaches in literature on how robots can learn, ranging from how this knowledge
is extracted from demonstrations to how this knowledge is then used to perform the
task. In this work, the focus lies on finding an approach that is flexible enough to
teach a robot multiple options to manipulate objects, while allowing a representa-
tion of the robot’s knowledge that is understandable to non-experts. We therefore
choose to encode the robot’s knowledge on a skill level. This means that a task is
broken down into smaller, semantically meaningful steps, the so-called skills. These
skills describe the purpose of the step, such as Pick up an object or Press with a
tool on this surface. By describing the task on the skill level, a task-graph can be
built depicting the sequence of skills used to perform this task. The teacher can
then go through the steps of this task-graph to understand how the robot will exe-
cute the task. As this step-by-step representation is self-descriptive, it is intuitively
understandable for non-experts.
Furthermore, by creating a broad selection of skills, the robot is enabled to learn
how to operate tools and interact with the environment. Thus a skill level task
encoding serves both to create a large and flexible knowledge base for the robot, as
well as to communicate the robot’s knowledge to the human.
Yet the challenge remains to transfer the user’s demonstration into the skill level.
While there is a large body of literature focusing on how to extract skills from
demonstrations, addressed in Chap. 2, there is a lack of focus on skills used for
contact-based manipulation purposes. Therefore, this thesis introduces an approach
that is able to extract a larger variety of contact skills, skills that are performed in
contact with the environment, enabling a flexible manipulation of objects. As these
contact skills are defined by how the robot interacts with the environment, they are
harder to extract from the demonstration, compared to simpler skills such as Pick
or Place, as the characteristics of the interaction needs to be evaluated in detail.
Thus we propose an approach that enables the detection of both a large variety of
contact skills and simpler manipulation skills, such as Pick and Place by combining
a semantic approach, that describes skills on a symbolic level, with a data-driven
approach, that is able to learn the nuances required for the differentiation between
contact skills. The introduced approach is able to extract the performed skills online
from the user’s demonstration, thus creating the center piece of our Interactive Task
Programming (InTAP) framework.
InTAP aims to solve the second set of aforementioned challenges by creating an
interactive teaching framework and providing a GUI, that guides the user through
the teaching process. The user is able to transfer her knowledge by using kinestetic
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teaching to physically guide the robot through the task, allowing an intuitive demon-
stration of the task. This demonstration is then segmented online into the skills used,
shown as a task-graph to the user in the GUI. This gives the teacher an immediate
feedback about what the robot is learning from the demonstration, helping her to
understand the robot’s knowledge and allowing her to react accordingly. In cases
where the teacher made a mistake during the teaching process, or the robot learned
the task incorrectly, the framework also enables the user to correct the robot’s
knowledge by providing options to manipulate the task-graph, making it easier for
the teachers to ensure they are teaching the robot correctly.
This thesis gives an overview of the state of art in skill based PbD in Chap. 2, be-
fore introducing our skill segmentation approach in Chap. 3. This is followed by the
introduction of the InTAP framework in Chap. 4. The intuitiveness of the InTAP
framework is then investigated in a user study in Chap. 5. Finally, in Chap. 6, a
summary of the work is given, as well as a discussion of the limitations of the current
work and an outlook on future work.



9

Chapter 2

Related Work

2.1 Programming by Demonstration

As robots are introduced in further parts of production cycles and the demand for
customized products reduces the life cycle of programmed routines, new alternatives
to the traditional programming of robots are emerging. They are required to allow
for fast adaptations of the robot’s routines as well as to give non-experts the pos-
sibility to program the robot in an intuitive way. Programming by Demonstration
(PbD), also referred to as Learning from Demonstration or Imitation Learning, is
one of these approaches. It allows the teacher to demonstrate the new behaviours,
which the robot then learns through imitation. As this is similar to the way humans
teach one another, it is intuitive to use and requires no background in robotics or
traditional programming [BCDS08] .
The demonstrations can be given through different means. In the work of Zhu and
Hu [ZH18], three main groups are identified: kinesthetic demonstrations, motion-
sensor demonstrations and teleoperated demonstrations. During kinesthetic demon-
strations, the teacher guides the robot directly to perform the task. Here the advan-
tage is that the robot is able to experience the demonstrations with its own sensors,
thus there is no correspondence problem between the demonstration and the follow-
ing execution. This correspondence problem needs to be solved for motion-sensor
demonstrations. There, the human gives the demonstration with his own body and
the motion is tracked, for example with the help of a marker-based tracking device.
The demonstration then needs to be translated to fit the movement capabilities of
the robot, which can be a challenge. The last demonstration type, teleoperation,
allows the teacher to control the robot with the help of a control device. Again there
is no correspondence problem, as the robot is able to perform the demonstration
and record it with its own sensors.
Apart from the above mentioned correspondence problem, in [PHAS09] two more
major challenges for PbD are pointed out: generalization and robustness against
perturbation. As it is not feasible to give a demonstration for every single varia-
tion of a task, the system needs to be able to generalize the execution of a task
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from only a few examples. Furthermore, as slight changes in the environment are
difficult to suppress, the system also needs to be able to perform the task reliably
against perturbations. Two of the most popular approaches to overcome these chal-
lenges are to encode the demonstration either on a trajectory level or on a semantic
level. As our approach also aims to encode the demonstrations on a semantic level,
hence splitting the demonstration into skills which then describe how to perform
the newly learned task, this will be discussed in more depth in Sec. 2.2. To encode
the demonstrations on a trajectory level, approaches are commonly based on statis-
tical modelling or dynamical systems [BCDS08]. For statistical modelling, Hidden
Markov Models (HMMs) as in [HSM96] are commonly used, as well as Gaussian
Mixture Models (GMMs) as in [CGB07]. To encode the skills in dynamical systems,
Dynamic Movement Primitives (DMPs) [INS01] are commonly used. A survey over
the different approaches which use these three solutions in an assembly setting can
be found in [ZH18]. How PbD can be applied specifically for humanoid robots can
be found in [CL18].
As our work expands an existing PbD approach [WEL20], the learning and execu-
tion of the tasks will be done with the trajectory encoding of that approach, while
the contribution of this works is to add a semantic encoding to represent the robot’s
knowledge for a better explainability, as discussed in Sec. 2.3.

2.2 Segmentation

The aim of our approach is to present the robot’s knowledge in a way intuitively
understandable to the human teacher. The level of detail in which this knowledge
is presented is a crucial part of the design process. The commonly used levels can
seen in Fig. 2.1.

Here the lowest level is that of primitives, so basic movements such as opening a
gripper. The next higher level is that of skills, which describe an action consisting
of multiple primitives, such as picking up an object. The highest level is that of a
task, so the overall goal of performing the actions, such as sorting objects.
Choosing the task level to represent the robot’s knowledge is too coarse to help the
human teacher grasp the details of what the robot has learned. The primitive de-
scription on the other hand provides such a high level of details that it requires the
user to first summarize the primitives to understand their goal, making it difficult
for the user to understand their purpose at first glance. Therefore, the skill level
was chosen to represent the robot’s knowledge in our framework.
These skills will then be arranged in a task-graph which describes which skills the
robot would execute to perform a certain task. To find this description, the tasks
must thus be available on a skill level. Therefore, it is necessary to split the demon-
strations given by the teacher into the relevant skill segments. To find these skill
segments, different approaches can be applied, of which an overview is given in the
following sections.
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Figure 2.1: The three levels of detail describing a robot’s task knowledge according
to [PNA+16]

2.2.1 Movement Primitive Segmentation

Even though our approach uses the skill level to describe the robot’s knowledge,
this section will briefly touch on approaches which segment a demonstration into
primitives, as many of those methods can be altered to segment skills instead.
One of the largest fields of research which uses primitive segmentation is that of
human motion segmentation. There, a human’s movement is split into primitives
to find models of how a human moves. These can then be analyzed to evaluate the
motion, for example in the setting of physical rehabilitation as in [HKK14] or used
to teach robots as part of PbD. An concise overview over different segmentation
methods, as well as a framework to evaluate them, can be found in [LKK16]. There,
the methods are grouped in online, semi-online and offline, as can be seen in Fig. 2.2.
Online approaches tend to find possible segmentation points by identifying changes
in the movement pattern rather then by identifying the primitive in the demonstra-
tion. A commonly used method is to identify points where the velocity crosses zero,
so called Zero Velocity Crossing (ZVC), as used by [FMJ02]. These points represent
stopping points in the continuous movement, indicating when a motion ends and
a new one begins. Alternative methods find metrics to compare how similar two
consecutive parts of the demonstration are, thus finding segmentation points where
a threshold of this metric is crossed. Common metrics are the Euclidean-distance
as in [MKZ+09] or the Mahalanobis distance as in [BSP+04]. The disadvantage of
online approaches is that they tend to over-segment, as they lack the knowledge of
what the primitives are. Furthermore, they only give possible segmentation points,
but no label for what primitive is performed in the segment. This label needs to
be found in an additional step. An example for this is [KOL+12], which identifies
primitives by stochastic segmentation, making use of the assumption that segments
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Figure 2.2: The segmentation methods are grouped into online, semi-online and
offline by [LKK16].

belonging to the same primitive also have the same underlying probability distribu-
tion. This then allows the creation of a hierarchical tree structure which clusters the
detected motion primitives, allowing the incremental learning of motion primitives
and their grouping.

Instead, semi-online methods can also be used. They use preexisting knowledge
about the primitives to identify which part of the demonstration belongs to a prim-
itive. This preexisting knowledge is used in the offline training phase to build some
kind of model of the primitives, which are then used in the online testing phase.
One method is to apply template matching. There, a template is created from cer-
tain features of the primitives and then used to compare different segments of the
demonstration to this template. A common method to encode the features sequences
are HMM as in [LK13]. In that approach, in the first step, possible segmentation
points are found online, as shown in Fig 2.3. This is done by evaluating which joints

Figure 2.3: The first step in template matching is to identify possbile segmentation
points. In [LK13], ZVCs and velocity peaks are used to identify them.
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are active at each time step, denoted as significant Degree of Freedom. Then their
velocity profile is extracted and multiplied with one another. From the thus gained
velocity feature the ZVCs and velocity peaks are identified. The authors assume
that each primitive consists of three ZVCs separated by two velocity peaks. This
way the demonstration is split online into possible segments. Then the forward al-
gorithm is used to find the best match from the template HMMs, which have been
created with the Baum-Welch algorithm. The best match is chosen and the segment
is assigned to belong to this primitive.
An alternative approach [MTS12] encodes the primitives in the form of DMPs in-
stead. A library of DMPs is thus created from the learned primitives. During the
demonstration, segmentation points are found online and the segments are encoded
as DMPs. These are then compared against the library to find matches. A challenge
for template matching approaches can occur when the demonstrations of the same
primitive vary strongly, as finding a suitable template thus becomes harder.
Alternatively, classification methods can be used to identify the primitives in the
demonstration. This can be done with a sliding window, where for each time-step
a surrounding window is taken and classified, for example with the help of Support
Vector Machines (SVMs) as in [BVL12]. A challenge for methods like these are
temporal variations in the primitives, as the window size influences the result of the
segmentation drastically.
When both the training phase as well as the testing phase are performed offline,
approaches are considered offline. This can be necessary when the whole demon-
stration must be available before the segmentation can be performed, or when the
computational costs are too high to run the algorithm online.
A common method is Dynamic Time Warping (DTW) [SC78]. In DTW, the prob-
lem of matching demonstrations to primitives performed at different speeds is solved.
This is done by warping the time vector such that the error between the demonstra-
tion and the primitive is minimized. A shortcoming of DTW is that poor warping
can lead to the warping of disproportionately large parts of the demonstration to
small parts of the primitive, thus distorting the result. Furthermore, DTW becomes
too computationally expensive when performed on high dimensional data.
An alternative to DTW is to use HMMs with the Viterbi algorithm [Rab89]. There,
each primitive is encoded in a HMM and the Viterbi algorithm is used to find the
sequence of HMM states, which fit the demonstration most likely. An example of
this method can be found in [VRL+09]. Another approach using HMMs is [LO11],
which introduces a forgetting factor, allowing the incremental refinement of the mo-
tion primitives by forgetting old examples and substituting them with newer, more
relevant ones.
The method introduced in [NOKB12] uses Beta Process Autoregressive Hidden
Markov Models to parse the demonstrations into reoccurring segments, which can
be saved as a primitive library. This way new primitives can be detected without
previous knowledge, as well as those already present in the library recognized as
well. Additionally, for each primitive the coordinate frame is found by detecting
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which object the primitive interacts with, providing further information to match
the primitive. A downside to this approach is that the computational cost for using
the primitive library is growing drastically with the number of primitives contained.

