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Abstract
Spaceborne synthetic aperture radar (SAR) with digital beam‐forming (DBF) in elevation
uses very sharp time‐variant antenna beams to improve the signal‐to‐noise ratio (SNR)
and range ambiguity‐to‐signal ratio. In acquisition scenarios of imprecisely known Earth
topography, however, antenna pointing might be mismatched with surface geometry. To
handle this issue, it is suggested that preprocessing is applied to DBF to determine the
angle of the incident echo signal on the planar antenna array. The authors derive a
method that estimates the direction of arrival on the acquired raw data with high accuracy
in real time. The method is based on the matrix pencil, which is a common approach in
mathematics for solving linear equation systems. As a key innovation, this paper describes
further improvements and adaptions to SAR scenarios and provides a possible concept
for practical implementation. For proof of concept, a series of different simulation tasks
is performed.

1 | INTRODUCTION

Since the development of the first synthetic aperture radar
(SAR) in 1951, radar has become an essential sensor for im-
aging applications. Manifold fields of application ranging from
climate change research to change detection, and 4‐D mapping
to earthquake and flood monitoring, are covered by SAR. Due
to the high demand for global SAR data sets, state‐of‐the‐art
sensors have reached their limits in resolution, swath width,
repeat cycle, and flexibility. To solve SAR‐inherent limitations,
a new generation of SAR sensors with multiple transmit and
receive channels (MIMO) and digital beam‐forming (DBF)
capabilities is proposed in several studies [1–3]. However, such
DBF‐SAR techniques require an antenna with a narrow half‐
power beamwidth (HPBW). In the presence of unknown
Earth topography, when the assumed geometrical model of the
Earth’s surface is complex, antenna pointing might be mis-
matched with surface geometry. Depending on the antenna
HPBW and the error in the assumed Earth model, the
resulting mispointing might lead to a significant loss of gain. To
handle this issue, in principle, existing digital elevation model
(DEM) data can be uploaded to the satellite and used for

correction. But the amount of data for a global DEM upload
might be too large, and there might be areas with outdated
height profiles (e.g. due to earthquakes and volcanic eruptions).
As an alternative solution, in [4], it was suggested that an
additional algorithm should be applied prior to DBF to esti-
mate, from the acquired raw data, the angle of the incident
echo signal on the planar antenna array for a certain recorded
echo window (i.e. receive interval PRI). This angle is also
known as the angle of arrival (AoA). Thereupon, the DBF
steering vector can be adapted to form an antenna beam that
points in the correct direction.
Because the relation between antenna beam pattern and

radiated/impinging signal is usually described using spectral
frequency components [5], it is valid to transfer that task to
common spectral estimation algorithms [6]. These spectral
estimators are used to obtain the distribution of the signal
power over frequency for sampled signals in the time domain.
Due to the strong correspondence between the spatially
dependent frequency and temporal signal frequency, many
spectral estimators can be used for AoA estimation. In the
meantime, more than 20 different spectral estimation algo-
rithms have been derived [6]. They can be categorized into two

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2021 The Authors. IET Radar, Sonar & Navigation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Radar Sonar Navig. 2021;1–14. wileyonlinelibrary.com/journal/rsn2 - 1

https://doi.org/10.1049/rsn2.12103
https://orcid.org/0000-0003-1864-7585
https://orcid.org/0000-0001-7097-5127
https://orcid.org/0000-0002-8563-7371
mailto:tobias.rommel@dlr.de
https://orcid.org/0000-0003-1864-7585
https://orcid.org/0000-0001-7097-5127
https://orcid.org/0000-0002-8563-7371
http://wileyonlinelibrary.com/journal/rsn2


classes: non‐parametric and parametric methods. Non‐
parametric estimators evaluate the power spectral density
(PSD) of the input signal by direct and linear analysis of the
whole spectrum. Parametric estimators are also known as
model‐based estimators, as they are based on an assumed
signal model. This model parametrizes the spectrum of known
structures, and the used PSD estimator determines the value of
the desired parameter. Since parametric estimators use addi-
tional information, they lead to more accurate results (if the
signal model is correct). SAR is based on a signal model, and
information about the signal structure and some properties
about the geometric relations between SAR and Earth are
known. Therefore, the preferred class of high‐resolution
parametric estimators can be applied. Established parametric
algorithms are spectral MUltiple SIgnal Classification (MUSIC)
[7], root MUSIC [8], and Estimation of Signal Parameters using
Rotational Invariance Techniques (ESPRIT) [9]. These esti-
mators are computationally very intensive because they need to
compute a correlation matrix from the received raw data. In
addition, such estimators are derived for more common
problems in communication and hence are not very effective
for SAR.
To fulfil the highest quality standards in DBF‐SAR and

MIMO‐SAR, it is necessary to derive an effective application‐
orientated algorithm to avoid the previously mentioned mis-
pointing effect. It has been found that the matrix pencil (MP)
method, which was originally intended to solve a linear equa-
tion system, serves as a good starting point [10, 11]. In the
meantime, the MP also finds application in some basic angular
estimation problems [12, 13] and even for back projection
processing of inverse SAR [14]. This parametric approach does
not need a calculation of a covariance matrix. Regarding run
time, this is a significant advantage in contrast to other
established methods, such as spectral MUSIC, Root MUSIC, or
ESPRIT (a comparison of the run time between the estimators
is given in Section 4.1). SAR is an imaging sensor and evaluates
the signal within an enormous interval of incidence angles of
typically more than 20°. This leads to a challenge if the AoA
estimator delivers only certain angles. Thus, the side‐looking
sensor geometry is exploited here, and the time‐variant AoA
is divided into individual cells. Via sliding time windows and
adapted averaging methods, the underlying task is transferred
to a point target‐like situation so that the adjusted AoA esti-
mator will work. Finally, the individual estimates are combined
and form the basis for topography‐adaptive DBF. Because the
MP method shall also be applied on‐board, a concept for a
possible practical implementation is given, which enables a
precise and stable topography‐adaptive elevation DBF in real‐
time.
The paper is structured as follows. In the beginning, the

detailed problem formulation and error analysis in the case of a
mismatch between the theoretical topographic model used for
the DBF algorithm and reality is given. After introducing the
signal model, the MP in its basic form is derived. Then further
improvements on the MP and problem‐based adaptions to
DBF‐SAR are derived. The second section ends with a concept

for a practical implementation on‐board in real‐time. To gain
an impression of the suggested algorithm's behaviour, capa-
bilities, and performance, the paper concludes with simulation
results.

