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Kurzfassung

Die vorliegende Doktorarbeit beschäftigt sich mit der experimentellen Studie zweier mitein-
ander verbundener Phänomene: Dem intrinsischen Timing-Jitter in einem supraleitendenden
Nanodraht-Einzelphotonen-Detektor (SNSPD) und der Relaxation der Elektronenenergie in su-
praleitenden Filmen. Supraleitende Nanodrähte auf einem dielektrischen Substrat als mikro-
skopische Grundbausteine jeglicher SNSPDs stellen sowohl für theoretische als auch für ex-
perimentelle Studien komplexe Objekte dar. Die Komplexität ergibt sich aus der Tatsache,
dass SNSPDs in der Praxis stark ungeordnete und ultradünne supraleitende Filme verwen-
den, die eine akustische Fehlanpassung zu dem zugrundeliegenden Substrat aufweisen und einen
Nichtgleichgewichts-Zustand implizieren.

Die Arbeit untersucht die Komplexität des am weitesten in der SNSPD Technologie ver-
breiteten Materials, Niobnitrid (NbN), indem verschiedene experimentelle Methoden angewandt
werden. Mittels Magnetoleitfähigkeit wird die inelastische Elektron-Phonon-Streuzeit in einem
Temperaturbereich von 14-30 K über der Übergangstemperatur bestimmt. Die aus den Magne-
toleitfähigkeitsmessungen extrahierten Daten werden außerdem dafür verwendet, um die bei den
jeweiligen Übergangstemperaturen experimentell bestimmten Photoresponse anhand des Zwei-
bzw. Drei-Temperaturmodells zu beschreiben. Für dicke Filme kann auf die klassischen Drude-
und Debye-Modelle bzw. auf das Modell der akustischen Fehlanpassung zurückgegriffen werden,
um die Elektronen- und Phononen-Wärmekapazitäten zu berechnen bzw. das Entkommen der
Phononen durch die Film-Substrat-Grenzfläche zu beschreiben. Bei dünnen Filmen wird jedoch
für die Beschreibung der experimentellen Photoresponses eine geringere Wärmekapazität der
Phononen benötigt. Dieses Ergebnis wird der verringerten Phononen-Zustandsdichte in dünnen
Filmen bei niedrigen Temperaturen zugeschrieben.

Durch die Entwicklung eines experimentellen Ansatzes zur Messung des Timing-Jitter in
NbN-Nanodrähten ist es möglich, sämtliche Beiträge zum Jitter des Systems zu untersuchen
und den intrinsischen Jitter zu quantifizieren. Letzterer wird bei verschiedenen Wellenlängen,
Bias-Strömen, Magnetfeldern und Photonenflüssen evaluiert. Die Ergebnisse werden außerdem
im Rahmen des mikroskopischen zweidimensionalen Hot-Spot-Modells analysiert. Bei der Be-
schreibung der Photonendetektion in einem SNSPD erklärt das Modell zwei bekannte Jitter-
Mechanismen: Die Abhängigkeit der Verzögerungszeit von der Position der Photonenabsorption
auf dem Nanodraht und Fano-Fluktuationen. Obwohl das Modell die experimentellen Beob-
achtungen qualitativ gut beschreibt, legt der quantitative Vergleich die Präsenz einer zusätz-
lichen Jitter-Quelle nahe. Eine fehlende Jitter-Quelle sollte nicht nur die Stärke des Jitters
beschreiben, sondern auch die spektrale Verbreiterung die Stromabhängigkeit der Sensitivität
von SNSPDs, was offene Fragestellungen in der SNSPD-Forschung bleiben. Als eine mögliche
Anwendung der SNSPD-Technologie wird ein Prototyp eines dispersiven Raman-Spektrometers
mit Einzelphotonen-Sensitivität demonstriert.
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Abstract

This PhD thesis is based on the experimental study of two mutually interconnected phenom-
ena: intrinsic timing jitter in superconducting nanowire single-photon detectors (SNSPDs) and
relaxation of the electron energy in superconducting films. Microscopically, a building element
of any SNSPD device, a superconducting nanowire on top of a dielectric substrate, represents
a complex object for both experimental and theoretical studies. The complexity arises because,
in practice, the SNSPD utilizes strongly disordered and ultrathin superconducting films, which
acoustically mismatch with the underlying substrate, and implies a non-equilibrium state.

This thesis addresses the complexity of the most conventional superconducting material
used in SNSPD technology, niobium nitride (NbN), by applying several distinct experimental
techniques. The inelastic electron-phonon scattering time in a temperature range from 14 -
30 K above the transition temperature is defined with the magnetoconductance technique. The
extracted data from magnetoconductance measurements is further used to describe the experi-
mental photoresponse with either the two-temperature or three-temperature models. For thick
films, it is done by invoking the classical Drude and Debye models for computing electron and
phonon heat capacities and also the acoustic mismatch model for describing phonon escape
through the film/substrate interface. However, for thin films, a description of the experimental
photoresponse requires a smaller heat capacity of phonons. This finding is attributed to the
reduced density of phonon states in thin films at low temperatures.