2.2.2 Skill Segmentation

As skills are more complex then primitives, it is harder to detect them through
changes in the motion of the demonstration, as multiple different movements may
belong to the same skill. For example, to perform a peg-in-the-hole skill, the in-
sertion process can consist of sliding the peg along the edge of the hole until it is
inserted and then pushing it down to fit completely. Therefore, the approaches to
segment skills make use of semantics such as knowledge about which skills can be
performed, for instance in the form of template matching, or with which objects the
robot is interacting with.
Apart from the division in online and offline methods, the approaches can be divided
depending on how they learn the skills and then detect them during the demonstra-
tion. Semantic approaches use symbolic conditions to define skills, while data-driven
approaches learn the skills from data. Examples for semantic approaches are the
montion-sensor PbD approaches used in [NM01, NM03], where each skill has a set of
unique postconditions. These postconditions describe the effect the skill has on the
robot’s state as well as on the environment. They are designed by hand depending
on what effects a skill is expected to achieve. During the demonstration, each skill is
monitoring it’s postconditions. When they are fulfilled, a skill is considered executed
and the segment is assigned to that skill. Furthermore, skills have preconditions,
which hold information about which skills must have been performed before they
can be executed. But unlike the postconditions, these are not designed by hand be-
forehand, but instead learned from the demonstrations. By comparing the order in
which skills are performed during the demonstration, a behaviour network is learned
that describes when skills can be executed. This information can then be used to
refine the detection of skills, as well as to provide the robot with information about
which skills it can choose from to solve a task during task execution. A downside to
this approach is that by only using the preconditions to describe the order in which
skills can take place, but not the external or internal conditions which mark the
beginning of a skill, it is implied that every skill starts exactly where the previous
skill ended, omitting transition phases in the representation.
Therefore, other approaches explicitly define preconditions for skills as well, not
only describing the order in which skills can take place, but also which conditions
the environment and robot state need to fulfill. This is done in the kinestetic PbD
approach by [SNS19], where skills are described in the Planning Domain Definition
Language. There, the skills’ pre- and postconditions, as well as over-all conditions,
so conditions which need to be fulfilled during the whole skill execution, are defined.
These definitions are then used to detect the skills in the demonstration. To check if
the conditions are fulfilled, a world model is used to monitor all relevant objects in
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the work-space, as well as the robot’s state. An example for an instance of a world
model can be seen in Fig. 2.4. The world model holds the information of where

Figure 2.4: An exemplary world model used in [SNS19] to monitor the objects and
the robot’s pose in the work-space. The colour indicates what kind of object the
nodes belong to. Red marks parts that belong to the robot, yellow the surface of the
work-space and the other colour different classes of objects, as for example cylinders.

objects are, as well as which other objects they are in contact with, shown with an
edge in the graph. In Fig. 2.4 for instance it can been seen that Box3 is placed
on top of Box4, which stands on the table. As there is no camera used to directly
obtain this information from the scene, a world observer is used to calculate this
information from the actions performed by the robot. Thus it can update the world
model continually. The skill recognition algorithm then uses the information from
the world model to update the state of the candidate skills, depending on which
of their conditions are fulfilled. When the preconditions of a skill are fulfilled, the
information about which objects are used in that specific execution of the skill is
saved in the form of a skill-value combination. Once the postconditions of this skill
are also fulfilled, the skill is marked as detected and the skill-value combination is
saved for the segment.
This approach has the advantage that it achieves a robust skill detection by using
the objects’ positions to check for conditions such as ’close-to’, without having to
work with image detection algorithms that lead to higher computational cost, and
can thus be performed online. But this also has the drawback that the objects’ exact
positions and orientations need to be available to the world model at the beginning
of demonstrations, which leads to an extra overhead, as well as a potential source
of errors for teachers with little experience. Furthermore, the approach is unable to
detect unexpected changes in the world, like for instance the sliding of an object in
the gripper or an interference by the human teacher, which then lead to a mismatch
between the world model and the reality.
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This is why other approaches use image detection to ensure a correct world model,
as done in [WSA+13]. There, a marker based motion capture system with mul-
tiple cameras is used to track the objects and the user to perform motion-sensor
based PbD. But unlike the world model introduced before, the extracted world
model here only contains information about which objects are in contact, not their
positions or orientations. The authors argue that skills are used to interact with ob-
jects, thus only points in the demonstration where contacts between either objects
and the user or objects and other objects happen, can be start- and endpoints for
skills. Therefore, the information obtained by the motion capture system is used
to detect moments where contacts change, which are then marked as keyframes.
The contacts at these keyframes are then stored in the world model. To detect
skills in the demonstrations, pre- and postconditions are also used. But whereas
the pre- and postconditions of skills here are limited to whether there is contact
or not, they also hold information about what kind of objects these contacts can
take place with. These combinations of skill and object information are referred
to as Object-Action-Complexes (OACs) and are stored in a library. To detect the
OACs in the demonstration, keyframes and their corresponding world models are
extracted. These are then compared to the OACs to find matches. An example
of the detection process can be seen in Fig. 2.5. In the upper pictures the first

Figure 2.5: An example for the skill detection in [WSA+13]. On the left, the user’s
demonstration is shown for the extracted keyframes. The corresponding world model
is shown in the middle. All tracked objects are shown as nodes and their contacts
through edges. The right shows the pre- and postconditions for a grasping skill,
which are fulfilled by the contact changes.

keyframe is shown. There, both hands are free, so the precondition for a grasping
skill is fulfilled. The next keyframe shows that now the left hand is in contact with
the red cup. Therefore, the postcondition for the grasping skill is fulfilled as well.
Thus the grasping skill is detected with the objects ’left hand’ and ’red cup’. While
this approach is able to detect unforeseen changes in the world, it also limits what
kind of skills can be detected, as no information about what kind of contact the
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objects are in is considered. Both pressing down on an object and sliding it along a
surface have the same contact changes, but have different goals. Furthermore, the
additional effort for the user to wear the motion capture equipment and extra space
needed for the set-up makes it unsuitable for quick and frequent teaching sessions.
Another approach working with object information for skill recognition is [ZPKD05].
There, the demonstration is first split in segments, starting with pick skills and end-
ing with place skills. These segments are then further split with the help of the
available information about the objects. For instance an object can be screw-able,
so a contact with such an object is defined as a screw skill. The skills of the segment
are then further decomposed into movement primitives by analyzing their trajecto-
ries, obtaining a hierarchical segmentation. The drawback of this approach is the
strong limitation of how skills can be recognized by reducing them to solely depend
on the objects they are performed with. An approach introduced in [KKGB12] uses
Reinforcement Learning (RL) together with Changepoint Detection to segment a
demonstration into skills. The authors first use RL to learn the value function for a
demonstration, then use Changepoint Detection on it to find the points where the
goal of the robot changes. The thus gained segments are then compared against
a library of abstractions which describe all possible skills, and mapped to the one
which fits the segment’s value function best. This mapping provides further infor-
mation about what the goal of that segment is, allowing further refinement with RL.
This approach has the drawback that the value function needs to be learned before
the segmentation is performed, thus only offline segmentation can be achieved and
even that is time-wise costly, especially when complex skills are to be learned.
A similar method to [WSA+13] also uses changes in contact to detect keyframes, but
learns the skills from contact sequences directly and hence belongs in the data-driven
category. This method is called Semantic-Event-Chains (SEC) and has been an ac-
tive research topic [AAWD10, AAD+11, SBS+17, AAW19]. There, the sequence of
contact changes during a skill is used to describe it. A visual representation of the
skill learning process can be found in Fig. 2.6. To obtain the information of when
objects are in contact, computer vision is also used. But instead of using a marker
tracking system, an image segmentation algorithm is used. It detects which parts of
the image belong together and is thus able to detect the objects in the work space,
as shown in Fig-2.6 (a)-(c). From these segmentations a graph is constructed with
edges between objects that are in contact, as shown in step (d). This is done for
all time-steps, thus creating graphs that describe the temporal changes in contacts,
shown in steps (e)-(f). From this a SEC is created in the form of a matrix, in
which each column represents a moment in time, as can be seen in step (g). For
each combination of objects a row is created, in which the information about their
relation is saved. Possible relations are touching, overlapping, no contact and that
one of the segments no longer exists. To learn the representing SEC for a skill,
this process is repeated for multiple demonstrations of that skill. By comparing
the extracted matrices, the essential contact changes are extracted. These are then
saved as a SEC for that skill. To segment a demonstration into the thus learned
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Figure 2.6: An example for the skill extraction used in [AAD+11]. In steps (a)-(c),
objects in the work space are detected through segmentation. In steps (d)-(f) the
graphs describing the objects’ relations are created, which are then translated to a
SEC in step (g).

skills, the same process is used. The demonstration is described by a SEC denoting
the contact changes at the keyframes. This SEC is then compared with the help
of a sub-string search to the existing skills. When a match is found, the skill is
recognized. The advantage of this approach is that the set of learned skills can be
expanded by non-experts as well, as they only need to demonstrate the new skill in-
stead of having to find suitable conditions to describe it. Furthermore, unlike in the
approaches described above, no preexisting knowledge of which objects are in the
work space is necessary, removing the necessity to inform the system about them
beforehand. Downsides to this approach are the vulnerability to mistakes during
the image segmentation phase, the computational cost forcing the method to run
offline as well as the lack of information about the dynamics of the contacts, thus
limiting which skills can be distinguished. In order to enable such a distinction,
this method has been expanded to extract additional information about whether
skills are periodic or deterministic in [AZWA16], as well as to describe the spacial
relations in [ZAWT17]. While these allow to detect if a contact is dynamic or static,



2.2. SEGMENTATION 19

they are still unable to detect the differences in the dynamics of the contact, so for
instance the difference between pushing something and hitting something. Another
approach that uses spatial relations is [ZYFA15]. There, the space around objects is
split into different areas, describing their relation with the object, such as ’behind’
or ’above’. By tracking in which areas the objects are in respect to one another
during the demonstration, a descriptor is created. This descriptor is used to encode
the learned skills, as well as to recognize them in the demonstration using a custom
distance metric. This approach also runs offline. Another drawback of this method
is that an unconscious bias in the skill recognition can occur, for example by only
providing demonstrations from a right handed teacher, who would use tools in dif-
ferent positions as a left handed teacher.
An approach more similar to the template matching used in primitive detection is
introduced by [QELL20], where motion sensor PbD is applied. In the first step,
possible segmentation points are detected at moments where the fingertip distance
to an object crosses a certain threshold, changes in the hand velocity occur and the
rise/ fall profile changes. The skills are encoded in HMMs, and in the second step
of the segmentation, the forward algorithm is used to test if segments corresponds
to a skill. To reduce over-segmentation, the authors evaluate not only the found
segments on their own, but also combinations of segments. These combinations are
created by starting from the first segment, then iteratively adding the next seg-
ment and evaluating the scores for all possible skills until all segments have been
included. The process of building these segments can be seen in the upper part of
Fig. 2.7. From that the combination with the highest score is chosen as correct and

