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Biologically Inspired Deadbeat control for running:
from human analysis to humanoid control and back
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Figure 1: Bipedal point-mass model running on 3D stepping stones based on Biologically Inspired Deadbeat (BID) control.

Abstract—
This paper works towards bridging the gap between obser-

vations and analysis of human running motions, i.e. motion
science, and robust humanoid robot control. It is based on the
concept of Biologically Inspired Deadbeat (BID) control, which
was introduced in [1] and enhanced in [2] to not only allow 3D
running on flat ground but also on 3D stepping stones. Further
contributions of [2] include explicit foot step targeting during
running, leg cross-over avoidance and the embedding of BID
control into a QP-based whole-body controller. The controller is
based on the encoding of leg forces and CoM trajectories during
stance as polynomial splines, allowing for intuitive and primarily
analytical controller design. It allows a real-time implementation,
is highly robust against perturbations and enables versatile
running patterns. This paper combines and complements the
methods derived in [1] and [2]. It expatiates on the analytical
foot-step targeting method introduced in [2], introduces a new
method to increase kinematic feasibility on complex robot models
and presents advanced whole-body running simulations including
high-speed running and push-recovery. The paper closes the
circle to human motion science by comparing BID-based CoM
trajectories and ground reaction forces (GRF) to data from
human running experiments.

Index Terms—Human running, bipedal robots, running con-
trol, biologically inspired, deadbeat, stepping stones

I. I NTRODUCTION

Biological forms of locomotion - such as human walking
and running - have evolved over millions of years. They are the
product of relentless selection and can thus to some extent be
regarded as optimal for traversing natural environments. The
analysis and decoding of natural locomotion poses a complex
yet exciting field of research for biomechanics researchers.
Their results can serve as inspiration and object of comparison
for roboticists. From an engineering point of view, gaited
forms of locomotion - once fully understood - promise highly
increased mobility of machines as compared to wheel-based
locomotion. Overcoming a set of stepping stones, as shown in
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Fig. 1, is one possible example where a legged robot may have
advantages over other machines of similar size and weight.

The first efforts in robotic bipedal locomotion have been
put in the subdomain of bipedal walking. Over the decades,
the field of bipedal walking control has made major progress.
Alongside successes in passive dynamic walking [3], one of
the major breakthroughs has been the introduction of zero
moment point control [4], [5] for bipedal walking. More
recently, several successful walking control algorithms have
been presented, e.g. [6]–[11], to name but a few. Recently,
bipedal walking algorithms have reached a level that is close to
actual application in real-world scenarios [12]. Most walking
algorithms attempt to keep the robot in afully actuatedstate,
which facilitates the use of standard control methods.

In contrast, during flight some of the robot’s states are
unavoidably underactuated, which makes running and hopping
challenging tasks. Running provides a number of assets such
as high achievable speed and efficiency.Back in 1985, Raibert
[13] presented his controller that decomposes running into
three parts: vertical hopping dynamics, forward velocity and
attitude control. The controller design is rather heuristic, yet
very powerful.Aside from few exceptions such as [14]–[17],
most running algorithms are based on the spring-loaded in-
verted pendulum (SLIP) [18]. Dadashzadeh et al. [19] present
a SLIP-based two-level controller for running simulationsof
the ATRIAS robot. Carver et al. [20] show that the number
of required recovery steps depends on the goals of the control
mechanism and present a SLIP-based controller for two-step
recovery using synergies. Vejdani et al. [21] introduce bio-
inspired swing leg control for running on ground with unex-
pected height disturbances. Wu et al. [22] present a deadbeat
controller for the 3D SLIP model that can cope with unknown
ground height variations of up to 30% of the leg length. It
is based on multi-dimensional look-up tables and achieves
deadbeat control of apex height and heading direction.Yet,
since their model assumes energy conservation, the method
cannot handle dissipative losses (e.g. during impact).Koepl
and Hurst [23] control the stance phase impulse of a planar
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SLIP model and achieve robust running. Recently, Wensing
and Orin [24], [25] computed periodic trajectories of the 3D-
SLIP offline and applied a linearized control law to stabilize
the virtual SLIP model around the periodic solutions. The
desired leg forces are passed to a whole-body controller and
bipedal running of a simulated humanoid robot is achieved.
The method requires offline computation of each desired
periodic SLIP gait (including particular turn rates) to obtain
the required look-up tables and the linearized SLIP feed-back
controller is only capable of limited acceleration rates.Also
recently, Park et al. [26] presented quadrupedal galloping with
the MIT Cheetah 2 based on impulse control. They used 3-rd
order Bezier polynomials to encode the leg force profiles. Yet,
their method is nominally unstable and designed for constant
speeds, such that heuristic PD control laws have to be applied
to achieve stability and speed control.

Several drawbacks of the previously mentioned works were
eliminated in [1]. Here, we proposed the so called Biologically
Inspired Deadbeat (BID) controller that is real-time capable,
enables versatile running motions and is very robust against
external perturbations.Dissipative losses are not considered
explicitly but are compensated for by the deadbeat controller.
It has been inspired by observations from human running
experiments (see Fig.2) and uses polynomial splines to encode
the robot’s CoM motion and leg forces during stance. The
control design is very intuitive and comprehensible. Different
running speeds and transitions between them are handled in
a clean way. The next two upcoming foot aim points on the
ground (i.e. the left and the right one) are predicted at all times,
which facilitates the design of appropriate foot trajectories.

One disadvantage of [1] was that the foot positions could
not be controlled directly, which caused the danger of leg
cross-over (especially when running in sharp turns). In [2],
we extended the original method to achieve precise foot
placement and running on 3D stepping stones (see Fig.1).
The precise foot placement now enables explicit leg cross-
over avoidance. Another contribution was the embedding of
our running controller into a QP-based whole-body controller.

The main motivation of this paper is to provide a concept
that can act as a bridge between the disciplines of humanoid
running research and human motion science. BID control
provides a powerful tool for finding and stabilizing diverse
running motions. Its embedding into a whole-body controller
allows for robust humanoid running simulations, which may
serve as basic tool for future movement science studies.