Developing an experimental approach for measuring the timing jitter in NbN nanowires
allowed us to evaluate all contributions to the system jitter and quantify the intrinsic jitter. The
latter is studied at different wavelengths, bias currents, magnetic fields, and photon fluxes. The
results are further analyzed in the framework of the microscopic two-dimensional hot-spot model.
Describing the photon detection in the SNSPD, this model accounts for two known mechanisms
of the intrinsic jitter: the dependence of the delay time on the position of the photon absorption
site across the nanowire and Fano fluctuations. Although the model qualitatively well describes
experimental observations, the quantitative comparison suggests the presence of an additional
jitter source. A missing source of the intrinsic jitter should explain not only the jitter magnitude
but also the broadening in the wavelength and current dependences of the sensitivity of SNSPDs
which remain open questions in the field of SNSPD research. As an emerging application of the
SNSPD technology, we demonstrate a prototype of the dispersive Raman spectrometer with
single-photon sensitivity.
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Chapter 1

Motivation and aims of this work

Owing to reduced dimensionality, thin and narrow superconducting nanowires exhibit strong
modifications in their microscopic and transport properties as compared to bulk superconduc-
tors. Besides the importance of these modifications for fundamental physics, they paved the
way to one of the most promising modern technologies allowing for detecting single photons.
Sub-micron-wide strips, commonly denoted as nanowires, from thin superconducting films, be-
came the key elements of superconducting nanowire single-photon detectors (SNSPDs, or also
known as SSPDs). This detector technology has been unambiguously proved to be advanta-
geous for laboratory experiments as well as for commercial applications [1]. Due to their record
performance metrics, SNSPDs have been successfully demonstrated to improve the quality of
instruments, e.g. in dispersive Raman spectroscopy [2], quantum key distribution [3], character-
ization of single-photon sources [4], optical communication with satellites [5], and tracking space
debris [6]. Moreover, on-chip integration of SNSPDs with nanophotonic waveguides [7, 8] has
allowed for replacing bulk optics and opened new opportunities for the application of SNSPDs
in quantum simulation and quantum computation [9]. Common for all these applications is the
importance of high timing accuracy in determining the arrival time of a photon at the detector.
In practice, a performance metric responsible for the timing accuracy of an SNSPD is the tim-
ing jitter. Large jitter means poor accuracy. For instance, at tracking space debris, the jitter
restricts the accuracy of orbit reconstruction for mid-size fragments.

A basic idea of single-photon detection by an SNSPD is briefly described as follows. A single
photon is absorbed into a current-carrying superconducting nanowire. If the photon energy well
exceeds the binding energy of the Cooper pair (∼ meV), this creates a hot spot, a small volume of
the nanowire with heated electrons and phonons where superconductivity is locally suppressed.
If the current that flows around the hot spot exceeds the critical value, a cross section in the
nanowire becomes normal (resistive). Influenced by Joule heating, the normal domain grows
producing a non-zero voltage drop. The voltage drop is further read out and associated with a
detection event. To date, the exact microscopic mechanism of photon detection by an SNSPD
remains a challenging task.
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Although impressive progress has been achieved in SNSPD technology since the demonstra-
tion of the first device in 2001, the performance of these detectors is still improving. During the
past decades, the timing jitter of SNSPDs has been minimizing on the “try-and-see” basis rather
than by understanding the underlying physics. However, further progress is hardly possible
without a thorough understanding of how different physical mechanisms contribute to the jitter
magnitude.

This open issue inspired the present thesis. Since the work began, numerous theoretical and
experimental studies devoted to understanding the jitter mechanism have appeared. It is now
realized that in a practical SNSPD system, there are various extrinsic sources of timing jitter that
hide the intrinsic jitter inherent in the detector itself. The microscopic mechanism and physical
sources of the intrinsic jitter were addressed in theoretical studies [10, 11]. There, the jitter
appears as a variation of the time delay between the absorption of a photon and the emergence
of the corresponding normal domain. These theoretical studies revealed a link between the
intrinsic jitter and the energy relaxation time. Bearing in mind that a photon-detection process
implies a non-equilibrium state, studying jitter requires understanding the peculiarities of energy
relaxation. Among other energy relaxation mechanisms, electron-phonon scattering is the most
sensitive to impurities and reduced dimensionality typical for superconducting films utilized by
SNSPDs.

This Ph.D. thesis aims to identify physical mechanisms building up the intrinsic timing jitter
and evaluate the electron-phonon scattering time. The objects under study are niobium nitride
(NbN) thin superconducting films and straight nanowires. NbN is the most conventional material
utilized in SNSPD technology, and as well as other materials, which are used for fabricating
SNSPD (NbTiN, WSi, MoSi), it represents a disordered system. Physical parameters in such
systems can hardly be predicted and rather should be evaluated experimentally. Straight and
short nanowires were chosen as convenient objects for measuring jitter. In this geometry, the
wire has the same thickness and width as straights in a meander-shaped nanowire and is free of
bends that minimizes current crowding.