Figure 2.7: The segmentation process used in [QELL20]. The upper red part shows
how the different candidate segments are build. The lower blue part shows how
these are then matched to the learned skills.
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the demonstration is cut from the beginning to the end of that combination. This
is repeated until the whole demonstration is labeled, as shown in the lower part
of Fig. 2.7. A downside to this approach is that mistakes at the beginning of the
segmentation can influence the whole segmentation negatively. Furthermore, the
creation of the data sections from the demonstration has no direct link to how the
skills look like, thus creating a large number of incorrect possible segments, making
the template matching more difficult.
An alternative route is therefore to try and find the skills in the demonstration di-
rectly, which is done by [WJX+18], who also use motion-sensor PbD. There, SVMs
are trained on selected features to learn the skills, such as the hand gesture per-
formed during a task, the movement angle with respect to the work space, as well
as the vertical movement. The same features are then extracted from the demon-
strations, and a sliding window is run over. This sliding window is used to obtain a
score for each time-step, based on how likely it belongs to the different skills. The
points where the prediction of which skill is the most likely changes are taken as
segmentation points. An example of this can be seen in Fig. 2.8. To further im-

Figure 2.8: The segmentation process used in [AAD+11]. For each frame SVMs are
used to obtain a score, marking how well the time frames fit to the different skills.
The dotted lines show the segmentation lines.

prove the segmentation, segments which are considered too small to be a skill are
merged into their neighbouring segments. Additionally, the segmentation lines are
adjusted with a local optimal boundary search. During this search, the start and
end points of the segments are moved slightly and the SVMs are used to score each
possible combination of start- and endpoints. The highest scoring combination is
chosen and the process is repeated for each segment, until the start- and endpoints
for all segments have converged. This search is shown to significantly improve the
segmentation result. But as the authors point out, it can only be used because it
was possible to find highly distinguishing features, due to the choice of skills. For
a wider variety of skills, more features must be included, making the search more
expensive, possibly even forcing the algorithm to run offline instead of online.
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2.3 Human-Robot Interaction

To arrive at a widespread use of robots in the society, robots’ capabilities need to
be expanded. The problem of making robots easily teachable and capable of gener-
alization is addressed by PbD. It allows even non-experts to teach robots, so that
they can take over whatever tasks humans do not want to perform and therefore
would like to leverage to robots. But while transporting boxes from one side of a
room to another might be a task humans willingly entrust to robots, more dedicated
tasks, where a failure might lead to serious damage, are still primarily executed by
humans. To introduce the use of robots in these kind of tasks, two problems must
be solved: the robots must be able to perform the task without critical failure and
the human must trust in the robot’s ability to do so [EGL+19]. Most of the ap-
proaches introduced in Sec. 2.2.2 try to solve the first part of the problem by using
the segmented skills to introduce expert knowledge in the execution of the skills,
for example by using skill depended controllers, as in [AAW19]. This improves the
robot’s performance and can even be used to monitor the success of performing the
task. But it still treats the robot’s learning process as a black-box problem: the
demonstration is its input and the learned task its output.
Therefore, a demand for robots that are able to explain themselves to the human
teacher is growing, as argued for in [She17]. There, five advantages are pointed out
that can be obtained from good explanations: First and foremost, humans tend to
trust robots which they believe to understand. This trust is necessary for humans
to even consider using the robot. That a good representation induces trust is also
the conclusion of [EGL+19]. There, the authors compare explanations of the robot’s
behaviour in different forms regarding their success in building trust in the robots
capabilities. The results show that semantic representations of the robot’s behaviour
achieve the best results, supporting our believe that a skill based semantic represen-
tation improves the teaching experience.
The second advantage is that having access to a robot’s decision process is the first
step for introducing accountability in robotic systems. When failures occur, what
can never be completely avoided, knowing why it went wrong is necessary to know
who is responsible. Furthermore, it makes it easier to correct the specific part that
caused the failure, leading to the third point, ease of debugging.
Especially for non-expert users, debugging the robots’ behaviours is challenging, as
they lack the understanding to know what to expect of robots. Therefore, a good
representation of the robot’s knowledge is essential for non-experts to see at first
glance where the robot failed to produce a satisfactory result, giving them the option
to improve it. This also connects to the fourth point, which addresses the human
teacher’s ability to create good demonstrations, which are the foundation of creating
successful robot executions.
As pointed out in [SH20], incorrect demonstrations are one of the frequent causes
for failures. This is why the authors investigate what kind of feedback helps the
teachers most to improve their teaching, and find that showing the teacher a visual
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representation of what the robot has learned can improve the teaching efficiency
up to 180%. This result is also supported by [CT14], where the effect of provid-
ing teaching guidance is investigated. This shows that giving the teachers feedback
about which consequences their teaching has on the robot’s understanding of the
task, speeds up the teaching and helps them to give better demonstrations and to
build a better mental model of the state of mind of the robot.
The necessity of aligning this mental model, so the teacher’s expectation of what the
robot has learned, to the robot’s real knowledge, also referred to as state of mind, is
discussed in detail in [HB18]. There, the authors point out that for the human to be
able to understand the robot’s behaviour, and therefore to be able to comprehend
why the robot acted the way it did as well as to be able to predict what the robot
will do next, the human’s assumptions about the robot’s abilities must be correct.
That a mismatch hinders the teaching process is shown in [KTM10]. There, robots
were taught new behaviours with the help of pre-programmed skills, that could be
chosen from a program. The experiment tested two different cases: in the first one,
the teacher was allowed to see the robot during the teaching process and could so
directly see the execution of the skills. In the other case, the teachers only obtained
feedback through the program, telling them when the skills were executed.
The result showed that the group with limited access to the robot performed better,
as they had to rely on the information given to them, while the other group could
rely on their own interpretation of the robot’s movements. This lead to teachers
commanding the performance of a new skill before the last one was finished, as they
misjudged when the robot was done performing the skill. This shows why com-
municating the robot’s state of mind to the teacher is so important, as well as to
choose the communication to be as easily understandable as possible. Therefore,
the last advantage of presenting the robot’s knowledge to the human is discrepancy
resolution, so closing the gap between the teacher’s mental model and the robot’s
state of mind.
But while the necessity of presenting the robot’s knowledge to the user is recog-
nized and the advantages from doing so are clearly visible, hardly any of the before
mentioned approaches try to use the skill segmentation for that purpose. As skills
are usually describing the robot’s knowledge in words that humans would also use,
they are able to communicate the state of mind of the robot to the user. There-
fore, by showing the human teacher which skills the robot is going to execute, the
teacher can trust that the robot understood the goal of the task. Furthermore, in
case of wrong segmentation or skill recognition, the teacher is able to notice the
mistake before the execution of the program, thus being ableto correct them before
a failure occurs, giving a higher ease of debugging. Additionally, the teacher also
sees which demonstrations lead to which skill recognition, enabling him to provide
clearer demonstrations in case of repeated wrong recognition. And if these do not
improve the recognition, it is also easier to find out if the blame lies with the user
still providing poor demonstrations, or with the recognition program, thus improv-
ing accountability.
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Yet only the method used by [SNS19] aims to provide a dialog for the user, by using
the obtained skill segmentation as an input for task level programming, so to create
a program that uses pre-programmed routines to perform the detected skills. These
are then shown to the user with the help of a GUI, of which an example can be
seen in Fig. 2.9. The GUI can be used to edit the order of the skills and their pa-

Figure 2.9: The GUI used in[SNS19]. It shows the skill sequence for an exemplary
task by giving the skills names and descriptions.

rameters. But while this design fulfills all of the above mentioned criteria, it limits
the robot’s skill execution to linear programs. In the approach on which our work
is based, the robot is able to choose from multiple behaviours to react more flexibly
to environmental circumstances. Therefore, the moments where such decisions can
be made as well as their consequences must be represented as well.
Therefore, this work aims to extent the work done in [WEL20] to allow an intu-
itive representation of the robot’s knowledge. This is expected to build trust in the
robot’s capabilities, to give accountability, to improve the ease of debugging and the
user’s teaching capabilities and to help close the gap between the teacher’s mental
model and the robot’s state of mind. The approach with which this is tried to be
achieved is introduced in the following.
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Chapter 3

Skill Based Task-Graph

The first step in sharing the robot’s knowledge with the user is to extract this knowl-
edge from the user’s demonstration. The knowledge transfer used in our framework
can be seen in Fig. 3.1. First, the user provides a demonstration of the new task

User

Demonstration

Skill

Segments

Online

Segmentation

Sensor

Readings

InTAP

GUI

Task-Graph

ROBOT

USER

move pick move movemove

move

press press place

Figure 3.1: An overview of the information flow in our framework. The user can
refine the robot’s knowledge either by giving new demonstrations, which are then
segmented into a task-graph, or by manipulating this task-graph directly in the GUI.
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with the help of kinestetic teaching. The user’s demonstration is recorded and then
down-sampled to 50Hz. The down-sampled sequence of force, torque, gripper sta-
tus, gripper opening, position and orientation are then used to extract the performed
skills, which are then presented to the user as a task-graph via a GUI. This task-
graph describes the sequence of skills the robot has learned as the necessary steps
to perform the task, thus giving the user a feedback about what the robot learned
from the demonstration. To enable an immediate feedback, the skill extraction is
performed online.
This is achieved by merging a data-driven and a semantic segmentation approach
into a combined segmentation method, inheriting the advantages of both approaches.
Our approach performs the online segmentation in a two-step manner: In the first
step, the result from the semantic segmentation is used to create a preliminary on-
line segmentation. In the second step, the preliminary segmentation result is used
to split the demonstration into smaller parts, which then can be refined in batches
by the combination of the data-driven segmentation and the semantic segmentation.
This leads to an evolving task-graph that is constantly updated during the user’s
demonstration.
Once the user has finished demonstrating the task, the whole demonstration is seg-
mented by the combined segmentation method. The thus obtained task-graph can
then be used to further refine the robot’s knowledge. The details regarding the
user’s possible interactions with the task-graph are given in Chap. 4, describing the
Human-Robot-Interaction concept used in our framework.
In the following, the segmentation algorithm used to obtain the task-graph is intro-
duced.

3.1 Skill Segmentation Algorithm

To extract a skill level description of the task demonstrated by the user, this demon-
stration must first be segmented into skills. In this framework, the focus lies on
identifying a larger variation of so called contact skills, skills performed while be-
ing in contact with parts of the environment. As discussed in Chap. 2, only few
other methods try to solve the problem of detecting skills which are similar in their
contact sequence, but different in their purpose. Instead, most focus on extracting
only a few, easily distinguishable skills. But as the use-case for our framework is
an assembly line setting, where the robot needs to be able to learn multiple ways of
manipulating objects, a larger variation of teachable skills is necessary.
Therefore, our framework detects apart from the commonly used skills such as Pick,
Place and Move, the following contact skills : Press, Slide, Contour, User, Peg-in-
hole. A short description of each skill can be found in Tab. 3.1. The detection of the
contact skills is achieved by using a combination of semantic and data-driven skill
segmentation. While most semantic approaches are unable to detect dynamically
different contact skills, as their characteristics are hard to describe with pre- and
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Skill Name Description Image

Move The robot moves without any interaction
with the environment

Pick The robot takes an object

Place The robot releases an object from its grasp

Close
Gripper

The robot closes its gripper and does not
hold an object afterwards

Open
Gripper

The robot does not hold an object and opens
its gripper

Press The robot presses against a surface without
additional movement

Slide The robot presses against a surface while
sliding along it

Contour The robot presses against the side of a sur-
face and follows its outline

Peg-in-
hole

The robot inserts an object into a hole

User Inter-
action

The user pushes against the robot’s gripper

Table 3.1: Table describing the different skills. The blue arrows mark the movement
direction of the robot.
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postconditions, data-driven approaches can learn to distinguish these skills by their
force and torque profile. Yet the drawback of data-driven segmentation is a tendency
to over-segment, which then requires expensive post processing steps. That is why
most data-driven approaches are not suited for online segmentation. By combining
both semantic and data-driven segmentation, their drawbacks can be compensated.
Data-driven segmentation is able to distinguish the contact skills, and semantic seg-
mentation gives reliable segmentation lines while being able to run online. Thus,
an online segmentation algorithm that robustly detects a variation of contact skills
can be created. The details of the semantic and data-driven approaches used in
this work are introduced next, followed by a detailed explanation of their combined
application in our proposed online segmentation.