2 | ANTENNA MISPOINTING FOR
UNKNOWN TOPOGRAPHY

For many future spaceborne DBF‐SAR, the SCORE technique
(SCan On REceive) is proposed [15]. There, a narrow, time‐
variant elevation antenna beam follows the echo signal on
the ground. This leads to an increased SNR and a strongly
reduced range ambiguity‐to‐signal ratio. But in most publica-
tions about SCORE and DBF‐SAR, it is assumed that the
geometric relation between radar sensor and the Earth is
known, and the time‐variant receive antenna beam tracks SAR
echoes according to the underlying geometric model. However,
for an unknown topography, this relation is not established.
This has been pointed out especially in [16, 17]. Therein the
authors denote this effect as SCORE pattern loss. Figure 1
illustrates this distortion for a constant slant range distance r0
at mountains of height Δh.
Under the assumption of a spaceborne scenario with

spherical geometry, Figure 2 shows a plot of the antenna
mispointing with an orbit height of h = 600 km for the steering
angles 15°, 20°, 30°, and 42°. As can be seen, the antenna
mispointing increases almost linearly with increasing topo-
graphic height. At relatively flat areas with vertical terrain
differences of less than 1.5 km, the echo may impinge at the
receive antenna with an angular offset of around 0.2°–0.5°.
Comparing this value with an antenna HPBW of 0.4°, in the
worst‐case scenario, not only is there a significant loss of gain
but also, the antenna might point in a completely different
direction.

3 | MATRIX PENCIL METHOD

In the first part of this section, we will derive the MP algorithm
in its basic form to estimate the AoA profile along elevation.
Afterwards, extensions using averaging techniques are given to
enhance the probability of correct estimates. Additional im-
provements to address inherent SAR effects on the received
signal and a concept for practical implementation on‐board are
also presented.

3.1 | Signal model for direction of arrival
estimation

Like other established AoA estimation methods, such as
MUSIC [7], Root MUSIC [8], and ESPRIT [9], the MP is also
based on a point target model with multiple distinct targets. It
is important to note that any deviations due to extended pulses
(cf. [18]), interfering signals (e.g., MIMO), or extended surface
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scatterers, result in errors during the calculations and affect the
accuracy and stability of the algorithm. For ease of under-
standing, we firstly derive the simplified point target signal
model1. Estimation errors for more complex scenarios are
analysed at the end of this paper via simulations.
Signal processing and hence also the AoA estimation is

done at the digital stage of the radar receiver. Thus, it is
worthwhile to directly write the receive signal in its down-
converted and discretized form:

u½p� ¼ A½p� ⋅ σ ⋅ s½p − p0� þ n½p�; ð1Þ

while p is the discrete index of the time sample (p ∈ Nþ0 ) and σ
is the column vector of individual backscatter amplitudes (size:

NTar). s is the transmit waveform (e.g. chirp), p0 is the index of
the round‐trip time‐delay from the transmit antenna to the
target and back to the first receive antenna element, and n is
Additive White Gaussian Noise. A is the antenna steering
matrix:

A¼ a0; a1;…; aNTar−1½ �; ð2Þ

of the dimensions NRx � NTar (no. of receive channels � no.
of point targets) and am are the steering vectors for the mth

target of the linear antenna array with equispaced elements:

am ¼ z0m; z
1
m;…; zNRx−1

m
� �T

; ð3Þ

with T being the transpose of the vector and

zm½p� ¼ exp j ⋅ Δφm½p�ð Þ ¼ exp j ⋅
2π
λ

⋅ d ⋅ sinðϑm½p�Þ
� �

: ð4Þ

j is the complex constant, Δφm is the phase shift of the receive
signal between two adjacent receive channels of separation d, ϑm
is the respective AoAw.r.t. boresight of the antenna array, and λ
is the centre wavelength of the RF echo signal. It is important to
note that the exponential terms lead only to a relative phase shift
between the elements of u and do not distort the amplitudes. If
all possible values of zm are drawn on the complex plane, the
values lie exactly on the unit circle. However, additional noise
contributions cause distortions, which adversely affect these
positions. In the next section, we concentrate on the undistorted
case, and afterwards we introduce advanced processing methods
to improve the estimator’s accuracy and stability in presence of
noise and other interference.

3.2 | Angle of arrival estimation via the
matrix pencil

An MP in mathematics is a linear equation system consisting of
matrices with complex elements [10, 11]. The equations can be
solved by finding the generalized eigenvalues of the MP. This
standard task in mathematics was adapted to angular estima-
tion problems in electrical engineering. The first derivations
can be found in [12, 13].
To form the MP, at first the received raw data signals (cf.

