
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

Extending Simple Online Realtime Tracking
with Sparse Optical Flow

Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science

eingereicht von: Falko Becker
geboren am: 03.03.1980
geboren in: Magdeburg

Gutachter: Prof. Dr.-Ing. Peter Eisert (Humboldt-Universität zu
Berlin)
M.Sc. Nils Kornfeld (Deutsches Zentrum für Luft-
und Raumfahrt e.V.)

eingereicht am: verteidigt am:

Abstract

Detection and tracking of objects in video data is a common topic in
computer vision and widely used for traffic surveillance. Simple Online and
Realtime Tracking (SORT) is a Multi-Object Tracking (MOT) algorithm
which performs in realtime by using efficient algorithms. SORT’s tracking
performance is based on detection quality and may suffer due to detection
failures. This work proposes an extension to SORT’s Kalman filter measure-
ment model with Robust Local Optical Flow to add a velocity component to
the filter’s update vector and improve robustness against detection failures
and decrease track id switches. The elaborated extension, termed SORT_OF,
is tested and benchmarked on parts of the MOT15 tracking benchmark as
well as on a self created benchmark representing a DLR real world scenario.
The proposed tracking method still works in realtime.

Contents 3

Contents
List of Figures 4

List of Tables 4

1. Introduction 5
1.1. Contributions . 6
1.2. Outline . 7

2. Preliminaries 7
2.1. Tracking . 7
2.2. The Kalman Filter . 8
2.3. Linear Assignment Problem . 10
2.4. Intersection-Over-Union . 10
2.5. Keypoints . 11
2.6. Optical Flow . 11

3. SORT 12

4. Research 14
4.1. Research Question . 14
4.2. Related Work . 14

5. Implementation - SORT_OF 18
5.1. First Approach - Replacing the Kalman Filter with Tracked Feature

Points . 18
5.2. Second Approach - Extending the Kalman Filter Measurement Model 20

6. Evaluation 26
6.1. Benchmark and Metrics . 26
6.2. Results . 27
6.3. Ethics . 30

7. Conclusion 30

Appendices 32

Bibliography 37

Selbständigkeitserklärung 41

Lists of Figures and Tables 4

List of Figures
1. A typical DLR traffic scene . 5
2. Operation of the Kalman filter . 9
3. Intersection over union with bounding boxes 11
4. Visualization of the optical flow . 12
5. False positives from Shi-Tomasi . 19
6. ORB vs. Shi-Tomasi vs. FAST . 21
7. Measurement matrices for different update cases 24
8. MOTA vs. IDs over TLost on SHAN-1 data set 29

List of Tables
1. Kalman filter update scenarios and how they are processed 24
2. MOT15 overall results for TLost = 1 and TLost = 25 28
3. SHAN-1 results for TLost = 10, TLost = 12 28
4. Runtime performances . 29
5. Properties MOT15 data sets (static camera) 34
6. Properties SHAN-1 set . 34
7. SORT on MOT15 data set (static camera) detailed results 35
8. SORT_OF on MOT15 data set (static camera) detailed results . . 35
9. SORT vs. SORT_OF on SHAN-1 data set 36

1 Introduction 5

“I’ve seen things you people wouldn’t believe. Attack ships on fire
off shoulder of Orion. I watched c-beams glitter in the dark near the
Tannhäuser Gate. All those moments will be lost in time, like tears in
rain.”

- Roy Batty to Rick Deckard in Ridley Scott’s Blade Runner, 1982

1. Introduction
As part of ongoing projects a research group at the German Aerospace Center,
Institute of Transportation Systems (Deutsches Zentrum für Luft- und Raumfahrt
e.V., Institut für Verkehrssystemtechnik, DLR), deals with video data for traffic
surveillance (figure 1). The video data is used to detect and track traffic participants
on a certain scene, usually a crossroad or intersection. With the gathered data
from the tracks new simulations can be run, for example to predict the effect
of the traffic flow on the environment, analyze critical situations between traffic
participants to improve traffic safety as well as for statistical reasons. The detection
and tracking (see 2.1) is done live or offline, but in the latter case still in real
time on already collected video data. To accomplish this task, a combination of

Figure 1: A typical DLR traffic scene

both object detection and tracking methods is used. Object detection is a task
in computer vision, which uses an image classifier to figure out what is present in
the image and where. This can be accomplished through the use of Convolutional
Neural Networks (CNNs) which makes it possible to detect and classify multiple

1 Introduction 6

objects in a single pass of an image. The detected object is fully enclosed in a
bounding box, describing its location in the image. With the help of a tracking
algorithm one can then identify the detected object over a period of time, usually
while it is present in the scene.

Tracking of objects in visual data is a challenging and complex task, especially
when done online and in real world scenarios. Missing tracks, re-identification of
objects after occlusions or reassigning a new id to an already tracked object, even
without any occlusions, are only some challenges to overcome. Janz showed in his
thesis [1] that especially track id switches in the area of traffic surveillance are of
high significance and should be as small as possible. Online applications which are
supposed to run in realtime share the problem of not having any information about
future events. Although tracking objects in an offline scenario is still a demanding
task, it offers the advantage to leverage from future information as well.

The SORT [2] method is a tracking algorithm which runs in real time using only
the provided detections, represented as bounding boxes in 2D image space, from a
CNN. SORT’s tracking performance relies heavily on the provided detections and
missing detections can lead to lost tracks or track id switches.

But tracking can not only be done with the information about bounding boxes,
there are also approaches to use visual information from the provided image directly.
The concept of optical flow (see 2.6) provides motion vectors which can be exploited
to track previously calculated keypoints (see 2.5). Although the calculation of
optical flow can be computationally expensive there are approaches to work in
realtime (see 4.2).

The proposed method uses the Robust Local Optical Flow [3] method to track fea-
ture points, calculated by OpenCVs1 Oriented FAST and Rotation Aware BRIEF [4]
key point detector. The derived motion vectors are then combined with the SORT
tracking method to achieve a higher accuracy and be more failsafe against track id
switches. The extended tracking algorithm is benchmarked and evaluated on parts
of the MOT15 [5] benchmark and a self created benchmark based on DLR data.

1.1. Contributions

With this thesis, the author contributes the following:
• An implementation of an extension with sparse optical flow to the SORT

tracking algorithm 5.2.
• A data set with ground truth for tracks on a DLR real world scenario 6.1 for

benchmarking.
1https://www.opencv.org

https://www.opencv.org

2 Preliminaries 7

• Evaluation of the elaborated extension on the MOT15 [5] and DLR data
sets 6.2.

• An implementation of the original SORT in C++ 5.2.

1.2. Outline

The thesis is organised as follows: section 2 introduces key concepts and relevant
theory, laying the foundation of this work. The SORT tracking algorithm is
described in chapter 3. The research question is then defined in section 4 which
also gives a brief overview on recent work on multiple object tracking, optical flow
and feature point detection. Followed by the implementation details described in
section 5, the used metrics and benchmarks to evaluate the implementation and
the results are described in section 6. Chapter 7 presents the conclusion as well as
ideas for future work.

2. Preliminaries
This section covers basic terms and concepts as well as algorithms and methods
which lay the foundation of this thesis.

2.1. Tracking

Tracking objects in image data is the process of locating an object over time in this
data and if there is more than one object to track in the scene it is referred to as
multiple object tracking (MOT). The source material can be provided for example
by a camera, a video file, a radar or lidar. In the scope of this thesis the source
material are single images as a sequence. For us humans it is pretty easy to tell if
the red car which passes from left to right in a video sequence is the same all the
way. For a computer system this is a difficult task with several problems to solve,
depending on the complexity of the scene. Compared to tracking only one object,
MOT can be really challenging as each object in the scene has to be detected first
and then assigned to its own track. For example, tracking a red dot which moves
on a white surface is less demanding than tracking multiple participants in a traffic
scenario with changing illumination and occlusion situations.
Tracking algorithms can be divided into two fields: batch and online methods.

While batch methods can exploit future information, online methods on the other
hand can only make use of present and past information.

2 Preliminaries 8

Tracking by Detection To determine which objects need to be tracked the objects
need to be detected first. Doing this by hand is not applicable to a real world use
case, especially in the case of MOT, because new objects can enter or leave the
scene rather quickly. But with the improvement of visual object detection through
the use of deep learning and neural networks over the last years, recent research
in MOT has focused on the so called tracking-by-detection paradigm. Within
this paradigm, objects are detected by a properly trained neural network first and
the detections are then used for further processing. The detections are usually
provided as bounding boxes, a rectangle around the detected object described in
2D coordinates in image space.

