Joint PAZ and TanDEM-X Mission Interferometric Performance

Alberto Alonso-Gonzalez¹, Nuria Gimeno Martínez², Irena Hajnsek^{1,3}, Patricia Cifuentes Revenga², María José González Bonilla², Christo Grigorov¹, Achim Roth¹, Ursula Marschalk¹, Nuria Casal Vázquez², Juan Manuel Cuerda² & Marcos García Rodríguez²

²Insituto Nacional de Técnica Aeroespacial INTA

³Institute of Environmental Engineering, ETH Zurich

Introduction & Motivation

- TerraSAR-X and TanDEM-X satellites were launched in 2007 and 2010
 - Both satellites flying in close formation with a repeat cycle of 11 days
- PAZ satellite was launched in 2018 in the same orbit plane, with a 98.18° offset
 - Same repeat cycle of 11 days
 - If it could be combined with TSX/TDX, repeat cycles of 4 and 7 days could be possible

Objectives:

- → The objective is to analyze the PAZ & TSX/TDX joint exploitation for interferometry
- → Give some guidance on coherence levels expected depending on the land cover type

Datasets – Neustrelitz strip 11

Datasets acquired over DLR and INTA calibration fields with TSX/TDX and PAZ acquisitions at different polarizations

Neustrelitz, northern Germany. Main DLR calibration test site

Madrid, Spain Albacete, Spain INTA calibration test sites

CORINE Land Cover Map - 2018

100m Resolution, Several land cover classes (44)

Land cover classes grouped into 5 main classes

Datasets - Neustrelitz strip 11

Acquisitions performed over the Neustrelitz area by TSX/TDX and PAZ satellites

Satellite	Acq. Time	Pol.	Perp. Baseline [m]
PAZ	2019.12.07	VV	-163
TSX	2019.12.14	VV	-
PAZ	2019.12.18	VV	-6
PAZ	2020.01.20	VV	-141
TSX	2019.11.22	НН	-67
PAZ	2019.11.26	НН	33
TSX	2019.12.25	НН	60
PAZ	2019.12.29	НН	130
PAZ	2020.01.09	НН	25
TSX	2020.01.27	HH	-
PAZ	2020.01.31	HH	1
TSX-TDX	2020.01.16	VV	108

150 MHz bandwidth, single-pol Range x azimuth res.: 1.8m x 3.3m

Inc. angle: ~39° (ground-range res. 2.8m)

Datasets - Neustrelitz strip 11

Acquisitions performed over the Neustrelitz area by TSX/TDX and PAZ satellites

Satellite	Acq. Time	Pol.	Perp. Baseline [m]
PAZ	2019.12.07	VV	-163
TSX	2019.12.14	VV	-
PAZ	2019.12.18	VV	-6
PAZ	2020.01.20	VV	-141
TSX	2019.11.22	НН	-67
PAZ	2019.11.26	НН	33
TSX	2019.12.25	НН	60
PAZ	2019.12.29	НН	130
PAZ	2020.01.09	НН	25
TSX	2020.01.27	HH	-
PAZ	2020.01.31	HH	1
TSX-TDX	2020.01.16	VV	108

150 MHz bandwidth, single-pol Range x azimuth res.: 1.8m x 3.3m

Inc. angle: ~39° (ground-range res. 2.8m)

Urban & Industrial Forested areas

Agricultural areas

Water

Neustrelitz strip 11 - Coherence between TSX and PAZ

Comparing two interferograms (HH pol.) with similar temporal separation (33 and 29 days):

Coherence TSX 2019.12.25 – TSX 2020.01.27 (60m)

Coherence PAZ 2019.12.29 - TSX 2020.01.27 (130m)

Neustrelitz strip 11 - Coherence between TSX and PAZ

Comparing two TSX-PAZ interferograms (VV pol.) with shorter temporal separation (7 and 4 days) and zero-baseline:

Coherence PAZ 2019.12.07 - TSX 2019.12.14 (-163m)

Coherence TSX 2019.12.14 – PAZ 2019.12.18 (-6m)

Datasets - Madrid strip 4 and 13

Two different datasets were acquired over the are near Madrid city, with different land cover

Madrid strip 4

Satellite	Acq. Time	Pol.	Perp. Baseline [m]
TDX	2019.12.05	VV	97
TDX	2020.01.18	$\mathbf{V}\mathbf{V}$	-
PAZ	2020.01.22	VV	292
TDX	2019.11.24	HH	11
PAZ	2019.11.28	НН	448
PAZ	2019.12.09	НН	340
TDX	2019.12.16	НН	-
PAZ	2020.01.11	НН	468
TSX-TDX	2019.12.27	VV	116
TSX-TDX	2020.01.07	НН	109

150 MHz bandwidth, single-pol

Range x azimuth res.: 1.8m x 3.3m

Inc. angle: ~29° (ground-range res. 3.6m)

Madrid strip 11

Satellite	Acq. Time	Pol.	Perp. Baseline [m]
TSX	2019.12.11	VV	-
PAZ	2019.12.26	VV	51
PAZ	2020.01.17	VV	-74
PAZ	2019.11.23	НН	-85
PAZ	2019.12.04	НН	-2
TSX	2019.12.22	НН	50
PAZ	2020.01.06	НН	8
TSX	2020.01.24	$\mathbf{H}\mathbf{H}$	-
PAZ	2020.01.28	HH	176
TDX	2020.02.04	НН	-115
TDX	2020.02.15	HH	-296
TSX	2020.03.08	НН	-59
TSX	2020.03.19	НН	-71
TSX-TDX	2020.01.02	VV	119
TSX-TDX	2020.01.13	НН	115