Equation 1) at a certain instant of time p and receive antenna
element are arranged into a matrix of form

Y ½p� ¼

u0½p� u1½p� ⋯ uL½p�

u1½p� u2½p� ⋯ uLþ1½p�

⋮ ⋮ ⋱ ⋮
uNRx−L−1½p� uNRx−L½p� ⋯ uNRx−1½p�

2

6
6
6
6
4

3

7
7
7
7
5
: ð5Þ

F I GURE 1 Illustration of the antenna mispointing due to topographic
changes

F I GURE 2 Antenna mispointing for various terrain heights and
steering angles

1Any influences by the antenna element pattern and mutual coupling are neglected for
ease.
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a matrix with this symmetric arrangement is also called Hankel
matrix. The pencil parameter L determines its shape and must
satisfy the conditions.

NTar ≤ L ≤ NRx − L if NRx is even; ð6Þ

NTar ≤ L ≤ NRx − Lþ 1 if NRx is odd: ð7Þ

In principle, L can be arbitrarily chosen within these intervals.
As L determines the amount of overlap between the two
formed antenna subarrays, its value affects the accuracy of
the estimated angle. In dependence on the noise level of the
received signal, we recommend choosing L within the interval
NRx/3 ≤ L < NRx/2 for either more efficient noise suppres-
sion or improved resolution if the number of AoAs is not
known beforehand.
At this point, already one important limitation of the MP

method becomes noticeable. To estimate a total number of
NTar angles, at least 2NTar antenna elements are necessary for
an even number of NTar, and at least 2NTar − 1 antenna ele-
ments are necessary for an odd number of NTar. In addition,
due to the matrix arrangements, at least four receive antennas
are required. However, for a spaceborne DBF‐SAR, many
antenna elements are required, and this limitation is not an
issue for the definition of Y[p].
From Equation (5) we can define two overlapping sub-

matrices Y0[p] and Y1[p], which are shifted by a single element:

Y 0½p� ¼

u0½p� ⋯ uL−1½p�
u1½p� ⋯ uL½p�

⋮ ⋱ ⋮
uNRx−L−1½p� ⋯ uNRx−2½p�

2

6
6
4

3

7
7
5 and ð8Þ

Y 1½p� ¼

u1½p� ⋯ uL½p�
u2½p� ⋯ uLþ1½p�

⋮ ⋱ ⋮
uNRx−L½p� ⋯ uNRx−1½p�

2

6
6
4

3

7
7
5: ð9Þ

these matrices correspond to the antenna subarrays, which are
formed to estimate the linear spatial shift of the impinging signal
between both subarrays (cf. Figure 3). Even shifts by more than
a single element are possible. The effects have not been studied
yet. To find the AoAs, in an intermediate step, we are looking for
the estimated values of zm[p], which can be directly obtained by
calculation of the generalized eigenvalues Ψ (e.g., with the
standard QR algorithm) of the equation system:

Y †
0½p� ⋅ Y 1½p� ¼ Y *

0 ½p� ⋅ Y 0½p�
� �−1 ⋅ Y *

0 ½p�
n o

⋅ Y 1½p�

¼Ψ ⋅ Γ;
ð10Þ

where Y †
0½p� denotes the Moore‐Penrose pseudo inverse of

Y0[p], * is the conjugate transpose, and Γ are the generalized

eigenvectors. A more detailed derivation and decomposition of
this equation can be found in appendix A. In the following all
estimated values are marked with �.
With respect to Equation (4) and Equation (26), it is

known that all plausible elements of Ψ must lie at the unit
circle. All remaining values are hence not of interest and can be
ignored. However, noise contributions cause a displacement of
these eigenvalues from the unit circle. By tolerating a certain
margin for this deviation, which is dependent on the signal‐to‐
noise ratio (SNR) of Y[p], an estimate of NTar can be obtained
from the data. To give an illustrative example, Figure 4a shows
a plot of the pole diagram containing the eigenvalues of Ψ for
NTar = 1, NRx = 32, L = 1 and without any additive noise. The
single estimated eigenvalue lies exactly at the unit circle and can
be treated as a plausible value. In Figure 4b, we can find the
pole diagram with the same simulation parameters as before—
even without any noise—but with L = 15. More values than
necessary are estimated, while all false estimates are randomly
distributed and not lying on the unit circle.
Finally, the demanded angles �ϑm½p� can be obtained from

the imaginary parts of the found eigenvalues through solving
Equation (4) for �ϑcm:

�ϑm ¼ arcsin
Imflnð�zmÞg

2π
λ ⋅ d

 !

: ð11Þ

Because the generalized eigenvalues of Equation (10)
cannot be determined accurately at higher noise levels of the
raw data, the variance of the estimated angles will also increase.
For an improved accuracy of noisy data and to adapt this
preliminary method to the SAR case, some extensions are
given in the next subsections.
The forward–backward (FB) averaging approach has also

been studied within this investigation. However, we came to
the same conclusion as [19, 20]. The averaging helps to
improve the accuracy, but the required quadratic shape of
the matrix Y with L = (NRx − 1)/2 leads to too many
false estimates. Thus, the FB averaging method is excluded
here.

F I GURE 3 Illustration of the matrix pencil methodology with
NRx = 4. In Equation (8) and Equation (9) two submatrices are formed
which correspond to the two antenna subarrays Group 1 and Group 2. Via
kind of averaging (Equation 10) the linear spatial shift w.r.t. the receive
signal and accordingly the AoA is directly calculated
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3.3 | Total least squares matrix pencil

The idea behind the Total Least Squares Matrix Pencil (TLS‐
MP) makes use of the knowledge that all plausible �zm½p� must
lie exactly on the unit circle [21]. Eigenvalues, which are per-
turbed by noise, lie close to the unit circle because the pseudo‐
inverse of Equation (10) cannot be determined accurately. Via
total least squares regression, these poles are projected to the
unit circle (cf. Figure 5), and more accurate results can be
achieved.
The first computation step of the TLS‐MP is the Singular

Value Decomposition of Y from Equation (5):