The Ph.D. thesis includes five chapters. In Chapter 1, “Motivation and aims”, the motivation
and the importance of the work are formulated. In Chapter 2, “Introduction: Photon detection
in superconducting nanowires”, a phenomenological description of the single-photon detection
mechanism in accordance with the state-of-the-art microscopic models is presented. This chap-
ter contains main background information, which is of importance for the rest of the thesis.
It includes the description of experimental techniques for measuring the jitter, electron-phonon
scattering time, and energy relaxation time together with models applied for data analysis.
Chapter 2 includes several sections and paragraphs, which are the result of the author’s work
and, therefore, this is specified in the main text. Such sections and paragraphs are mostly
related to models for the analysis of experimental data. We intentionally placed them there
for the sake of completeness of Chapter 2, which serves as a guide for the rest of this Ph.D.
thesis. Chapter 3, “Experimental results: Electron-energy relaxation and timing jitter”, contains
the main experimental data obtained in the framework of this Ph.D. study. The chapter starts
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with a comprehensive characterization of the object under study, that is necessary for further
comparison with theory. The analysis of the experimental electron-phonon scattering time and
energy relaxation time reveals peculiarities of the phonon spectrum in thin films at low temper-
atures. Chapter 3 continues with the experimental study of timing jitter. It is very challenging
to measure the intrinsic jitter directly because of the picosecond timescales involved. Hence we
developed a formalism aiming to extract the intrinsic jitter from the analysis of raw experimental
data. The chapter includes a discussion with regards to the applicability of the developed formal-
ism and data reliability. The intrinsic jitter evaluated under different experimental conditions is
further qualitatively compared with theoretical predictions that allows us to conclude about the
physical sources of the intrinsic jitter. Chapter 4, “On-chip dispersive Raman spectrometer with
single-photon sensitivity”, focuses on the potential application, a Raman spectrometer based on
a multi-pixel SNSPD array. The prototype of the on-chip dispersive Raman spectrometer and
preliminary results are described. In the last Chapter 5, the conclusions are presented, and
remaining problems are formulated. Each chapter contains a summary.

The main results of this work were given in oral and poster presentations at more than ten
international conferences oriented on superconductivity, superconducting devices and technolo-
gies, low-temperature physics and nonlinear optics, and in three publications in peer-reviewed
journals.
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Chapter 2

Photon detection in superconducting
nanowires

This chapter contains the background information that forms the starting point for the rest
of this work and helps for a more precise formulation of the research task. A comprehensive
overview of all existing models describing the detection mechanism in SNSPD is intentionally
omitted here since it can be found in many other works (for a review see [12]). Instead, a
phenomenological description is given along with some details of the state-of-the-art microscopic
models which support it. The chapter, therefore, begins with a description of the process of
single-photon detection in SNSPD. On the phenomenological level, the detection process is
split into several key stages. At each stage, we reveal the processes and material parameters
involved in building up the timing jitter. Among those, electron-phonon scattering and phonon
escaping are main processes which affect the timing jitter. The chapter provides a description
of experimental techniques and theoretical models in the frameworks of which electron-phonon
scattering, phonon escaping, and timing jitter will be further studied experimentally. Finally,
the chapter concludes with a summary.

2.1 Detection mechanism and metrics of an SNSPD

The first realization of an SNSPD device was done in 2001 at Moscow State Pedagogical Univer-
sity by Goltsman et al. [13]. At the same time, in 2001, the first and simplest model describing
the detection process in a current-carrying superconducting nanowire has been proposed by
Semenov et al. [14]. Despite its simplicity, the model has correctly revealed key parts of the
detection process, one of which is a “hot” spot created by an absorbed photon. Today, in the
advanced microscopic models [15], the hot spot is an essential step in describing single-photon
detection.
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Figure 2.1: Topology of an SNSPD chip and the SEM (scanning electron microscope) image of the
meander-shaped nanowire. Dark color represents the substrate while light color represents the film.
The nanowire is patterned from a 5 nm thick superconducting film on top of a dielectric substrate and
connected to contact pads on a chip designed as a 50 Ω coplanar line.

A conventional SNSPD utilizes a thin (∼ 5 nm) superconducting strip on a dielectric sub-
strate. Such strips with a width of a few tens of nanometers are commonly denoted as nanowires.
Depending on the application, the nanowire can be straight or shaped in different forms. A
straight and short nanowire is a better object for research because the effect of current crowding
[16], i.e. non-uniform current density, is reduced to a minimum as compared to other layouts.
However, the straight nanowires are useless from an application point of view due to ineffi-
cient optical coupling restricted by their very small active area. In contrast, a meander-shaped
nanowire, shown in Fig. 2.1, is used a lot in practical devices because it covers a large area pro-
viding efficient coupling with light. However, the meander-shaped wire suffers from the current
crowding effect, which arises near sharp bends. Typical superconducting materials for SNSPDs
are polycrystalline films such as NbN [13], NbTiN [17], TaN [18], and amorphous films such as
WSi [19], MoSi [20], MoGe [21]. Critical temperatures of these materials fall in the range from
16 to 5 K. Operating conditions require to cool the superconducting nanowire below its critical
temperature, T < TC , where the resistance is zero, and to bias with direct current below its
critical current, IB ≤ IC , therefore, the voltage drop along the nanowire is zero (the initial stage
in Fig. 2.2). A common method for cooling an SNSPD is to immerse it in liquid helium (He)
or, differently, to mount it in a closed-cycle refrigerator.

The detection process in the nanowire can be split into several key stages illustrated in
Fig. 2.2. The first stage (i) starts with the absorption of an incident photon in the nanowire.
The photon energy in the visible or near-infrared wavelength range, around 1 eV, is a few orders
of magnitude larger than the superconducting gap of conventional SNSPD materials. Such a
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Figure 2.2: Key stages of the photon detection process in a current-carrying superconducting nanowire
on a dielectric substrate.