3.1.1 Semantic Segmentation

The semantic approach of this work uses pre- and postconditions to recognize skills
during the demonstration. The preconditions describe which conditions need to be
fulfilled to mark the beginning of a skill, while the postconditions describe which
conditions need to be fulfilled to indicate that a skill is done. Similar to the approach
used in [SNS19], we also use over-all conditions. These mark conditions which need
to be fulfilled during the whole execution of a skill.
The conditions are defined by hand by the expert designing the skills. In our work,
the conditions are computed from the movement of the robot’s gripper fingers, as well
as the readings from the FT-sensor installed between gripper and robot. As these
measurements are not enough to distinguish between the different contact skills,
the semantic approach is limited to detecting a general contact skill class instead.
Overall, the semantic segmentation can detect Pick, Place, Open-Gripper, Close-
Gripper, Move and Contact. An overview over the skills detected by the semantic
segmentation, as well as which conditions are used to detect them, is shown in
Tab. 3.2
For each time step, the measurements recorded during the demonstration are used to
evaluate which flags are set, describing the conditions currently met. The flags used
are OpenGripper, HoldingObject, GripperMoving and Contact. The OpenGripper
flag is computed from the distance between the robot’s gripper fingers. The distance
is normalized to the range [0, 1], where 0 indicates a completely closed gripper and
1 a fully open gripper. The threshold to indicate OpenGripper has been chosen as
0.6, to allow the gripper to hold larger objects. The HoldingObject flag is found
from the gripper status, which is read from the gripper. The gripper status has the
value −1 if the gripper does not hold an object and 1 if the gripper is holding an
object. Furthermore, it has the value 0 if the gripper is moving. Therefore, the
HoldingObject flag can directly be taken from the gripper status when the gripper is
not moving. If the gripper is moving, the last set HoldingObject flag is repeated until
the gripper stopped moving again. The information about the gripper’s movement
is also used in addition to the gripper finger distance to set the GripperMoving flag.
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Skill
Name

Preconditions Over-All
Conditions

Postconditions

Pick NoHoldingObject
OpenGripper
GripperMoving

HoldingObject
ClosedGripper
NoGripperMoving

Place HoldingObject
ClosedGripper
GripperMoving

NoHoldingObject
OpenGripper
NoGripperMoving

Close
Gripper

NoHoldingObject
OpenGripper
GripperMoving

NoHoldingObject
ClosedGripper
NoGripperMoving

Open
Gripper

NoHoldingObject
ClosedGripper
GripperMoving

NoHoldingObject
OpenGripper
NoGripperMoving

Move NoGripperMoving
NoContact

GripperMoving
Contact

Contact
Skill

Contact Contact
NoGripper-
Moving

NoContact

Table 3.2: The Table showing the conditions used in the semantic segmentation
to recognize skills. The over-all conditions need to be fulfilled during the whole
execution of the skill.

The Contact flag is found from the measurements of force and torque. The norm
over the force in all three dimensions is taken and compared to the force threshold,
which has been chosen as 5N. The same is done for the torque, with a threshold of
2Nm. If either of the two crosses their respective threshold, the Contact flag is set.
With the help of the flags the skills are detected in the demonstration, by monitoring
which of their conditions are fulfilled. The algorithm for the semantic segmentation
can be seen in Algorithm 1. All skills start with their status set to IDLE, indicating
that no skill has been recognized. Once the preconditions of a skill are met, as the
required flags are set, the skill is set to ACTIVE. The skill continues to be ACTIVE,
until either their postconditions are met or their over-all conditions are not fulfilled
anymore. If their over-all conditions are not met anymore and their postconditions
are not met yet, the skills are reset to IDLE. When their postconditions have been
met, their status is set to DONE. Then the skill is added to the list of detected skills
together with their start- and end time. Furthermore, all skills are reset to IDLE
after a skill has been detected. This means that no more than one skill can be found
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Algorithm 1 Semantic Segmentation

Input: Measurements m, Semantic skills skills
1: while m do
2: flags← extract flags(m)
3: for skill ∈ skills do
4: skill← update status(flags)
5: if skill.status == DONE then
6: segments[skill.start:skill.end]← skill.name
7: for s ∈ skills do
8: s← reset to idle
9: end for
10: break
11: end if
12: end for
13: end while

for a segment.
An example of a semantic segmentation result can be seen in Fig. 3.2. There, the
robot has been taught to perform a sequence of skills consisting of Move, Peg-in-
hole, Place, Close-gripper, Press, Slide and User. The contact skills are marked in
black. From the image can be seen that the semantic segmentation is detecting the
start- and endpoints of the skills reliably, but is unable to recognize which contact
skill is performed. Furthermore, the semantic segmentation is unable to detect that
the contact skill segment after the Close-gripper skill consists of two contact skills,
namely Press and Slide, as they are performed without breaking contact in between.

3.1.2 Data Driven Segmentation

The data-driven segmentation proposed in this work uses Support Vector Machines
(SVMs) with a sliding window approach similar to [WJX+18]. For each time-step,
features of the measurements in the surrounding time window are extracted and fed
into the SVMs, which then predict which skill is performed. The features used in
this approach consist of two parts. The first are features extracted with the publicly
available library tsfresh [CBNKL18] and the second are features designed to allow
a better distinction between the contact skills.
The tsfresh library was chosen as it allows a large number of possible features to
be extracted from time-series. By mostly relying on a generic library to extract
the features, instead of creating a complete set of specifically designed features, the
framework avoids becoming overly focused on the contact skills chosen now, and al-
lows the easy addition of more contact skills in the future. Furthermore, the tsfresh
library groups its features according to their computational costs, thus allowing a
flexible choice of features depending on the computational power of the set-up cho-
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Figure 3.2: Exemplary segmentation result for the semantic segmentation. The se-
mantic segmentation is overlaid on the end-effector forces (upper left), the torques
(upper right), the cartesian end-effector position (lower left) and the gripper move-
ments (lower right). The skill sequence performed is Move, Peg-in-hole, Place, Move,
Close-gripper, Move, Press, Slide, Move, User, Move. The Move skill is shown in
light green, Place in pink, Close-gripper in red and the general Contact skill in black.

sen for the framework to run on. In this work, the minimal feature selection is used.
For the tsfresh features, the measurements are not used directly to extract the fea-
tures, but are preprocessed first. This is done by computing the velocity from the
cartesian position of the end effector, and the angular velocity from the rotation of
the end effector frame. Additionally, as the skills should be detectable independent
of the direction they are performed in, the norm over the x-,y- and z-axis is com-
puted for the velocity, the angular velocity, the rotation in Euler angles, the forces
and the torques. The tsfresh features are then computed. Finally, after combining
the tsfesh and the contact skill features, the features are normalized to mean µ = 0
and standard deviation σ = 1.
As mentioned before, the contact skill features have been added to improve the
recognition of the contact based skills. This is done by introducing knowledge about
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the physical meaning of the measurements, which the tsfresh library is unable to do.
Thus features such as the mean power can be introduced, describing the dynamic
behaviour of the contact. An overview over the contact skill features can be found
in Tab. 3.3. As the strength of data-driven segmentation lies in detecting skills by

Feature Name Meaning

mean power f The mean power computed from force
and velocity.

mean power t The mean power computed from torque
and angular velocity.

slope to max force The slope of the line connecting the
force at the moment of first contact to
the force at the moment of the maxi-
mum force in the force domain.

slope from max force The slope of the line connecting the
force at the moment of the maximum
force to the force at the last moment of
contact in the force domain.

length contact The temporal length of the contact.
movement The total displacement between begin-

ning and end of the skill.
cov torque force The correlation factor between torque

and force.

Table 3.3: Table describing the additional contact skill features.

their force and torque profile, the SVMs are trained to classify the skills Move and
the contact skills Press, Slide, User, Peg-in-hole and Contour. The skills based on
gripper actions, such as Pick and Place, are not learned data-driven, as they can
be robustly and efficiently extracted by the semantic segmentation. Therefore, any
attempts to learn them from data are likely to reduce the recognition performance
instead of improving it.
The SVMs used in this approach use a Radial Basis Function (RBF) kernel. The
regularization parameter C and the kernel coefficient gamma are found through a
grid search during the training. The SVMs are trained on examples of the skills
both consisting of the whole skill as well as parts of the skills as large as the sliding
window. Thus, the skills can be recognized when they are only partially in the
sliding window or when they are too long to fit completely inside.
Furthermore, to allow the detection of the contact skills independently of the tool
they are performed with, the information about the tool’s weight and center-of-mass
is used to compensate the effect of the tool on the skill performance. This also im-
plies that our framework assumes that it always knows which tools are used during
the demonstrations.
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An example of a data-driven segmentation result can be seen in Fig. 3.3. The de-
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Figure 3.3: Exemplary segmentation result for the data-driven segmentation. The
data-driven segmentation is overlaid on the end-effector forces (upper left), the
torques (upper right), the cartesian end-effector position (lower left) and the grip-
per movements (lower right). The skill sequence performed is Move, Peg-in-hole,
Place, Move, Close-gripper, Move, Press, Slide, Move, User, Move, Press, Move.
The colours are: Move (light green), Peg-in-hole (dark green), Press (yellow), Slide
(dark blue), User (cyan).

picted demonstration is the same skill sequence as shown in Fig. 3.2. From the image
can be seen that the data-driven segmentation is able to detect which contact skill
is performed during the demonstration. Yet it over-segments, incorrectly detecting
multiple skills during a single skill demonstration. This occurs most often at the
beginning of the skills. Furthermore, the data-driven skill segmentation does not
recognize skills based on gripper actions.

