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ABSTRACT

This note is a short description of TeCoMiner, an interactive tool for exploring the topic content
of text collections. Unlike other topic modeling tools, TeCoMiner is not based on some generative
probabilistic model but on topological considerations about co-occurrence networks of terms. We
outline the methods used for identifying topics, describe the features of the tool, and sketch an
application, using a corpus of policy related scientific news on environmental issues published by the
European Commission over the last decade.

Keywords Information extraction, text mining, NLP, word communities, modularity, topic detection, topic modelling,
topic visualization, environmental policy

1 Introduction

The rapidly increasing amount of electronically available texts has augmented the importance of automatized unsuper-
vised methods for text exploration and analysis. A very typical task is to identify the themes which are latent in massive
text collections. Not only does this help to obtain a quick overview over the content of the text collection, but it also
enables a structured analysis of relationships and developments reflected in the texts.

In contrast to supervised text classification, the discovery of topics is quite an open-ended endeavor, leaving an important
role to subject-related interpretation by domain experts. Our own experience as an interdisciplinary team involved in
monitoring and assessing huge text collections has led us to leave the well-trodden path of probabilistic topic models
and explore the possibilities of detecting topics as communities in term networks. We have applied this approach to
several text corpora [1] (scientific publications, political texts, RSS news feeds) and found it to be advantageous with
regard to the ease of topic interpretation and to the command over topic granularity.

TeCoMiner is a software tool designed for users who want to apply the Term Community approach to topic detection to
their corpora of interest. Before we describe the tool and demonstrate its application we will give an overview over the
underlying methods.

2 Related Work

During the last two decades probabilistic topic models have dominated the topical analysis of text corpora, seminally
influenced by [2]. Based on popular software packages and more specialized advanced methods, this has led to



TeCoMiner TECHNICAL NOTE

many applications in areas as diverse as scientometric publication analysis, social media monitoring, literature studies,
historical text exploration, and the social sciences. For an extensive overview we refer to [3]].

The question of how to evaluate topic quality is problematic. For the applications mentioned above, topic interpretability
by humans is the key measure of success, but this is a concept which is not easy to grasp in a computational way.
Various metrics of topic coherence [4] have been studied as indicators of interpretability. Recently it was suggested
to involve word embeddings in the assessment of topic coherence [5]. We found this approach useful in our own
comparative experiments with various topic models [1], and it has influenced the way we present topics in TeCoMiner.

Visualization methods play an important role in aiding topic interpretation; [6} 7] are only two out of many examples
designed for depicting probabilistic topic models for human consumption. TeCoMiner uses similar visualizations but is
geared towards network based topic detection.

The idea that topics can be interpreted as communities in networks which embody the relations between words and
documents of a corpus came up in various forms [8} 9, |10} [11]. In these settings, topics can be found by applying one of
the many methods of community detection [12]. We will explain below how we framed this approach in a way that
leads to enhanced interpretability and controlled granularity of topics.

3 Methods

While the generative approach of probabilistic topic modeling follows the sound methodology of statistical machine
learning with a high potential for insights into the genesis of a corpus, it is built on certain assumptions about document
generation and prior distributions that are disputable. In contrast, here we take a more phenomenological position when
exploiting observed word co-occurrences in the corpus documents for topic detection. This can be done by studying
the characteristics of co-occurrence networks of terms. Topics then show up as communities of strongly connected
terms. However, we suggest that it needs careful pre- and postprocessing steps for achieving results that are competitive
or even better compared to probabilistic topic models. Here we briefly describe the core elements of our processing

pipeline (Figure[T). More details can be found in [13]].
Postprocessing \

KPreprocessing

. Topic
generation

* Cleansing b * Network * Term sorting

* Named entity building e Term
recognition * Term clustering

« POS filtering community « Topic

« Lemmatization detection visualization

* Term ranking

* Text thinning

\k J \ /

Figure 1: Topic identification pipeline in TeCoMiner

3.1 Term Ranking

Starting from a corpus of raw texts, we first follow standard NLP preparation procedures: Removal of unwanted tokens
and stopwords; POS filtering that retains only adjectives, nouns, and proper nouns; lemmatization.