photon breaks a Cooper pair and creates quasiparticles triggering the second stage. At the
second stage, (ii) via a cascade of scattering events, the quasiparticles multiply, thermalize, and
diffuse out of the absorption site, forming a hot spot. This process takes time, which is called
thermalization time. The hot spot itself has a lifetime strongly dependent on the definition of
the hot spot. It can be defined in terms of the quasiparticle concentration or the temperature
inside. During the lifetime, before the hot spot disappears, the third stage begins, (iii) crossing
the nanowire by either a magnetic vortex nucleated near to the edge of the wire or a vortex-
antivortex pair nucleated inside the hot spot. Moving under the Lorentz force, vortices dissipate
energy and form a normal domain (slab) across the nanowire. Due to Joule heating by the
current, the normal domain grows in length diverting the current from the nanowire to the load
resistance (50 Ω). Note here that the square resistance of the nanowire (usually > 300 Ω/sq) is
much larger than the load resistance. A decrease in the current through the nanowire and heat
flow into the substrate, further, cause the domain to shrink and disappear, and current to return
to the nanowire. As a result, a voltage transient emerges in the readout that is identified as the
detection of the photon. The arrival of the voltage transient at the amplifier is the fourth and
last stage (iv). Cooling of the normal domain is controlled by relaxation of the electron energy
via phonon escape into the underlying substrate (see subsections 2.4.4 and 2.4.3).

Modeling of the entire detection process in different regimes of photon energy and current
is still challenging. However, several attempts have been made to describe some of the stages
microscopically. The first two stages, namely the energy down-conversion cascade and hot-
spot formation, were modeled under different assumptions by Kozorezov et al. in [22] and by
Vodolazov in [15]. The third stage, the vortex-assisted formation of the normal domain, was
described by Hofherr et al. in [23] and by Bulaevskii et al. in [24]. At present, Vodolazov’s
model qualitatively reproduces many experimental results. However, this model is limited to
the case when the nanowire responds deterministically, i.e. when the absorbed photon produces
a photon count with 100 % probability.

SNSPD metrics
One of the crucial performance metrics of SNSPDs is the detection efficiency. The system
detection efficiency of the SNSPD is defined as the ratio between the number of counted photons
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to the number of photons incident at the optical input of the detector system. Modern devices
demonstrated 93 % system efficiency for SNSPD from WSi material [25], 94 % for SNSPD from
NbN material [26], and 92 % for the SNSPD from NbTiN material [27]. The system detection
efficiency is proportional to the efficiency of optical coupling, the absorbance of the nanowire,
and the intrinsic detection efficiency, i.e. the probability that the absorbed photon produces a
photon count. The intrinsic detection efficiency is determined by the intrinsic photon-detection
process of the nanowire itself, and it strongly depends on energy of incident photons [28], bias
current [22], and temperature. At a fixed current and temperature, the efficiency saturates for
photons with high energies and monotonously decays with decreasing photon energy. At a fixed
photon energy and temperature, the efficiency saturates at high currents (close to depairing
current) and monotonously decays with decreasing current.

Another important performance metric of the SNSPD is its intrinsic noise known as dark
counts. Even if the SNSPD is not illuminated by photons, it still generates counts, dark counts.
The voltage response caused by dark counts is identical to that caused by photon counts. The
number of dark counts exponentially increases with the bias current. It is generally accepted that
qualitatively dark counts occur when a magnetic vortex (or a vortex/antivortex pair) crosses
the nanowire overcoming the energy barrier due to thermal fluctuations. However, the value of
the barrier is still open to debate [24, 29].

Perhaps the most crucial metric of SNSPDs and also the subject of the present work is the
timing jitter. The timing jitter quantifies the timing accuracy of SNSPD in defining the arrival
time of the detected photon. The origin of the intrinsic timing jitter is addressed in microscopic
studies [10, 11], where it is defined as the variance in the delay time (also known as latency)
between the photon absorption and the formation of the normal domain. The delay time scales
with the relaxation time of the electron energy, and the same does the variance. The next section
is devoted to extrinsic and intrinsic sources of the timing jitter present in a practical SNSPD
device.

2.2 Timing jitter

In SNSPDs, timing jitter limits the accuracy in determining the arrival time of a photon, which
caused the detection event. Nowadays, commercial detectors offer jitter on the picoseconds
time scale what is of importance for a large number of applications, which require high timing
accuracy. A measure of timing jitter is a standard deviation of a statistical distribution of
delay times between the appearance of the photon at the optical input of the SNSPD device
and the arrival of the corresponding voltage transient at the readout electronics. Numerous
sources contribute to the timing jitter of the SNSPD, which roughly can be split into extrinsic
and intrinsic. The extrinsic jitter is caused by readout electronics, instruments, optics, etc.
The intrinsic jitter originates from the nanowire itself. Minimization of the extrinsic jitter is
an engineering challenge, while the reduction of the intrinsic jitter requires understanding the
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physical details of the detection mechanism in the nanowire. It was found experimentally that the
statistical distribution of delay times has one unique peculiarity, namely, non-Gaussian profile.
Its form is well described by exponentially-modified Gaussian distribution (Gaussian statistics
at small delays and exponential at large delays). Moreover, such non-Gaussian statistics was
observed for different materials NbN [30], NbTiN [27], WSi [31], MoSi [32], and by use of different
experimental approaches [33, 34, 30]. Hence it is believed that non-Gaussian statistics is inherent
in the detection process itself, and therefore contributes to the intrinsic jitter. In this section,
we summarize what is already known about the timing jitter in SNSPD. We will start with the
description of jitter sources, which undesirably attend any photon-detection event. Further, we
will describe a microscopic mechanism of the intrinsic jitter and its physical source proposed by
advanced microscopic models of photon detection in SNSPD.

