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Friction Estimation for Tendon-Driven Robotic Hands
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Abstract— In tendon-driven robotic hands, tendons are usu-
ally routed along several pulleys. The resulting friction is often
substantial, and must therefore be modelled and estimated, for
instance for accurate control and contact detection. Common
approaches for friction estimation consider special dedicated
setups, where the parameters of a static or dynamic friction
model at a single contact point are determined. In this paper,
we rather combine such individual friction models into an
overall friction model for the entire finger. Furthermore, we
propose a method for estimating the parameters of this overall
model in situ, i.e. from trajectories executed on the assembled
hand, avoiding the need for dedicated setups. An important
component of the proposed model is a varying bias for treating
friction at low velocities, allowing a simpler static friction model
to be used. We demonstrate that our approach enables contacts
to be detected more accurately on the DLR David hand, without
additional sensors.

I. Introduction

Tendon-driven anthropomorphic robotic hands, such as the
DLR David hand [1] in Fig. 1, are actuated by motors that
are located in the forearm of the robot, rather than in the
hand itself. This reduces finger size and increases dexterity.
A disadvantage is the substantial friction that is caused by
having to route tendons over multiple pulleys [2]. Additional
friction may arise from tendons sliding over edges, especially
at the extrema of the joint positions.

Modelling this friction is important for the motor control
of tendon-driven hands, but also challenging. Specific friction
effects at individual pulleys can be modelled well, and
estimating their parameters is commonly done in dedicated
identification setups [2]–[4]. But such setups do not take into
account effects that arise only in the assembled hand. These
include tendons sliding over edges, which depend on joint
angles, or twisted mountings of the joints.

The first main contribution of this paper is to combine
individual friction models into an overall friction model
for the entire finger (described in Sect. IV). The second
main contribution is to propose a method for estimating the
parameters of this overall model in situ, i.e. from trajectories
executed on the assembled hand (described in Sect. V). This
makes parameter estimation not only more accurate – as it
takes all friction effects that arise on the assembled hand into
account – but also easier – as no dedicated hardware setups
are required.

As it is difficult to separate time instants with motion from
time instants with stiction in the assembled hand, our model
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Fig. 1: DLR David hand (AWIWI II hand)

takes stiction into account explicitly. Our third contribution
(described in Sect. VI) is to propose a varying bias for low
velocities in combination with a static friction model. This
eliminates the need for estimating the additional parameters
of a dynamic friction model.

One of the detrimental consequences of the high (static)
friction in tendon-driven hands is that it becomes hard to
detect a contact – be it an intentional contact with an
object that should be grasped, or an unintentional collision
with an obstacle. Tactile sensors [5], [6] or proprioceptive
sensors [7] can be used to detect such contacts, but they
require further hardware integration and modification of the
hand. A further contribution of this paper is to demonstrate
(in the experimental section in Sect. VII) that our approach
to friction modelling and estimation allows contacts to be
detected on the DLR David hand, without any hardware
modification. The approach can thus in principle also be
applied to a wide variety of tendon-driven hands that do not
have extra sensors for contact detection.

Before presenting the contributions in the sections men-
tioned above, we first present related work in Sect. II,
and background on common friction models for individual
sources of friction in Sect. III.

II. Related work

Friction modeling has been developed predominantly for
isolated joints [2], [3]. This is mainly because the friction
of each tendon and joint can be measured separately in
such setups, not only as the sum of multiple individual
friction effects. A second reason is that recorded data can be
separated in phases with static and dynamic friction, enabling
the isolation of these effects. The parameters of a (simpler)
static model are thus identified in isolation, by avoiding
phases where the joint is in static (sticking) friction [8]–[10].



However static models are valid for constant speed only.
In addition, they do not provide any information during
stiction. The alternative are dynamic friction models1, having
an internal state, such as the LuGre model [11]–[15].

Estimating a dynamic friction model is usually done
with isolated joints, by first estimating the parameters of a
static model from cyclic motion and evaluation of the parts
with non-zero velocity only. The obtained parameters are
then used as the base for the determination of a dynamic
model [3].

In contrast to experiments with isolated joints, it can never
be excluded that at least one tendon has zero velocity with
respect to a single joint in the assembled hand. Therefore,
static friction is always present in the measurements. Accu-
rately estimating a static model thus fails, and its extension
to a dynamic model is not possible.

Similar to this paper, the approach in [16] separates the
effect of static and dynamic friction. However, the external
force is assumed to be known and is thus taken as static
friction force, which is not feasible for contact detection.