2.2. The Kalman Filter

This section only provides a very brief introduction to the Kalman filter, for a more
detailed insight, see Welch et al. [6].

The Kalman filter[7] is an algorithm to produce estimates of unknown variables.
To accomplish this task the algorithm uses a series of measurements over time,
which contain statistical noise. The estimated variables tend to be more accurate
than those based on a single measurement alone. The algorithm works in a two-
step process. First, in the prediction step (also known as time update), the filter
calculates estimates of the current state variables out of the previous state and the
motion model. Second, in the update step (also known as correction), the estimates
are calculated again, but with the aid of the measurements.

The Kalman filter consists of several matrices, which will be described a bit more
detailed. First one needs to describe the state of the problem xk at time step k.
This multidimensional vector contains observable values as well as values one can’t
observe but which describe the state of the model. Further matrices defining the
Kalman filtering conditions are [6]:

• F , the state transition matrix (sometimes called A, also called the transfer
matrix or transition matrix). This matrix describes "where" the state vector
moves from one time step k to the next. When xk is the n-dimensional state
vector, F is n× n dimensional.

• H, the measurement matrix describes which values of xk will be updated
by measurements. When xk is the n-dimensional state vector and zk is the
m-dimensional measurement vector, H is m× n dimensional.

• Q, the process noise matrix, describing how much the estimated state is

2 Preliminaries 9

allowed to differ from the model between steps. When xk is the n-dimensional
state vector, Q is n× n dimensional.

• R, the measurement noise matrix, describing the uncertainty within the
measurement process. When zk is the m-dimensional measurement vector, R
is m×m dimensional.

• P , the covariance matrix. For the initial step, this matrix is set with high
uncertainty. When xk is the n-dimensional state vector, P is n×n dimensional.

In section 5.2 as well as in appendix A it is shown how these matrices are designed
in practice . The complete operation of the Kalman filter is shown in figure 2.
The variable K, the Kalman gain, is not described here, but think of it as a factor
which tells the filter how to weigh new measurements against what the filter already
"knows". The loop shown in figure 2 can also run without the update step. This
is usually the case when no measurement update is available, for example due to
sensor failure. But of course it will lead to higher uncertainties in P .
As one can see the Kalman filter uses only the previously calculated estimates

and the present input measurements, thus no additional information from the past
is required, making it possible to run the filter online.

Prediction step (time update)

1. Project the state ahead
x−

k = Fxk−1

2. Project the error covariance ahead
P −

k = HPk−1HT + Q

Update step (correction)

1. Compute the Kalman Gain
Kk = P −

k HT (HP −
k HT + R)−1

2. Update the estimate with measurement zk

xk = x−
k + Kk(zk −Hx−

k)

3. Update the error covariance
Pk = (I −KkH)P −

k

Initial estimates for
xk−1 and Pk−1

Figure 2: Operation of the Kalman filter
Scheme after Welch et al. [6, p. 6], x−

k is the a priori state vector and P −
k the a priori estimate

error covariance.

2 Preliminaries 10

Mahalanobis Distance Since the Kalman filter itself provides no way to reject bad
measurements a metric to accomplish this task is needed. The Mahalanobis distance
is a statistical measure of the distance of a point from a Gaussian distribution,
introduced in 1930 [8]. Since the state in the Kalman filter is nothing else than
such a distribution, the Mahalanobis distance gives a decent metric to distinguish
between good and bad measurements. It is defined [9] as

Dm =
√

(x− y)TS−1(x− y)

with x as the observation, y the mean and S the covariance matrix of the collected
data.

2.3. Linear Assignment Problem

When it comes to multiple object tracking with the tracking-by-detection paradigm
one major problem is to assign the incoming detections to existing tracks. Or, if this
is not possible, to create new tracks. This association problem can be formulated as
a linear assignment problem [2] which then can be solved using suitable algorithms.
Informally, one can describe the assignment problem as follows: a given n× n cost
matrix C = (cji) and one wants to match each row to a different column in such a
way that the sum of the corresponding entries is minimized. In other words, when
C represents detections and tracks, respectively, each detection is assigned to a
track. The next section explains with what values, the costs, the matrix can be
filled.
One common method to solve this problem is the Hungarian method[10] with

a time complexity of O(n3) [11]. A less common algorithm to solve the linear
assignment problem but with uniformly lower computation time is the Jonker-
Volgenant method[11].

2.4. Intersection-Over-Union

Intersection over union (IOU), also known as the Jaccard index, is, generally spoken,
a measure for the similarity of quantities. Given two finite sets A,B, the index J
is calculated by dividing the size of the intersection by the size of the union of the
sets:

J(A,B) = | A ∩B |
| A ∪B |

In the given scenario let A and B be the areas of the bounding boxes provided by
the object detection, illustrated in figure 3. The intersection over union can be

2 Preliminaries 11

used as a metric and the calculated value can then be used to fill the cost matrix
from section 2.3.

IOU = Area of Intersection
Area of Union

Figure 3: Intersection over union with bounding boxes

2.5. Keypoints

A keypoint, also called a feature point or feature, is a small portion of an image
that, for one reason or another, is unusually distinctive, describing an "interesting"
region in the image. Keypoints can be used to create a signature for the image and
to locate the "interesting" region in another, related image. Distinctive points are
usually corners, edges or areas which vary in color or intensity.

2.6. Optical Flow

The concept of optical flow describes the pattern of motion of objects in an image
sequence caused by the relative motion between the observer and the scene. Typical
use cases are motion estimation of an object in a scene, image stabilizing of video
cameras or motion compensation in video compression algorithms.
In terms of computer vision, you can say that for each pixel in image one, you

want to know where the pixel in image two moved to. Common optical flow
algorithms assume that the observed object persists in time, meaning that the
intensity of a small region in two consecutive frames remain the same. This can be
formulated with

I(x, y, t) = I(x+ uδt, y + vδt, t+ δt)

where I(x, y, t) is the image intensity, x, y the pixel position, u, v the corresponding
motion vector and t the frame number. Chapter 4.2 gives a brief overview on
different research approaches to solve this equation.

3 SORT 12

(a) Rotating sphere (b) Optical flow field

Figure 4: Visualization of the optical flow
Images courtesy of Computer Vision Research Group, Department of Computer Science,

University of Otago, Dunedin, New Zealand, http://of-eval.sourceforge.net/, accessed:
October 1, 2020

Furthermore, a distinction is made between the so called dense and sparse optical
flow. The former calculates the motion vector for every pixel in the image while
the latter track only a subset of certain feature points. Figure 4 illustrates the
motion vector field calculated by dense optical flow for a rotating sphere. The
computational cost for dense optical flow is quite high, hence it is usually used in
academic fields or for use cases where online functionality is not an issue. As for
sparse optical flow, computational cost compared to dense optical flow algorithms is
low, making it a suitable technique for practical applications in realtime scenarios.
As already stated in the title, this work makes use of sparse optical flow.

3. SORT
This section describes the 2016 proposed Simple Online and Realtime Tracking
method (SORT) [2] by Bewley et al., a tracking framework to address the MOT
problem in realtime scenarios.

Basic Procedure SORT works by the tracking-by-detection paradigm (see 2.1),
hence it highly depends on the quality of the provided output of the object detec-
tion. It is an online tracking algorithm (see 2.1), that is has no access to future
information of the scenario. The detection output is provided by a convolutional
neural network (CNN) detector in the form of bounding boxes around the detected
objects. Coordinates of these bounding boxes are in 2D image space. Using key
concepts and algorithms described in 2.1, 2.2, 2.3 and 2.4 the basic procedure of
SORT is:

• Get detections from the CNN. If this is is the very first frame then only new
tracks will be created. Each track has its own Kalman filter.

http://of-eval.sourceforge.net/

3 SORT 13

• Propagate tracks with the Kalman filter in the next frame.

• Compute intersection-over-union of all detections and propagated tracks.

• Associate detections to tracks based on the IOU distance.

• Update the track’s Kalman filter with the associated detection.

• Filter out lost tracks, tracks with low IOU distance or create new tracks.

Estimation Model As stated above, each track (also called target) has its own
Kalman filter. The state of each target in the Kalman filter is modeled as:

xk = [u, v, s, r, u̇, v̇, ṡ].