The paper is organized as follows: SectionII motivates
the use of polynomial splines via observations from human
running experiments. SectionsIII andIV give a short outline of
our planning and control framework and recapitulate the flight
dynamics. In SectionV, the vertical and horizontal boundary
conditions are solved, which facilitates the design of our
feedback controller presented in sectionVI . SectionsVII and
VIII describe methods to increase force-related and kinematic
feasibility. Section IX presents point-mass and whole-body
running simulations. SectionsX, XI andXII compare the BID
control outputs to human experiments, discuss the proposed
controller’s assets and limitations and conclude the paper.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-500

0

500

1000

1500

2000

F
le

g[
N
]

Fleg,x

Fleg,z

t[s]

Figure 2: Comparison of experimentally measured human leg
forces (blue/green) and polynomial approximations (red).

II. H UMAN RUNNING EXPERIMENTS AS MOTIVATION

The main idea in this paper is todesign desired CoM
trajectories that produceapproximately natural GRF profiles
while fulfilling severalboundary conditions. It is well known
that some physical template models, such as the SLIP, generate
ground reaction forces (GRF) similar to the ones observed
in human running.Back in 1985, Raibert stated in his book
“Closed form expressions relating forward foot placement to
net forward acceleration for the one-legged machine are not
known” [13]. The lack of closed form solutions e.g. for the
SLIP motivates us to find an alternative way of encoding the
leg force (Fleg, equivalent to GRF). Figure2 shows a typical
GRF profile recorded during a human running experiment
via force plate. Except for the impact phenomenon at the
beginning and the lower slope in the end of stance, the human
GRF profiles can be approximated quite well by polynomials
of order 2 in the vertical direction and of order 3 in the
x−direction. Therefore, our original idea was to approximate
the leg force profile during stance via polynomials [1]. The
total forceFCoM acting on the CoM can be computed from
the leg forceFleg and the gravitational forceFg via

FCoM = Fleg+Fg = Fleg+mg . (1)

Here,m is the robot’s total mass andg= [0 0−g]T denotes the
gravitational acceleration vector. The constant offset between
FCoM andFleg in (1) and Newton’s 2nd law (CoM acceleration
ẍ = FCoM

m ) motivate us to use - during stance - a 4th order
polynomial to encode the vertical CoM positionz and 5th
order polynomials to encode the horizontal CoM positionsx
and y, as this correlates to 2nd and 3rd order polynomials
for the CoM accelerations ¨x, ÿ, z̈ and thus leg forces. This
polynomial encoding can be written as:

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(2)
Here, tT

σ (t), tT
σ̇ (t) and tT

σ̈ (t) denote the time-mapping row
vectors that - for a given timet - map the polynomial
parameter vectorspσ to CoM positionsσ(t), velocitiesσ̇(t)
and accelerations̈σ(t). The last elements of the vectors are
greyed out to indicate that they are only used for the horizontal
directions, but not for the vertical one.
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III. O UTLINE OF BID CONTROL METHOD

In this paper, we use a preview of at least two upcoming
stance and flight phases, as shown in Fig.3. The desired
relative apex and touch-down heights∆zapex,des and ∆zT D,des

are used as design parameters. They indicate how high over
the floor the apex of each flight curve (i.e. ˙z= 0) should be
and at what CoM height the touch-down (TD) is supposed
to happen.zf loor,i denotes the height level of thei-th step.
Another design parameter, used in this work, is the total stance
time Ts (it can vary from step to step), whereas the total flight
time Tf results from the boundary conditions chosen in section
V-A. To keep track of the current running state, we use a state
machine. It switches from flight to stance, if the CoM is below
zTD = zf loor,i +∆zTD and the vertical velocity is negative, and
from stance to flight when the total stance time is over. A
timer provides the time in stancets ∈ [0,Ts] and the time in
flight t f ∈ [0,Tf ]. They are reset at state transitions.

IV. COM DYNAMICS DURING FLIGHT

Running is a locomotion pattern, which employs alter-
nate flight and (single leg supporting) stance phases. Dur-
ing flight, the CoM cannot be controlled, i.e. it follows its
natural dynamics (parabolic path through space). For a given
time t, the CoM positionx(t) = [x(t),y(t),z(t)]T and velocity
ẋ(t) = [ẋ(t), ẏ(t), ż(t)]T can be computed as

x(t) = x0+ ẋ0 t +g
t2

2
, (3)

ẋ(t) = ẋ0+g t , (4)

wherex0 and ẋ0 are the initial CoM position and velocity.
One typical task in running control is to achieve a certain
apex height. The apex is the highest point in the ballistic flight
curve, i.e. vertical CoM velocity ˙zapex=0. Using this condition
and the current vertical CoM velocity ˙z instead ˙z0 in the third
row of (4), we find the current time to apex∆tapex as

∆tapex=
ż
g

. (5)

If ∆tapex is negative (true for ˙z< 0), then the CoM is already
on the descending path of the ballistic flight curve and thus
the time of apex is in the past. In the same way, we find the
remaining time until touch-down (TD) as

∆tTD = ∆tapex+

√

∆t2
apex+

2
g
(z− zTD) . (6)

Here, zTD = zf loor + ∆zTD is the CoM height at which the
touch-down (flight to stance transition) is previewed to happen.
With (3), (4) and (6), the previewed touch-down state can be
precomputed for any CoM state[x, ẋ] as

[
xTD

ẋTD

]

=

[

x+∆tTD ẋ+
∆t2T D

2 g

ẋ+∆tTD g

]

. (7)

In this work, the relative touch-down height is computed as

∆zTD = min(∆zTD,des, z− zf loor +
ż2

2g
−∆apex,TD,min) . (8)
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Figure 3: Preview of upcoming flight and stance phases
(planar sketch) - used for design of boundary conditions. For
readability, a constant floor heightzf loor is shown here.

That way, nominally the desired relative touch-down height
∆zTD,des (one of our design variables) is achieved, while
for challenging initial conditions or perturbations a minimum
height difference between apex and touch-down∆apex,TD,min

is guaranteed and the solution of (6) is assured to be real.