Recently, Ludovico et al. [4] proposed an extended
Coulomb friction model for tendons which slide along an
edge or into a bushing. They partition the space according
to the sign of velocity and angle of diversion and model each
part by the tendon tension and a sine function of the angle
of diversion. In this way a parametric model is found.

Li et al. [17] designed a model for a passive arm with
many joints and tendons, where the goal is to show equal
curvature along the arm, once a torque is applied between
two links. It turns out that this model strongly depends on
friction. The setup assumes that all joints behave similarly,
and the findings can thus not be transferred to a complex
tendon-driven hand.

Other approaches consider hand models including fric-
tion [18], where the next state is predicted from the current
state and the action with a data-driven method. The emphasis
of these papers is on prediction of grasp states, less on
contact torque measurements.

III. Modelling Individual Friction Effects

In this section, we provide a summary of existing models
for friction at individual pulleys and edges. In subsequent
sections, these individual models are combined to construct
friction models for complete tendon-driven fingers.

There are several static models to represent static and
sliding friction similar to Fig. 2. They consist of three parts:
1) stiction forces Fs+ or Fs− up to a breakaway force;
2) transient friction represented by Stribeck velocities vs+

or vs−; 3) viscous friction for higher velocities, which is
proportional to Fv+ or Fv− with a base Coulomb friction Fc+

or Fc− [11], [12]. For simplicity, Fs+ and Fs− in Fig. 2 are
replaced by ±Fs whenever symmetric values are assumed.
This applies also for Fc and vs, but Fv− = Fv+ = Fv.

1A static friction model allows only dynamic friction to be predicted, i.e.
friction at (constant) non-zero velocity. A dynamic model is also able to
represent static friction, i.e. friction at standstill.

(a) Standard characteristic (b) Characteristic with vmin, as pro-
posed in Sect. VI

Fig. 2: Asymmetric static friction models. As to be described in
Sect. IV, this figure is valid for both friction forces (where v = ẋ)
and friction torques (where F = T and v = q̇).

For a velocity v , 0 this is represented as

F(v) =

{
Fc+ + (Fs+ − Fc+)e−v/vs+ + Fv+v ∀v > 0
Fc− + (Fs− − Fc−)e−v/vs− + Fv−v ∀v < 0 , (1)

which is valid for both friction forces at tendons and friction
torques at joints, with v = ẋ or v = q̇ respectively.

It should be noted that when used for friction within
fingers, these parameters may depend on other variables,
such as on the tendon force and the joint angle.

It is often assumed that friction at tendons is proportional
to the tendon force (tension) [4], [19]. Thus the general
dependence on the tendon force f can be replaced by a
multiplication, such that F( f , v) = f F(v), with F(v) com-
puted by (1). Then the parameters of F(v) depend at most on
the joint angle. But such a dependence is assumed for fixed
pulleys or edges only. There, friction depends non-linearly
on the angle of diversion and thus on the joint angle [4]. In
contrast, friction at pulleys with ball bearings has no further
dependence.

IV. Friction in tendon-driven fingers

In tendon-driven fingers, tendons are typically routed from
the motors in the forearm through the wrist to the base of
the hand. From there, they are routed through the finger,
where the tendons to distal joints are routed through the more
proximal joints, as can be seen in Fig. 1. Thus, there are
multiple pulleys and edges along which friction arises. In
this section, we first develop a model for the friction forces
at the tendons (Sect. IV-A), then friction torques at the joints
(Sect. IV-B), and finally the sum of these forces and torques
(Sect. IV-C). Before doing so, we present the basic motion
model for tendon-driven systems.

The basic equations of a tendon-driven systems with m
motors and n joints are [20]:

x1 = Rq (2)
τ = Rᵀf0 (3)
f0 = K(x0 − x1). (4)

They state that the joint side tendon position x1 ∈ R
m

(see Fig. 3) can be computed from the joint position (joint
angle) q ∈ Rn with the routing matrix R ∈ Rm×n, and vice



versa. The joint torque τ ∈ Rn results from the individual
tendon forces (tendon tensions) f0 ∈ R

m using the transposed
routing matrix. In the considered setup they are computed
from the measured elongation x0 − x1 of the tendons at the
springs [21], assuming a known diagonal spring stiffness
matrix K ∈ Rm×m. The measured elongation in combination
with the measured motor position and thus the motor side
tendon position x0 ∈ R

m yields x1 (see Fig. 3).
From (2), we obtain the relative motion for tendon i at

joint j with respect to the link of joint j − 1 with

ẋi j =

n∑
j′= j

ri j′ q̇ j′ , (5)

where the ri j denote the elements of the routing matrix R. In
this paper, we will often drop i to generalize over all tendons,
e.g. ẋ j instead of ẋi j, or r j instead of ri j.