3.1.3 Combined Segmentation

The combination of the data-driven segmentation and the semantic segmentation
has the advantage of detecting skills based on the gripper finger movement, like Pick
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and Place, on a semantic level, and contact skills by combining the results of the
semantic and data-driven segmentation. The approach introduced in the following
performs semantic and data-driven segmentation in parallel, to find all possible skill
segments that can be found in the demonstration. Then, it finds the best possible
combination of the skill segments, as can be seen in Fig. 3.4. A parallel instead of a

Semantic Segmentation

Demonstration

Data-Driven Segmentation

Segments Pool

Segment Selection

Combined Segmentation

Gripper skills
Move and contact skills

Figure 3.4: The flow chart describing how the semantic and the data-driven segmen-
tation are combined. In the first step, the results of the semantic segmentation and
the data-driven segmentation are combined in a segments pool. From that pool, a
segmentation of the demonstration into Move and the contact skills is build. In the
final step, the gripper based skills are directly taken from the semantic segmentation
and merged into the previous result.

hierarchical approach was chosen as it allows to segment tasks where contact skills
are performed continuously, without breaking contact in between the skills. An ap-
proach that first uses semantic segmentation and then a classifier on top would not
be able to achieve this.
In a first step, the demonstration is segmented both semantically as well as data-

driven, as can be seen in the first image (step 1) of Fig. 3.5. From the two seg-
mentation results, two sets of possible segmentation lines are found. These mark
the points in the demonstration where the segmentation results change from one
skill to a new one. These segmentation lines will be referred to as keyframes, and
an example can be seen in step 2 of Fig. 3.5. The keyframes also hold information
about which skill caused the segmentation line, in the form of a skill label. From
these keyframes, a pool of possible skill segments is built, as shown in step 3. The
algorithm that creates this pool can be seen in Alg. 2.
This pool is created to find all possible combinations of the two segmentation ap-
proaches. By creating skill segments not only from the two approaches separately,



3.1. SKILL SEGMENTATION ALGORITHM 35

1. 2. 3. 4.Keyframe 
Segments

Figure 3.5: The process of building the pool of possible segments. In step 1, exem-
plary segmentation results for the semantic segmentation (top) and the data-driven
segmentation (bottom) can be seen. In step 2, the keyframes ks (top) and kd (bot-
tom) are shown. Step 3 shows how the keyframe segments are found from ks and kd.
Step 4 shows how keyframe segments belonging to the same skill class are combined
to extend the pool of possible segments.

but also from the combination of their segmentation results, the possibility of the
correct segmentation lying in between the two results is also considered. This pool
of segments is created by first iterating over the keyframes ksi ∈ ks from the se-
mantic segmentation, taking them as the start point of the segments. The endpoint
of each segment is found as the next keyframe ksi+1

of the semantic segmentation,
as well as all keyframes of the data-driven segmentation kdj ∈ [ksi < kd < ksi+1

]
that lie between ksi and ksi+1

. The segment is assigned the same skill label as the
starting keyframe. This process is then repeated in the same way for the data-driven
segmentation.
In the next step, the skill labels are used to find the skill class for each segment
in the pool. The skill class differs between skills that are contact skills, and skills
that are not. When two skills of the same skill class follow one another, an addi-
tional segment is added to the pool that spans over both existing segments. This
is done to create segments for cases in which the keyframes of the semantic and
data-driven segmentation are slightly shifted, thus creating the possibility that the
starting keyframe of the one segmentation and the ending keyframe of the other seg-
mentation is correct. An example for this case can be seen in step four of Fig. 3.5.
From the pool of possible segments, the final segmentation is found by a greedy
search. Each segment obtains a score for each skill, using the results of the SVM’s
decision function. The SVMs used are identical to the SVMs used in the data-
driven segmentation, except for having solely been trained on complete examples of
the skills. As in this step of the segmentation process only whole skill demonstra-
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Algorithm 2 Segment Pool

Input: Results for semantic segmentation Ss and results for data-driven segmenta-
tion Sd

1: segments = [ ]
2: keyframess ←− find segmentation points(Ss)
3: keyframesd ←− find segmentation points(Sd)
4: for ki ∈ keyframess do
5: endpoints←− all points in keyframesd that lie between ki and ki+1

6: for ej ∈ endpoints do
7: segments←− add s = [ki, ej]
8: end for
9: segments←− add s = [ki, ki+1]
10: end for
11: for ki ∈ keyframesd do
12: endpoints←− all points in keyframess that lie between ki and ki+1

13: for ej ∈ endpoints do
14: segments←− add s = [ki, ej]
15: end for
16: segments←− add s = [ki, ki+1]
17: end for
18: for si ∈ segments do
19: if skill class(si) == skill class(si−1) then
20: segments←− add s = si ∪ si−1

21: end if
22: end for

tions are considered, there is no need to consider skill fragments.
From the pool of scored segments, the segment with the highest score is picked.
The part of the demonstration belonging to that segment is then assigned the skill
label that lead to this highest score. All other segments that overlap this segment
are removed from the pool. This is repeated until the whole demonstration is seg-
mented. Thus, the Move skills and the contact skills are found. In the next step,
the Pick, Place, Open-gripper and Close-gripper skills are added. They are directly
taken from the semantic segmentation and merged into the previous segmentation
result, by overwriting what has been found in their place before. In the last step, all
segments that are below a predefined minimum length are merged into the segments
before and after, to reduce over-segmentation.
An example of the segmentation result of the combined segmentation can be seen in
Fig. 3.6. The figure shows that the approach is able to recognize all skills correctly,
even the Press and Slide skills performed right after one another.
A comparison of the segmentation results of the semantic segmentation, the data-
driven segmentation and the combined segmentation can be seen in Fig. 3.7.
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Figure 3.6: Exemplary segmentation result for the combined segmentation. For the
skill sequence please refer to Fig. 3.3. The colours are: Move (light green), Peg-
in-hole (dark green), Press (yellow), Slide (dark blue), User (cyan), Pick (pink),
Close-gripper (red).

0 10 20 30 40 50
time in s

Figure 3.7: A comparison of the segmentation results for the semantic segmenta-
tion (top), the data-driven segmentation (middle) and the combined segmentation
(bottom). For the meaning of the colours please refer to Fig. 3.6. Black indicates a
general contact skill.
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It shows how the combined segmentation is able to make use of the strength of
both the semantic and the data-driven segmentation, by using the gripper based
skills from the semantic segmentation and the contact skill recognition from the
data-driven segmentation, without the issue of over-segmentation.

3.1.4 Adaption for Online Segmentation

As the previously described method of combining the semantic and data-driven
segmentation requires the demonstration to be completed before it is run, the online
segmentation is done in a two step manner. The flow chart of the online segmentation
can be seen in Fig. 3.8.

Demonstration

Semantic 
Segmentation

Contact Skill 
Prediction

Preliminary 
Segmentation

Combined 
Segmentation

Task Graph

Contact Skill

Gripper Skill

Figure 3.8: How the task-graph is built by the online segmentation. First, the
semantic segmentation is used to find a preliminary segmentation result, that is
shown as a task-graph. When the semantic segmentation detects a contact skill,
the SVMs are used to predict the label of the contact skill. After a gripper based
skill is detected, the combined segmentation is performed up until that point in the
demonstration. As these two steps are conditional, they are shown in red.

In the first step, the semantic segmentation is used online to detect which skill is
currently performed. When it is detecting a contact skill, the SVMs are used to
resolve which contact skill it is. The detected skills are used to build the task-graph
online. Once the semantic skill segmentation detects the end of a gripper based skill
such as Pick or Place, an intermediate fixed segmentation line is found, as this line
will not change during the rest of the segmentation process. Therefore, the part
of the demonstration that ends with this line can already be treated as a complete
demonstration, and thus be segmented with the combined segmentation algorithm.
The results of the combined segmentation then replace the preliminary segmenta-
tion in the task-graph.
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This leads to a constantly evolving task-graph, where the earlier skills of the demon-
strations are already finalized while the most recent skills are the preliminary result.
This continues until the demonstration is over. Finally, the demonstration can be
segmented with the combined segmentation method as a whole.

3.2 Segmentation Results

The evaluation of the segmentation algorithm on its own is given in the following.
The effectiveness of the skill segmentation as a means to share the robot’s knowledge
with the human teacher is investigated in the user study introduced in Chap. 5.
The segmentation algorithm was trained and evaluated on a data-set provided by
three people. Each skill was demonstrated approximately 100 times. The segmen-
tation algorithm was tested in a five-fold cross-validation experiment, using 80% of
the data-set for training and the remaining 20% for testing. The ground truth was
specified by annotating graphs depicting the measurements of the recorded demon-
strations with the demonstrated skills.
The window length for the data-driven segmentation as well as the minimum length
for a skill is chosen as 0.4s. The evaluation is based on two commonly used met-
rics [LKK16], temporal tolerance and classification by data point label. The tem-
poral tolerance indicates how close the algorithmic segmentation lines lie to the
ground truth, without considering the labels. A high accuracy in temporal toler-
ance not only indicates a successful segmentation, but also measures how easily the
segmentation result can be incorporated in a larger framework. When the start-
and endpoints of segments are found reliably, the influence of miss-classification of
skills becomes less drastic. In a framework as ours, the user is simply able to choose
the correct skill label instead, without having to change the segmentation result any
further.
The temporal tolerance is found by comparing the segmentation lines obtained from
the combined segmentation algorithm to the segmentation lines of the ground truth.
All algorithmic segmentation lines that lie in a region of ±terr around the ground
truth are considered True Positives (TP), while all algorithmic segmentation lines
that lie outside of such a region are considered False Positive (FP). If a ground truth
segmentation line has no corresponding algorithmic segmentation line within its re-
gion, it is considered a False Negative (FN). The region margin ±terr was chosen as
0.2s in this evaluation. The overall accuracy is then computed as the F1-score as
follows

F1 =
2 ∗ TP

2 ∗ TP + FN + FP
. (3.1)

Our framework has an F1 score of 0.93. The number of cases of FN and FP are
approximately equal. The FP mostly occurred at the beginnings and ends of contact
skills, when the user started or finished the demonstration of the skill with more
energy then she performed the rest of the demonstration with. This lead to the
detection of Press or User skills before or after the correct skill detection, depending
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on whether increased force or torque was measured.
The FN on the other hand had two causes. The first is a slightly delayed detection of
the contact skills, as a certain level of force and torque needs to be crossed before the
skills are detected. The second cause is incomplete compensation of the tool weight,
leading to small torque measurements when the tool is not held perpendicular to
the workspace. This caused the algorithm to occasionally fail to detect Move skills
in between two Contour skills.
The second metric, classification by data point label, evaluates how many of the
data point labels l have been chosen correctly. From this, a confusion matrix can
be calculated showing what percentage of ground truth label lGT have been labeled
with which label lA by the algorithm

Cg,a =
∑
i,j

I(lGTj
= g, lAi

= a)

I(lGTj
= g)

, (3.2)

were g is the ground truth skill label and a is the algorithmic skill label. The indi-
cator function I(·) outputs 1 if the argument is true, otherwise zero. The confusion
matrix of our approach is shown in Fig. 3.9. The skills that are most often confused
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Figure 3.9: The confusion matrix for our approach.

are Slide and Contour. The Contouring skill is used to follow the outline of an object,
while the Slide skill is used to slide over the planar surface of an object. Depending
on how the gripper is positioned while performing these skills, the torque readings
during the demonstration become almost identical, leading to the confusion.
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Furthermore, the semantic segmentation detects the start of gripper based skills
slightly too late and the end slightly too early, as the GripperMoving flag is set after
the gripper fingers have already started moving.
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Chapter 4

Interactive Task Programming
Framework

As explained in Sec. 2.3, an effective PbD framework does not only need a reli-
able way to encode the robot’s knowledge, but also a good communication channel
between robot and human to share the robot’s knowledge with the human. This
ensures that the human teacher correctly understands what the robot has learned
from the demonstration. Thus she can comprehend how her teaching influences
the robot’s knowledge, improving her ability to be a good teacher. Furthermore,
by providing an immediate feedback about what the robot is learning during the
teaching, she can detect potentially harmful errors in the robot’s knowledge before
they lead to critical damage. And even in minor cases of incorrectly learned tasks,
an understandable knowledge representation helps the user detect errors faster and
with less effort.
Therefore, the focus of our framework lies on providing the user with a suitable
representation of the robot’s knowledge, to improve the teaching experience for the
human and to support the user in the challenge of detecting errors in the robot’s
knowledge. Thus, the skill based task-graph introduced in the last chapter is the
center piece of our PbD framework, called Interactive Task Programming Frame-
work (InTAP). The graph is used on the one hand to inform the user about the
robot’s state of mind, and on the other hand to give the human the option to cor-
rect the robot’s knowledge if necessary.
InTAP consits of a backend, running the necessary processes for PbD and skill
segmentation, as well as a GUI, designed to allow the user to interact with the task-
graph, creating the interface between the human teacher and the robot’s knowledge.
The GUI runs on a tablet, which lies next to the user during the teaching process
to allow easy access at all times. Through this GUI, the user is guided through
the whole teaching process, by using different modes for the different stages of the
teaching process. An image of the GUI at the beginning of the teaching process can
be seen in Fig. 4.1. The different modes of the teaching process are introduced in
more detail in the following.
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Figure 4.1: The GUI at the beginning of the teaching process. The buttons in
the top right corner start the different modes of the teaching process. The PLAY-
button starts the execution mode, the RELOAD-button reloads the graph from the
backend, the PENCIL-button starts the editing mode, the DELETE-button deletes
the whole graph and the EXIT-button quits the application.