2.2.1 Typical experimental technique: System jitter

Quantifying the timing jitter in SNSPDs is typically done via measuring a delay time between
the arrivals of the reference signal and the SNSPD response. Fig. 2.3(a) schematically shows
a typical experimental setup comprised of a pulsed light source, an SNSPD device, a reference
signal, and readout electronics (amplifier, scope). A beam-splitter splits the laser beam into two
beams. One is coupled to the SNSPD through an optical fiber and the other to a low-jitter fast
photodiode. The fast photodiode provides the reference signal, which is coupled to the trigger
channel of the scope. Voltage transients generated by SNSPD are amplified and sent to the
readout channel of the scope (here we omitted the description of biasing SNSPD and division of
rf and dc electrical paths with a bias-tee). Fig. 2.3(b) schematically shows the rising edge of the
transient recorded by the scope (the green curve). The arrival time of the transient with respect
to the reference is determined at the trigger level. It varies from one detection event to another.
Performing many measurements enables one to build a statistical distribution of arrival times,
that is schematically illustrated in Fig. 2.3(b) (the horizontal distribution). Such a statistical
distribution is also known as a probability density function (PDF), instrument response function,
or histogram. In our study, we will refer to it as PDF. A measure of the timing jitter is the
standard deviation of the PDF of arrival times. The standard deviation for an experimental
(raw) PDF gives a system jitter. A typical setup (Fig. 2.3(a)) contains numerous sources of the
jitter which are considered below.

2.2.2 Sources of timing jitter

Noise jitter
Electrical noise distorts the shape of the transient and, consequently, contributes to the jitter.
The main source of noise is an amplifier operated at room temperature. Noise showing up in
the baseline of the acquired voltage transient results in uncertainty in the time of crossing the
discriminator level by the transient (Fig. 2.3(b)). The noise contribution to the system jitter
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Figure 2.3: a) Schematic block diagram of a typical experimental setup for measuring the timing jitter
of an SNSPD. A beam of a pulsed laser is split into two beams one of which is coupled to the SNSPD
through an optical fiber and the other to a fast photodiode. A reference provided by the diode is sent
to the trigger channel of a scope. Voltage transients generated by the SNSPD are amplified and sent to
the readout channel of the scope. b) Schematic representation of the rising edge of the recorded voltage
transient.

can be estimated as [35], [36]
σN = σUN

τrise
Amean

, (2.1)

where Amean is the mean amplitude of the transient, τrise is the duration of the rising edge of the
transient, and σUN

is the rms (root mean square) value of the noise amplitude in the baseline.
The noise jitter depends on the signal-to-noise ratio. It can be minimized by operating at larger
bias currents, IB, and by using a low-noise amplifier at the first stage. The PDF of the noise
amplitude has a Gaussian distribution.

Amplitude jitter
Another source which causes an additional jitter is amplitude fluctuations of the voltage transient
[37]. An absorbed photon results in the formation of a normal domain. The size of the domain
depends on the absorption site. For instance, in meander layouts, the detection event can occur
either in straights or bends. Obviously, normal domains formed in straights and bends will
differ in size. Amplitude fluctuations are caused by different sizes of normal domains associated
with each voltage transient. Fig. 2.4 schematically shows two voltage transients arriving at
the same time. These transients have different amplitudes but identical rising times. If one
measures arrival times at the fixed discriminator level H from the baseline, then the difference
in amplitudes will add to this time. In other words, it will broaden the measured PDF producing
an artificial jitter σamp which can be estimated as

σamp = σUA

τriseH

A2
mean

, (2.2)

where σUA
=
√︂
σ2UΣ

− σ2UN
, σUΣ

is the rms value of the noise amplitude in the top part of
the transient (see Fig. 2.3(b)). The jitter σamp can be minimized by using bend-free SNSPD
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Figure 2.4: Artificial jitter, σamp, is caused by the difference in amplitudes of two voltage transients
if their arrival times are determined at a fixed discriminator level H from the base line. The figure is
taken from [38].

layouts such as straight or spiral nanowires. Differently the amplitude jitter can be eliminated
by defining the arrival times of transients at a fixed fractional level for each pulse (analogous to
constant fraction discrimination) [34].

Optical jitter
The optical fiber delivering light to an SNSPD causes an additional jitter. Being Fourier-
transform-limited, an optical pulse of a Gaussian shape in free space is characterized by its
duration, σt, and finite spectral width, σλ. They are connected as

σt =
λ2

2πcσλ
, (2.3)

where σ stands for std for the corresponding Gaussian distribution, λ is the central wavelength
in free space, and c is the speed of light in vacuum. Traveling through the fiber, an optical
pulse of a finite spectral width spreads in time. Because the material refractive index, n1, is
wavelength-dependent, photons of different wavelengths propagate within the fiber with different
phase velocities. While, the whole optical pulse propagates with the group velocity. As a result,
the optical pulse broadens in time. The phenomenon causing group velocity dispersion is known
as chromatic or material dispersion. The variance of traveling times of the photon through the
fiber gives an optical jitter, which is expressed as