With regard to multiword expressions we experimented with various approaches. While merging words which form a
unique expression is beneficial for the interpretation of term communities, the confusing effect of word combinations
that just appear to be common by statistical observations without bearing a special meaning can be more harmful. We
therefore consider only multiword combinations that show up in named entity recognition.

In preparation of a viable term network it is essential to reduce the number of terms retained in each document even
further. For this purpose, we introduce a term ranking in each document and keep only the top-ranked terms. This is
related to unsupervised keyword extraction which aims at finding those terms of a document that are most significant for
its content. We have developed an approach - posIdfRank - which combines several ideas [[14]: the PageRank inspired
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voting based on local word neighborhood associations introduced in [[15]], a weighting according the absolute position
in the text [[16], and counterbalancing the influence of unspecific words by the inverse document frequency [17].

Technically, we obtain the ranking values for the n terms of a document as the stationary distribution of a Markov chain
21 = Gy on the n-dimensional space of terms with a transition matrix

Idfj fZJ (1 + pOSi)ﬁ Ide
> e Ldfy fi " (1+ pos; )P 1dfy,”
where Idf; is the inverse document frequency of term number %, pos; is the earliest position of that term and f;; is the
frequency how often the terms number ¢ and j lie in the same neighborhood window of size w. «, /3, and w are tuning

parameters which we chose as &« = 0.9, § = —0.9 and w = 11 after experiments with documents with pre-assigned
keywords [[14]].
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Each document is then thinned by keeping only the top P percent of terms according to this ranking, where we choose
P between 10 and 80 depending on the average length of the corpus documents.

3.2 Term Community Detection

We define a network with all the terms contained in the thinned documents as vertices V. The edge weight A;; between
two vertices v; and v; is defined to be the number of documents in which v; and v; appear together. Pruning edges
between rare terms is an option for large corpora with long texts.

Communities in networks are, intuitively speaking, vertex groups with strong linkage inside the groups but only
loose connections to other groups. Comparing various community detection approaches we found that modularity
optimization produces particularly good topics with respect to interpretability [[1]].

In TeCoMiner we use the generalized modularity definition introduced in [18]]: We call a partition C = {C;,s =
1,...,m} of V a candidate of communities. The generalized modularity, H.,(C) = Z(C) — 77 (C), compares for a
candidate partition C the fraction of edge weights inside of candidate communities, Z(C) = ﬁ Zi, j Aijbe(ie(s)» for
the given graph on the one hand with the expected fraction of edge weights inside candidate communities for a random

network with the same degree distribution, 7 (C) = ﬁ Do j kikjoc(iye(s)» on the other hand; here k; = j Ayj

denotes the weighted degree (weighted number of edges) of vertex v;, m = % >, ki is the weighted total of edges
in the network, c(7) enumerates the candidate community of vertex v;, and d;; is Konecker’s delta. The partition
which maximizes #.,(C) describes the optimal communities in the sense of high intra-group linkage compared to
the expectations in a random situation. The parameter ~y influences how strongly one values the gain of additional
intra-group edge weights. With v = 0 one does not compare to the random situation at all and therefore the optimal
solution is one all-embracing community. With v — oo intra-group links practically do not get rewarded, so that the
extreme partition into one-vertex communities appears as the optimal solution. Hence, -y can be used as a resolution
parameter: smaller values lead to a few big communities, larger values to many small communities.

Maximizing the modularity is known to be NP-hard. However, there exist efficient greedy algorithms for finding local
modularity maxima. In TeCoMiner we use the Leiden algorithm [19].

3.3 Term Community Presentation

Community detection in the term co-occurrence network partitions all terms into topics. Consequently, a topic is
typically characterized by some hundreds or even thousands of terms. Intrinsically, this list of terms does not come with
any order. This is different from the situation in probabilistic topic models where the model produces a probability
distribution over topic words.