Y ¼ A ⋅ Σ ⋅ BH; ð12Þ

with A and B being the left and right singular vectors,
respectively. Σ is a real‐valued matrix containing the singular
values along the main diagonal and H is the Hermitian of the
matrix. From theory of matrix computations, it is known that
Y has NTar non‐zero singular values for the noiseless case
(n = 0). Otherwise, the raw data matrix Y has more singular
values, which are not equal to zero. These erroneous singular
values and their corresponding singular vectors are not
considered in the TLS‐MP method. For this, the number of
targets NTar must be known beforehand. Otherwise, it is rec-
ommended to make use of the threshold value μ. This value
serves as decision‐guidance between plausible and non‐
plausible singular values of Y:

μ ≈ 10−Ndig⋅μmax ; ð13Þ

with Ndig being the number of significant digits (e.g. Ndig = 3)
and μmax is the real part of the largest estimated �zm:

(a)

(b)

F I GURE 5 Illustration of the total least squares matrix pencil principle
with the pole diagram

(a)

(b)

F I GURE 4 Pole diagrams with the estimated eigenvalues �zm½p� of Ψ
using the matrix pencil method for different pencil parameters, NTar = 1,
NRx = 32
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μmax ¼Re max �zmf gf g: ð14Þ

Ndig is an empirical value chosen in dependence on the
SNR of Y. All eigenvalues greater than μ correspond to a true
target.
Since it is known that all eigenvalues �zmðtÞ with index

m > NTar are irrelevant, we can define a filtered version of the
Hankel matrix as Y0:

Y 0 ¼ A0 ⋅ Σ0 ⋅ B0H: ð15Þ

A0, Σ0 and B0 are the submatrices of A, Σ and B,
respectively:

A0 ¼ A½ : ; 1 … NTar�;

Σ0 ¼ Σ½1 … NTar; 1 … NTar�;

B0 ¼ B½ : ; 1 … NTar�:

ð16Þ

: denotes that all elements from that row/column are
considered.
In analogy to Equation (8) and Equation (9), we form the

two submatrices Y00 and Y10 from Y0:

Y 00 ¼ A0 ⋅ Σ0 ⋅ B0H0 ;

Y 01 ¼ A0 ⋅ Σ0 ⋅ B0H1 ;
ð17Þ

where B00 and B10 are equal to B0 without the last and the first
row, respectively.
In the final computation steps of the TLS‐MP, we proceed

in the same way as for the standard MP. After the calculation of
the generalized eigenvalues of the term Y 0†0 ⋅ Y 01 (cf. Equa-
tion 10), the AoA �ϑm½p� can be calculated via Equation (11).

3.4 | Modification of the matrix pencil
method for extended angular coverage

Up to now, we have proposed methods to improve the ac-
curacy and stability of the basic MP in the presence of noise.
This section addresses SAR‐inherent signal characteristics,
since the point target model of Equation (1) is an idealized
point of view and neglects finite pulse durations in combi-
nation with extended scatterers. Especially the established
condition for narrowband estimation problems does not hold
for chirp signals.
From [18], it is known that the received signal at each

instant of time is the sum signal of all echoes within the
angular pulse extent. Accordingly, the true AoA spans an
angular interval, while the MP needs a discrete number for
NTar. As a solution, prior known properties of the used
transmit signal, and an approximation of the geometrical
structure of the scene can be used. According to [22], the
variance of the MP estimator can be decreased by using

bandpass filters while filtering unwanted noise contributions.
In our case, the bandpass brings even more benefits. We
propose to implement narrowband bandpass filters in the
receive channels to reduce the effective pulse duration of the
chirp signal—and hence also the angular pulse extent—while
suiting the signal to a narrowband estimation problem.
Under the assumption of homogeneous radar backscatter in

the observed scene, the received signal has an equally distributed
spatial‐spectral power density (cf. Figure 6). Via its inherent
averaging (cf. Equation 10), the MP estimates directly—in
dependence on the pencil parameter L—the mean AoA of this
bandpass divided pulse echo. At this step, it is very important
that the angular interval after bandpass division is smaller than
the accuracy limit of the MP. Otherwise, more than a single
AoA will be estimated, and the MP bears wrong results. To
define the required filter bandwidth, it is necessary to look at
the accuracy limit of the MP δMP and the pulse extent first.
Based on the simulation results of Section 4.4, a plausible value
for δMP is approx. 1/10 of the antenna HPBW (for required
SNR values of 10 …25 dB). This limit must be greater or equal
to the maximum acceptable angular pulse extent χΘ after
bandpass filtering (cf. Figure 6, [18]). Because χΘ varies over Θ,
we take its maximum (at the near edge of the swath) and
calculate the ratio max{χΘ(Θ)}/δMP, which gives the number of
angular segments in which the pulse must be divided. The
required filter bandwidth is the total signal bandwidth B divided
by the number of segments:

F I GURE 6 At a certain instant, the echo signal is received from an
angular interval. After bandpass filtering, the chirp is synthetically narrowed
and accordingly also the angular pulse extent. In dependence on the pencil
parameter L the matrix pencil estimates the mean angle of arrival of this
segment, while the grey‐coloured bar in the figure indicates the variance
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BBP ¼
B ⋅ δMP

maxfχΘðΘÞg
: ð18Þ

To give an example, for the values δMP = 0.05°,
B = 100 MHz and max{χΘ(Θ)} = 2.0°, we obtain a reasonable
filter bandwidth of BBP ≈ 2.5 MHz. This results in an effective
pulse duration of 3.0 μs.
Apart from reducing the angular pulse extent and filtering

noise, there is a further benefit of using frequency filters. In-
sofar as the system complexity and the available amount of
computational power for calculating the MP allows, a whole
filter bank can be used instead of a single filter. By following
this approach, it is possible to estimate the AoA for each
spectral part of the whole chirp separately (cf. Figure 6). The
set of estimated angles can then be used to obtain information
about the Earth's topography more precisely.