150 MHz bandwidth, single-pol

Range x azimuth res.: 1.8m x 3.3m

Inc. angle: ~39° (ground-range res. 2.8m)

Datasets - Madrid strip 4 and 13

Two different datasets were acquired over the are near Madrid city, with different land cover

Madrid strip 4 Madrid strip 11

Datasets – Madrid strip 4 and 13

Two different datasets were over the are near Madrid city, with different land cover

Madrid strip 4

Urban & Industrial

Agricultural areas

Madrid strip 11

Forested areas Water

Madrid strip 4 - Coherence between TSX and PAZ

Comparing two TSX-PAZ interferograms (HH pol.) with 18 and 7 days temporal separation:

Coherence PAZ 2019.11.28 – TDX 2019.12.16 (448m)

Coherence PAZ 2019.12.09 – TDX 2019.12.16 (340m)

Madrid strip 4 – Interferometric phase between TSX and PAZ

Comparing two TSX-PAZ interferograms (HH pol.) with 18 and 7 days temporal separation:

Int. phase PAZ 2019.11.28 - TDX 2019.12.16 (448m)

Int. phase PAZ 2019.12.09 - TDX 2019.12.16 (340m)

Madrid strip 4 – DEM between TSX and PAZ

A Digital Elevation Model (DEM) may be generated from the TDX – PAZ acquisition pairs:

DEM generated TDX – PAZ (7days; 340m)

Madrid strip 4 – Single & repeat-pass DEM comparison

Datasets – Albacete strip 13

→ TSX/TDX and PAZ Acquisitions over the Albacete agricultural test-site

Satellite	Acq. Time	Pol.	Perp. Baseline [m]
TDX	2019.12.06	VV	58
PAZ	2019.12.21	VV	282
PAZ	2020.01.01	VV	422
TDX	2020.01.19	$\mathbf{V}\mathbf{V}$	-
PAZ	2020.01.23	VV	338
TDX	2019.11.25	HH	-
PAZ	2019.11.29	HH	379
PAZ	2019.12.10	HH	337
TSX	2019.12.17	HH	183
PAZ	2020.01.12	HH	405
TSX-TDX	2019.12.28	VV	123
TSX-TDX	2020.01.08	HH	117

150 MHz bandwidth, single-pol

Range x azimuth res.: 1.8m x 3.3m

Inc. angle: ~42° (ground-range res. 2.6m)

Datasets - Albacete strip 13

→ TSX/TDX and PAZ Acquisitions over the Albacete agricultural test-site

Satellite	Acq. Time	Pol.	Perp. Baseline [m]
TDX	2019.12.06	VV	58
PAZ	2019.12.21	VV	282
PAZ	2020.01.01	VV	422
TDX	2020.01.19	$\mathbf{V}\mathbf{V}$	-
PAZ	2020.01.23	VV	338
TDX	2019.11.25	НН	-
PAZ	2019.11.29	HH	379
PAZ	2019.12.10	НН	337
TSX	2019.12.17	НН	183
PAZ	2020.01.12	HH	405
TSX-TDX	2019.12.28	VV	123
TSX-TDX	2020.01.08	HH	117

150 MHz bandwidth, single-pol

Range x azimuth res.: 1.8m x 3.3m

Inc. angle: ~29° (ground-range res. 3.6m)

Urban & Industrial

Forested areas

Agricultural areas

Water

Albacete strip 4 - Coherence between TSX and PAZ

Coherence between TDX and PAZ over the Albacete test site with 4 days temporal difference:

Coherence TDX 2019.11.25 – PAZ 2019.11.29 (379m)

Int. phase TDX 2019.11.25 – PAZ 2019.11.29 (379m)

Albacete strip 11 - DEM between TSX and PAZ

→ A DEM may be generated from the TDX – PAZ acquisition pairs:

Time series: Madrid strip 13 – HH

→ Madrid strip 13 dataset covers two of the main classes: urban area (Madrid city) and forested area on top

Coherence PAZ 2020.01.28 – TSX 2020.01.24

Land cover map (CORINE)

Optical image

Time series: Madrid strip 13 – HH

The time series reveals the different behavior of coherence for the different land cover types

Time series: Albacete strip 11 – HH

→ Albacete test site shows the temporal evolution of the coherence over agricultural fields

Coherence TDX – PAZ (4 days; 380m)

Land Cover map (CORINE)

Optical image

Time series: Albacete strip 11 – HH

→ Albacete test site shows the temporal evolution of the coherence over agricultural fields

Time series: Coherence signature for different land cover

Conclusions

- → Very good interoperability between TeraSAR-X/TanDEM-X and PAZ
 - Very similar coherence and results than TSX/TDX interferograms no performance loss by exchanging both sensors
 - Both sensors are interchangeable to build denser time series with 4/7 days temporal difference
- Temporal decorrelation at X-band over dense forest is the largest decorrelation source
 - Even zero baseline acquisition with 4 days temporal difference present large decorrelation over forested areas in Neustrelitz
- Over areas with not so significant forested coverage, the coherence remains high enough
 - Coherence and phase good enough over these areas to perform repeat pass DEMs at X-band
 - Agricultural areas present high coherence until a phenological change generates decorrelation

Alonso-González, A., Martínez, N. G., Hajnsek, I., Revenga, P. C., Bonilla, M. J. G., Grigorov, C., ... & Rodríguez, M. G. (2021). Joint PAZ & TanDEM-X Mission Interferometric Experiments: Interoperability and Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6069-6082.

Thank you for your attention!