In this state, u and v represent the center of the target’s bounding box as pixel
coordinates, s is the scale (area) and r is the aspect ratio of that bounding box.
u̇, v̇, ṡ are the velocity components. The aspect ratio is considered to be constant.
When a tracker is associated with a bounding box from the CNN the tracker’s
state is updated with that detection. The velocity components are solved by the
Kalman filter. If a target has no associated detection, the state is simply predicted
without the measurement step (see 2.2, 2).

Data Association To address the assignment problem between existing tracks and
detections (see 2.3) SORT uses the intersection-over-union between each detection
and every existing target. These values are used to fill a cost matrix which then
is solved by the Hungarian algorithm[10] to assign each track a proper detection.
The authors also impose a minimum IOU threshold to reject assignments where
the overlap between bounding box and target is less than IOUmin.

Deletion and Creation of Tracks To create a new track, the state in the Kalman
filter for the new track is initialized with the geometry of the bounding box. The
velocity is set to zero as it is not observable at this point. To describe this uncertainty
to the Kalman filter the covariance of the velocity component is initialized with
high values (see appendix A). And finally to prevent tracking of false positives the
new candidate needs to go through a probationary period of assigned detections.
Targets are deleted if no detection is assigned for a set threshold of TLost frames.

4 Research 14

Summary The SORT method makes a pragmatic and simple approach to deal
with multiple object tracking using classical yet efficient methods like the Kalman
filter [7] and the Hungarian method [10]. With this practice the algorithm achieves
high speed and reasonable accuracy ([2], also see 6.2), making it suitable for realtime
applications and scenarios. For example, on an AMD Ryzen7 3700X 4GHz machine
with 64GB memory, which is the machine used in this thesis for evaluation, the
original Python implementation2 runs at 1100 FPS on the MOT15 [5] benchmark.
Nevertheless the results are highly dependent on the performance of the used
detection framework, that is to say if it comes to detection failures SORT will loose
it’s accuracy. But the authors also claim to not focus on object re-identification or
being robust against detection errors.

4. Research
This section defines the research question and takes a glimpse on previous approaches
and developments in multiple object tracking, optical flow and key point detection.

4.1. Research Question

This thesis deals with the question if and how it is possible to enhance the Simple
Online and Realtime Tracking [2] algorithm with sparse optical flow in a way that
accuracy is improved, especially with regard to track id switches, but realtime
functionality is still maintained.

To accomplish this task, research focuses on similar tracking methods, different
optical flow and key point detection algorithms. With this as a basis a suitable
extension is elaborated and implemented.

4.2. Related Work

Multiple Object Tracking With the improvement of visual object detection over
the last years, recent research in MOT has focused on the tracking-by-detection
paradigm. Within this paradigm, object trajectories are usually found in a global
optimization problem that processes entire video batches at once.
Multiple Object Tracking Using K-Shortest Paths Optimization [12] for example

uses network flows to accomplish this task. But due to batch processing this and
similar methods are not applicable to our online scenario.

2https://github.com/abewley/sort

4 Research 15

Online processing methods on the other hand try to solve the data association
problem for example determinative (for example with the Hungarian [10] algorithm
in [2], [13] or with greedy association [14]). Tracking by Decision Making [15] aims
to build appearance models to re-identify objects over a period of time. In addition
to appearance models, motion is often incorporated to assist association detections
to tracklets, described in The Way They Move [16].
DeepSORT [13] for example extends the original SORT method to integrate

appearance information based on a deep appearance descriptor. By this addition the
tracker becomes less prone to occlusion problems or id switches caused by occlusion
or missing detections. The downside of this approach is an offline pre-training
stage for the association metric and the complex computation of the convolutional
neural network. Yet this approach still operates in real time.
High-Speed Tracking-by-Detection Without Using Image Information [14] is a

simple intersection-over-union tracker which only uses an IOU metric from the
provided detections. Hence it is extremely fast but relies highly on the object
detection which leads to accuracy problems in realtime environments. Yet this
method has been improved in Extending IOU Based Multi-Object Tracking by
Visual Information [17] by adding visual information in form of the KCF tracker,
proposed in High-Speed Tracking with Kernelized Correlation Filters [18].

Optical Flow As a common topic in computer vision ideas for the computation of
optical flow and different approaches have evolved over the past years. As described
in section 2.6, a common technique is to assume that brightness is constant in two
consecutive frames. This is formulated with:

I(x, y, t) = I(x+ uδt, y + vδt, t+ δt)

The 1981 proposed method by Horn et al. [19] solved this equation by expanding
it as a first order Taylor series and adding a soft spatial coherence as a second
assumption to the brightness constancy. This approach is also called a global
approach. The also in 1981 proposed method from Lucas et al. [20] replaces the
global constraint with a local one in which the motion vectors are expected to be
constant in a small region. Both methods assume that the motion between two
consecutive frames is very small which is often not the case in real world scenarios.
To address this problem a hierarchical procedure is used, where the flow is first
calculated on a coarser scale and then successively refined on a finer scale. This
technique is also used in OpenCV’s implementation of the Lucas-Kanade method,
described by Bouguet[21]. FOLKI [22], proposed in 2005 by Le Besnerais et al.,

4 Research 16

like Lucas-Kanade, uses a window-based registration, but with a specific Taylor
expansion. The 2013 proposed Large Displacement Optical Flow from Nearest
Neighbor Fields [23] also addresses this problem. In Robust Local Optical Flow
for Feature Tracking [3] (RLOF) from 2012 Senst et al. use a modified Hampel
estimator instead of the Least Squares estimator as Lucas-Kanade did, improving
robustness against outliers with only minimal impact to computational costs. The
RLOF method subsequently was improved, among other things with regard to
illumination changes and large displacements [24]–[26].

Other approaches to calculate the flow field are for example Farnebäck’s 2003 [27]
proposed method which uses polynomial expansion. The TV-L1 [28] method
by Zach et al. from 2007 uses variational methods and the L1 norm to increase
robustness against illumination changes, occlusions and image noise. Fast Optical
Flow Using Dense Inverse Search [29] by Kroeger et al. from 2016 focuses on low
time complexity for the calculation of a dense flow field, to make dense flow suitable
for real-time applications.

With the recent development in machine learning, especially for computer vision
tasks, the problem to determine the optical flow has been transferred to this
research field as well [30]–[33]. DeepFlow: Large displacement optical flow with
deep matching [30] from 2013 by Weinzaepfel et al. proposes a descriptor matching
algorithm build upon a deep convolutional network structure. The 2020 proposed
RAFT: Recurrent All-Pairs Field Transforms for Optical Flow by Teed et al.
proposes a deep network architecture for optical flow, similar to Probabilistic Pixel-
Adaptive Refinement Networks [32], proposed in 2020 by Wannenwetsch et al.
Although these methods show promising results in terms of accuracy and robustness,
they lack realtime performance. For example RAFT needs 550ms per frame on a
1080p video [33, p. 14] and deepflow takes 20 seconds for flow computation on the
MPI-Sintel [30, p. 8] test set.
This work uses the Robust Local Optical Flow for tracking feature points.

Feature Point Detection As described in section 2.5 keypoints are distinctive
points in an image such as corners or edges. Early work focused on concepts
like corner detection and the most commonly used definition of a corner was
provided by Harris [34]. Harris calculated the pixel intensity for the image with an
autocorrelation function and corners are defined as places in the image where the
autocorrelation matrix has two large eigenvalues. Since the calculation of eigenvalues
is expensive Harris defined a function, also known as the Harris measure, which
compares the eigenvalues without requiring their explicit computation. The corners

4 Research 17

can then be found as local maximum of that function.
Shi and Tomasi [35] later found that "good" corners can be determined if the

smaller of the two eigenvalues was greater than a minimum threshold. This variant
proved to be sufficient and gave in many cases even better results than the Harris
feature detector and is often referred to as Good Features to Track.
Both Harris and Shi-Tomasi corner detections are not scale-invariant. This

problem was addressed with Scale Invariant Feature Transform (SIFT) [36]. The
algorithm can also create a feature point descriptor, which simply describes how
feature points differ from each other. Although SIFT offers a rich set on information
for found feature points it is relatively slow. The Speeded-Up Robust Features
(SURF) [37] improves the speed of keypoint and descriptor detection and is around
three times faster than SIFT but with comparable performance in terms of detection.
Nevertheless SURF is still too computationally expensive for real-time applications.
It should also be noted that both SIFT and SURF are patented.