3.5 | Practical implementation

This section concentrates on the advanced TLS‐MP with
bandpass filtering, since it is supposed to be the optimum
choice for topography‐adaptive DBF on receive in SAR.
Figure 7 shows the simplified block diagram of the MP

processor. Starting with the receive antennas, the received
signals are downconverted to the IF band, digitized with
analogue‐to‐digital converters, and calibrated to compensate
for hardware errors and their effects. As suggested in the last
section, in each receive channel, a bank of bandpass filters
select a narrow frequency band within the chirp bandwidth to
reduce the effective pulse duration. A resampling with a lower
sampling frequency, tailored to the bandwidth after filtering,
lowers the overall computational complexity. In the following
block, the TLS‐MP algorithm is calculated (for each bandpass
filtered signal). Not mentioned yet is the plausibility check,
which is placed directly behind the TLS‐MP. Since the MP is an
estimator and its robustness is completely dependent on the
acquired raw data, false estimates can never be excluded. From
plausibility considerations, an angular interval can be defined,

from which the echo will be expected. If the estimated angle
lies within this interval, it passes the check; otherwise, a
theoretical value is used.2

If multiple angles are estimated simultaneously (e.g.,
due to topography), separate buffers for the other AoA
are required. The rest of the DBF and image processing
must then be designed flexibly to adapt to the appro-
priate scene.

4 | PERFORMANCE ANALYSIS

To gain an insight into the behaviour and accuracy of the MP, a
series of simulations have been performed. Some of these
results are compared to the Conventional Beam‐Former (CBF,
Array Factor equivalent) with rectangular windowing,
computed via the following equation [23]:

�ϑ0 ¼ argmax |a*u|2
� �

; ð19Þ

while argmax{…} gives the position of the maximum value,
which is equal to the estimated AoA.
The following paragraphs show simulation results based on

the run time, antenna length, AoA, multiple targets, and
spatially extended targets (surfaces). Before showing the re-
sults, already some predictions can be noted. According to [6],
it is expected that the accuracy of the estimators can be
improved by changing the used parameters in the following
way:

� Increasing the SNR of the received echo signal.
� Increasing the physical length l of the antenna (at keeping
the number of antenna elements fixed).

� Increasing the number of antenna elements NRx (at keeping
the physical length constant).

� Decreasing the angular distance of the AoA from the an-
tenna’s broadside direction: minf|Θ − Θtilt|g.

F I GURE 7 Practical implementation of the matrix pencil method in a DBF‐SAR system DBF, digital beam‐forming; SAR, Spaceborne synthetic aperture
radar

2Alternatively, in substitution of the theoretical value also a mean value of the fore and aft
estimated angle along range or a previously estimated angle can be used.
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� Increasing the number of independent snapshots Nsn (i.e.
increasing the sample size for averaging).

These predictions result from derivations made via the
Cramer–Rao lower bound (CRLB) in the appendix of [6]. To
have a common basis for all simulations, a realistic spaceborne
DBF‐SAR with the system parameters listed in Table 1 serves
as a reference for all simulations. The element spacing of
greater than λ/2 is chosen to reduce the number of elements
by keeping the antenna size constant for the HPBW. Since the
resulting grating lobes lie outside the swath, they can be
considered implausible and neglected for signal processing.
Due to the still relatively large number of receive antenna el-
ements in elevation (NRx, el = 54), it must be noted that not all
channels must be digital but can be grouped in subapertures
with a combination of analogue and DBF. For the bank of
bandpass filters (cf. Equation 18), a filter bandwidth of
BBP = 2.5 MHz was used. Regarding the practical realization,
the output signal of each filter has also been resampled to the
lower sampling frequency of fS = 1.2 ⋅ BBP = 3.0 MHz. In
azimuth, fewer antenna elements are required, since usually in

this direction, DBF is used only to reconstruct a wider Doppler
spectrum [3]. Because we concentrate solely on the elevation
direction, the number of azimuth antenna elements does not
yet play a role. The azimuth extension is required for the
investigation of Section 4.4.

4.1 | Evaluation of the computational
complexity

Usually, the computational complexity of an algorithm is
expressed using the big O notation O [24]. It describes the
asymptotic behaviour of the algorithm’s run time if the argu-
ments tend to a certain value. This has the significant advan-
tage that the comparison is fair and independent of the
implementation (programming style and language), operating
system, and computer. Unfortunately, a straightforward com-
parison between the estimation algorithms is still difficult since
the covariance matrix for spectral MUSIC, Root MUSIC, and
LS‐ESPRIT is computed for the whole acquired echo window
(full swath) at once. Thus, to make this comparison more
realistic, the swath is divided into a total number of 100 sub-
swath cells. Then the algorithms are repeatedly applied to
finally cover the full swath. A closed‐form derivation of the
complexities would be beyond the scope of the paper because
they are composed of a complex construct of different indi-
vidual calculations, like eigenvalue decompositions, correlation
matrices, covariance matrices, …Thus, the interested reader is
referred to the appendix of [25].
The two most driving parameters of the complexity are the

signal bandwidth and the number of antenna elements. Using
the radar system parameters listed in Table 1, the run times for
the individual algorithms versus B and Nel are plotted in
Figure 8. The dependence on the signal bandwidth B, which is
related to the sampling frequency by fS = 1.2 ⋅ B, leads to a
change in the number of acquired samples per echo window
and has been considered.
It becomes apparent that the run time of spectral MUSIC

is always the highest and about 104–106 times higher than for
the MP. In addition, Root MUSIC and LS‐ESPRIT need a
fairly large number of iterations. Especially changes of the
signal bandwidth show a greater impact than for the MP‐based
algorithms. This can be justified by the expensive computation
of a large correlation matrix in those methods. In the end, the
MP and TLS‐MP have quite similar computational complexity
and outperform the covariance methods by far.
A system as described in Table 1 has an echo signal

duration of 10 ms. To guarantee a real‐time capability, the
complete calculation of the 2.15 ⋅ 1010 TLS‐MP tasks must be
finished within one echo window of less than 10 ms. If a state‐
of‐the‐art space‐qualified FPGA shall be used, a DSP
computing performance of more than 8 TeraMACs and a
speed of 850 MHz is available (e.g. XILINX Kintex UltraScale
XCKU085). It is known that the computational complexity via
O and MACs cannot be directly compared, so they shall lead to
only a rough order of magnitude for our proof. Taking into