σopt = DmσλLf , (2.4)

where Dm =

⃓⃓⃓⃓
−λ
c

d2n1
dλ2

⃓⃓⃓⃓
is the material dispersion coefficient, Lf is the fiber length. At some

wavelength, the optical contribution to the system jitter can be crucial. For instance, an optical
Gaussian pulse with σt = 10 fs will acquire the optical jitter 2, 1.9, and 6.8 ps/m after passing
one meter of a single-mode fiber at wavelengths 1550, 1064, and 532 nm, respectively. To
minimize the optical jitter, one needs to use zero-dispersion shifted fibers for which the zero-
dispersion wavelength is shifted to a desired one. Besides chromatic dispersion, there is also
waveguide dispersion. It arises from the wavelength dependence of the group velocity due to
specific fiber geometry, i.e. a ratio between the diameter of the fiber core and the propagated
wavelength. Waveguide dispersion is much less than the chromatic one and plays a role only
at those wavelengths where chromatic dispersion is very small. If the fiber is out of the single-
mode regime, the modal (or intermodal) dispersion arises due to differences in group velocities
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of the propagating modes. Pulse broadening in single-mode fibers almost entirely arises from
chromatic dispersion. It is worth mentioning that for multimode fibers and very long (a few
kilometers) single-mode fibers, the distribution of photon traveling times deviates from the
Gaussian one exhibiting a slower tail at larger times [39]. For a short single-mode fiber, however,
the distribution is expected to be Gaussian.

Instrumental jitter
Other instruments may also contribute to the system jitter by introducing the uncertainty in the
arrival time of the transient, the so-called instrumental jitter. The instrumental jitter is caused
by the timing inaccuracy of the scope, the jitter in the reference signal from the photodiode, or
undesirable optical reflections. In contrast, coaxial cables rather introduce a delay than a jitter.
In Section 3.3.3.3, we will show that the instrumental jitter can be evaluated experimentally in
the bolometric (uniform), multi-photon detection regime in which other jitter contributions are
eliminated.

Intrinsic jitter: geometric and local
Once the contributions of external sources to the system jitter are minimized, the intrinsic
jitter inherent in the detection process itself becomes measurable. The intrinsic jitter consists
of longitudinal geometric and local jitters. The local jitter originates from the microscopic
physics of photon detection in the nanowire itself. The geometric jitter is caused by position-
dependent traveling times of the voltage transient, which propagates with the finite speed from
an absorption site along the nanowire to the input of readout electronics. It was shown that
increasing the nanowire length introduces the geometric jitter [30]. Here we will consider only
the geometric jitter, while in Section 2.2.4, the focus will shift to the local jitter.

There are two different methods to read out the SNSPD response. In the conventional
readout, a nanowire builds a part of the central strip in the shortened coplanar line. One end of
the nanowire is connected to the ground plane of the line and another to the central strip of the
line, so that the nanowire has one common output connected to an amplifier. In the differential
readout (or dual readout) introduced in [30], the nanowire builds a part of the central strip of
the coplanar line as well. However, in this case, both ends of the line serve as outputs connected
to two different amplifiers. In both cases, the nanowire can be treated as a transmission line
[30].

At the photon absorption site after the formation of the normal domain, two current steps
are generated. They have opposite polarities and propagate to opposite directions along the
nanowire with velocity v ≈ 12 µm/ps. This propagation velocity was obtained for the 5 nm-
thick, 100 nm-wide NbN nanowire on a sapphire substrate in [40]. In the case of the differential
readout, the maximum difference between arrival times of two current steps at the input of
the amplifier is |t1 − t2| = L/v, where L is the nanowire length. For a uniformly distributed
probability of photon absorption and in the absence of noise, the PDF of intervals |t1 − t2| is
also uniform with the std σ = L/(2

√
3v). Estimations of the geometric jitter in the conventional

readout are given in Section 3.3.3.1.
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2.2.3 Asymmetry of experimental probability density function

Numerous experimental studies of the timing jitter reported asymmetries in the profile of ex-
perimental PDFs [30, 27, 31, 32]. The asymmetry appears as a deviation from a Gaussian
profile exhibiting a long tail at large delay times. Such non-Gaussian PDFs were observed for
different superconducting materials, detector layouts, and readout methods [33, 34, 30]. The
non-Gaussian PDF is well fitted with an exponentially-modified Gaussian distribution [33, 41].
Such a distribution exhibits a Gaussian profile at small times ≤ t0 and an exponential tail at
large times ≥ t0, where t0 is the time position of the PDF peak. This unique feature, the
non-Gaussian distribution of delay times, is attributed to the intrinsic detection process.

2.2.4 Microscopic mechanism and physical sources of intrinsic timing jitter

Recently, several theoretical attempts have been made to determine the fundamental limit of the
intrinsic jitter. These models neglect the geometric jitter, and therefore, the intrinsic jitter is
reduced to the local jitter. Vodolazov [10] suggested that at a current close to the depairing cur-
rent, the jitter is limited to the shortest relaxation time of the superconducting order parameter
that may reach about 0.8 ps for an NbN nanowire. Allmaras et al. in [11] obtained a very similar
value by assuming that Fano fluctuations set the jitter limit. Fano fluctuations randomize the
amount of energy retained in the electron system due to energy loss via phonon escape from the
film to the substrate. In [42], Wu et al. suggested that the jitter is limited to the variance in
the time needed for a vortex to cross the nanowire that roughly results in 1 ps. Below we de-
scribe the mechanism of the intrinsic jitter in the framework of the microscopic two-dimensional
(2-d) hot-spot model developed by Vodolazov in [10]. The impact of Fano fluctuations will be
discussed in detail in Section 3.3.5.