The 2006 proposed Features from Accelerated Segments Test (FAST) [38] uses a
direct comparison between a point p and a set of points on a small circle around
p. The points on the ring are classified as either darker than p, lighter than p, or
similar to p. If the number of contiguous points in the arc containing only lighter
or darker points is more than half the total number of points defining the ring, p is
considered to be a feature point. To avoid the detection of multiple interest points
in adjacent locations, non-maximum suppression is applied. FAST, like the Harris
detector and the Shi-Tomasi detector does not calculate a feature point descriptor.

The Oriented FAST and Rotation Aware BRIEF feature (ORB) [4] from 2011 is
OpenCV’s3 own development to come up with a feature point detector alternative
to SIFT and SURF. The algorithm uses FAST for the feature point detection and
calculates the Harris measure for the located points. This is done to overcome
the problem that feature points computed from FAST respond to edges as well
as corners. The Harris measure is also used as a metric for feature quality and
can be used to choose the strongest feature points in an image. ORB also adds an
orientation to the located feature points, an attribute FAST is missing. In a second
stage ORB computes the feature descriptors with a variation of the BRIEF [39]
algorithm.
This work uses FAST and the first stage of ORB for feature point detection.

3https://www.opencv.org

https://www.opencv.org

5 Implementation - SORT_OF 18

5. Implementation - SORT_OF
This section covers the two implementation approaches. The first approach is
described with a brief methodology overview followed by its disadvantages. The
second attempt is described in more detail, explaining design decisions made
during the development process and technical details. In the first approach the
target’s Kalman filter model was tried to replace while in the second approach the
measurement model was extended. In both cases the solving of the data association
problem kept its original functionality.

5.1. First Approach - Replacing the Kalman Filter with
Tracked Feature Points

As described in section 3, SORT’s tracking quality highly depends on detection
quality. In this first attempt it was tried to always provide SORT with bounding
boxes for active tracks, eliminating missing detections from the CNN. The general
idea for this approach was to completely remove SORT’s Kalman filter model (see 3)
and replace it with a self developed algorithm. The provided detection from the
CNN was only used as an initial bounding box, a region of interest to detect feature
points in.

Brief Methodology Overview Firstly, feature points had to be detected in each
new emerging bounding box in the scene provided by the object detection. Then
the optical flow of these points had to be calculated to track them, which is basically
what the Kanade-Lucas-Tomasi (KLT) feature tracker [40] does. Additionally the
new position of each feature point is predicted with a Kalman filter model. The
state of a feature point was modeled as:

xk = [x, y, ẋ, ẏ],

where x, y are the pixel coordinates of the feature point and ẋ, ẏ their respective
velocities. This step was made to ensure that the tracked point didn’t get stuck
at visual barriers in the scene. With these steps combined, a predicted bounding
box for calculating the intersection over union is always provided, even if detection
output is missing. This could easily be achieved as the tracked feature points
provide a velocity and only that velocity was added to the 2D coordinates of the
initial bounding box.

5 Implementation - SORT_OF 19

Disadvantages But this attempt has a lot of drawbacks. First of all, there is
the detection of feature points, for which the Shi-Tomasi corner detector [35] was
used. The downside was that there was no guarantee that every detected feature
point was part of the object of interest (figure 5) which implies that it had to be
somehow tested if every feature points is part of the object. Secondly, the case that

Figure 5: False positives from Shi-Tomasi
The red dots marking the detected feature points which in the best case should be all on the

object.

a feature point got stuck on a visual barrier had to be handled. As already said,
every tracked feature point had its own Kalman filter which was updated every
frame with the new pixel position [x, y] calculated by the optical flow. After the
update process, the Mahalanobis distance against a certain threshold was checked.
If this threshold was exceeded, the actual point coordinates were switched against
the predicted ones for the optical flow calculation in the next frame. Although it
was achieved that the feature points were more robust against visual barriers, the
question on how to set the threshold for testing against the Mahalanobis distance
remained unanswered. Also, switching the feature points if they got stuck, will add
bad measurements into the Kalman filter framework, something one usually wants
to avoid.

Furthermore, with calculating the bounding box out of the tracked feature points
there was no influence on the aspect ratio of the bounding box. For example
imagine the following scenario: a camera watches a t-shaped crossroad from a
bird-eye view like angle and a car passes by from left to right. The bounding box
around the car would be the shape of a rectangle with a 4:3 aspect ratio. But if
the car turns, the aspect ratio of the bounding box should change.
Additionally, the method had no measurement or metric to decide which one

of the tracked feature points should be used to update the bounding box in its
position in image space. Instead, the average velocity of all feature points was used,
which, however, could be strongly distorted by the problems mentioned above.

And finally it is undefined when a track ends. SORT deletes an active track if
no detections can be associated in a given amount of time steps. In this approach
it was not defined if and how a track can end in image space. The track was only
deleted if the tracked key points moved outside the visual scene.

5 Implementation - SORT_OF 20

Summary It quickly became obvious that this approach had too many uncer-
tainties and corner cases to cover, making the implementation too complicated.
Because of this there was no evaluation done.

5.2. Second Approach - Extending the Kalman Filter
Measurement Model

With the experience from the first approach a more generic way was elaborated.
Instead of replacing SORT’s Kalman filter, the measurement model of SORT’s
Kalman filter is extended for a velocity component.

Methodology The following paragraphs describe the proposed method by ex-
plaining key steps, decisions in the development process and changes made to the
original SORT algorithm. This includes the extension of the measurement model,
determine feature points, calculation of the optical flow and the update process.

Extending the Measurement Model As described in section 3, SORT’s state

xk = [u, v, s, r, u̇, v̇, ṡ]

is updated with the center of the bounding box u, v, the scale s and the aspect
ratio r. Equation 2 shows the resulting measurement vector. The state variable x
has dimensions 7× 1 and z has dimensions 4× 1. By multiplying the matrices the
size of H can be deduced to 4× 7, as shown in equation 1.
Since the optical flow provides a velocity component the intention here is to

use this velocity as a measurement to additionally update u̇, v̇. With the velocity
components for u, v the update vector z is extended to [u, v, r, s, u̇, v̇] and the
measurement matrix H now becomes a 6× 7 matrix, shown in equations 3 and 4.

HSORT =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

 (1) zSORT = [u, v, s, r] (2)

5 Implementation - SORT_OF 21

HSORT _OF =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


(3) zSORT _OF = [u, v, r, s, u̇, v̇] (4)

Determine Feature Points Since the use of sparse optical flow was intended, as
a first step feature points to track had to be found. The first attempt used the
Shi-Tomasi corner detector [35]. This often lead to false positives, feature points
that are in the region of interest, but are not part of the actual object (figure 6).
This time the ORB feature detector [4] was used. As mentioned in section 4.2,

ORB tends to be more robust and also provides a metric to only output the n-
strongest corners. Although this does not imply that the n-strongest feature points
will be on the object of interest in any case, they will be ranked later to determine
the best for the update process. This ranking process, described in the next but
one paragraph, is computationally demanding and to keep the effort as low as
possible the number of calculated feature points are therefore limited. It should
also be added that with a higher number of feature points, the effort required to
calculate the optical flow increases. ORB is used only to detect key points, but
not to calculate the descriptors. Even though ORB tends do be more robust and

(a) ORB (b) Shi-Tomasi (c) FAST

Figure 6: ORB vs. Shi-Tomasi vs. FAST

the derived feature points are of decent quality, it is still possible that ORB fails
and a found key point is not part of the object. Therefore the feature points are
calculated new for every active track in every time step, also meaning that feature
points are tracked by the optical flow over two frames only.
In the case that ORB fails and provides no feature points, the FAST [38] key

point detector is used as backup. Due to the lack of a metric to measure feature
point quality FAST outputs a lot of false positives (figure 6) and is in this case
considered to be a "hit it by all means" - method. If FAST returns no feature points
as well, no optical flow for this track will be calculated in the current time step.

5 Implementation - SORT_OF 22

Optical Flow Calculation Although there are a lot of interesting approaches to
determine the optical flow (see 4.2), in the end it was decided to go with the Robust
Local Optical Flow (RLOF) method [3]. It is already implemented in the OpenCV
library4 which is used in this thesis for several reasons:

• It provides convenient ways of handling video data.
• It provides implementations of the ORB and FAST feature point detectors.
• It provides implementations of various optical flow algorithms.
• It provides an implementation of the Kalman filter algorithm.
• It has a Python API.

Since the original SORT implementation is in Python, the intention was to use it
as a basis in combination with OpenCV’s Python API. Unfortunately I had to
discover a bug5 in OpenCV’s implementation of the RLOF method when using the
Python API which could not be fixed in the processing time of this work. Hence
the implementation is written in C++, which is also OpenCV’s main development
language. For better comparability and to exclude any errors based on different
types or internal processes a reimplementation of the original SORT method in
C++ was done, too. The code for this reimplementation is publicly available6.