V. M ETHOD FOR BOUNDARY CONDITION SATISFACTION AS

BASIC MODULE FOR DEADBEAT CONTROLLER

A. Vertical planning and boundary conditions

As mentioned above, the vertical CoM trajectory during
stance is encoded via a 4th order polynomial, i.e. it has 5
polynomial parameters. These can be derived using 5 boundary
conditions. Fig.3 graphically displays the used preview of
upcoming flight and stance sequences and the corresponding
boundary conditions. In this work, - for each previewed
contact phase - we make use of four linear vertical boundary
conditions that can be combined as


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

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żTD,i

−g
−g







︸ ︷︷ ︸

bz,i

=







tT
z (0)
tT
ż (0)
tT
z̈ (0)

tT
z̈ (Ts,i)







︸ ︷︷ ︸

Bz,i

pz,i . (9)

Here, i denotes the index of the considered step andbz,i , Bz,i

andpz,i denote the corresponding boundary condition vector,
boundary condition mapping matrix and vertical polynomial
parameter vector, respectively. The first two elements inbz,i

imply that CoM position and velocity at the beginning of
stance equal the CoM touch-down state. The other two el-
ements say that the CoM acceleration at beginning and end of
stance equals minus gravity, i.e. the vertical leg force is zero.
The general solution of the linear systemBz,i pz,i = bz,i is

pz,i =BT
z,i(Bz,i B

T
z,i)

−1 bz,i +rz,i p̃z,i . (10)

The nullspace base vectorrz,i ensures thatBz,i rz,i = 0. The
whole (one-dimensional) nullspace ofBz,i is represented by
the scalar variable ˜pz,i . The vectorrz,i is computed as

rz,i =

[
−B−1

z,i,squareBz,i, f inal

1

]

, (11)

whereBz,i, f inal is the last column inBz,i , while Bz,i,square

consists of all other columns. Equation (9) encodes the four
linear previously described vertical boundary conditions. The
fifth boundary condition that we aim to fulfill is the apex height
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zapex,i of the CoM during thei-th upcoming flight phase (see
Fig. 3). The vertical CoM state of thei-th take-off (at end of
i-th stance timeTs,i) can be computed via (2) as

zTO,i = tT
z (Ts,i) pz,i (12)

żTO,i = tT
ż (Ts,i) pz,i . (13)

With (3) and (5), we can compute thei-th apex height as

zapex,i = zTO,i +
ż2
TO,i

2g
. (14)

We are looking for a parameter vectorpz,i that will result in
the desired apex heightzapex,i,des, which can be computed as

zapex,i,des= zf loor,i+1+∆zapex,des. (15)

Note that here we use the heightzf loor,i+1 of the upcoming
step. Inserting (12) and (13) into (14) leads to a quadratic
equation in the unknown scalar variable ˜pz

0 =
tT
ż rz,i

2g
p̃2

z,i +(tT
z rz,i +

tT
ż pz,i,0 tT

ż rz,i

g
) p̃z,i +

+
(tT

ż pz,i,0)
2

2g
− zapex,i,des (16)

It can be shown that the only valid solution to (16) (yielding
positive vertical take-off velocities) is

p̃z,i =
2 żTD,i −gTs,i −Γ

4 T3
s,i

, (17)

Γ =
√

g(gT2
s,i −4 żTD,i Ts,i +8 (zapex,i,des− zTD,i))

Note: finally only (11) and (17) are necessary as inputs for (10)
to compute polynomial parameterspz,i for each previewed step
that fulfill all desired vertical boundary conditions.

B. Horizontal planning and boundary conditions

In this work, the derivation for thex- and y-component is
equivalent. We use the letterχ to indicate horizontal quantities,
i.e. χ ∈ {x,y}. We choose - for each previewed contact phase
- the following five linear horizontal boundary conditions:


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χTD,i

χ̇TD,i

0
0

χTD,i+1,des


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=
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χ̇ (0)
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tT
χ (Ts,i)+Tf ,i t

T
χ̇ (Ts,i)









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Bχ,i

pχ ,i . (18)

Here, bχ ,i, Bχ ,i and pχ ,i denote the horizontal boundary
condition vector, boundary condition mapping matrix and
polynomial parameter vector, respectively. As in Sec.V-A,
the first two elements ofbχ ,i imply that the initial CoM
state is equal to the CoM touch-down state. The next two
elements assure that initial and final CoM acceleration are
zero, i.e. horizontal leg forces are zero. The fifth element -
as intermediate control target - specifies the horizontal CoM
touch-down positionχTD,i+1,des of the upcoming step. Since
- in case of no perturbations - the horizontal velocity during

p̃χ 6= p̃∗χ p̃χ = p̃∗χ p̃χ 6= p̃∗χ

xTDxTDxTD

zf loor

Figure 4: Effect of ˜pχ on force ray focusing (lines of action).

flight is constant, we can propagate the take-off state to each
upcoming touch-down position via

χTD,i+1,des= χTO,i +Tf ,i χ̇TO,i =(tT
χ ,i(Ts,i)+Tf ,i t

T
χ̇ (Ts,i))pχ ,i ,

(19)
Here, thei-th time of flight Tf ,i is computed via (5) and (6).
Note: zTO,i and żTO,i (used asz and ż in (5) and (6)) are
computed from the vertical polynomial parameter vectorpz,i .
Thus, the vertical boundary conditions are solved before the
horizontal ones. The general solution of (18) is

pχ ,i =BT
χ ,i(Bχ ,i B

T
χ ,i)

−1 bχ ,i
︸ ︷︷ ︸

pχ,i,0

+rχ ,i p̃χ ,i . (20)

The nullspace base vectorrχ ,i is computed via the equivalent
of (11). The horizontal directions have one more polynomial
parameter than the vertical one, i.e. one more degree of
freedom (DOF). This DOF, represented by the scalar ˜pχ ,i in
(20), has an effect on the geometry of the leg force rays in
space (see Fig.4). Our goal is to find the value for ˜pχ ,i , which
produces the best possible focusing of leg forces, such that
these are best feasible for finite-sized (or even point-) feet. To
this end, - for each previewed step - we compute the time-
dependent intersection pointxint,i = [xint,i ,yint,i ,zf loor,i ] of the
leg force with the floor and minimize the integral of the mean
square deviation from its mean valuexint,i . For a given time
in the i-th stancets ∈ [0,Ts,i ], it’s horizontal components are

χint,i(ts) = χ(ts)−
fleg,χ ,i(ts)

fleg,z,i(ts)
(z(ts)− zf loor,i) (21)

= (tT
χ (ts)−

(tT
z (ts)pz,i − zf loor,i) t

T
χ̈ (ts)

tT
z̈ (ts)pz,i +g

)

︸ ︷︷ ︸

dT
χ,i(ts)

pχ ,i .