In these equations, ẋ j is the relative velocity of a tendon
within the link before joint j, i.e. with respect to the previous
joint j − 1. Thus ẋ j is the source of friction at pulley j − 1
and at any edge between joints j − 1 and j. In this way, x1
is the tendon position before the first finger joint, i.e., the
position at the joint side of the spring.

Fig. 3: Schematic illustration of a finger with two joints and four
tendons, and the corresponding notation for tendon i = 3. The
tendon routing between the joints is limited by edges (marked as
red spots).

A. Friction forces at the tendons

The friction at a tendon depends on the force acting along
that tendon, and it differs at and between different pulleys
in the finger. We propose a set of equations to iteratively
estimate these forces from more proximal to more distal
joints, based on the known tendon force at the spring, which
is denoted f0 (see Fig. 3).

For clarity, estimated friction forces are always capitalized
(F), whereas tendon forces are not ( f ). Furthermore, we need
to distinguish between forces at the pulley and between two
pulleys, which are indicated with A (‘at’) and B (‘between’)
respectively. Again, the i index referring to the tendon
number is dropped for clarity whenever possible. These
forces and their notation are illustrated in Fig. 4.

With these definitions, the tendon forces before or at the
individual joints, f B and f A respectively, see Fig. 4, are

Fig. 4: Illustration of the tendon and friction forces along one tendon
at joints j and j + 1.

defined as

f B
j = f0 −

j∑
j′=1

f A
j′−1FB

j′ (ẋ j′ , q j′−1) −
j−1∑
j′=1

f B
j′ F

A
j′ (ẋ j′+1) (6)

f A
j = f0 −

j∑
j′=1

f A
j′−1FB

j′ (ẋ j′ , q j′−1) −
j∑

j′=1

f B
j′ F

A
j′ (ẋ j′+1), (7)

where f0 is the measured tendon force at the spring, which
is an element of f0 in (3).

Strictly speaking, the effect of each friction function FA
j

or FB
j depends on the force at the respective pulley or edge

at or before joint j. Instead, in order to make (6) and (7)
unambiguous, we assume that friction depends on the force
before the respective place, i.e. the effect of FA

j depends on
f B

j and not on f A
j and that of FB

j on f A
j−1 and not on f B

j .
The functions FB

j and FA
j are instantiations of the in-

dividual friction functions F described in Sect. III. The
parameters of each function are simultaneously estimated for
each tendon i and each joint j with the method described in
Sect. V. For completeness, q0 = 0, f A

0 = f0, and ẋi,n+1 = 0
must also be defined to enable the sums to be computed.

B. Friction torques at the joints

In addition to the friction at the tendons, friction may
also act on the joint itself, i.e. within the joint or at least
independent from tendons. This friction torque T j is modeled
by a part T jv depending on joint velocity and a part T jq which
only depends on the joint angle.

T jq is the friction caused by the plastic cover of the finger.
It is modeled as a torque which is linear with respect to the
deviation from a built-in joint angle. So, strictly speaking,
it is a rotational spring and not friction which would be
modeled by (1).

T jv represents the friction in the joint, and it is modeled
with a twofold approach, i.e.,

T jv

 m∑
i=1

f B
i j , q̇ j

 = T jv0(q̇ j) + T jv f (q̇ j)
m∑

i=1

f B
i j (8)

with T jv0(q̇ j) and T jv f (q̇ j) also being instantiations of F.
Equation (8) includes joint friction that is independent of
the acting force, e.g. at an almost jammed joint and joint
friction which is proportional to the acting force, where the
latter is summed up of all tendon forces.