The implementation of RLOF in OpenCV returns a set of points pnext for a given
set of feature points pprev for which the optical flow was found on two sequential
images. Since the time step between those two images is dt = 1, the velocity of the
points can then be calculated as vnext = pnext − pprev.
In this implementation the feature points from the recent frame are the input

to calculate the optical flow to the previous frame, meaning the flow is calculated
"backwards". Hence, the leading sign has to be changed to get the velocity from
the frame before to the recent one. If no optical flow is found, the track will not be
updated with a velocity, but at least with a bounding box, if associated, which is
SORT’s original behaviour.

Detecting Bad Measurements This implementation approach also does not
provide a way to detect and reject bad measurements. Instead the measurements
to update the Kalman filter are ranked. This reduces the probability to update
with a bad measurement but of course does not completely prevents it. In this
case a bad measurement is the optical flow calculated from a feature point which
is not part of the object, got stuck on a visual barrier or an outlier. That is, if
all detected feature points are not part of the object, the target will be updated

4https://www.opencv.org
5https://github.com/opencv/opencv_contrib/issues/2663#issuecomment-708056333
6https://github.com/tylernewnoise/SORT_in_Cpp

https://www.opencv.org
https://github.com/opencv/opencv_contrib/issues/2663#issuecomment-708056333
https://github.com/tylernewnoise/SORT_in_Cpp

5 Implementation - SORT_OF 23

nevertheless with one velocity, which in this case will be false.
Therefore the Mahalanobis distance Dm is calculated (see 2.2) for each new

calculated velocity against the velocity in the Kalman filter from the frame before.
Equations 5 and 6 show how the mean mean vector y and the covariance matrix S
are derived. The velocity with the smallest distance is then used to update the
Kalman filter. With this technique the algorithm does not depend on a threshold.

x−
k = [u, v, r, s, u̇, v̇, ṙ] =⇒ y = [u̇, v̇] (5)

Derivation of mean y from state x−
k

PSORT _OF =



σ2
u σuv σus σur σuu̇ σuv̇ σuṡ

σvu σ2
v σvs σvr σvu̇ σvv̇ σvṡ

σsu σsv σ2
s σsr σsu̇ σsv̇ σsṡ

σru σrv σrs σ2
r σru̇ σrv̇ σrṡ

σu̇u σu̇v σu̇s σu̇r σ2
u̇ σu̇v̇ σu̇ṡ

σv̇u σv̇v σv̇s σv̇r σv̇u̇ σ2
v̇ σv̇ṡ

σṡu σṡv σṡs σṡr σṡu̇ σṡv̇ σ2
ṡ


=⇒ S =

[
σ2

u̇ σu̇v̇

σv̇u̇ σ2
v̇

]
(6)

Derivation of S from P

Update Process The update of the target’s Kalman filter is the final step and
involves multiple scenarios. Table 1 gives a matrix-like overview on which occasion
which update is chosen. Figure 7 shows the different measurement functions used
for the update process.
The following list describes the cases and their reasons:

• A bounding box and a velocity is provided. This is the standard scenario
where a detection is associated with the target, feature points are detected
and a velocity from the optical flow is calculated.

• Only a velocity is provided. This indicates that no detection was associated
with the target. In this case the detection of feature points and the succeeding
flow calculation are done for the predicted bounding box of the Kalman filter.
The update of the latter is done only with the velocity component, if found.

• Only a bounding box is provided. In this case a detection is associated to
the target but, for whatever reason no feature points could be detected or no
optical flow could be calculated.

5 Implementation - SORT_OF 24

• None of the above is provided, the Kalman filter of the target gets no update.
This will happen if no detection is associated and in the predicted bounding
box the feature point detection or the optical flow calculation failed.

Detection is associated
with target

No detection is
associated, use

prediction instead

Optical flow is found Update with detection
and velocity

Update with velocity
only

Feature point detection
or optical flow

calculation failed

Update with detection
only No update

Table 1: Kalman filter update scenarios and how they are processed



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


(a) Update with detection

and velocity



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


(b) Update with velocity

only



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(c) Update with detection

only

Figure 7: Measurement matrices for different update cases

Additional Corner Cases The implementation up to this point had only one
corner case left, namely when the bounding box of the target moves, even partly,
outside of image space. If this happens, feature point detection could not be done
on the complete region of interest represented by the target’s bounding box. This
is covered by always checking if the target’s bounding box is in image space. If
not, an additional test checks if an IOU with the remaining part and a detection in
image space is still possible within the given IOU threshold IOUmin (see 3). The
track is deleted if the test fails, otherwise the track’s bounding box is resized to fit
in image space and feature point detection is done in this resized bounding box.

Summary Putting it all together, listing 1 displays the basic procedure. With
this approach the extension of SORT with optical flow was kept simple and generic,
extending only the measurement model of the target’s Kalman filter. The number
of corner cases to cover was kept to a manageable amount and the integration

5 Implementation - SORT_OF 25

depends only on two sequential frames. Deletion and creation of tracks keeps its
original functionality as well as the data association - assigning detections to tracks
based on an IOU metric (see 3, 2.4). The final code is available at a public Github7

repository.

Algorithm 1 SORT_OF
1: for Every frame in grayscale do
2: for all tracks do
3: Predict track bbox
4: end for
5: Assign detections to tracks
6: Collect and delete inactive tracks
7: for all targets do
8: if ROI is inside image space or not too small then
9: Detect feature points with ORB or FAST

10: end if
11: end for
12: Delete targets which moved outside image space
13: for all feature points do
14: calculate Robust Local Optical Flow
15: end for
16: for all targets with a calculated velocity do
17: Rank calculated velocity based on Mahalanobis distance
18: end for
19: for all targets do
20: Update the target’s Kalman filter
21: end for
22: Create and initialize new targets for unmatched detections
23: return Active targets
24: end for

7https://github.com/tylernewnoise/SORT_OF

https://github.com/tylernewnoise/SORT_OF

6 Evaluation 26

6. Evaluation
This section explains the metrics used to benchmark and evaluate the algorithm
and presents the results. Furthermore, a brief look at ethical aspects is given and a
conclusion is drawn.

6.1. Benchmark and Metrics

The proposed tracking algorithm is evaluated on the 2008 proposed CLEAR
MOT [41] metrics MOTA and MOTP along with some additional metrics used
in the MOTChallenge [5] benchmark. The following list describes the evaluation
measures:

• MOTA Multi-Object Tracking Accuracy is computed as:

MOTA = 1−
∑

t(fnt + fpt + id_st)∑
t gt

The measure combines three error sources for the frame t with fnt the number
of false negatives, fpt the number of false positives and id_st the number of
identity switches. Higher is better and a perfect tracker has a MOTA value
of 100%.

• MOTP Multi-Object Tracking Precision is computed with:

MOTP =
∑

i,t dt,i∑
t ct

MOTP measures the alignment of predicted bounding boxes and the ground
truth where ct is the number of matches for frame t and dt,i is the bounding
box overlap of target i with its assigned ground truth object. Higher is better
and a perfect tracker has s MOTP value of 100%.

• FP The total number of false positives. Lower is better, 0 is perfect.
• FN The total number of false negatives, i.e. missed tracks. Lower is better,

0 is perfect.
• ID Sw. Number of identity switches, i.e. the number of times an already

tracked object is assigned a new ID. Lower is better, 0 is perfect.
• MT Mostly tracked targets is the ratio of ground-truth tracks that are

assigned the same label for at least 80% of the given image sequence.
• ML Mostly lost targets is the ratio of ground-truth tracks that are assigned

the same label for at most 20% of the given image sequence. Lower is better,
0% is perfect.

6 Evaluation 27

Although SORT as well as SORT_OF do not rely on any visual information
in terms of form and shape about the tracked object, the extension is tested and
compared on a real world DLR scenario. To achieve this a simple benchmark was
created from DLR data, termed SHAN-1. This data was taken from the actual
scenario the tracking algorithm is used on. The data set contains 449 images with
a 2560× 1440 resolution, the ground truth detections of 68 tracks derived from a
25 FPS video from a non moving camera as well as detections for evaluation. The
latter detections are created with the help of the tensorflow framework for machine
learning8. A Faster R-CNN inception V2 from the tensorflow model zoo9 was used,
which was pretrained on the COCO dataset10. The convolutional network was
retrained with 335 images of the scenario. The data set with detections, ground
truth tracks and images is available online11.
Evaluation was also done on the MOT15 [5] training set, but only on scenarios

with a static camera setup. The provided detections for the MOT15 benchmark
are taken from the authors of SORT [2, pp. 2–3]. The several setups and their
properties are listed in appendix B.