4.1 Teaching Mode

The teaching mode allows the user to demonstrate new tasks to the robot. In the
beginning of the teaching session, when no demonstration has been given yet, the
PLAY button triggers the teaching mode directly. Once the user started the teaching
mode, she can use the pedals placed next to the robot to start the gravity compensa-
tion. The set-up of the workspace is shown in Fig. 4.2. In gravity compensation, the
user is able to guide the robot along the trajectory required to perform the task. To
open or close the robot’s gripper, the user can trigger the right-most pedal. During
the demonstration, the robot’s cartesian position as well as the forces and torques
measured with a FT-sensor above the robotic gripper are recorded. These are then
forwarded to the online segmentation algorithm. The thus build task-graph is shown
to the user on the GUI.
The different stages of the online algorithm are represented by the colour coding of
the skills in the task-graph. This is done to give the user a feedback regarding the
reliability of the presented segmentation result. The first step of the online segmen-
tation, the preliminary segmentation result taken from the semantic segmentation,
is shown in green. This indicates that while the result is likely to stay the same, it
might still change. When the online segmentation detects a contact skill, the skill
is coded in yellow while it is demonstrated, to indicate that the predicting result
is likely going to change while it is demonstrated. Once the user has moved on to
demonstrating the next skill and the prediction result of the contact skill will not
change anymore during the preliminary segmentation, it changes to green.
Once the preliminary segmentation detects a gripper based skill, the combined seg-
mentation is performed on the demonstration up to the end of the gripper based
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Figure 4.2: The workspace. The GUI is running on the tablet to the left of the
robot. The pedals to start the gravity compensation and to open and close the
gripper are to the right of the robot.

skill. The result of the combined segmentation will not change anymore during the
rest of the teaching, therefore it is coded in the final colour turquoise. Examples for
the colour changes in the task-graph can be seen in Fig. 4.3, where the three stages
currently predicting contact skill, preliminary segmentation result and combined seg-
mentation result can be seen.
Once the user is done giving the demonstration, she can press the gravity compen-

sation pedal to end the recording. Then the robot learns how to perform the task
from the given demonstration. The learning mechanism is taken from [WEL20],
which first replays the users demonstration to record the robot’s execution of the
learned task. Then it uses GMM to encode the user’s demonstration and the robot’s
demonstration together. The means of the GMMs are then used to execute the task.
This learning mechanism is used to learn how to execute each skill separately.
After the robot has learned how to perform the task, the user is given the choice
to either watch the robot execute the learned program, to quit the whole teaching
session or to end the teaching mode in order to interact with the task-graph.
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Figure 4.3: An example for the evolving task-graph. The different colours indicate
which step of the online segmentation a skill has already passed. Yellow: SVMs cur-
rently predicting the label for the contact skill, green: the preliminary segmentation
is done, turquoise: the combined segmentation is done.

4.2 Execution Mode

Once the robot has learned a task, the user can let it execute the task by pressing the
PLAY-button. The robot then performs the skills in the task graph based on what
it learned during the demonstrations. The skill currently executed by the robot is
marked in red in the task-graph, showing the user how the task-graph relates to the
actual execution of the task.
Instead of starting the execution of the task from the beginning, the user also has
the option to start the execution from any arbitrary skill in the task-graph. This
is done by first choosing the skill by clicking on it, and then pressing the PLAY-
button. As there is currently no check for the necessity of objects for the execution
of skills, it is left to the user to start the program only from skills that don’t require
the robot to hold an object.
After the robot finished executing the last skill in the task-graph, the robot remains
in the position the skill ended in. From there, the user is able to give a new demon-
stration to extend the task-graph, which starts the teaching mode from the current
point in the task-graph. Alternatively, the user can stop the execution mode and
move back into the main menu.

4.3 Editing Mode

The editing mode is started when the user presses the PENCIL-button in the main
menu. The task-graph can then be edited, either by changing skill labels or by
deleting parts of the task-graph. The selecion of a skill, the changing of its skill
label and the deleting dialog can be seen in Fig. 4.4. As the knowledge of the skill’s
label and the skill’s execution are so far kept separately in our framework, the change
of a skill’s label has no effect on how the skill is executed. The delete option in the
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Figure 4.4: The editing mode. The image to the left shows a skill selected in the
editing mode. The image in the middle shows the change-skill-label dialog. The
image to the right shows the delete-partial-graph dialog.

editing mode allows the partial deletion of the task-graph. The user can choose to
delete the end of the task-graph, including the selected skill. This allows the user to
keep the beginning of a task, and only re-demonstrate the end of the task, starting
from the first incorrect skill. The deletion of the task-graph is intended for cases
where the demonstration can not be correct by a reassignment of skill labels, for
example when the teacher made a mistake during the teaching process.

4.4 Reload Graph

The RELOAD-button has two functions: The first is to reload the graph from the
backend, for example when the user refreshed the frontend. The second is to give the
user the option to reduce over-segmentation. When a skill is recognized during the
teaching process, that the user had not intended to demonstrate, for example a Press
skill before a Place skill, the RELOAD-button can be used to remove the surplus
skill. This is done by first changing the label of the surplus skill to that of the skill
it was intended to be part of. Then, the user can press the reload button to merge
the two skills together. This merging process goes over the whole task-graph and
searches for parts where two skills with the same label are performed consecutively.
If it finds two such skills, it merges them into one continuous execution of the skill.
The additional step of using the RELOAD-button to merge skills was chosen to
avoid a scenario where the user mistakenly changes a skill label, so that two skills
of the same label follow one another, and thus merges them by mistake.
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4.5 Delete Graph

The DELETE-button can be used to delete the whole task-graph. This can be
necessary when errors during the teaching occurred early in the demonstration.
Then it can be easier for the user to demonstrate the whole task from the beginning,
rather than to find the best part to partially delete the task-graph.

4.6 Quit Application

The EXIT-button ends the teaching session and stops the frontend. The program
taught during the teaching session is saved, allowing the user to rerun the execution
or to continue teaching anytime.
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Chapter 5

User Study

To evaluate the intuitiveness and suitability of our suggested task-graph for PbD
settings, we conducted a user study. It consists of a laboratory study, where 6
participants programmed a robot with the help of our framework, as well as an
online study where 26 users were asked to evaluate the comprehensibility of our
approach. To allow a combined evaluation of the laboratory study and the online
study, both were designed to be as similar as possible.

5.1 Compared Methods

To validate whether the skill based task-graph description of our approach outper-
forms simplified action-based task-graphs, we compare the representation of our
approach to the time-line representation used in [IØRS17]. It uses the Douglas-
Peucker line simplification algorithm to detect notable points of a trajectory, which
are then used to encode the trajectory. As these points have no semantic meaning,
the resulting task-graph describes the learned task through a time-line, showing
the detected points as well as gripper movements. To allow a fair comparison, we
also use the segmentation found in our approach as basis for the time-line based
task-graph. Thereby, the segmentation result is shown without skill annotation and
only the openings and closings of the gripper are displayed. The same task-graph
in both representations can be seen in Fig. 5.1. The time-line based task-graph
simplifies the gripper based skills to the actions of open and close, thus removing
the additional knowledge used in the skill recognition to differ between Pick/Place
and Close-gripper/Open-gripper. The contact skills used in the experiments were
limited to Press and Slide. This was done to decouple the classification results from
the evaluation of the task-representations.



50 CHAPTER 5. USER STUDY

close open

move pick move press move press move place

move

Figure 5.1: The upper part of the image shows the stamping task in the time-line
representation, the lower part shows the same task in the skill based representation.

5.2 Hypotheses

The user study investigates the effect of robot knowledge representations on the
teaching process, with focus on the human teacher. To evaluate how suited the
task-graph representations are to serve as a communication of the robot’s knowl-
edge to the human teacher, the user study investigates different aspects of knowledge
representations that contribute to their effectiveness. The aspects chosen are: the
workload when teaching with the task-graph representation, match of the user’s
mental model to the robot’s actual state of mind and the user’s trust in the robot.
These categories are chosen based on the challenges a successful knowledge repre-
sentation needs to overcome, explained in Chap. 4. For humans to be willing to use
a PbD framework, the workload must be small and the humans must trust that the
robot learns from it correctly. Furthermore, the users must have a correct mental
model of the robot’s state of mind, for them to be able to be good and effective
teachers. Thus we aim to prove the following hypotheses with the user study:

H1) The skill based task-graph representation makes it easier for the human teacher
to see at first glance if the robot has learned the demonstrated task correctly,
thus significantly reducing the teacher’s workload during the teaching process
compared to the time-line based task-graph representation.

H2) The skill based task-graph representation gives the user more feedback and
control over the robot’s knowledge, thus significantly increasing the human’s
trust in the robot, compared to the time-line based task-graph representation.

H3) The skill based task-graph representation explains the robot’s knowledge intu-
itively understandable to the human teacher, thus helping the user to perform
better as a teacher, compared to teaching with the time-line based task-graph
representation.
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5.3 Task descriptions

To be able to evaluate the hypothesises, the participants were asked to solve different
problems based on two different tasks. The first task is a stamping task, shown in
Fig. 5.2. There, the user takes a stamp, presses it into an ink pad and then stamps

stamp

ink padink target 
surface

Figure 5.2: The stamping task used in the user study.

in a marked area before placing the stamp back. Furthermore, an incorrect version
of this task was used as well, where the stamp is replaced immediately after pressing
it in the ink pad, without stamping the marked area.
The second task is an assembly task, shown in Fig. 5.3. There, the user takes a
glue-stick and applies it in a marked area by sliding it over the surface. Then she
takes a second object, places it on top of the marked area and attaches it by pressing
down on it. The assembly task also comes in an incorrect version, where the second
object is not taken and placed on the marked area, so that the robot presses down
on the surface instead of the second object.
To avoid accidents, the ink and glue were substituted by stand-ins.