Here, fleg,χ ,i(ts) and fleg,z,i(ts) are the horizontal and vertical
components of the leg forceFleg,i and z(ts) is the height of
the CoM. The horizontal components of the mean intersection
point xint,i = [xint,i ,yint,i ,zf loor,i ] can be computed via

χ int,i =
1

Ts,i

∫ Ts,i

ts=0
χint,i(ts) dts =

1
Ts,i

∫ Ts,i

ts=0
dT

χ ,i(ts) dts
︸ ︷︷ ︸

eT
χ,i

pχ ,i . (22)

Here,eT
χ ,i is a constant row vector. The deviation of thei-th

time-varying intersection point from its mean value is

∆χint,i(ts) = χint,i(ts)− χ int,i = (dT
χ ,i(ts)−eT

χ ,i)
︸ ︷︷ ︸

kT
χ,i(ts)

pχ ,i . (23)
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TD state
xTD,N, ẋTD,N
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Figure 5:CoM touch-down adjustment for foot targeting.

The square of the deviation at a given timets is

∆χ2
int,i(ts) = pT

χ ,i kχ ,i(ts) k
T
χ ,i(ts)

︸ ︷︷ ︸

Lχ,i(ts)

pχ ,i . (24)

In order to obtain the mean square of the deviationχint,i,ms we
once again integrate and insert (20) to achieve

χint,i,ms= pT
χ ,i

1
Ts,i

∫ Ts,i

ts=0
Lχ ,i(ts) dts
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Mχ,i

pχ ,i = rT
χ ,iMχ ,i rχ ,i p̃2

χ ,i+

+2rT
χ ,iMχ ,i pχ ,i,0 p̃χ ,i +pT

χ ,i,0 Mχ ,i pχ ,i,0 .
(25)

Due to the nonlinearity of (21), solving forMχ ,i analytically
is computationally expensive. Instead,dT

χ ,i, e
T
χ ,i, k

T
χ ,i , Lχ ,i and

Mχ ,i are approximated numerically by evaluating the above
equations fornapprox time samples equally spread along the
stance period. That way, the integrals turn into sums, which
highly facilitates computation. We found thatnapprox = 10
yields sufficient accuracy. Now, with the approximate matrix
Mχ ,i,approx and differentiating (25) with respect to ˜pχ ,i, we
find the optimal parameter

p̃∗χ ,i =−
rT

χ ,i Mχ ,i,approx pχ ,i,0

rT
χ ,i Mχ ,i,approx rχ ,i

, (26)

which minimizes the mean square deviation as defined above.
With (26), (20) turns into

pχ ,i = (I−
rχ ,i rT

χ ,i Mχ ,i,approx

rT
χ ,i Mχ ,i,approx rχ ,i

)

︸ ︷︷ ︸

Ωχ,i

BT
χ ,i(Bχ ,i B

T
χ ,i)

−1

︸ ︷︷ ︸

B+
χ,i

bχ ,i ,

(27)
which directly maps the horizontal boundary conditionsbχ ,i
to appropriate polynomial parameter vectorspχ ,i (including
best force focus). If - as in [1] - horizontal CoM touch-down
target positions (or similarly: take-off velocities) are used as
boundary conditions, (27) provides the solution to the problem.

C. Foot step targeting and leg cross-over avoidance

In [1], the resulting foot positions could not be controlled
directly, which caused problems with leg cross-over (see

1
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3 0
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foot trajectories
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ẋ= 0
(terminal constraint)

targeted and
desired foot positions

flight
stance

Figure 6:BID preview of Toro (displayed as stickman) running
in OpenHRP. All desired foot positions (except the first one)
are previewed to be perfectly tracked.

Fig. 7). Also when precise foot placement is required - for
example when running over stepping stones as in Fig.1 - the
method failed to provide any guarantee of safe stepping. To
address these drawbacks, in this paper we aim at an explicit
solution for foot-step targeting. Settingχ int,i = χ f oot,i and
eT

χ ,i = eT
χ ,i,approx in (22), and inserting (27), we can solve for

the desired upcoming CoM touch-down position1 χTD,i+1,des,
which corresponds to the desired foot locationχ f oot,i . Re-
substituting this particularχTD,i+1,des in (27) finally yields

pχ ,i = [(I − e⊕χ ,i e
T
χ ,i,approx) Ωχ ,i Πχ ,i

︸ ︷︷ ︸

ATD,χ,i

, e⊕χ ,i]





χTD,i

χ̇TD,i

χ f oot,i



 .

(28)

Here,ATD,χ ,i maps thei-th touch-down state topχ ,i and the
specific pseudo-inversee⊕χ ,i =

Ωχ,i πχ,i
eT

χ,i,approxΩχ,i πχ,i
of eχ ,i,approx

maps thei-th foot position. The matrixΠχ ,i combines the first
two column vectors ofB+

χ ,i , while πχ ,i is its final column.
Note: the third and fourth boundary conditions in (18) are
implicitly accounted for. We will now use all previewed
desired footholdsχ f oot,i = χ f oot,des,i (except the first one) and
the final take-off velocityχ̇TO,N = 0 as constraints and solve
for the first footholdχ f oot,1 (control variable) and all future
horizontal polynomial parameter vectorspχ ,i, which yield
perfect tracking of the future desired footholds. By combining
the touch-down state intoτχ ,i = [χTD,i , χ̇TD,i ]

T , (28) becomes

pχ ,i =ATD,χ ,i τχ ,i + e⊕i χ f oot,i . (29)

Each upcoming touch-down state can be previewed as

τχ ,i+1 =

[
χTD,i+1

χ̇TD,i+1

]

=

[
tT

χ ,i(Ts,i)+Tf ,i tT
χ̇ (Ts,i)

tT
χ̇ (Ts,i)

]

︸ ︷︷ ︸

Si

pχ ,i . (30)

Starting fromi = 1 and propagating (29) and (30) forward,
we find the following expression for the polynomial parameter
vector of theN-th (i.e. final) previewed stance phase:

pχ ,N =Gχ ,1 ATD,χ ,1 τχ ,1 + ∑
i=1..N

(Gχ ,i e⊕χ ,i χ f oot,i) . (31)

1This is whyχTD,i+1,des was called an “intermediate control target” earlier.
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The matricesGχ ,i =Gχ ,i+1 ATD,χ ,i+1 Si are evaluated by
starting withGχ ,N = I6x6 and iterating backwards untili = 1.
Now, with (2) and (31), we find the horizontal take-off velocity
after the final previewed stance phase as

χ̇TO,N = tT
χ̇ (Ts,N) pχ ,N . (32)

To guarantee stability, we choosėχTO,N
!
= 0 as terminal

constraint, i.e. the controller presumes the CoM to come to a
full stop after the final previewed contact phase.