Therefore, we introduce two criteria of how to structure the topic terms when presenting them for human interpretation:
a rating of terms for sorting them according to significance, and a stratification of terms into layers of semantically
similar terms.

In subsection [3.1] we have already introduced posIdfRank as a method for finding the most significant terms per
document. Now we need a measure for significance within the whole corpus. A naive average over the posIdfRanks of
a term from all documents in which it occurs would be unfair because of the very different document frequencies of
terms. A more appropriate way of rating is the Bayesian average as known from scoring systems. Concretely, we rank a

term a by calculating x(a) = %ﬁg&@ where d(a) is the number of documents containing a, s(a) = Y, x,(a) with

2y (a) equal to 3, 2 or 1 depending on whether a is among the top 5, 10 or 15 percent of terms in document u according
to posldfRank, and C' is the sum of the number of all unique terms per document devided by the number of unique
terms in the whole corpus, see [1]] and [13]].
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We discover semantically similar terms by mapping all topic terms into a 300-dimensional vector space with a pre-
trained fastText word embedding [20]. In this space we form groups of semantically related terms by agglomerative
clustering based on Euclidean distance.

We use these two structuring principles for an easy-to-grasp visualization of topic terms in the form of a stratified word
cloud which shows the terms in sizes according to their significance ranking positions and in colored horizontal strata
which bring together semantically related terms.

4 Demonstration

We discuss how users can readily apply term community topic detection based on the methods described in the
previous section with TeCoMiner, a software tool we wrote in Python utilizing in particular the packages pandas, spaCy,
python-igraph, scikit-learn, gensim, wordcloud, Bokeh, HoloViews, and Panel. Here we briefly describe its features,
which were developed in close cooperation between data scientists and end users, and introduce our demonstration case.

4.1 TeCoMiner Web Application

TeCoMiner runs as a single-page application in a web browser. There are two work phases: first, uploading and
preprocessing of corpora through the Add corpus feature (with an option to change the parameters «, 3, w and P
mentioned in subsection [3.1), second, interactive topic detection and analysis within those corpora. Preprocessed
corpora can be looked at in several views presented as tabs: Model, Topic, Document, and, depending on the corpus,
further tabs for metadata connected to the documents—in the present example the tabs Time and Theme.

The Model tab (Figure[2)) provides an overview of the current community topic model in the form of a two-dimensional
t-SNE plot [21]. The dots represent documents; in a model with N topics they are first placed in an /N-dimensional
space according to the proportions each topic contributes to the document and are then mapped to two dimensions via
t-SNE. The color of each dot is chosen depending on the topic with highest proportion in that document. The title of
each document can be displayed through mouse-over. Large unicolored clusters represent the most dominant topics;
scanning the titles involved gives a first impression of what those topics deal with. Dense clusters hint at sharp topics.
Coalescing clusters indicate topical relationships.

On the Model tab it is also possible to generate a new topic model after choosing a value for the resolution parameter ~y
(see subsection[3.2).

Topics can be analyzed in more detail by selecting TeCoMiner’s Topic tab (Figure [3). For a topic chosen from a
drop-down list, the left side of the screen shows a stratified word cloud of the topic terms as described in subsection
With this form of presentation the user can recognize at a glance the subject-related common ground in about 100 terms.
Highly ranked words stand out by size, and the colored horizontal strata group related terms.

On the right side of the screen, there is a list of up to 30 documents in which the selected topic takes a proportion of
more than 15 percent, sorting the documents with highest proportion to the top.

The Document tab (Figure 4) shows the full text of a document and highlights in it all terms that belong to any topic
with a proportion of at least 10 percent. Different topics are marked in different colors. Documents can be selected
either by entering their file name or by opening them from the document list of the Topic tab. On the one hand, this
tab is particularly useful for understanding and interpreting topics if word clusters and document titles have not been
sufficiently insightful. On the other hand, it also provides deeper insights into how different topics relate to each other.