C. Total friction torques

The individual friction effects of Sects. IV-A and IV-B
are concatenated to a complete equation whose parameters
are estimated in Sect. V. In order to distinguish between the
joint friction torque of Sect. IV-B, the torque caused by the
friction forces of Sect. IV-A, and the total friction torque that
effectively acts on joint j, we denote the latter by Teff

j . The
effective friction torque of joint j is

Teff
j =

m∑
i=1

ri j fi0 − τext
j = τ j − τ

ext
j (9)

with τext
j being the torque that results in external forces and/or

inertial forces of the finger. Note that with friction, τext
j differs

from τ j in (3). Teff
j includes friction from all tendons and

friction from the joint itself.Thus it can also be formulated
as:

Teff
j =

m∑
i=1

ri j

j∑
j′=1

f A
i j′−1FB

i j′ (ẋi j′ , q j′−1) +

m∑
i=1

ri j

j∑
j′=1

f B
i j′F

A
i j′ (ẋi, j′+1)

+ T jv0(q̇ j) + T jv f (q̇ j)
m∑

i=1

f B
i j + T jq(q j), (10)

where the effect of the friction forces at the tendons on the
joint friction torques is represented analogously to (3).

V. Estimation of the friction parameters

Since the friction models of the individual fingers are not
coupled, they are estimated independently from each other.
Equations (10) and (1) represent the system for which the
open friction parameters must be estimated for each finger,
where the non-linear function (1) is linearized in each step
of the estimation at the current working point Fs+, Fc+, vs+,
Fs−, Fc−, and vs−. The resulting system is then linear in the
parameters. Thus for every j it can be expressed by

Teff
j = ψ j0 + ψᵀj θ (11)

with θ being the vector of the parameters, including, e.g., Fv+

of FA
j′ , and ψ j being a column of the matrix of coefficients

Ψ with the respective element being ri j f B
j′ ẋi, j′+1 if ẋi, j′+1 > 0

and j′ ≤ j, or 0 otherwise. ψ j0 makes sure that at the current
working point the linearized equation (11) coincides with the
sum of the effects of the non-linear friction laws (1).

To estimate the parameters, data is recorded during the
execution of generated joint trajectories. This is done with-
out external contact, as all measured torques (which are
computed from the measured tendon forces) then arise from
friction and inertial forces. The latter are understood here to
comprise all forces caused by acceleration, rotation (centrifu-
gal and Coriolis forces), and gravity. For controlled finger
motion they can be neglected, because mass and inertia and
the resulting inertial forces are very small relative to the
contact and grasping forces. Thus, with (9) and τext

j = 0, the
left hand side of (11) can be replaced by

Teff
j =

m∑
i=1

ri j fi0 (12)

Then, the parameters θ can be estimated using a least
squares algorithm. Note that the parameters of all joints have
to be estimated simultaneously, as some friction effects affect
multiple joint torques. Therefore, a decoupled estimation is
not possible.

Since the order of magnitude between joint values and
tendon values or between Fc+ and vs+ is different, an
extended Kalman filter approach [22], [23] is used, which
in contrast to a normal least squares algorithm allows the
expected magnitude of each parameter to be specified. In
addition, the non-linearity of (1) can be modeled as a time-
variant system. Furthermore, this approach allows the time
variance of additional parameters, which are introduced in
the next section, to be explicitly specified.

The non-linear dependence of FB
j′ (ẋi j′ , q j′−1) in (10) on

the joint angle q j′−1 is resolved by defining several working
points for each joint and by linear interpolation between
them. This is done since the approach of [4] would result
in additional non-linearities which further complicate the
estimation.

VI. Treatment of stiction

As motivated above, static friction and a possible offset of
the measured values have to be accounted for. It has already
been mentioned in Sect. II that the extension of the static
friction models (1) of each friction effect to the respective
dynamical models, i.e. to models with internal states, is not
feasible. Therefore, a new procedure has been developed.

The idea is that although the friction characteristics of
Fig. 2a are not continuous, friction might be smooth with
respect to the time. For continuous non-zero velocity this
is obvious. Then static models (1) accurately represent the
individual friction effects. Instead, for zero velocity we
assume friction as time dependent parameters which we
denote as slowly varying bias terms for every friction effect.

In order to be more realistic, we assume Fig. 2b instead
of Fig. 2a. This means that for |v| < vmin, the effect of (1)
is neglected and friction is represented exclusively by the
(varying) bias term. The latter is initialized with the value
of (1) when passing |v| = vmin, since in this way smoothness
is preserved. During the phase with |v| ≤ vmin the bias term
has to track stiction, such that it coincides with (1), once
|v| = vmin is passed again. Then the bias term is reset to zero
and (1) is used as long as |v| > vmin.

There is no way for the adaptation of the individual bias
terms in order to track the individual stiction effects. But
a total bias term beff

j of joint j can be adapted, as long as
there are no unknown external forces. Then the measured
joint torque, which is computed from the measured tendon
forces by (12), represents the sum of the friction effects with
|v| > vmin and of those of the bias terms.