Note that in the same way for the computation of the final
vertical polynomial parameter vector, we use the terminal
constraint ˙zTO,N

!
= 0 instead of a desired apex height.

As mentioned above and shown in Fig.5, we aim to achieve
the terminal constraint and all desired foot targetsχ f oot,des,i

other than the first one (which is sacrificed in order to serve
as a control variable). We therefore solve (31)-(32) for χ f oot,1

which finally yields the sought-after first foot placement

χ f oot,1 =
−tT

χ̇ (Ts,N) (Gχ ,1 ATD,χ ,1 τχ ,1+η)

tT
χ̇ (Ts,N)Gχ ,1 e

⊕
χ ,1

, (33)

η = ∑
i=2..N

(Gχ ,i e⊕χ ,i χ f oot,des,i) .

Now we solve for all horizontal polynomial parameter vec-
torspχ ,i by alternately evaluating (29) and (30). As foot posi-
tions in (29), we useχ f oot,i ∈ {χ f oot,1,χ f oot,des,2, ...χ f oot,des,N}.
During stance we freeze the first foot positionχ f oot,1 and
polynomial parameter vectorpχ ,1 (feed-forward) and use the
second footholdχ f oot,2 as control variable instead. That way
- even in face of unknown perturbations - the foot targets are
continuously adjusted. Equation (33) is adopted accordingly.

One feature of our framework is that due to the multi-step
preplanning, both future foot aim pointsχ f oot,1 and χ f oot,2

(i.e. the aim points of the left and right foot) are known at all
times, which facilitates foot trajectory generation. In this work,
we implemented the foot trajectories as polynomials. The
achieved precise foot targeting is particularly interesting for
running over 3D stepping stones or other restricted surfaces.

An additional feature of precise foothold targeting is that
leg cross-over can be explicitly avoided. This is especially
helpful for running in sharp turns (see Fig.7). Therefore, the
originally preplanned footholds can be adjusted such that the
left foot always passes by the right foot on the left, and vice
versa. At the same time, the Euclidean distance of the adjusted
footholds from the originally planned ones should be minimal.
This way, the legs can be prevented from twisting around each
other. To achieve this goal, we use an adjustment heuristic
as shown in Fig.7. In the shown example, we preview four
foot positions, i.e. two for each foot. The method adjusts the
second/third previewed footstep (i.e. the projection shown in
Fig. 7, left, is applied twice), such that the swing feet can
safely swing from the first/second foothold to the third/fourth
one. The fourth foothold remains unchanged to achieve good
long term tracking of the original desired foot locations.

first left
foot target

original right
foot target

second left
foot target

min. passing
distance

adjusted right
foot target

adjusted
foot targets

left and right
foot trajectories

left passing line

CoM trajectory

original
foot targets

Figure 7: Leg cross-over avoidance,
left: scheme (depicted for left pass), right: simulation output

VI. STATE FEEDBACK CONTROL

In the nominal case (no perturbations), the force profiles and
foot aim points as derived in the previous sections assure that
- for any initial conditions - after the first stance phase allde-
sired boundary conditions from sectionsV-A andV-B are ful-
filled (deadbeat control). Therefore, planning once per step or
even pre-planning a whole sequence of upcoming steps would
be sufficient. Yet, to cope with perturbations, we propose a
state feed-back control method, which is based on continuous
re-planning of the desired contact forces throughout both flight
and stance phases. To this end, during flight the previewed
CoM touch-down state is updated (see Fig.8) by inserting (6)
in (3) and (4). In contrast to [1] (no feedback during stance),
during stance, the first take-off state is predicted via

[
σTO,1

σ̇TO,1

]

=

[
σ
σ̇

]

︸︷︷︸

f eedback

+

[
tT

σ (Ts,1)− tT
σ (ts)

tT
σ̇ (Ts,1)− tT

σ̇ (ts)

]

pσ ,1

︸ ︷︷ ︸

preview

, σ ∈ {x,y,z}

(34)

Here, tT
σ (t) and tT

σ̇ (t) are the time-mapping row vectors
from (2). They are evaluated for the first total stance timeTs,1

and the current time in stancets∈ [0,Ts,1] to predict how much
of an offset is expected if for the remaining time in step the
current force profile (encoded bypσ ,1) is applied. This offset is
added to the current measured state to predict the take-off state,
which in turn is used to compute the upcoming CoM touch-
down state. Note: after touch-down, the force profile of the
current stance phase is frozen and commanded to the robot as
feed-forward. The main advantage of our state feedback during
stance is that the foot aim points are continuously updated to
avoid discontinuities in the foot reference trajectories.

Note: during flight, the first upcoming foot position is one
of the maincontrol inputs(see (33)). Whilst all other future
footsteps are previewed to coincide with the desired foot target
locations (see Fig.6), the nominal position of the first foot is
an output of the controller.Depending on the limitations at
hand (e.g. limited allowable supporting area) - this nominal
foot aim point may have to be projected to a feasible one,
resulting in deviations from the nominal deadbeat behavior.
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touch-downstate preview(7)

ẋTDxTD

vertical planning for all previewed steps (Sec.V-A)
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horizontal planning for all previewed steps (Sec.V-B, Fig. 5)

pi

evaluate first force profile (35)
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Figure 8:Computation flow of BID controller (outline).

VII. G UARANTEEING FEASIBILITY

The desired three-dimensional force acting on the CoM can
be computed for a given time in stancets as

FCoM,des(ts) = m





tT
ẍ (ts) px,1

tT
ÿ (ts) py,1

tT
z̈ (ts) pz,1



 , (35)

i.e. the polynomial of the first force profile is evaluated. The
corresponding desired leg forceFleg,des is found by reordering
(1). The polynomial parameters were chosen to result in the
best achievable focus of the leg forces with the ground. Yet,
for physical robots feasibility is not guaranteed.

1) Point-mass point-feet model:One obvious example is
when the robot is modeled as point-mass with point feet. In
that case, the leg force is constraint to point along the unit
vectorux, f pointing from CoM to point foot. As the other two
spatial directions are unactuated, the desired leg forceFleg,des

has to be projected to the feasible direction2:

Fleg, f = ux, fu
T
x, fFleg,des . (36)

Assuming sufficient ground friction, Fleg, f can be safely
commanded to the point-mass point-foot model.