With the Time tab it is possible to follow the temporal evolution of topics. This tab presents as line charts the time
series of the accumulated proportion which the (multi-)selected topics have in all the documents published in each
single month.

CLITS

The Theme tab refers to pre-assigned thematic tags (like “Biodiversity”, “Climate change”, and “Sustainable mobility”)
which are provided with the documents of the present corpus. It visualizes the connection between these tags and the
detected topics, which is useful as a consistency check and as support for topic interpretation.

Next to the interactive features, on the Download tab TeCoMiner offers an Excel export of the stratified topic term
clouds and the topic distribution per document.
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TeCoMiner
Model Topic Document Time Theme Download Add corpus
Corpus

EC Science for Environment Policy v

The model has 10 topics. Data points represent documents colored by dominant topic.

Which factors make drugs persistent? A look at sulphenamides in Polish rivers

Pesticides and pharmaceuticals influence riverbed communities of microbes

Figure 2: TeCoMiner Model tab, with a graphical overview of the model and the option to recalculate models with
varying resolutions. Here: view of a resolution-1 model of the EU Science for Environment Policy News Alert
2011-2020 corpus

4.2 Application Case

We show some results derived from a collection of 1463 articles scraped from the European Commission’s EU Science
for Environment Policy News Alerﬂ from April 2011 until May 2020. They summarize environmental research studies
for a political audience or decision-makers in general, therefore using a non-technical and accessible language. The
article length varies from 100 to 1400 words.

Preprocessing including thinning with P = 33.3% of that corpus takes hardly more than 10 minutes on an Intel Core
i7 PC. This produces a term network of 16 152 vertices and 1 149 078 edges. Calculation of a term community topic
model including visualizations runs in 20 seconds so that users can easily explore topics of variable granularity in an
interactive manner.

'https://ec.europa.eu/environment/integration/research/newsalert/
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The majority of topics produced by TeCoMiner are readily interpretable with the help of the visualizations provided.
The only exceptions are some topics that just consist of very few terms; these are outliers in the term co-occurrence
network, appearing only in a small number of documents. Such topics are easily recognizable so that they can be
ignored in the analysis.

While the lowest resolution parameter v = (0.8 leads to four very broad topics, which can be described as Sustainable
technologies and policies, Pollution and emissions, Aquatic ecosystems, and Wildlife and farming, at highest resolution,
v = 2.5, one can recognize 58 identifiable topics.

TeCoMiner

Model Topic Document Time Theme Download Add corpus

Topic
Topic_21
pic_ Top documents Open selected document
Title Date TopicFroport Document
What makes railway noise annoying? Research investigates 2012-11-29  0.695312  208nasdis_e

How does living with airasft noise affect wellbeing? A study of UK airp 2018-07-07 © 0.888317 482ns3_en

Long-term exposure to railway noise linked to reduced cognitive perfori 2013-05-02 | 06105268 = 326naZrss_el

Underwater survey noiss affects feeding and social behaviour of harboy 201407-24  0.558701  282na3_en

Green walls show promise ss sound barriers for buildings 2015-02-12 ‘0538823 403ns3_en

Shipging naise puts =els at risk of pred 20140320 0521739  380nsf_sn

Reducing railway noise and vibration: life-oycle sssessments can help ¢ 2017-07-27 0 488038 493n=4_sn

Sustainable natural materials can be used for noise insulation 20110505 0482685  238naS_en
Living walls help cool buildings in hot dimates 20130725 0448809  336nafms_ei
Offshore wind farm construction neise can displace harbour porpoises © 2013-10-31 - 0.43871 248nsm_ei

g Aer
Aviation Air traffic menagement to balance CO2 emissions and naise pollution  2013-01-24  0.435284 3{4naims =
. 2012-10-25 s 5

wall VBEB Noise exposure estimation methods compared 2012-10-25  0.405797  303naSiss_et

