

Process and Methods for E2EMaintenance Architecture

C. Willberg*, H. Meyer*, S. Freund*, M. Moix-Bonet*, C. Dienel*, E. Baalbergen**, F. Grooteman**, T. Kier*, S. Schulz*
*German Aerospace Center (DLR)

**Netherlands Aerospace Centre (NLR)

*) Advanced Value and Service driven Architectures for Maintenance

ADVANCEd Aircraft maintenance

DEMETER

Process and Methods for E2E Maintenance Architecture development, demonstrations and solutions for technology integration

Indirect Monitoring Systems

Flight data: flight recorder, acceleration, etc.

Estimated states, Flight states

> Estimated disturbances

Control deflections

Flight /ground

loads model

accelerometeres **Control deflections**

Stress model (FE-based) Distributed loads on airframe

Signal processing

(filtering,

estimation)

Loads / Stresses

Fatigue evaluation

Indirect Monitoring Systems

Overall workflow

Module workflow

Hdf5 database structure

- timeSlices

meSlice 1

- 🛜 loads

made dam_1

mp_103

pp_271

pp_436

pp_861

- 🗀 tin eSlice_10

← 📜 ti neSlice_2

- 🗀 tmeSlice_3

timeSlice_4

timeSlice 5

timeSlice_6

timeSlice_7

timeSlice_8

timeSlice_9

stresses

Loads Module

- Estimation for the loads during flight missions
- Derive loads with a model based approach based on aircraft sensor data
- For the prototype
 - Real aircraft sensor data, is estimated based on trajectory and Mach-Number data of real-life flight missions
 - This data is combined with a physical model based simulation to calculate the loads

Stress Module - Offline Phase

- Apply aircraft loads on a A320-like model
- Extract stresses (and optional sensor data) at engine mount link
- Surrogate input: Loads/sensor data
- Surrogate result: stresses
- Evaluation of surrogate accuracy using crosscorrelation, Kriging MSE

Stress Module - Online Phase

CBM Module

Direct Monitoring Systems

Fibre Bragg Input

USG waves input

Global SHM solution

Guided wave - Damage Identification

Guided wave - Validation

Test control through GUI (left), climate chamber (center) and data acquisition equipment (right)

Dummy damage under the stringer head

Damage Assessment

Damage Assessment

Current Decision-Making Process

Modified Decision-Making Process

Highlights Damage detection multiple load path failure

Experiments performed by NLR

Highlights Up to 5% weight saving is achievable

Dienel, C. P., Meyer, H., Werwer, M., & Willberg, C. (2019). Estimation of airframe weight reduction by integration of piezoelectric and guided wave—based structural health monitoring. *Structural Health Monitoring*, *18*(5–6), 1778–1788.

https://doi.org/10.1177/1475921718813279

Highlights **E2E Evaluation**

Point to Point

Fleet Size: 104 A/C

Legs/day per A/C

Legs/haul length

7-8/day

• 2/day

Average fleet age: 8,9 yrs

Large Hub & Spoke

Fleet Size: 200 A/C

Legs/day per A/C

Legs/haul length

5-6/day 2/day

Average fleet age: 11,3 yrs

Small Hub & Spoke

Fleet Size: 50 A/C

Legs/day per A/C

Legs/haul length

6/day 2/day

Average fleet age: 12,4 yrs

Highlights **E2E Evaluation**

Cost saving potential base maintennce/year in % (MPO tool)

Assumptions:

- The results from the MPO tool are valid for each airline cluster
- The available aircraft performs additional flights
- The age of the fleet of the airline is equally distributed with the average given by the analysis

- Significant potential for decrease of base maintenance cost by using the MPO tool
- MPO tool developed especially for SHS carriers.
- Higher aircraft utilization leads to increasing revenue, especially for P2P carriers
- Aircraft utilization and fleet age are additional factors for good results at SHS and P2P airlines

¹The shown results are potentials per year that need to be exploited.

Highlights AAM2019 Dissemination event

- Approximately 60 external visitors came to the conference and market place
- Over 100 people participated on the conference

Steps after **Open Guided wave**

Steps after SHM Demonstrator

- Maintenance → Does the delamination grow?
- Assistance of the technician in finding the damage

JEC Composites, Paris 2019

Lessons learned

- Data availability (for exchange) must be clarified in advance of the project
- Demonstrator case selection should be done and fixed early in the project
- More resources for the core partner
- Multi project work can be a success

Useful infos and acknowledgements

- German Aerospace Center/DLR
 Hyperlink: www.dlr.de
- Christian Willberg
 christian.willberg@dlr.de
- Netherlands Aerospace Centre/NLR Hyperlink: www.nlr.org

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 685704