6.2. Results

All test runs were done on an AMD Ryzen7 3700X 4GHz machine with 64GB ram.
Results are calculated by py-motmetrics12, a Python implementation of metrics
for benchmarking multiple object trackers. Table 2 shows the overall results for
the MOT15 benchmark with static camera setups. For both benchmarks the IOU
threshold IOUmin for both SORT and SORT_OF was set to 0.3, as the original
implementation does as well. The maximum number of feature points per detection
(as described in 5.2) for SORT_OF is set to 50. Since there is an interest in
the results for tracking over longer periods without matching detections the TLost

(see 3) parameter is set to 1 and 25. The overall results for the MOT15 dataset for
TLost = 1 show no mentionable improvement. But looking at the detailed results
from the MOT15 data sets in appendix C and depending on the scenario, results
show an improvement. Even on TLost = 1 the proposed method could reduce ID
switches by ~10%. Although, setting a higher TLost value did not always improve
performance significantly.

8www.tensorflow.org
9https://github.com/tensorflow/models/blob/master/research/object_detection/

g3doc/tf1_detection_zoo.md
10https://cocodataset.org/#home
11https://bit.ly/ShanTrackBench
12https://github.com/cheind/py-motmetrics

www.tensorflow.org
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://cocodataset.org/#home
https://bit.ly/ShanTrackBench
https://github.com/cheind/py-motmetrics

6 Evaluation 28

TLost = 1
Sequence MOTA MOTP IDs FP FN MT ML
SORT 39.8% 72.1% 257 3209 7861 34 10
SORT_OF 40.2% 72.1% 247 3230 7789 34 9

TLost = 25
Sequence MOTA MOTP IDs FP FN MT ML
SORT 16.0% 71.1% 215 9147 6458 48 9
SORT_OF 18.2% 70.9% 221 8933 6238 48 9

Table 2: MOT15 overall results for TLost = 1 and TLost = 25

For the SHAN-1 scenario evaluation was done for TLost from 1–25 and complete
results can be found in appendix D. This finer granular evaluation was done for
better comparison and to find an optimized value for TLost. The MOTA metric was
chosen as reference and figure 8 plots the comparison of MOTA vs. ID switches
over TLost. As one can see, with a small TLost, SORT and SORT_OF are almost
on the same level with respect to ID switches and MOTA. But as TLost increases,
SORT_OF is always better than SORT with respect to the characteristics. Then
again, it is not practical to set TLost to huge values. For example, setting TLost = 50
would mean that a tracked object could be without detection for two seconds on a
video sequence with 25 frames per second, but could be already out of sight for the
detection framework for more than 30 frames and would increase false positives.
The plot also shows that SORT has a maximum MOTA with TLost = 10 with 59 ID
switches. SORT_OF on the other hand reaches its MOTA maximum at TLost = 12
and has 48 ID switches at this point, showing a reduction of ID switches of 18.6%
for this scenario. Table 3 shows the detailed results for both TLost values.

TLost = 10
Sequence MOTA MOTP IDs FP FN MT ML
SORT 81.4% 83.0% 59 1544 3998 63 7
SORT_OF 81.9% 83.1% 53 1469 3913 62 7

TLost = 12
Sequence MOTA MOTP IDs FP FN MT ML
SORT 81.3% 83.0% 54 1680 3891 63 7
SORT_OF 82.0% 83.0% 48 1569 3795 62 7

Table 3: SHAN-1 results for TLost = 10, TLost = 12

6 Evaluation 29

Runtime performance for the two tracking methods is shown in table 4. On the
MOT15 data set it is for both algorithms way above realtime requirements although
the performance impact on SORT_OF is of factor 500 in comparison to SORT.
For the runtime performance on the SHAN-1 data set SORT_OF is with 25FPS
still able to run online. The performance loss in this scenario is around factor 100
for SORT_OF compared to SORT.

MOT15 SHAN-1
SORT ~27000FPS ~2900FPS
SORT_OF ~50FPS ~25FPS

Table 4: Runtime performances

0 5 10 15 20 25
TLost

40

60

80

100

120

140

160

ID
s

MOTA vs IDs

78.5

79.0

79.5

80.0

80.5

81.0

81.5

82.0

M
O
TA

IDs SORT IDs SORT_OF MOTA SORT MOTA SORT_OF

Figure 8: MOTA vs. IDs over TLost on SHAN-1 data set

7 Conclusion 30

6.3. Ethics

Multi object tracking is often related to surveillance and surveillance again is often
associated with the constant tracking of individuals, for example by a government
or a company. While there are obviously privacy issues it is possible to argue that
tracking in video data is not the most effective way to do so in contrast to make
use of peoples cell phones for example.
Although this work is made with the focus on a specific scenario with a static

camera, multiple object tracking can also be used in robotics or autonomous driving,
in which the perception of images would be from a moving point of view. For the
first case one could argue that the work on multiple object tracking is helpful to
make robots more sensitive to their environment, hence make them more supportive.
In the case of autonomous driving the goal is to improve safety in road traffic. But
also, if not already in use or developed, it is likely that tracking algorithms are used
in weapon systems, like missile guidance or target localization. For this reason the
original developer of the object detection framework YOLO [42] has discontinued
all of his computer vision research13.
As always it is unfortunate that much of the technology which was developed

to improve peoples lives can also be used in a destructive manner. Still, the hope
is that fast and accurate tracking algorithms could help and improve in certain
scenarios and situations and the benefits will outweigh the potential downsides.

7. Conclusion
The present thesis elaborated two methods to extend the SORT algorithm with
sparse optical flow. But in the scope of this work only the extension which simply
extends the Kalman filter measurement model was implemented and examined.
SORT_OF’s computational cost is of factor 100 higher than SORT, but SORT_OF
also lead to noticeable improvements against track id switches on the SHAN-1
dataset. Yet this extension is still capable to perform in realtime with at least
25 frames per second, even on images of size 2560× 1440 pixels. The problem of
re-identification remains but it is also not in the scope of SORT or this thesis.
For future work it might be interesting to see if the other approach that was

described in 5.1 could be evolved in a way to have less corner cases to take care
of. It may be more sufficient to not replace or remove the Kalman filter of SORT
completely but only if detections are missing. Another aspect to have a look at is

13https://twitter.com/pjreddie/status/1230524770350817280

https://twitter.com/pjreddie/status/1230524770350817280

7 Conclusion 31

the use of dense optical flow, maybe not for the complete image, but for certain
regions of interest to keep the performance impact low. Similar to [17] it may be also
interesting to see if adding the KCF tracker [18] to SORT might be an improvement.
Also, like Janz showed in Post-Processing of Multi-Target Trajectories for Traffic
Security Analysis [1], an additional post-processing step or combination with a
min-cost flow problem formulation, as described by Zhang et al. in Global Data
Association for Multi-Object Tracking Using Network Flows [43] may lead to better
results.
Another way to improve computational performance could be a GPU-based

optical flow calculation. Object detection with a CNN is usually done on a GPU,
so the image is already present in GPU memory, which makes further processing
less expensive.

On the other hand it is possible, that the addition of optical flow to SORT becomes
obsolete, as the development of further improved object detection frameworks
continues. And since the detection quality is of great importance for SORT’s
tracking accuracy it may be more efficient to focus on a better CNN.

A Appendix: Kalman Filter Matrices 32

Appendices
The complete source code for SORT_OF and SORT’s C++ reimplementation as
well as the SHAN-1 data set is made publicly available online:

• SORT_OF: https://github.com/tylernewnoise/SORT_OF
• SORT in C++: https://github.com/tylernewnoise/SORT_in_Cpp
• SHAN-1: https://bit.ly/ShanTrackBench

A. Appendix: Kalman Filter Matrices

FSORT _OF =



1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



RSORT _OF =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 1 0
0 0 0 0 0 1



QSORT _OF =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0.01 0 0
0 0 0 0 0 0.01 0
0 0 0 0 0 0 0.0001



https://github.com/tylernewnoise/SORT_OF
https://github.com/tylernewnoise/SORT_in_Cpp
https://bit.ly/ShanTrackBench

A Appendix: Kalman Filter Matrices 33

PSORT _OF =



10 0 0 0 0 0 0
0 10 0 0 0 0 0
0 0 10 0 0 0 0
0 0 0 10 0 0 0
0 0 0 0 10000 0 0
0 0 0 0 0 10000 0
0 0 0 0 0 0 10000



Depending on the update case (see 5.2) HSORT _OF is one of:

• Update with detection and velocity:

HSORT _OF =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


• Update with velocity only:

HSORT _OF =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


• Update with detection only:

HSORT _OF =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



B Appendix: Benchmark Scenarios Descriptions 34

B. Appendix: Benchmark Scenarios Descriptions

Name FPS Resolution Length Tracks Boxes Description

ADL-Rundle-6 30 1920× 1080 525 24 5009 A pedestrian street scene
filmed from a low angle.