2) Articulated multi-body model:As in our previous work
on walking [11], the main idea of our BID control concept is
to first focus on the robot’s CoM dynamics and the problem
of foot placement, which in our view are the key challenges of
locomotion. A point-mass model can be sufficient to address
these issues. Once CoM dynamics and foot placement are
solved, they need to be embedded into a more general control
framework to make them available for articulated multi-body
models such as simulated or real humanoid robots. To this
end, we use an inverse dynamics based whole-body control
framework similar to [24], [27]. It solves a single quadratic
program (QP) that tries to satisfy the specified tasks as best
as possible while guaranteeing feasibility. The tasks include
foot trajectory tracking, upper-body posture control, overall
joint posture control and a centroidal momentum task [28],
which can be subdivided into linear and angular momentum
tasks. Most of the tasks(excluding the BID controller)include
a task space PD control component. The desired linear force
on the CoM from the BID controller (35) is directly fed into

2Note: for more complex robots this projection may not be necessary.

∆zTD,apex

∆xf light

∆xstride

∆z
T

D

l leg,TD

TDTD TOTO

groundground

l leg,TD,n

l leg,T D,max

∆z
T

D
,n

∆z
T

D
,n
+

1

Figure 9:Correlations for stationary running.

our linear momentum task. The angular momentum task aims
to regulate the robot’s overall angular momentum to zero.
The foot trajectories from the BID controller form the direct
input to the whole-body foot task (see Fig.8). Note that
feasibility here only relates to ground reaction wrenches and
joint torques, whilst stability or balance (depending on the
physical limitations of the robot at hand) is not guaranteed.

VIII. ENHANCING KINEMATIC FEASIBILITY

A major issue concerning the porting of BID control to kine-
matically restricted robot models (such as humanoid robots)
is that the BID controller does not naturally consider any
kinematic limitations. In case of high desired velocities and
accelerations or strong perturbations, BID may result in unre-
alistic high required leg lengths. In the next two subsections,
we will present two methods to ease this problem: one for
finding nominally feasible gait parameters and one for online
touch-down leg length adjustment. Both methods assume that
the distance from CoM to foot in the BID preview correlates
to the corresponding leg length in a multi-body model. This
is an approximation of course.

A. Nominally feasible gait design

For a periodic running gait (assumed here), the CoM height
at touch-downzTD equals the one at take-offzTO (see Fig.9).
With energy conservation (˙z2

TO = 2 g ∆zTD,apex) and with (5),
we can derive the time of flightTf (i.e. from TO to TD) as

Tf =

√

8 ∆zTD,apex

g
. (37)

Here, ∆zTD,apex denotes the height difference between apex
and touch-down. For a desired flight percentagef f light =

Tf
Ts+Tf

and with the mean horizontal speed (e.g. derived from a
joystick input)vmean=

∆xstride
Ts+Tf

we get

Tf = f f light (Ts+Tf )
︸ ︷︷ ︸

∆xstride
vmean

≤ f f light
∆xstride,max

vmean
. (38)

Here, the inequality indicates, that the time of flight should
be small enough, such that a maximum desirable stride length
∆xstride,max is not exceeded. By combining (37) and (38), we
find a condition for the maximum allowable height difference
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between apex and touch-down

∆zTD,apex ≤
g
8
( f f light

∆xstride,max

vmean
)2

︸ ︷︷ ︸

∆zTD,apex,max

. (39)

A second condition for nominal kinematic feasibility is that
a maximum allowable touch-down leg lengthl leg,TD,max is not
exceeded. By inspection of Fig.9 (left), we find the following
condition for the CoM touch-down height

∆zT D ≤

√

l2leg,T D,max− (
∆x̂stride−∆x̂f light

2
)2

︸ ︷︷ ︸

∆zTD,max

. (40)

Here, ∆x̂stride= vmean(Ts+Tf ) and ∆x̂f light = vmeanTf de-
note the approximated (assuming constant horizontal velocity)
distances traveled during a whole stride and during a single
flight phase, respectively. With the described adjustmentsof
apex (39) and touch-down height difference (40), the nominal
desired touch-down and apex height difference (above each
upcoming floor height) become

∆zTD,des= min(∆zTD,nominal, ∆zTD,max) and (41)

∆zapex,des= ∆zTD,des+min(∆zTD,apex,nominal, ∆zT D,apex,max) ,

where ∆zT D,nominal and ∆zTD,apex,nominal act as upper limits.
Also, the nominal stance time can be computed with (37) as

Ts =
1− f f light

f f light

√

8 ∆zTD,apex

g
. (42)

That way, the design parameters introduced in Sec.III (i.e.
∆zTD,des, ∆zapex,des and Ts) are deduced from desired flight
percentagef f light , maximum desired stride length∆xstride,max,
maximum desired touch-down leg lengthl leg,T D,max and mean
horizontal speedvmean to maximize kinematic feasibility.

B. Active leg length control

In case of strong perturbations, the leg lengths resulting
from the BID controller (and the applied foot trajectory gen-
erator) may not comply with kinematic limitations of multi-
body robots. To ease this problem, we adjust the original BID
plan via the following iteration scheme (see Fig.9 (right))

∆zTD,i,n+1 = min(∆zTD,desired,
l leg,TD,max

l leg,TD,i,n
∆zTD,i,n)) . (43)

The touch-down height difference is iteratively adjusted (if it
doesn’t exceed the nominal touch-down height∆zTD,desired)
such that for each stance phasei the resulting touch-down leg
length l leg,TD,i does not exceed the maximum desired touch-
down leg lengthl leg,TD,max (similar the rest length of SLIP
models). Here,n denotes the iteration count. For each iteration
the complete BID preview has to be re-evaluated.

IX. SIMULATIONS AND EVALUATION OF BID CONTROL

A. BID-based point-mass simulations

To test the performance and robustness of the proposed
control framework, we performed numerous simulations. For
the first set of simulations, we considered a point-mass with
two massless point-feet. Figure10 shows the results of a
robustness examination for three different constant external
forces. From top to bottom, the figure shows phase plots for
three simulations. Each simulation was setup in the following
way: no perturbation during the first 4 seconds, then 4 seconds
of constant force acting (magnitude: -50N (corresponding to
≈ 10% of the robot’s mass (here 50kg)), force direction:
purely x, y and z, respectively), followed by 4 seconds of
no perturbation. Here,∆x= x− x joystick and ∆y= y− y joystick

denote the errors w.r.t. the nominal horizontal CoM position
x joystick= [x joystick,y joystick]

T , which was computed from a
virtual joystick input. The stars denote the initial states. The
phase plots show that for perturbed and unperturbed phases,
the system very quickly converges to corresponding limit
cycles. Note: the perturbation forces in the shown simulations
were kept comparably low to increase readability of the plots.