NSES New sound insulation maps developed to aid noiss reduction 20120426 0288076  281ns2_en

winc valcon }f o1-Te " Traffic noise pollution mapped with new mobile phene spp 20141106 0.278378  392ns2_en
Shan g hai New technology offers low cost noise meonitering 2012-01-10  0.277358  212naSms =i
Indoor environmental quality of LEED-certified buildings evalusted 2013-10-17 0375 346n=sSss_si

aac

leed Doss envi naise lead to ion and anxiety? 20160728 0273562  485na2_en
Forsmark Preserving ??7natural quiet??? the essy way 2012-08-23 0.352 280ns8rss_et

. ; Aircraft noise st night may lead to long-erm heslth impacts 20140227 0242592  383nai_en

deafening alrgun
= = S Traffic noise exposure usefully assessed by END digital maps 2013-11-28 0335664  352naZss el
N ; P ; " - e
unmanned modular Noise from human activity can impair foraging in bats 20150802 0.22857 425na2_en
. 2l 4 & Climate change and transport: effects of sea-level rise on an English s 2018-03-17 - 0.311377 . 451naf_en
dronesDawlish Drones
Meise pollution sffects pollinstion and chances of seed germination 2012-05-31 : 0.299065 226n=4_en
restore d ] r 1mP' ove Seals avoid wind farms during the noisiest phase of construction 201680815 | 0.262712  470na4_en
; 2018-07- 255556 ;
1: aca d e Wash Mgise pollution may make people less likely to exercise 20168-07-14  0.255558 483na1_en
Vaa Urban greening reduces noise pollution 20130516  0.242188  328nsf_en
exciting oromise gy

[_ - == LA Device that emits natural warning calls reduces trein-animal collisions * 2015-10-01  0.22686841 429ns1_en

Long-term exposurs fo siraaft emissions causes premature death 20150716 0.225806  421nai_en

Green walls” economic sustainability sssessed 20140212 ' 0.224359 281ns6_en

Road traffic noise inoreases risk of disbetes 20130411 0218381  323na4_en

Figure 3: Topic tab, showing stratified word cloud of topic terms and list of representative documents. Here: view of a
topic in a resolution-2.2 model which can be interpreted as “noise pollution”

Users can interpret the topics based on three pieces of information: the prominent topic terms visible in the stratified
word cloud, the document titles of the connected documents (see Figure E]) and the context of the topic terms as
depicted in the highlighted phrases on the document tab.

By changing the resolution parameter, users can determine the level of granularity with which they want to scan through
the corpus. For instance, within the broad topical area of Pollution and emissions many more specific topics like
Air pollution, Light pollution, Noise pollution (see Figure[3), Pharmaceutical pollution, Ship emissions, etc., can be
recognized with increasing resolution.

TeCoMiner gives decision-makers a coherent overview about the topic structure in a large document data set in a level
of detail of their choice. Also, the highlighted documents facilitate speed-reading of representative example texts.
Analysts can recognize trends and events in the time series and use the tool for investigating topical interrelations.
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TeCoMiner

Model Topic Document Time Theme Download Add corpus

Document filename
465na2_en

Topic_21: 37.4%
Topic_27: 19.0%
Topic_59: 11.5%

Does environmental RoiSE lead to depression and anxiety? People who are annoyed by environmental Roise are also more likely to Suffer from depression and anxiety, a new, large-scale study
from Germany suggests The results do not prove that noise causes mental health issues but suggest a possible link, which the study's authors are exploring further. Of all the types of hoise
considered in the study, aircraft noise was reported to be the most annoying. Noise, such as traffic and industrial poise, is now recognised as a serious environmental problem and is
regulated in Europe under the EU’'s Environmental_Noise_Directive

. Itis associated with a number of cardiovascular health problems, including heart disease, heart failure and siroke.

Itis also well known that RGISE can cause @nnoyance, which can be accompanied by negative, stress-related emotions, such as irritability, distress and exhaustion. However, very little research
has considered whether this Bnnoyance and potential stress could lead to mental health disorders. Therefore, this study investigated whether there is a link between noise annoyance and
depression and anxiety. It also explored the Bnnoyance levels caused by different sources of noise.