The 2-d hot-spot model is based on a modified time-dependent Ginzburg-Landau (TDGL)
equation for the superconducting order parameter, together with a two-temperature model,
and a current continuity equation (for details see [15]). It is assumed that each system of
electrons and phonons is instantly in internal thermal equilibrium within itself, i.e. at any
time, distribution functions of electrons and phonons represent Fermi-Dirac and Bose-Einstein
distributions, respectively, with their effective temperatures, Te and Tph, larger than the bath
temperature. In [15], it was shown that this simple model is capable to qualitatively explain the
voltage response of a superconducting nanowire to the absorption of a single photon. The model
accounts for such important physical effects as finite relaxation time of the superconducting order
parameter, heating of electrons due to Joule dissipation, and growth of the normal domain. The
model defines a detection threshold beyond which a photon with particular energy cannot be
detected, and therefore it is a deterministic model. Such a threshold is the so-called detection
current, Idet, i.e. a threshold current in the presence of the hot spot. Because the hot spot causes
spacial variations of the order parameter, the detection current appears to be smaller than the
depairing current, IDEP (the theoretical pair-breaking current). In the model, a detection event
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Figure 2.5: Time-dependent voltage response of the superconducting nanowire after absorption of
the photon at different distances y across the nanowire. The inset in the upper left corner presents
the nanowire geometry. The distances are specified in the legend (upper right corner) in units of ξC
from the nanowire edge. Another legend (lower left corner) specifies bias current, bath temperature,
the strip width, and the photon energy. Time is given in units τC . The delay time τD is defined at
the threshold level Uth = 20 arb.u. The inset in the lower right corner shows the detection current in
units of the depairing current and the relative delay time as a function of the hot-spot position across
the wire. The absorption of the photon was modelled by instantaneous heating of both electrons and
phonons at t = 0 in the area 2ξC × 2ξC with temperature Te = Tph inside. Here distance is measured in
units ξC =

√︁
ℏD/(kBTC), voltage in units kBTC/(2e), where e is the electron charge, and time in units

τC = ℏ/(kBTC). Numerical calculations were done by Vodolazov, the figure is taken from [44].

is assisted by vortices. In the presence of the hot spot, vortex nucleation occurs at the place
where the velocity of the superconducting condensate locally reaches its critical value [43]. If the
hot spot is located close to the edge of the wire, the velocity of the superconducting condensate
is maximal at the edge, and a vortex enters through the edge. If the hot spot is located far from
the edge, the velocity of the superconducting condensate is maximal inside the hot spot and
a vortex/antivortex pair nucleates inside the hot spot. For bias currents IB ≥ Idet, the entry
barrier for vortices is zero, and vortices appear ’naturally’.

This 2-d hot-spot model results in the position-dependent detection current, Idet(y), shown
in the inset (lower right corner) of Fig. 2.5, where y is the coordinate of the photon absorbtion
site across the nanowire. Similar dependences Idet(y) were reported in [43, 15]. The position
dependence of the detection current was theoretically predicted by Zotova et al. in [43], and
experimentally observed as the position-dependent detection sensitivity by Renema et al. in [45].
The local detection current is the smallest current through the nanowire required to achieve a
100 % probability to detect a photon absorbed at that particular location. If at any location
across the nanowire IB > Idet, the detection regime is deterministic (100 % detection probabil-
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Figure 2.6: Relative delay time as function of the photon energy at zero magnetic field for the bias
current 0.55 IDEP, T = 0.5TC , and the photon absorption site y = 5ξC = 15ξC across the wire. The
solid curve is to guide the eyes. Here distance is measured in units ξC =

√︁
ℏD/(kBTC), and time in

units τC = ℏ/(kBTC). Numerical calculations are done by Vodolazov, the figure is taken from [44].

ity). Contrarily, if at any location IB < Idet, the detection regime is purely probabilistic. For
bias currents smaller than the maximal detection current and larger than the minimal detection
current, the detection regime is a mixture of the deterministic and probabilistic regimes.

The described model allows for simulating the time dependence of the voltage drop along the
nanowire caused by the formation of the growing normal domain after the photon absorption.
Fig. 2.5 shows the time-dependent voltage response and illustrates the definition of the delay
time, τD. The delay time between photon absorption and the formation of the normal domain
is defined at that time when the voltage response crosses the threshold level. Because of the
linear increase of the voltage response, a choice of the threshold does not add variance to τD, i.e.
does not contribute to the jitter. The delay time in the model is a composite time comprised
of the hot-spot formation time and the vortex crossing time. At a fixed current and photon
energy, the delay time depends on the location of an absorption site across the nanowire. Such
a dependence occurs because of the position dependence of the detection current. In the inset
(lower right corner) of Fig. 2.5, we show the position dependence of τD(y) dictated by Idet(y):
τD(y) is minimal where Idet(y) is minimal, and it has a maximum in the middle of the wire where
Idet(y) is maximal. It can also be seen that τD(y) monotonously decreases with the increase
in the ration IB/Idet(y). In [10] (see Fig. 3a there), it was shown that τD(y) monotonously
decreases and flattens with the increase of the bias current. As a result, the jitter, i.e. the
variance in τD, will monotonously decrease with the increase of the bias current.