TUD-Stadtmitte 25 640× 480 179 10 1156

A static camera at about
2 meters height shows
walking people on the

street.

KITTI-17 10 1224× 370 145 9 683 Walking pedestrians on a
sunny day, static camera.

Venice-2 30 1920× 1080 600 26 7141 People walking around a
large square.

PETS09-S2L1 7 768× 576 795 19 4476

A widely used sequence
showing up to 8 walking
pedestrians, partly in
unusual patterns.

TUD-Campus 25 640× 480 71 8 359 A short sequence with
side-view pedestrians.

Table 5: Properties MOT15 data sets (static camera)

Name FPS Resolution Length Tracks Boxes Description

SHAN-1 25 2560× 1440 449 68 30041

A crossroad scene with
all kinds of traffic
participants in

Shanghai observed from
a high angle, static

camera.

Table 6: Properties SHAN-1 set

C Appendix: MOT15 Detailed Results 35

C. Appendix: MOT15 Detailed Results

TLost = 1
Sequence MOTA MOTP IDs FP FN MT ML
ADL-Rundle-6 38.2% 74.6% 75 919 2101 7 2
TUD-Stadtmitte 72.4% 75.2% 10 22 287 6 0
KITTI-17 63.0% 72.0% 8 37 208 1 0
Venice-2 18.1% 73.6% 59 1698 4089 8 8
PETS09-S2L1 62.5% 67.7% 100 515 1062 8 0
TUD-Campus 61.8% 73.5% 5 18 114 4 0

TLost = 25
Sequence MOTA MOTP IDs FP FN MT ML
ADL-Rundle-6 14.8% 73.0% 73 2527 1669 9 2
TUD-Stadtmitte 59.7% 74.4% 11 237 218 7 0
KITTI-17 15.8% 71.9% 7 370 198 3 0
Venice-2 -1.7% 72.1% 45 3622 3593 8 7
PETS09-S2L1 33.2% 67.3% 77 2197 716 15 0
TUD-Campus 27.6% 72.9% 2 194 64 6 0

Table 7: SORT on MOT15 data set (static camera) detailed results

TLost = 1
Sequence MOTA MOTP IDs FP FN MT ML
ADL-Rundle-6 38.5% 74.7% 67 921 2095 6 2
TUD-Stadtmitte 72.4% 75.3% 10 22 287 6 0
KITTI-17 61.8% 71.8% 8 43 210 1 0
Venice-2 18.2% 73.6% 61 1723 4057 8 7
PETS09-S2L1 63.7% 67.8% 96 502 1025 9 0
TUD-Campus 61.3% 73.6% 5 19 115 4 0

TLost = 25
Sequence MOTA MOTP IDs FP FN MT ML
ADL-Rundle-6 15.8% 72.1% 77 2554 1589 9 2
TUD-Stadtmitte 61.6% 74.2% 9 218 217 7 0
KITTI-17 40.3% 71.1% 10 232 166 4 0
Venice-2 -0.1% 71.9% 41 3617 3488 8 7
PETS09-S2L1 34.3% 67.4% 80 2140 719 14 0
TUD-Campus 34.5% 72.5% 4 172 59 6 0

Table 8: SORT_OF on MOT15 data set (static camera) detailed results

D Appendix: SHAN-1 Detailed Results 36

D. Appendix: SHAN-1 Detailed Results
SO

RT
SO

RT
_
O
F

T
L

o
st

M
O
TA

M
O
T
P

ID
s

FP
FN

M
T

M
L

M
O
TA

M
O
T
P

ID
s

FP
FN

M
T

M
L

1
78
.5
%

83
.5
%

16
2

76
9

55
19

56
10

78
.6

%
83
.5
%

16
0

76
7

55
12

56
10

2
80
.1
%

83
.4
%

11
5

89
0

49
72

59
9

80
.2

%
83
.4
%

11
5

88
2

49
66

59
9

3
80
.7
%

83
.3
%

97
99
4

47
03

60
7

80
.9

%
83
.3
%

96
97

8
46

77
60

7
4

81
.0
%

83
.3
%

83
10
85

45
30

60
7

81
.2

%
83
.3
%

81
10

69
44

96
60

7
5

81
.2
%

83
.2
%

77
11
61

44
24

61
7

81
.3

%
83

.3
%

74
11

49
43

83
61

7
6

81
.3
%

83
.2
%

74
12
28

43
17

61
7

81
.5

%
83
.2
%

70
12

03
42

70
61

7
7

81
.3
%

83
.2
%

66
13
27

42
17

62
7

81
.7

%
83
.2
%

61
12

85
41

56
61

7
8

81
.3
%

83
.1
%

65
14
01

41
37

63
7

81
.8

%
83

.2
%

59
13

47
40

75
62

7
9

81
.4
%

83
.1
%

63
14
65

40
68

63
7

81
.9

%
83
.1
%

56
13

98
39

82
62

7
10

81
.4
%

83
.0
%

59
15
44

39
98

63
7

81
.9

%
83

.1
%

53
14

69
39

13
62

7
11

81
.3
%

83
.0
%

56
16
19

39
33

63
7

82
.0

%
83
.0
%

50
15

21
38

43
62

7
12

81
.3
%

83
.0
%

54
16
80

38
91

63
7

82
.0

%
83
.0
%

48
15

69
37

95
62

7
13

81
.2
%

83
.0
%

53
17
48

38
61

63
7

81
.9

%
83
.0
%

47
16

32
37

64
63

7
14

80
.9
%

83
.0
%

53
18
33

38
44

63
6

81
.7

%
83
.0
%

45
17

01
37

39
63

6
15

80
.8
%

83
.0
%

52
18
97

38
32

63
6

81
.7

%
83
.0
%

44
17

51
37

17
63

6
16

80
.6
%

83
.0
%

52
19
58

38
23

63
6

81
.5

%
83
.0
%

44
18

03
37

03
63

6
17

80
.4
%

83
.0
%

52
20
28

38
06

63
6

81
.4

%
83
.0
%

43
18

54
36

77
63

6
18

80
.2
%

83
.0

%
52

20
89

37
97

63
6

81
.3

%
82
.9
%

43
19

05
36

63
63

6
19

80
.1
%

82
.9
%

52
21
50

37
88

63
6

81
.2

%
82
.9
%

44
19

55
36

35
63

6
20

79
.9
%

82
.9
%

52
22
11

37
79

63
6

81
.1

%
82
.9
%

44
20

06
36

22
63

6
21

79
.7
%

82
.9
%

52
22
88

37
70

63
6

80
.9

%
82
.9
%

44
20

71
36

09
63

6
22

79
.5
%

82
.9
%

52
23
49

37
61

63
6

80
.8

%
82
.9
%

44
21

18
35

94
63

6
23

79
.4
%

82
.9
%

52
24
09

37
14

63
6

81
.0

%
82
.9
%

43
21

62
35

13
64

6
24

79
.3
%

82
.9

%
52

24
69

37
04

63
6

80
.9

%
82
.8
%

42
22

09
34

95
64

6
25

79
.1
%

82
.9

%
52

25
29

36
95

63
6

80
.8

%
82
.8
%

42
22

55
34

81
64

6

Ta
bl
e
9:

SO
RT

vs
.
SO

RT
_
O
F
on

SH
A
N
-1

da
ta

se
t

Bibliography 37

Bibliography
[1] T. Janz, “Post-processing of multi-target trajectories for traffic security

analysis,” M.S. thesis, Georg-August-Universit ä t G ö ttingen, Dec. 2017.
[Online]. Available: https://elib.dlr.de/139881/.

[2] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and real-
time tracking,” in 2016 IEEE International Conference on Image Processing
(ICIP), 2016, pp. 3464–3468.