The researchers analysed questionnaires completed by 14 635 fesidents, aged 35-74, in and around the Eify of Mainz, Germany, between 2007 and 2012. Part of this area is in the flight path of
nearby Frankfur_Airport, one of the busiest @ifpors in the world. The questionnaires asked the f@Sidents how annoyed they had been in recent years (rated on a five-point scale, from not
annoyed to extremely Bnnoyed) by six different types of environmental noise: foad traffic; aircraft; railways; industrial construction; Neighbourioed indoor foise; and NEIghboUrRGod outdoor
noise.

The results show that 20.7 % of participants reported no @nRoyance to the sources of environmental RBiSE, 26 6 % slight Snnoyance, 25 % moderate @nnoyance, 173 % strong Bnnoyance and
10.5 % extreme @nnoyance Of the six types of noiSe considered, gircraft noise was the most problematic. Nearly 60 % of the population reported being annoyed by it to some HEgree, and 6.4 %
were extremely annoyed by it. Results in Table 1 show SANOYaNCE levels caused by the NOISE sources.

Source of NOISE Percentage of participants affected (slightly, moderately, strongly or extremely annoyed) Percentage of participants extremely annoyed Aircraft 59.9 % 6.4 % Rioad fraffic 43.5 %
1.9 % Nelghbourhood outdoor 21.8 % 1.2 % Melghbournood indoar 19.6 % 0.9 % Industrial construction 19.6 % 0.9 % Railway 15.8 % 0.7 % Table 1: annoyance caused by six sources of
environmental Roise among study participants. Mote: the study does not relate these figures to noise exposure levels. Continued on next page.

They asked the participants to indicate whether they Suffered symptoms of dEpression and anxiety, and the researchers assigned a score for each condition. Participants were also asked if
they had ever received medical diagnoses of depression or anxiety. They found that indicators of depression and anxiety increased steadily with levels of annoyance to the noise.

Average EPrESEION scores increased from 3.5 (out of a possible tofal of 27) among the * no @ANGYANCE’ group, to 5.1 for the * extreme BANOYANEE’ group. The percentage of each group with a
{dEpression score of 10 or more (3 clinically significant level of EPrESSION) increased from 6.1 % of the * no BNNOYANEE’ group through to 12 % of the * extremely annoyed’ aroup. The
percentage of the population with medical diagnoses of depression was also higher with each level of annoyance, for instance, 10.1 % ofthe * no @Anoyance’ group and 14.8 % ofthe
extremely annoyed' group had been diagnosed with dEpression by a doctor

Average @nxiety scores steadily increased from 0.7 (out of a possible total of 6) in the ' no @nRoyance’ group, to 1.1 among the * extreme @ANOYance’ group. The percentage of each group with a
clinically significant anxiefy score of 3 or more increased from 4.5 % of the * no annoyance’ group through to 10 % of the * extreme @annoyance’ group. 6.3 % of the * no annoyance’ group had
been diagnosed with BnXiety disorders, but the figure was 9.9 % for the * exireme BANOYANCE’ group. The study did not assess actual NBISE |evels, just personal responses to BISE. It also
points out the possibility that PEGRIE who are already depressed or anxious may be more sensitive to MBISE and, therefore, report higher SNNOYANCE; it is not necessarily the case that Noise
annoyance leads to mental health issues. However, the iation between and mental health disorders in these data is very strong and the researchers say their results are '
compatible’ with the hypothesis that annoyance leads to stress, which in turn can lead to depression and anxiety, or worsen existing symptoms. They are, therefore, conducting regular follow-
up assessments with the participants to explore the possible relationship between noise and mental health further.

Figure 4: Document tab, showing highlighted topic terms within a document. Here: A document with title “Does
environmental noise lead to depression and anxiety?” Three topics have a share of more than 10 percent in this

document: noise polution (Topic 21; red), health issues (Topic 27; orange), and urban living conditions (Topic 59;
green).
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