TABLE 1 Assumed typical parameters of a spaceborne synthetic
aperture radar for angle of arrival estimation

Description Parameter Value

Transmit peak‐power PTx 3.8 kW

Total radar system losses asys 4.0 dB

Orbit height h 600 km

Antenna tilt angle w.r.t. nadir Θtilt 27.25°

Off‐nadir steering angle of antenna Θ 15° … 39.5°

Swath width W 351 km

Signal centre frequency fc 9.3 GHz

Signal bandwidth B 100 MHz

Pulse duration τp 120 μs

Angular pulse extent χΘ 5.2° …1.1°

IF signal sampling frequency fS 1.2 ⋅ B
(120 MHz)

Total antenna length in elevation lel 4.2 m

Total antenna length in azimuth laz 8.0 m

No. of receive antenna elements
In elevation

Nel 54

No. of receive antenna elements
In azimuth

Naz 8

Receive antenna element separation In
azimuth

daz 1.0 m

Receive antenna element separation In
elevation

del 7.7 cm

Mean HPBW after DBF HPBWDBF 0.44°

Abbreviations: DBF, digital beam‐forming; HPBW, half‐power beamwidth.
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account that the capacity of the FPGA allows also for paral-
lelization of the 40 bandpass filtered signals, and of at least 100
range samples in parallel, the calculation is finished within
(2.15 ⋅ 1010/(40 ⋅ 100))/850 ⋅ 106 1/s = 6.3 ms. Apart from the
fact that a more optimized implementation and the FPGA’s
capacity allow for even more parallelized tasks, the processing
time is already shorter than the maximum duration of an echo
window. A real‐time implementation can hence be guaranteed.
With respect to the block diagram of Figure 7 all main pro-
cessing tasks up to elevation DBF can be computed on a single
FPGA. While MUSIC and ESPRIT are in a completely
different order of computational complexity, even with high‐
performance FPGAs they cannot be processed in time.

4.2 | Angular estimation of a single point
target

All simulations of this section serve to study the MP method's
fundamental behaviour and performance via individual point
targets. In a self‐developed Python routine, a full DBF‐radar
simulation setup including the transmitted chirp signal, noise,
and a realistic geometrical spaceborne model, has been

implemented for this task. It is known that MUSIC and
ESPRIT can be applied only on narrowband signals. With
respect to B = 100 MHz, truly a broadband signal is used, and
further adapted preprocessing steps are required (e.g. range‐
compression). Because this would lead to a deceptive com-
parison, we decided to omit this analysis.
Varying SNR: It is expected, that for higher SNR, the

AoA can be estimated more accurately. The simulation result,
given in this paragraph, should prove this prediction and
show the accuracy in comparison to the CBF with rectangular
windowing. For the simulations, a point target was located at
ϑ = + 1.5° from antenna broadside direction (Θ = 28.75°)
and its specific target scattering coefficient was varied at a
constant noise level to realize a SNR‐range from 0.0 to
35.0 dB. Figure 9 shows the Root‐Mean‐Square Error
(RMSE) of the estimated angle with respect to the expecta-
tion value E[…]:

RMSEð�ϑÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½�ϑ − ϑ
q

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bias2ð�ϑÞ
q

þ varð�ϑÞ: ð20Þ

The result was obtained after a Monte Carlo simulation
with a total number of 100 independent trials. In general, it can
be observed that the variance decreases with increasing SNR,
which stands in direct agreement with the results of the CRLB
in [6]. A further general observation is that all three methods
for SNR values > 12 dB display a weak dependence of the
RMSE and that the CBF has a higher error. This result also
stands fully in agreement with the observations made in [26].
Length of the Full Antenna Array: In this consideration,

due to the relatively high bias of the CBF method in Figure 9,
the result was omitted to show the trend of the MP more
precisely. In this section, the dependence of the variance solely
on different electrical antenna lengths l is analysed. This
analysis is carried out, therefore, in the absence of noise and no
additional averaging techniques are applied. To change the full

F I GURE 9 Root mean square error of the estimated angle with
respect to the expectation value over varying signal‐to‐noise ratios. MP:
matrix pencil (L = 2), TLS‐MP: total least squares matrix pencil (L = 2),
CBF: conventional beam‐former with rectangular windowing

(a)

(b)

F I GURE 8 Computational complexity of common estimation
algorithms ESPRIT, estimation of signal parameters using rotational
invariance techniques; TLS, total least squares
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antenna length, it is either possible to vary the number of el-
ements or to vary the element separation. Both cases are
treated next.
A direct comparison between Figure 10a and Figure 10b

shows that after a minimum electrical antenna length of
approximately 3.0 m, the results are equal regardless of
whether NRx or d is varied. Because the HPBW of a smaller
antenna would be greater than 1.3°, which is not suitable for
our DBF concepts, this limit can be accepted. The bias of less
than 0.0015°, which decreases with increasing antenna length,
is negligible for SAR applications. The observed bias value is
not an effect of the SNR, since there was no noise added in
this simulation. In view of the observations noted in the next
paragraph, an explanation lies in the angular position of the
target at Θ = 28.75°, which brings a systematic error with
respect to the antenna steering angle. If the target were exactly
at antenna broadside direction (Θ = 27.25°), there would be no
dependence on the antenna aperture size or number of
elements.
The authors do not want to hide that implausible results

may generally occur and lead to a NaN if the matrix cannot be
solved. Especially in Figure 10b at an antenna length of
approx. 1.0 m this can be observed.