[3] T. Senst, V. Eiselein, and T. Sikora, “Robust local optical flow for feature
tracking,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 22, pp. 1377–1387, Sep. 2012.

[4] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” Nov. 2011, pp. 2564–2571. doi: 10.1109/ICCV.
2011.6126544.

[5] L. Leal-Taix´ e, A. Milan, I. Reid, S. Roth, and K. Schindler, “Motchallenge
2015: Towards a benchmark for multi-target tracking,” CoRR, vol. abs/1504.01942,
Apr. 2015. [Online]. Available: http://arxiv.org/abs/1504.01942.

[6] G. Welch and G. Bishop, “An introduction to the kalman filter,” University
of North Carolina, Chapel Hill, USA, Tech. Rep. TR 95-041 Departement of
Computer Science, 1995.

[7] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Transactions of the ASME–Journal of Basic Engineering, vol. 82, no. Series
D, pp. 35–45, 1960.

[8] P. C. Mahalanobis, “On test and measures of group divergence, part i:
Theoretical formulae,” in Journal and Proceedings of Asiatic Society of Bengal
(New series), vol. 26, 1930, pp. 541–588.

[9] R. Gnanadesikan and J. R. Kettenring, “Robust estimates, residuals, and
outlier detection with multiresponse data,” Biometrics, vol. 28, no. 1, pp. 81–
124, 1972, issn: 0006341X, 15410420. [Online]. Available: http://www.
jstor.org/stable/2528963.

[10] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[11] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for dense
and sparse linear assignment problems,” Computing, vol. 38, pp. 325–340,
1986.

https://elib.dlr.de/139881/
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
http://arxiv.org/abs/1504.01942
http://www.jstor.org/stable/2528963
http://www.jstor.org/stable/2528963

Bibliography 38

[12] J. Berclaz, F. Fleuret, E. Türetken, and P. Fua, “Multiple object tracking
using k-shortest paths optimization,” vol. 33, 2011, pp. 1806–1819.

[13] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking
with a deep association metric,” in 2017 IEEE International Conference on
Image Processing (ICIP), 2017, pp. 3645–3649.

[14] E. Bochinski, V. Eiselein, and T. Sikora, “High-speed tracking-by-detection
without using image information,” in International Workshop on Traffic and
Street Surveillance for Safety and Security at IEEE AVSS 2017, Aug. 2017.

[15] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-object
tracking by decision making,” in 2015 IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 4705–4713.

[16] C. Dicle, O. I. Camps, and M. Sznaier, “The way they move: Tracking multiple
targets with similar appearance,” in 2013 IEEE International Conference on
Computer Vision, 2013, pp. 2304–2311.

[17] E. Bochinski, T. Senst, and T. Sikora, “Extending iou based multi-object
tracking by visual information,” in IEEE International Conference on Ad-
vanced Video and Signals-based Surveillance, Nov. 2018, pp. 441–446.

[18] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking
with kernelized correlation filters,” in IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2015. doi: 10.1109/TPAMI.2014.2345390.

[19] B. K. Horn and B. G. Schunck, “Determining Optical Flow,” in Artificial
Intelligence, vol. 17, 1981, pp. 185–203.

[20] B. Lucas and T. Kanade, “An iterative image registration technique with
an application to stereo vision,” in Proceedings of Imaging Understanding
Workshop, 1981, pp. 121–130.

[21] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas kanade feature
tracker, description of the algorithm,” Intel Corporation, Microprocessor
Research Labs, 1999.

[22] G. Le Besnerais and F. Champagnat, “Dense optical flow by iterative local
window registration,” vol. 1, Oct. 2005, pp. I–137, isbn: 0-7803-9134-9.
doi: 10.1109/ICIP.2005.1529706.

[23] Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu, “Large displacement optical
flow from nearest neighbor fields,” in 2013 IEEE Conference on Computer
Vision and Pattern Recognition, 2013, pp. 2443–2450. doi: 10.1109/CVPR.
2013.316.

https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1109/ICIP.2005.1529706
https://doi.org/10.1109/CVPR.2013.316
https://doi.org/10.1109/CVPR.2013.316

Bibliography 39

[24] T. Senst, I. Keller, and T. Sikora, “Robust local optical flow estimation
using bilinear equations for year = 2013 , pages = 2499-2503 , sparse motion
estimation,” in 2013 IEEE International Conference on Image Processing.
doi: 10.1109/ICIP.2013.6738515.

[25] T. Senst, T. Borgmann, I. Keller, and T. Sikora, “Cross based robust local
optical flow,” Oct. 2014, pp. 1967–1971. doi: 10.1109/ICIP.2014.7025394.

[26] T. Senst, J. Geistert, and T. Sikora, “Robust local optical flow: Long-range
motions and varying illuminations,” in 2016 IEEE International Conference
on Image Processing (ICIP), 2016, pp. 4478–4482. doi: 10.1109/ICIP.
2016.7533207.

[27] G. Farneb ä ck, “Two-frame motion estimation based on polynomial expan-
sion,” in Image Analysis, Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 363–370, isbn: 978-3-540-45103-7.

[28] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime tv-l1
optical flow,” vol. 4713, Sep. 2007, pp. 214–223, isbn: 978-3-540-74933-2.
doi: 10.1007/978-3-540-74936-3_22.

[29] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast optical flow using
dense inverse search,” in Computer Vision – ECCV 2016, Springer Interna-
tional Publishing, 2016, pp. 71–488.

[30] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “Deepflow: Large
displacement optical flow with deep matching,” in IEEE Intenational Con-
ference on Computer Vision (ICCV), Sydney, Australia, Dec. 2013. [Online].
Available: http://hal.inria.fr/hal-00873592.

[31] J. Hur and S. Roth, “Iterative residual refinement for joint optical flow and
occlusion estimation,” CoRR, vol. abs/1904.05290, 2019.

[32] A. S. Wannenwetsch and S. Roth, “Probabilistic pixel-adaptive refinement
networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2020.

[33] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for optical
flow,” in Computer Vision – ECCV 2020, Springer International Publishing,
2020, pp. 402–419.

[34] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Proceedings of the 4th Alvey Vision Conference, 1988, pp. 147–151.

https://doi.org/10.1109/ICIP.2013.6738515
https://doi.org/10.1109/ICIP.2014.7025394
https://doi.org/10.1109/ICIP.2016.7533207
https://doi.org/10.1109/ICIP.2016.7533207
https://doi.org/10.1007/978-3-540-74936-3_22
http://hal.inria.fr/hal-00873592

Bibliography 40

[35] J. Shi and C. Tomasi, “Good features to track,” in 1994 Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 1994, pp. 593–600.
doi: 10.1109/CVPR.1994.323794.

[36] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the Seventh IEEE International Conference on Computer
Vision, vol. 2, 1999, 1150–1157 vol.2. doi: 10.1109/ICCV.1999.790410.

[37] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”
in Computer Vision – ECCV 2006, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 404–417.

[38] E. Rosten and T. Drummond, “Machine learning for high-speed corner detec-
tion,” Engineering Department, Machine Intelligence Laboratory, University
of Cambrdige, Tech. Rep., 2006.

[39] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust inde-
pendent elementary features,” in Computer Vision (ECCV 2010), Springer
Berlin Heidelberg, Sep. 2010, pp. 778–792.

[40] C. Tomasi and T. Kanade, “Detection and tracking of point features,” in
Carnegie Mellon University Technical Report CMU-CS-91-132, Apr. 1991.

[41] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: The clear mot metrics,” EURASIP Journal on Image and
Video Processing, 2008.

[42] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015. arXiv:
1506.02640. [Online]. Available: http://arxiv.org/abs/1506.02640.

[43] L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-object
tracking using network flows,” in 2008 IEEE Conference on Computer Vision
and Pattern Recognition, IEEE, 2008, pp. 1–8.

https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/ICCV.1999.790410
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640

Selbständigkeitserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch
nicht für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Inter-
netquellen, die unverändert oder abgewandelt wiedergegeben werden, insbesondere
Quellen für Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht.
Mir ist bekannt, dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen
Täuschungsversuchs bzw. Täuschung eingeleitet wird.

Berlin, den 17. Februar 2021

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	SORT
	Research
	Implementation - SORT_OF
	Evaluation
	Conclusion
	Appendices
	Appendix: Kalman Filter Matrices
	Appendix: Benchmark Scenarios Descriptions
	Appendix: MOT15 Detailed Results
	Appendix: SHAN-1 Detailed Results
	Bibliography
	Selbständigkeitserklärung