We performed many further BID-based simulations with a
bipedal point-mass robot, which showed a very high robustness
of the basic BID controller. It has to be mentioned, that for
extreme perturbations, the leg length could grow to unrealistic
levels (due to the constant touch-down height). To assure leg
length feasibility, the method from Sec.VIII-B can be applied.
The controller is most sensitive against strong unknown per-

turbations that point towards the ground. Here, the maximum
permanent force the controller could withstand in simulation
was−750N, i.e. 1.5 times the robots weight. For higher forces,
the robot’s CoM would hit the ground.

Figure 11 shows the result of a simulation in which the
point-mass robot was running over three-dimensional stepping
stones (see also Fig.1). The left subplot shows the robot’s foot
positions (bars, only active during stance) and CoM positions
(continuous curves). The right subplots show the difference
between desired and achieved foot positions. Nominally, the
foot target positions are tracked well, whereas in case of
perturbations they deviate. This is necessary to stabilizethe
CoM motion against the perturbation. After the perturbation
is removed, good tracking is regained after a single step.

Figure12 shows how far the force intersection pointχint(ts)
deviates from the mean intersection pointχ int (i.e. the stance
foot position) for the case that thedesired force profilesare
not projected. In the shown simulation, the robot starts at
zero speed and then runs at 2m

s . The stance time is set to
150ms. The initial range of deviation is about 22mm, while
for stationary running it is about 6mm. This shows that the
original (non-projecting) method is well applicable for small-
footed robots and that (36) typically has minor influence.

B. QP-based multi-body simulations

To proof the applicability of the biologically inspired dead-
beat (BID) control framework, we embedded it into the QP-
based whole-body controller from Sec.VII-2 and performed
full-body simulations of the humanoid robot Toro [29] in
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Figure 11: CoM trajectories and foot target tracking perfor-
mance in nominal and perturbed case (point mass simulation
over stepping stones). Perturbing force: 30N in y-direction.

OpenHRP [30]. It has to be noted, that Toro’s joint torque
and velocity limits were omitted in the simulations. Fig-
ure 13 shows Toro running at 5m/s. The gait parameters
∆zTD,des, ∆zapex,desandTs were computed via the method from
Sec.VIII-A to make such high running speed kinematically
feasible for Toro. Following intuitive design parameters (as
described in Sec.VIII-A ) were chosen: desired flight percent-
age f f light = 0.7, maximum desired stride length∆xstride,max=
1.4 m, maximum desired touch-down leg lengthl leg,TD,max=
0.86m, nominal touch-down height∆zTD,nominal= 0.86m and
nominal height difference between touch-down and apex
∆zTD,apex,nominal = 0.06 m. The target velocity (derived from
a virtual joystick input and used asvmean) ramped up from
0 m/s to 5m/s until second 3 and then stayed constant. Two
important human-like featuresevolved: first, natural arm swing
motions (see also multimedia attachment) that facilitate the
angular momentum regulation and contribute to the CoM ma-
nipulation and second, stretched hind legs at the end of stance.
This shows that the combination of BID and whole-body
control can automatically create human-like motions, suchthat
the effect of the various cost functions and their weights can
be examined.The CoM motion (see Fig.14, colored) follows
the desired joystick reference (black) nicely. The actual refer-
ence were corresponding foot targets that were derived from
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Figure 12: Deviation of force intersection pointχint(ts) from
mean intersection pointχ int in case that (in contrast to other
point-mass simulations) theforces are not projected. Along
the time-axis, the stance phases are pieced together.

the nominal sway-free joystick input.Knowing the vertical
previewed dynamics and thus the times to each upcoming
touch-down, the foot targets were placed at lateral offsets
from the nominal sway-free and continuous reference. A very
important quality of a running controller is its reactiveness
and robustness. Without that quality, the OpenHRP running
simulations would fail due to the overdeterminedness of tasks
(such as CoM force and angular momentum control, posture
control etc.), tracking errors and energy losses at impact.To
investigate this quality of our combined BID and whole-body
control framework, we performed multiple simulations where
the robot was subject to external perturbations. One of these
simulations is shown in Fig.15. It displays the errors in
horizontal CoM position with regard to the joystick reference.
Toro runs at 3m

s (after ramping up from 0ms until second 3).
From second 3.5−4.5 it is subject to a backwards pointing
external force of−150N and between second 5.5 and 6.5
to a lateral force of 80N (both constant and unknown). The
controller is well able to compensate for these perturbations
and recovers after just a few steps. The steady state error of
about 0.1 m in x-direction can be explained by the fact that
the foot step(not the CoM) is planned to coincide with the
joystick reference (aside from a sideward offset) at theinstant
of touch-down, while the continuous joystick reference keeps
moving throughout stance. The kinematic feasibility of the
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Figure 13:Toro [29] running in OpenHRP [30] at 5 m/s.

running gait under these strong perturbations was facilitated
by the methods from Sec.VIII .
The OpenHRP simulations of Toro running show our control
framework’s robustness and reliability. It is thus a promising
concept for future more detailed comparison between human
and humanoid running and prediction of human behavior.

X. COMPARISON TO HUMAN EXPERIMENT

The BID controller had been inspired by observations
from human running experiments. In the previous section, we
showed its high robustness, which substantiates its applicabil-
ity for humanoid running control. Now the question arises,
how well the BID control outputs fit to the ones observed
in human running experiments. Thus, we close the loop by
comparing the corresponding forces and CoM trajectories.
Figure 16 (left) shows a human subject running on a force
plate treadmill, its posture being tracked via markers. On
the right side of the figure, the corresponding CoM and toe
trajectories are shown. It becomes apparent that the lines of
action of the ground reaction forces (GRF) in humans are not
as strictly focused as the ones designed in our BID controller
(compare to figures3 and 4). This shows that humans make
use of angular momentum during running, while the CoP
remains in the ball of the foot (compare toe trajectories).
Figure 17 shows the corresponding force profiles and CoM
trajectories and overlays them to a “matched”3 BID simulation.
The force profiles match quite well. The main differences are
the initial impacts, slightly higher vertical force maximum and
lower final force slope in humans as compared to the BID
simulation. The CoM positions are very consistent (errors in
the range of several millimeters (x direction drifting due to
slight timing mismatch)). From these observations we infer
that BID control sufficiently approximates the GRF in human
running to allow for decent insights into human running
control. Yet, - not surprisingly - the observed differences
motivate further examination of human running control.