This means that during training of the friction parameters,
the vector of all parameters of the individual friction models
is extended by n additional variables, the bias terms beff

j .
These variables are assumed to have a significant change,
i.e., in contrast to the other parameters their estimation
is considered to be significantly time-dependent. However,



a too big assumption of the time-variance will result in
very small compensated torques, i.e. the complete friction
model represents the measured joint torques (12) to a large
extend, almost independent from the parameters. Instead,
time-variance has to be designed in such a way that the bias
terms represent obvious offset terms, but contact can still
be detected by a significant mismatch between the modeled
friction and the measured torques.2

On the other side, after the training, the prediction of the
current friction is not only a computation from (10) with (1)
and the estimated parameters. Even omitting the bias terms
is not expedient. Instead, the bias that acts during prediction
has to be estimated. This can be done by simply filtering
the compensated torques or by n further Kalman filters with
a single estimated value each and the assumptions on time-
variance taken from the training phase. Too big assumptions
here as well result in missing to detect contact that could
be seen from slowly increasing external torques. During
prediction, the complete update of the bias is inhibited
whenever a contact is detected, i.e., whenever a compensated
torque exceeds a threshold.

So the characteristic of Fig. 2b instead of 2a is used for
both training and prediction. In this way, a velocity threshold
is defined below which friction is considered as stiction.
During training, such time steps are not included in the
estimation of the respective friction parameters.

For the bias the following rules apply at each friction
effect, see also Fig. 5: When moving from |v(t1−1)| > vmin to
|v(t1)| ≤ vmin, b j and F(v(t1)) are set to F(sgn(v(t1 − 1))vmin)
and zero, respectively, where t1 is the first time step with
|v| ≤ vmin. During |v| ≤ vmin, slow changes of b j are assumed,
represented by a time-variant approach for the estimation of
the bias. When moving from |v(t − 1)| ≤ vmin to |v(t)| > vmin,
b j is set to −F(sgn(v(t))vmin) and F(v(t)) is used again,
where t > t1 is the current time step. In addition, the
difference between F(sgn(v(t1−1))vmin) and F(sgn(v(t))vmin)
is subtracted, decreasing for a longer stay at |v| ≤ vmin.
Finally, during contact at |v| ≤ vmin, t1 is set to t.

This has the following effects: There is no step when
moving around v = vmin or v = −vmin. For fast zero crossing
of the velocity the behavior is identical with and without an
intermediate sampling step with |v| ≤ vmin. This means that
the change of the bias when entering the range with |v| ≤ vmin
is undone when leaving it. For a longer stay at |v| ≤ vmin,
the previous change of the bias is forgotten. Instead, it is
assumed that the slowly changed bias is appropriate when
leaving the range with |v| ≤ vmin. If a zero crossing happens
during contact, it is treated as fast zero crossing, i.e. the bias
is not modified permanently.

These individual updates of the bias then result in the
effective bias beff

j of joint j, which is initialized by τ j at the
beginning, i.e. with the system at rest and without contact.
Then it is updated with the effects of all biases b which are
set in the respective time step. These biases are denoted as

2In contrast to the prediction phase, during training the setup guarantees
that no external forces are effective.

|v(t)| > vmin

|v(t − 1)| ≤ vmin

b = F(±v∗min)

F = 0

contact

for each friction coefficient T j, FB
i j, and FA

i j

no
yes

beff
j += bT

j +
∑

i

ri j

∑
j′

( f A
i j′−1bB

i j′ + f B
i j′b

A
i j′ )

Teff
j = beff

j + T j +
∑

i

ri j

∑
j′

( f A
i j′−1FB

i j′ + f B
i j′F

A
i j′ )

contact

beff
j += Γ(τ j − Teff

j )

Teff
j += Γ(τ j − Teff

j )

beff
j and Teff

j

no

no

yes

t1 = t

|v(t − 1)| ≤ vmin

b = − F(±vmin)
− (F(±v∗min) − F(±vmin))·

e−α(t−t1−1)

F = F(v)
t1 = t + 1

yes

yes

yes

no

Fig. 5: Procedure for computing the bias.

bT
j , bB

i j, and bA
i j, analogously to the corresponding friction

functions T j, FB
i j, and FA

i j.

VII. Experiments

Experiments are performed with the index finger of the
DLR David hand [1], depicted in Fig. 1.