Varying Steering Angle: The CRLB predicts that the ac-
curacy of the estimated angle decreases with increasing AoA
from antenna broadside direction. The simulation shows in
Figure 11 that the bias rises linearly up to 0.01° at the edges of
the swath. Because this deviation leads to a noticeable
contribution with respect to our maximum tolerable accuracy
of δMP = 0.05°, this effect must be accounted for.
For comparison also the result of the CBF is shown. As

expected, the deviation is approx. 10 times larger than for the
TLS‐MP, and there is a significant influence of the grating
lobes noticeable.

4.3 | Multiple individual targets

In the scenario considered here, two point targets at
Θ1 = 30.0° and Θ2 = 30.05° have been simulated. While the
first target has a constant radar cross‐section (RCS), the RCS of
the second target was varied with respect to the first one in the
range −50 dB …50 dB. Noise perturbation was neglected.
The plot in Figure 12a shows the estimated AoAs with the

two largest eigenvalues of Equation (10), L = NTar = 2. One
can see that the targets with an angular separation of just 0.05°
can be sufficiently resolved if the relative difference between
the two RCS is less than ±20 dB. We note, for instance, within
an RCS range of [20 dB, 50 dB], no information about the AoA
can be given, since the low RCS of the second target is
completely dominated by the first. Outside the bounds of
[−30 dB, 30 dB], the second target response appears as noise
and both estimated angles correspond to the strongest target.
However, there is mutual interaction between the two targets
and the expectation values could not be exactly reached with a
negligible bias of +/−0.003°.
In another case, also two point targets have been simulated.

But the TLS‐MP was calculated on purpose with the wrong
assumption L = 2, NTar = 1. The result in Figure 12b shows a
step at a relative RCS of 0.0 dB and that the angle of one of the
two targets could be estimated without any bias.

(a)

(b)

F I GURE 1 0 Root mean square error of the estimated angle with
respect to the expected value over varying antenna length

F I GURE 1 1 Root mean square error of the estimated angle with
respect to the expectation value over varying steering angle
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4.4 | Targets with spatial extension

Up to now, only basic angular estimation tasks with discrete
point targets have been considered. This is beneficial to get an
impression of which way the MP behaves in different cases.
Since spaceborne SAR is inherently used for imaging of large
distributed scatterers, for example forests or crops, a simula-
tion is necessary, which proofs the suitability of the MP
method for such areas of operation. Especially the influence of
numerous scatterers with random individual phases distributed
over the antenna footprint in azimuth and elevation shall be
analysed via this simulation.
Our self‐developed simulation tool takes the geometrical

and radar parameters of Table 1 to simulate a realistic radar
receive signal. By using an original SAR image, acquired with
the radar satellite TerraSAR‐X [27], we implemented a scat-
tering model. The original scene (cf. Figure 13) has been taken,
reshaped to the maximum scanning angle along elevation
(Θ = 15° … 39.5°) and a quasi‐azimuth extension of 22.0 km.
The radar receive signal at the receive antenna elements is
generated by summing up all chirp signal echoes within the

footprint. Basically, individual chirp signals are shot and re-
flected at 10 point targets per resolution cell to emulate a
distributed scattering scenario. By adding noise, the amplitude
of the receive signal was scaled to a dynamic SNR variation of
10 …25 dB. Finally, this approach generates a quasi‐realistic
radar receive signal from a large number of individual
distributed scatterers. Figure 13b shows the equivalent range
profile of the receive signal’s SNR for this scene.
Following the processing scheme, which was suggested

in Section 3.5, the TLS‐MP with bandpass filtering was
applied on the simulated radar raw data. In Figure 14a we
can see the corresponding plot showing the RMSE of the
estimated angle versus the true AoA. While the trend itself
is very similar to that shown in Figure 11, the absolute
amount of deviation is more significant in this case. Obvi-
ously, the main contribution to the angular deviation results
from antenna steering and not from variation in the RCS.
Initially we accept this result because it fully applies to our
requirements. In further studies we will analyse distributed
scattering scenarios—and especially the influence of the
bandpass filters—in more detail.
We also applied the CBF method on the same data with

bandpass division of the received signal for comparison. Due
to del ≫ λ/2, ambiguities resulting from grating lobes have
been ignored via plausibility reasons because they lie outside

(a)

(b)

F I GURE 1 2 Estimated angle for two simulated point targets at
Θ1 = 30.0° and Θ2 = 30.05° with varying relative radar cross sections

(a)

(b)

F I GURE 1 3 Original synthetic aperture radar scene and extracted
range profile
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the swath. A key result of this analysis can be found in
Figure 14b. It seems that the RMSE is in the order of the
antenna HPBW in elevation. This proves basically that CBF
can also be applied for this task; however, it provides only low
and insufficient accuracy for our purpose.

5 | CONCLUSION

While the most accurate and public available global DEM is
the one of the TanDEM‐X mission with a 90 m grid and a
<10 m height accuracy, its memory size is 0.5 TByte [28]. In
terms of accuracy, this may be sufficient. However, the data
may not be up to date, and there is a dependency on the
source. Thus, this study aims to find an effective and highly
accurate method to correct for antenna mispointing in the
presence of topography for future spaceborne DBF‐SAR and
MIMO‐SAR. It has been found that the MP serves as a proper
candidate for this ambition. Apart from a basic derivation of
the MP method, additional improvements and adaptions to
SAR and possible practical implementation are described. A
series of promising simulation results shows the capabilities
and key benefits of the MP for topography‐adaptive DBF in
future SAR.