3By “matching” we mean that basic gait parameters such as stance time,
apex and touch-down height and also the human subject’s and the model’s
mass have to be aligned. Otherwise a comparison - especiallyin time domain
- would be impossible/useless.
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XI. D ISCUSSION AND OUTLOOK

A. Strengths and limitations of current control framework

The proposed control frameworkcan be called a closed-
form solution to 3D running.Only the matricesMχ ,i in
Sec.V-B have to be approximated numerically but they can
then be used for the further analytical derivations such as
our analytical foot-step targeting method.The polynomial
parameter vectors resulting from the BID controller are an-
alytic and thus very insightful and convenient. The trajectory
generation and control method described in this paper yields
leg force profiles that are independent of the specific hardware
design of a particular robot, i.e. the method is generic. The
control framework might be used to identify required actuator
characteristics for the design of new robots.

For our simulations, we used a standard PC (3.3 GHz, quad-
core, Win7 64bit).In our Matlab/Simulink simulation setup
and using 1msas sampling time, we were able to execute all
BID control related computations in real-time.

The force profiles as derived in sectionsV-A and V-B
nominally lead to perfect tracking after just one stance phase
(deadbeat control), i.e. the controller is perfectly stable. In
case of actuation limits, the control commands may have to
be adjusted (e.g. via (36) for point-mass point-feet robots), so
stability cannot be guaranteed. Yet, our simulations show the
high robustness of the controller even in case of constraints.

In our control framework, impact-free state transitions are
assumed (compare Fig.2). The impact losses in real systems
will cause perturbations. Anyhow, due to its high robustness
in simulations, we expect good performance of the controller.

A drawback of our current control setup when compared to
human running is the missing toe-off motion. In the current
setup the feet are aligned with the ground during contact. Toe-
off motion (especially during single support) is usually classi-
fied as challenging task. Anyway, it has to be tackled in future
research to enhance the capabilities of humanoid running and
make it more comparable to its natural counterpart.
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B. Comparison to other works

When compared to SLIP control, the main feature of our
presented BID controller is its analyticity, which allows for
explicit solutions, e.g. for three-dimensional CoM trajectories
and foot-step placement during running. Some features of the
impressive work of Raibert [13] such as apex height control
and forward speed control via foot placement show major
similarities to our work. Yet, BID control provides analytic
solutions for planning and control as compared to Raibert’s
three-parted and rather heuristic running controller.

Although the method proposed in [11] (based on Divergent
Component of Motion (DCM), a.k.a. Capture Point) handles
a different form of locomotion, namely walking, on closer
inspection its overall control framework shows similarities
with the BID controller proposed in this paper. The first
analogy is the preview of several (typically three or more)
future footsteps and the derivation of feasible force profiles
that nominally track them. The second analogy is related to
the modulation and potential projection of the desired forces,
such that they comply with the contact constraints. In case
of DCM control this modulation/projection consists of leg
force modulation and projection of a desired center of pressure
(CoP) to the feasible foot supporting area, respectively. The
proposed BID controller, in comparison, modulates the first
upcoming stance foot position and all previewed leg force
profiles, while projecting the foot position to a feasible one
in case of limited allowable contact area (see Fig.18).

C. Potential usage, extensions and future work

One interesting aspect in human running is the center of
pressure’s (CoP) motion from heel to toe (as observed for
example during medium speed jogging). This effect can be
observed in Fig.16 (intersection of the black force lines with
the ground). This means that, while in humanoid locomotion
one usually keeps the nominal CoP as close to the foot center
as possible (as we did in this paper as well, see Fig.4) to
increase the likelihood of feasible desired leg forces, it can
be more optimal to actually move the CoP from heel to toe
during stance. A simple trick to produce such nominal CoP
motion using our proposed BID control framework would be
to set the virtual foot positions below the actual ground. That
way the intersection points of the force lines with the actual
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Figure 17: Comparison of human experiment data [31], [32]
(dashed) and output of matched BID simulation. top: ground
reaction forces (GRF), left: CoM position, right: CoM error.

ground (which correspond to the CoP) would show a heel-
to-toe motion. How to make use of such virtual foot point
adjustment and the correlating heel-to-toe motion is a question
that we will examine in our future research.

In this work, we work with locally flat stepping stones (see
figure1). However, we suppose that arbitrary ground surfaces
could be handled, the major difficulty being to incorporate the
ground profile in the search for the first (i.e. actively adjusted)
footstep. That way, 3D foot locations on arbitrary known
terrain could be targeted.Naturally robust foot trajectories for
blind running are another interesting research topic.The BID
algorithm may also be applied to problems such as hopping
and jumping. We also expect that quadrupedal gaits such as
bounding/galloping and trotting can be achieved.

With regard to motion science, starting from the presented
work, we plan to implement tools for human/humanoid run-
ning comparison and to perform cooperative human running
experiments specifically designed for that purpose.

XII. C ONCLUSION

In this paper, we describe in detail the Biologically Inspired
Deadbeat (BID) controller, a concept for three-dimensional
bipedal running. It encodes the leg forces during stance as
polynomials. The proposed controller has deadbeat properties,
i.e. in the nominal case it reaches the desired boundary
conditions after just one stance phase. The controller facilitates
agile, precise and versatile running motions and is very robust
against external perturbations. It can be utilized to achieve
explicit foot targeting and running over three-dimensional
stepping stones. Additionally, the paper describes methods
for leg cross-over avoidanceand kinematic feasibility en-
hancement. We embedded the BID controller into a QP-based
whole-body controller (similar to [24]) to achieve running
with the humanoid Toro [29] in simulation. We achieved
running speeds of up to 5ms and demonstrated push-recovery.
The CoM trajectories and ground reaction forces resulting
from BID control were compared to human running data and
showed decent consistency.The combination of BID control
- tackling the problem of CoM manipulation and balance, i.e.
based on a highly reduced model - and QP-based whole-body
control shows promising results and is expected to provide
new insights into human(oid) movement and control.
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