5.4 Laboratory Study

In the laboratory study, 6 participants from the German Aerospace Center tested
the InTAP framework and programmed a robot both with the skill based task-graph
(SBTG) representation and the time-line based task-graph representation (TBTG).
All participants had previous experience in working with robots. The robot used in
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Figure 5.3: The assembly task used in the user study.

the study was a DLR LWR IV [ASHO+07] robot, which was mounted on a linear
axis for wider reach. It was equipped with a ”Robotiq 85” 2-finger gripper that was
attached to a wrist-mounted FT-sensor, measuring the forces and torques that were
acting on the gripper. The user could physically guide the robot in gravity compen-
sation mode to teach the tasks, and use a button to open and close the gripper.
The experiments were conducted with a within-subject design, so that half of the
participants first used the SBTG and the other half the TBTG. At the beginning of
the study, the users were informed about the goal of the study and the procedure
of the experiment. Then, they were given the chance to familiarize themselves with
PbD, by allowing them to guide the robot in gravity compensation. At this point
they were not shown the task-graphs yet. After they were satisfied with their ability
to guide the robot, they were shown a short video explaining how the framework
could be used with the respective task-graph representation they were first using.
Afterwards, they could ask questions regarding the use of the framework.
Then the first block of the experiments began, in which the participants were asked
to teach the robot new tasks from scratch. Therefore, they were shown a video
explaining the task they were asked to program, before they taught the robot the
new tasks. The first task the users were asked to program was the stamping task,
the second the assembly task.
After the participants were satisfied with their results, the second phase of the ex-
periments began. There, the participants were told colleges had taught the robot
the same tasks, and the users were asked to verify if they had done so correctly.
First, the participants were asked to base their opinion about the correctness of the
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program solely on the task-graph showing the task in the currently used represen-
tation. Then they were allowed to watch the robot execute the program as well. If
they found the program to be incorrect, they were asked to correct it. The partici-
pants were shown two examples of programmes, one correct and one incorrect. The
order of the two examples was chosen randomly.
After the debug tasks, the users were asked to fill out questionnaires, rating their
experience with the respective knowledge representation. The NASA-TLX was used
to measure the subjective workload of teaching the robot with the knowledge rep-
resentation and the ISO 9241-110 questionnaire for Dialog Principles was used to
evaluate the information transfer from robot to human. To further investigate the
explainability of the knowledge representations, based on [She17], questions with
regards to three more categories were used: trust in the robot, ease of debugging
and match of the user’s mental model to the real robot. The questions can be found
in the Appendix.
After the participant filled out the questionnaires, the experiments were repeated
with the other knowledge representation.

5.5 Online Study

The online study was designed as an extension of the laboratory study. To reduce
the required time for answering the online study, two identical studies were created,
one for each of the task-graph representations. The participants were then split
in two groups, each only seeing one of the task-graph representations. Each group
consisted of 13 participants, of whom 75% had no background in robotics.
In the studies, the participants were first informed about the goal and the proce-
dure of the online study. Then they were shown a short video explaining how the
framework uses the respective task-graph representation. As the participants would
not be programming a robot, the details of how the task-graph can be manipulated
were omitted.
Since the subjects could not program a real robot, the first set of experiments was
changed. First, the participants were given the beginning of the assembly task as a
step-by-step image series, the part where the glue is applied to the surface. Then
they were shown a video of a robot correctly executing this task, together with the
GUI depicting the task-graph. Then they were asked if they understood how the
task-graph describes what the robot has learned. For the second task of the first
set, the participants were given the stamping task and two graphs, one showing the
correct stamping task, the second the incorrect assembly task. Then they were asked
to choose which of the two graphs belonged to the stamping task. Furthermore, they
were asked if they found it easy to choose their answer, as well as what they based
their decision on.
The second set of the experiment also consisted of a debugging task. The partici-
pants were given the description of the assembly task, and the task-graph showing
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the incorrect assembly task. Then they were asked if the task-graph performed the
assembly task correctly. The participants could choose between Yes, No and Not
sure. Then they could watch the robot execute the program, the same way the par-
ticipants of the laboratory study could. Then the participants were asked to choose
the point in the task-graph, from which on they would delete the graph in order to
correct the program.
Finally, to evaluate how suited the task-graph representations are for the tasks, the
participants were given the the ISO 9241-110 questionnaire for Dialog Principles
and the questions regarding the explainability of the task-graph.

5.6 Results

The results of the participants’ answers to the questionnairs are presented in the
following. As the NASA-TLX questionnaire could only be applied in the laboratory
study setting, the results of the NASA-TLX questionnaire contain only the answers
of the laboratory study participants. For the ISO 9241-110 questionnaire and the
general questions, the answers from both the laboratory study and the online study
are combined.
The total result of the NASA-TLX questionnaire can be seen in Fig. 5.4. The NASA-

NASA-TLX total result

total score
Nasa-TLX
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time-line graph

Figure 5.4: The total result of the NASA-TLX questionnaire answered by the par-
ticipants of the laboratory study. The users score the categories on a scale from 1
(best) to 20 (worst). The scores of the individual categories are then added up to
obtain the total score. The plot shows the total score for the SBTG used in our
approach (blue) and the TBTG (red). The ? marks that a p-value of p < 0.05 was
found with a Wilcoxon signed rank test.

TLX measures the workload which the users experience when working with the two
knowledge representations. To measure this workload, the NASA-TLX splits the
workload in different categories, as shown in Fig. 5.5. Both the total result of the
NASA-TLX as well as the single categories show a clear reduction in workload for
the SBTG compared to the time-line task-graph. The significance of this reduction
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Figure 5.5: The individual results for each of the categories of the NASA-TLX
questionnaire answered by the participants of the laboratory study. The users score
the categories on a scale from 1 (best) to 20 (worst). The plots show the mean of
the scores given for the individual categories. For details about the ? and colours
please refer to Fig. 5.4.

is supported by a Wilcoxon signed rank test for the total test result, as well as
the categories mental demand and effort. The reduction of the perceived mental
workload is 27% for the SBTG compared to the time-line based task-graph, and the
reduction in effort 54%. In the categories physical demand and temporal demand,
the difference between the two representations is the smallest, as the PbD framework
used for both is the same. In the categories performance and frustration, the SBTG
also outperforms the TBTG, but the Wilcoxon signed rank test could not support
the significance of these results. Yet an overall trend towards the reduction of the
experienced workload for the SBTG representation is clearly visible in all categories.
This trend is also reflected in the results of the online study. There, the participants
were asked after the first task set if they found it easy to find the task-graph be-
longing to the given task. The answers can be seen in Fig. 5.6. It shows that for

Skill based task-graph

Easy

Not Easy

Time-line task-graph

Easy

Not Easy

Figure 5.6: The answers of the participants of the online study regarding if they
considered it easy to find the matching task-graph to a given task description.
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the SBTG, 85% of the participants found it easy to find the matching task-graph,
while for the TBTG it is only 62% of the participants.
The intuitiveness and usability of the representations are compared in Fig. 5.7,
where the results of the ISO 9241-110 questionnaire can be seen. On average, the
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Figure 5.7: The combined results of both the online and the laboratory study for
the ISO questionnaire. The scores rate how much the users agree to the category
from 1 (Strongly Disagree) to 7 (Strongly agree). The higher the result, the better.
For details about the ? and colours please refer to Fig. 5.4

users rated the usability of the SBTG representation 32% better than the time-line
representation. Especially in the categories evaluating the intuitiveness of the rep-
resentation, the SBTG drastically outperforms the TBTG: The self-descriptiveness
of the SBTG was rated 48% better and the conformity with the user’s expectation
50% better. In the remaining categories, the SBTG representation also outperforms
the TBTG significantly, as shown with a Wilcoxon signed rank test.
To investigate further in which aspects of the teaching procedure the representation
of the robot’s knowledge influences the teacher, the results shown in Fig. 5.8 are
grouped in the aforementioned categories used to evaluate the explainability of the
task-graph representations. In the debugging category, the users were asked to rate
their ability to detected errors in the robot’s learned program with the help of the
task-graph. From the results, a clear preference for the SBTG can be seen. The
users’ self-evaluation is also confirmed by the number of the times the users were
able to predict if a program would perform a task as desired, for which the results
can be seen in Fig. 5.9. It shows that 84% of the participants were able to correctly
identify a task as incorrect with the help of the SBTG, whereas only 64% could do
so with the TBTG.
In the categories match of mental model and explainability of the explainability
questions, the SBTG also out-performed the TBTG drastically.
The users also rated their trust in the robot higher (24%), even though the robot’s
execution of the taught programs was independent of the knowledge representation.
In a final oral interview in the laboratory study, the participants showed a clear
preference for the SBTG. When asked for their first impressions, half of the partici-
pants found the time-line representation easier to understand when seeing it for the
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Figure 5.8: The combined results of both the online and the laboratory study for
the explainability questions. For details about the ? and colours please refer to
Fig. 5.4. The questions were grouped in the categories ’Ease of debugging’, ’Trust
in the robot’, ’Match of the user’s mental model to the robot’s real knowledge’
and ’Explainability of the knowledge representation’, shown here from left to right.
The users rated on a 5-point Likert scale from 1 (Strongly Disagree) to 5 (Strongly
Agree). The higher the result, the better.
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Figure 5.9: The results of the debug tasks. The participants were asked whether
a program would execute the task correctly. The diagrams show the percentage of
correct, false and undecided answers for the SBTG (left) and the TBTG (right).

first time, as it conveys less information compared to the skill based representation.
However, their preference shifted to the skill based representation when asked which
they found easier to work with.

5.7 Discussion User Study

The results presented in the last chapter show the participants’ clear preference
for the SBTG. How the results relate to the hypotheses introduced in Sec. 5.2 is
explained in the following.
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5.7.1 Workload

For users to be willing to work with a PbD framework, the workload of using this
framework must be low, especially in a framework designed for non-expert users.
Thus, hypothesis H1 states that the use of a SBTG representation achieves this
necessary low workload compared to the TBTG. The results shown in Sec. 5.6 prove
this hypothesis. For the user to be able to intuitively interact with the task-graph, it
needs to be self-descriptive, thus reducing the mental workload needed to interpret
it. This is achieved in the SBTG representation by breaking the task down into steps
that are self-descriptive, the skills. The meaning of the skills can be inferred from the
use of their names in everyday life, thus only little effort is necessary to understand
what the SBTG describes. As the steps depicted in the TBTG are unrelated to
the actions the robot performs, it is more difficult for the user to understand how
the task-graph describes the learned task. This is mirrored in higher results for
self-descriptiveness for the skill based representation, as well as a reduced mental
workload, compared to the time-line based representation.
This also leads to a reduced effort for teaching the robot new skills, as shown in
the effort category of the NASA-TLX, as well as in the comments from the online
study. When the participants of the online study were asked how they knew which
task-graph to choose in the matching task, most participants using the SBTG could
infer the correct answer from the performed skills. As the task for which they were
asked to find the task-graphs for was the stamping task, they easily rejected the
alternative choice, the assembly task graph, by recognizing that the stamping task
does not require a Sliding skill. The participants using the TBTG on the other hand
had to go through both task-graphs step by step and find the correct answer from
the number of gripper actions. This requires a higher concentration on the task and
is more error prone, as shown by the number of incorrect debug answers shown in
Fig. 5.9.
The higher error rate leads to a perceived worse performance of the TBTG, as shown
by the trend in the performance category of the NASA-TLX questionnaire. The
combination of a higher mental workload and lower performance leads to frustration,
which is also supported by trend in the frustration category of the NASA-TLX. As
the purpose of a PbD framework is to create an intuitive and enjoyable teaching
environment for the human teacher, a SBTG thus clearly outperforms a TBTG,
proving hypothesis H1.