It was previously known that the accuracy of the MP im-
proves for higher SNR, larger antenna lengths, or averaging over
independent snapshots. This paper completely confirms these
predictions and gives, in addition, an impression about the
quantitative sensitivity of the MP method. We also found that
after reaching a certain threshold limit of all the analysed pa-
rameters, the required accuracy is reached, and there is no need
for additional requirements on the typical DBF‐SAR sensor.
However, it must be taken into account that averaging over
several snapshots in azimuth direction and the described band-
pass filtering approach are crucial implementations.
The MP can even be applied in scenarios where the

other algorithms completely fail to work (e.g. extended tar-
gets). This is because most of the other estimators have
been derived for discrete AoA detection in communications
with non‐uniform spatial PSD distributions. While the
advanced version of the MP with a combination of TLS and
bandpass filtering is highly related to the DBF‐SAR signal
model, the FB MP finds no application. However, one of
the major advantages of the MP is the very fast computa-
tion without the need for a correlation matrix. This satisfies
the implementation in real‐time on‐board of a satellite to
enable topography‐adaptive DBF.
This first paper about the MP method in DBF‐SAR

serves as the fundamental basis for further studies in this
field. In future work, it is planned to run further simulations
and improvements on the MP method. In addition, we plan a
practical verification via measurement results of a true
SAR scene with the new airborne DBF‐SAR sensor of the
German Aerospace Centre with 12 digital receive channels in
X‐band [29].
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APPENDICES

Mathematical solut ion of the matrix penci l
This appendix mathematically describes the solution of the
equation system in Equation (10).
After singular value decomposition of Equation (8) and

Equation (9) we get respectively:

Y 0 ¼ Λ ⋅ Ξ ⋅ V ð21Þ

and

Y 1 ¼ Λ ⋅ Ξ ⋅ Ψ ⋅ V ð22Þ

with

Λ ¼

1 1 ⋯ 1

z0 z1 ⋯ zNTar−1

⋮ ⋮ ⋱ ⋮

zNRx−L−1
0 zNRx−L−1

1 ⋯ zNRx−L−1
NTar−1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; ð23Þ

Ξ¼

A0 0 ⋯ 0
0 A1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ANTar−1

2

6
6
4

3

7
7
5; ð24Þ

V ¼

1 z0 ⋯ zL−1
0

1 z1 ⋯ zL−1
1

⋮ ⋮ ⋱ ⋮
1 zNTar−1 ⋯ zL−1

NTar−1

2

6
6
6
6
4

3

7
7
7
7
5

ð25Þ

and

Ψ¼

z0 0 ⋯ 0
0 z1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ zNTar−1

2

6
6
4

3

7
7
5: ð26Þ

The matrix pencil:

Y 1 − η ⋅ Y 0 ¼ Λ ⋅ Ξ ⋅ Ψ − η ⋅ Ið Þ ⋅ V ð27Þ
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has the rank NTar if NTar ≤ L ≤ NRx − NTar, while this rank can
be reduced to NTar − 1, if η = zm. Noting that I is the identity
matrix. Therefore, zm can be denoted as the generalized ei-
genvalues of Y 1;Y 0f g. Accordingly, it is also valid to write

Y 1 ⋅ Γm ¼ zm ⋅ Y 0 ⋅ Γm; ð28Þ

where Γm denotes the generalized eigenvector corresponding
to zm. Equation (28) can be rearranged to the form

Y †
0 ⋅ Y 1 − zm ⋅ I

� �
⋅ Γm ¼ 0; ð29Þ

which shows that the values for zm can be obtained by
calculating the eigenvalues of Y †

0 ⋅ Y 1. Noting that † represents
the Moore‐Penrose pseudo inverse.

Estimation of the signal ‐ to ‐noise rat io on
receive
From chapter IV we know that the MP method requires at
least 10 dB SNR of the radar receive signal. In the following we
prove that in a true spaceborne scenario this limit can be
achieved. We note that the MP uses the signal of a single pulse
echo and the radar equation in its basic form can be applied for
this estimation.

In a first step we make use of the parameters listed in
Table 1. To calculate the area on ground associated with the
pulse echo Afoot the angular pulse extent in elevation is
required. With respect to [18] for τp = 3.0 μs the angular pulse
extent is 0.07° (effective pulse duration after bandpass divi-
sion). The azimuthal width of the antenna footprint can be
calculated via the HPBW for the single‐element aperture
laz = 8.0/8 m and leads to a width of 22 km at the swath
centre. This results to Afoot ≈ 12 km2.
While for transmission a single elevation row of the full

antenna aperture is used on receive, we can take benefit of the
DBF technique and use the full available aperture. Thus, the
transmit and receive antenna gains are GTx = 38.7 dBi and
GRx = 56 dBi, respectively. The expected receive power can be
calculated via the radar equation:

PRx ¼ PTx ⋅
GTx ⋅ GRx ⋅ λ2 ⋅ σ0 ⋅ Afoot
ð4πÞ3 ⋅ R4 ⋅ asys

; ð30Þ

while σ0 denotes the differential scattering coefficient and R is
the slant range radar—target at the swath centre. With a mean
σ0 of −10 dB and R = 675 km, we obtain PRx = −79 dBm.
Finally, by considering the Johnson–Nyquist noise power

Pnoise = kB ⋅ T0 ⋅ B ⋅ asys, the SNR is 11.4 dB. Accordingly, the
requirement is fulfilled for the assumed case.
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