For training, sample trajectories of 400 s duration are
generated, in which all joints of a single finger are moved at
the same time, but with different velocities. The parameters
are estimated using the approaches of Sects. V and VI,
with recorded tendon forces and motor positions from a
single trajectory with low pretension of the tendons, i.e.,
low stiffness of the tendon-driven system. For evaluation,
this trajectory is then repeated where from time to time a
force is exerted on the finger tip. vmin = 0.0005 m/s and
vmin = 0.01 rad/s are used respectively. The change of the
bias in Sect. VI is considered by a variance of the changes
of 10−9 at a variance of the assumed noise of 10−4, both
being configuration parameters of the Kalman filter [22].

It turns out that the training converges better whenever
1/vs is used as a parameter instead of vs since in this way
there is no singularity. Furthermore, vs is limited to vs > vsmin
(vs+ and vs− accordingly) since the exponential function
may exceed the stability region of the estimation whenever
its argument becomes positive. In addition, the variance
of the assumed noise for the Kalman filter estimation and
the threshold for contact detection are increased for higher
pretension. Finally, fi j is checked for fi j < 0. This means that
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Fig. 6: Joint torques computed from the measured tendon forces and
predicted joint torques with low pretension and no external forces.
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Fig. 7: Joint torques computed from the measured tendon forces
and predicted joint torques with four times as high pretension and
no external forces.

the friction forces of this tendon exceed the total tendon force
fi. The training should be modified whenever this appears.

A. Results

Figs. 6 and 7 show sections of training trajectories with
different pretensions. In each case, the first two joint values
are displayed of both the predicted friction torques and those
that are computed from the measured tendon forces. The
figures show that the trained model represents the friction
torques also with untrained pretension.

B. Discussion

It turns out that a symmetric friction characteristic is
adequate. This reduces the number of parameters including
the bias from 820 to 472. Furthermore, the first two joints are
sufficient for detecting a contact force from any direction.

The uncompensated data of Fig. 7 show significant time-
varying offsets which cannot be explained by the reported
friction models for the hand. They are probably caused
by static friction in the wrist. The proposed approach can
compensate for it, in contrast to all of our previous attempts
without the assumption of a bias.

As explained, it is trivial to reach small compensated
torques by assuming a big time variance for the bias. Fig. 8
therefore displays a test in which external forces are exerted,
measured by a force sensor. Modeling is quite accurate such
that in periods with external force, the estimated external
torques, i.e. the differences between the measured torques τ j

and the predicted torques Teff
j far exceed the modeling error.

A quantitative evaluation is however not possible, as neither
the contact point nor the direction of force are known.

External forces should cause an external torque on joint 1
or 2. However the small torques close to t=78 s exhibit that
a substantial component has been exerted perpendicular to
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Fig. 8: Joint torques computed from the measured tendon forces
(above) and compensated joint torques (below) during motion,
sensed external force (absolute value) and resulting contact detec-
tion.

both such that the force causes almost no joint torques. This
is a limitation of using joint torques for contact detection.

Furthermore, one may suppose that only those contacts
can be detected that cause joint torques superior to the static
friction torques. This is supported by the fact that during the
stiction phase it is not possible to distinguish between static
friction and an external torque not causing motion. So the
uncertainty of the effective torque would sum up from Fs+−

Fs− of all involved friction effects, multiplied with the pulley
radius and the tendon force. Instead, Fig. 8 shows that most
contacts are detected though the compensated torques are not
much more than the offset of τ2. This might be explained
by the assumption that any change of the measured tendon
forces is due to an external torque, unless it is caused by
motion.

The estimated friction model is intended primarily for
contact detection. Its use for quantitative measurements can-
not not be validated with the current setup, which allows
training only for zero torque or small torques caused by
inertial or gravitational effects. Though the tendon force
measurements are calibrated, it is not assured that this model
will extrapolate correctly for significant torques.

VIII. Conclusion

In this paper, we have presented a novel approach to the
modeling of friction in tendon-driven fingers, and the in situ
estimation of the parameters of the model from trajectories
executed on the assembled hand. This avoids the need for
special setups or disassembly of the fingers for parameter
estimation. Identifying the parameters of a dynamic friction
model is very challenging for assembled hands. Instead, we
have proposed a static model with bias terms added to the
parametric model, to take into account friction at all places
where tendons or joints may slide. These bias terms are also
estimated. With this model, we demonstrate that it is possible
to detect external forces, even if their effect does not exceed
the level of disturbances of the joint torques.
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