5.7.2 Trust

An essential criteria to allow the wide spread use of robots in the industry, is the
trust of the human workers in the robots. This trust in the context of PbD mostly
depends on the human trusting that the robot learns how to perform the tasks
correctly. Without this trust, the human teacher can not rely on the robot to
perform its tasks unsupervised, and the desired substitution of robots in highly
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physically demanding and repetitive tasks can not take place. Thus hypothesis H2
states that the SBTG creates the base-line to foster this necessary trust, while the
TBTG does not.
This is reflected by the results of the user study. The participants of both the
laboratory study and the online study rated the suitability of the SBTG to explain
the robot’s knowledge significantly higher than the suitability of the TBTG. By
ensuring that the user feels that the robot’s knowledge is communicated adequately,
the user is more likely to rely on the robot’s feedback. This is reflected by the
number of participants that felt unwilling to give an answer in the debugging tasks,
as shown in Fig. 5.9. For the SBTG, only 8% of the participants felt insecure
about their choice and preferred not to answer, while for the TBTG the number of
participants with 16% was twice as high. This shows that the users felt sufficiently
informed about the robot’s knowledge, when using the SBTG, to base their decisions
on the robot’s feedback, indicating that they trust that they understood the robot’s
feedback correctly.
Furthermore, as PbD frameworks are foremost designed to support non-expert users
in teaching a robot new tasks, most users have little experience in this field and are
forced to learn how to perform their job in an unfamiliar environment. Thus, the
first step to build the users’ trust in the robot’s ability to learn correctly, is for the
users to build the trust in themselves to teach correctly. Therefore, a PbD framework
should give the user this trust by supporting them in their role as a teacher. Thus,
the suitability of a knowledge representation for helping the user learn how to be
a good teacher is essential. The participants rated the suitability of the SBTG for
learning 21% higher then the TBTG, thus supporting that the SBTG representation
is more suited to build the teacher’s trust in their own abilities. It achieves this by
providing more information about what the robot is learning from a demonstration,
thus giving the human teacher an immediate feedback about the consequences of
their teaching. Thus, the user is able to learn faster how to reach their desired goal,
which builds the confidence in their own teaching ability that in turn is the base-line
for trusting the robot.
For humans to trust the robot to learn a new task correctly, they must also feel
in control of the robot’s knowledge. As the robot learns how to perform the new
tasks via a knowledge transfer from human to robot, the human must feel in control
of this transfer to be comfortable to let the robot execute the task on its own.
Thus, the robot’s knowledge must be represented in a way that gives the human
the possibility to completely control it. The participants rated the controllability of
the SBTG at 26% higher than that of the time-line based task graph. This is due
to the larger number of manipulation options given by the SBTG representation.
By knowing the exact skill that is recognized in each step of the task, the user
can correct the labels of skills and merge surplus skills, without having to give new
demonstrations. From the task-graph alone, the user can then see if the desired
result is reached. For the TBTG, the user must instead watch the robot execute the
task, and estimate with the help of the task-graph if the robot learned everything
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correctly. If the users feel that the robot has learned the task incorrectly, they have
to give a new demonstration for the part they doubted, solely able to influence the
robot’s knowledge through the same channel that lead to the wrong result before.
Thus, by giving the user multiple options to correct the robot’s knowledge, the user
can trust that the robot learned the task correctly for the SBTG representation.
That the aforementioned points lead to a stronger trust in the robot, is shown by the
participants rating their trust in the robot at 25% higher when working with the skill-
based task-graph representation compared to the time-line based representation,
proving hypothesis H2 to be correct.

5.7.3 Teaching

As discusses in Sec. 2.3, the representation of the robot’s knowledge does not only
influence how comfortable the user is during the teaching process, but also which re-
sults she can achieve. An intuitively understandable knowledge representation helps
to close the gap between what the human assumes the robot learned and what the
robot really learned, thus making it easier for the human to notice mistakes in the
robot’s program and to correct these. This is addressed by hypothesis H3, stating
that the SBTG representation helps to close this gap and therefore helps to improve
the user’s teaching ability compared to the TBTG representation.
Therefore, the robot’s knowledge representation should match the user’s mental
model of how the robot is learning, making it easier for the user to understand the
knowledge representation and reducing the possibility of mismatches. Thus, a con-
formity with the user’s expectation is essential. The participants of the user study
rated the conformity of the SBTG 50% higher than the conformity of the TBTG.
This is due to the SBTG breaking down the robot’s knowledge in the same way
a human would, by identifying the different skills necessary to perform the task.
A TBTG on the other hand uses different methods to encode a task, thus making
it harder for the human to follow which steps the robot identified as necessary to
perform the task. This influences the user’s ability to notice mismatches between
what she intended to teach and what the robot learned. In the laboratory study,
most participants set objects down forcefully, leading to the detecting of a Press
skill before the intended Place skill. While this surplus skill could be seen in the
execution of the task in both knowledge representations, participants only chose to
correct this behaviour in the SBTG representation. This is due to the users notic-
ing the Press skill while looking through the task-graph, and as this did not match
how they expected the robot to perform this task, 50% of the participants chose
to remove the surplus skill. In the TBTG representation on the other hand, the
users did not notice the surplus skill, as they assumed that the task-graph matched
what they taught, without an low effort option to verify this. Thus, by noticing
this surplus skill in the skill based knowledge representation, users could correct the
robot’s knowledge to ensure the indented execution of the task. Furthermore, they
could understand how their teaching lead to this unwanted surplus skill, and adjust
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their teaching behaviour to become better teachers.
Instead of only relying on the knowledge representation to match the user’ mental
model, a PbD framework also needs to be able to explain the robot’s knowledge to
the user. It is not enough to rely on the user to work out the details, but the cho-
sen knowledge representation needs to actively support the user in understanding
the robot’s knowledge. Otherwise, users can draw incorrect conclusions from the
robot’s knowledge. These incorrect conclusions are the major reason for the number
of incorrect debug answers shown in Fig. 5.9. From the answers of the participants,
it became clear that those who incorrectly assumed a program was correct, did so
based on the gripper actions. For the TBTG, users assumed that the robot would
always lift objects when a close gripper action was shown in the task-graph, even
though in some cases the gripper closed without picking up an object, to allow a
better performance of contact skills. The participants using the SBTG on the other
hand could use the additional information provided by the difference between the
Pick skill and the Close-gripper skill to verify the correctness of the task.
Thus, while for the SBTG only 8% of the participants gave an incorrect answer,
for the time-line task graph this number was 20%. This shows that a clear com-
munication of the details of the robot’s knowledge helps the users to update their
mental model of the robot, making them better teachers. That the SBTG is bet-
ter at explaining the robot’s knowledge becomes clear from the questions aimed at
the explainability of the knowledge expectations, where the participants rated the
skill based knowledge representation 58% better at explaining the robot’s knowledge
compared to the TBTG, and the ease of debugging of the SBTG 37% better than
that of the TBTG.
Thus, by providing an intuitively understandable knowledge representation that ac-
tively helps to prevent misconceptions, the SBTG supports the users in their roles
as teachers, while the TBTG allows the users to draw incorrect conclusions from the
robot’s knowledge and thus reduces their teaching ability. Therefore, hypothesis H3
is shown to be correct.
From the thus proven hypotheses H1-3 it can be concluded that the SBTG is
more suited as a robot’s knowledge representation than a TBTG, as it reduces
the teacher’s workload during the teaching process, builds the user’s trust in the
robot, and supports the user in becoming a better teacher.
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Chapter 6

Conclusion

6.1 Summary

In this paper, InTAP was introduced, a framework that supports the user during
PbD by providing a skill based task-graph representation of the robot’s knowledge.
This task-graph is extracted during the user’s demonstration by an online skill seg-
mentation algorithm. By combining data-driven skill recognition with a semantic
skill recognition, the strength of both approaches are utilized. On the data-driven
side, contact-based skills are recognized by their force and torque dynamics, as they
have conditions and properties that are hard to describe on a symbolic level. On
the semantic side, manipulation skills such as Pick, Place or Gripper Open/Close
are recognized by the evaluation of predefined predicates, since their conditions can
easily be described on a symbolic level. This combination allows the detection of a
wider range of contact skills, while still allowing the algorithm to run online.
The results of a user study confirm the intuitive use of InTAP. It was shown that a
skill based task-graph representation is superior to a time-line based one in reducing
the user’s workload when working with the knowledge representation. Additionally,
the skill based task-graph lead to a higher trust of the teachers in the robot’s abilities
to learn new tasks correctly. Furthermore, the skill based task-graph was found to
be superior in supporting the user in her role as a teacher. This shows that InTAP is
highly suitable for the use in production lines with non-expert robot programmers.

6.2 Limitations

For the data-driven part of our segmentation approach to be able to classify skills
regardless of which tools they are performed with, a tool weight compensation is
necessary. This is due to the force- and torque readings caused by the weight of the
object. Thus our approach requires the information of which tool the robot is using,
in order to compensate it. This leads to an overhead, requiring the user to provide
this information to the system.
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Furthermore, the segmentation performance of our approach is also limited by over-
segmentation, as mentioned in Sec. 3.2. This over-segmentation can occur at the
beginning and end of contact skills, when the contact force in the first instant is
high, and lower in the ongoing contact situation, or opposite. Then the algorithm
can detect a Press skill before or after the actual contact skill. As it is impossible
for the algorithm to decide if this Press skill was added intentionally, our framework
currently relies on the user to resolve possible cases of over-segmentation by merging
this Press skill into the actual contact skill.
Additionally, the current implementation of the framework only allows the addition
and removal of skills at the end of the task-graph, thus limiting the reuse and
correction of existing programs.

6.3 Outlook

To introduce expert knowledge into the framework, a specific controller for each skill
can be designed, similar to [AAW19]. By using controllers designed to achieve the
skill-specific goals, the robot’s execution of the task can be improved, as the poten-
tially sub-optimal user-demonstrations can be enhanced by skill-specific controller
strategies. Furthermore, by creating additional controllers designed to transition be-
tween the skills, it becomes possible to remove or extend sections of the task-graph
freely, as the controllers ensure a smooth transition for cases where the user does
not provide a seamless demonstration.
To remove the overhead created by the necessity of knowing which tool the robot
is using, a vision sensor could be used to automatically recognize the tool. As the
robot is likely using a fixed set of tools, the user could provide the images, weights
and center-of-masses of the tools once, and then rely on the vision sensor to recog-
nize the tools during the demonstration.
To prevent incorrect skill detection to go unnoticed by the user, the framework could
additionally be expanded to make it easier for the user to notice the need for cor-
rections and to execute them. In the aforementioned case of over-segmentation, the
user could automatically be queried to verify if the Press skill was intended, giving
her the option to merge it in the context skill without additional effort. The same
feedback loop could also be used for skills that are prone to be confused, such as Slide
and Contour. When the segmentation algorithm predicts similarly good scores for
both skills, the user could be queried to resolve the label, ensuring the correct choice.
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Appendix A

User Study Questionnaire

The following document shows the questionnaire used in the user study, containing
the NASA-TLX, ISO 9241-110 and the explainability questions. A questionnaire is
filled out for each of the task-graph representation.



Questionnaires  

Intuitive Knowledge Representation 

 

 
Demographic Questionnaire          Number:        ________ 

 
Age: ___________ 
 
Gender: ___________ 
 
Professional Activity: ___________ 
 
 
 
 
Experience with robots:     yes   no 

 
Specify experience (type, duration): 

 
 

Experience with Intuitive Robot Programming:              yes                     no 

Specify experience (type, duration): 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



NASA-TLX for method _________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ISO 9241-110 for method _________ 

 

 
Strongly 
Disagree 

Disagree 
Some-
what 
Disagree 

Neutral 
Some-
what 
Agree 

Agree 
Strongly 
Agree 

suitability for 
the task        

Self-
descriptiveness        

conformity with 
user 
expectations 

       

suitability for 
learning        

controllability        

 

 

 

 

 

 

 

 

 



General Questions for method _________ 

 

 

 
Strongly 
Disagree 

Disagree Neutral Agree 
Strongly 
Agree 

 

The robot understood how to perform 
the task it was supposed to learn. 
 

 

     

I would feel comfortable to let the robot 
execute the program unsupervised.      

I could find mistakes in the program with 
the help of the task graph before watching 
the robot execute the program. 

     

I knew where I needed to change the 
program to correct mistakes.      

I could predict how the robot would 
execute the task after I saw the task graph.      

My expectation of how the robot would 
solve this task matched the task graph.        

The task graph explained the robot’s 
knowledge well.      

I liked the way I could interact with the task 
graph.      
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