In Fig. 2.6, we show the delay time as a function of the energy ℏω of the incident photon
at the fixed bias current IB = 0.55IDEP and the photon absorption site y = 5ξC = 15ξC (ξC
is determined in the caption). As seen in the figure, the delay time decreases with increasing
photon energy.
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To summarize, Vodolazov’s model [15, 10] allows for calculating the delay time between the
absorption of a photon and the formation of the corresponding normal domain. The hot-spot
formation contributes a large part to the delay time. The e-ph scattering time and photon escape
time governing the hot-spot formation play a dominant role in determining the delay time. The
intrinsic timing jitter appears in the model as a variation of the delay time. The source of such a
variation is different types of fluctuations. These are fluctuations in the deposited photon energy,
in the energy delivered to the electron system [11], or in the position of the photon absorption
site across the wire. Both the delay time and its variation monotonically decrease either with
increasing bias current at a fixed photon energy or with increasing photon energy at a fixed bias
current. Hence, the variation, i.e. the intrinsic jitter, scales with the delay time. Exactly this
model will be further used for comparison with experimental results in Section 3.3.5. However,
to be able to realize this, we first define physical parameters of interest in the next section.

2.3 Important physical parameters

In this section, we define what material and transport parameters are essential for the further
interpretation of experimental results of jitter measurements in the context of the microscopic
two-dimensional model of the hot spot. First of all, the jitter is intrinsically linked with time
scales of the hot-spot formation. Being a non-equilibrium, the process of hot-spot formation is
governed by the energy relaxation time scales. Among those electron-phonon energy relaxation
time, τEP , and phonon escape time, τesc are the most important. Hence, the rest of Chapter 2
is entirely devoted to theoretical models and experimental techniques that allow for evaluating
these time scales and studying the peculiarities of electron energy relaxation in thin films.

The role of the electron diffusion coefficient, D, on hot-spot formation has been demonstrated
by the experimental study of photon detection performance in NbN and NbC [46] SNSPDs. A
very large D in NbC (D = 4.45 cm2/s) as compared to NbN (D = 0.7 cm2/s) leads to the fast
diffusion of electrons out of the photon absorption site. As a result, the hot spot in SNSPDs
from NbC has a much smaller temperature inside than from NbN and turns to be insufficient
for detecting photons with the same energy.

The ratio between the experimental critical and theoretical depairing currents, IC/IDEP,
is an important parameter in the 2-d hot-spot model (Section 2.2.4) because of the current
dependence of the delay time. Usually, IC of a superconducting nanowire is much less than
IDEP for several reasons. The main reason is constrictions, i.e. geometrical (sharp bends)
or structural (non-uniform thickness and edges) defects in the nanowire. More specifically,
constrictions cause current crowding [16], i.e. they make the current density non-uniform, larger
in areas where the constriction is localized. Current crowding restricts the theoretical IDEP to
the experimental IC , and in straight, bend-free nanowires also emphasizes the properties of the
edges, which generally are less perfect and even non-superconducting [47]. Therefore, the ratio
IC/IDEP additionally enables an estimation of the quality of a superconducting nanowire. All
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these parameters, together with the critical temperature, TC , as the most basic parameter of a
superconductor, will be derived in Section 3.1.

2.4 Electron-phonon scattering and phonon escaping: experi-
mental techniques and models

The use of SNSPDs implies a non-equilibrium state. In a metallic film (on a dielectric substrate)
driven out of equilibrium, the relaxation of the electron energy is supported by two major
processes. These are inelastic electron-phonon (e-ph) scattering and phonon escaping from
the film to the substrate. The characteristic times of these processes, together with the heat
capacities of electrons and phonons, define the relaxation time of the electron energy to the
equilibrium value and, consequently, the timing performance of the practical device. Escape of
isotropic, 3-d Debye phonons through the metal/substrate interface is described by the acoustic
mismatch model (AMM) [48] as well as e-ph scattering in bulk and clean metals is thoroughly
described theoretically [49]. Finally, the heat capacities of electrons and phonons are well defined
in the framework of the Drude and Debye models, respectively. However, practical devices
utilize thin and disordered superconducting films rather than bulk clean metals. For instance,
the most used material for SNSPD is a disordered NbN film of 5-10 nm thickness deposited on
top of an acoustically rigid substrate. The theory of e-ph scattering developed for bulk clean
metals is irrelevant for such films. Hence in our study, we applied the theory of e-ph scattering
in disordered metals developed by Sergeev and Mitin (SM). It predicts modification of e-ph
scattering by disorder and impurities (see Section 2.4.2). Another challenge is the description
of phonons because the phonon spectrum in thin films can undergo strong modifications as
compared to the bulk material. In thin films, at low temperatures, the phonon wavelength
becomes comparable or greater than the film thickness. This imposes restrictions on phonon
wavevectors in the direction perpendicular to the film surface. The situation is complicated by
the acoustical mismatch between the film and the underlying substrate. The restricted geometry
of the material leads to the reduction in the phonon density of states [50], and acoustic mismatch
reduces the ability of phonons to pass through the film/substrate interface. All these definitely
affect the e-ph scattering and phonon escape rates and, as a result, the thermal transport.

Due to the described complexity of the system, the parameters of interest (e-ph scatter-
ing time, phonon escape time) should be rather evaluated experimentally than theoretically.
There are two distinct experimental techniques providing these parameters, photoresponse and
magnetoconductance. The main difference between these techniques is that the former implies
electron heating, while the latter does not. The analysis of data in magnetoconductance mea-
surements is based on the theory of quantum corrections to the classical Drude conductance. It
allows for extracting the e-ph scattering rate at the temperature range above TC . The photore-
sponse technique provides direct information on the effective relaxation time, the decay time
of the photoresponse. The data analysis of photoresponse measurements can be done in terms
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of thermal flow by applying two- or three-temperature models, and also in terms of geometric
acoustic propagation of phonons by applying the phonon ray-tracing model. It allows for finding
the e-ph energy relaxation rate or, alternatively, may reveal the properties of phonons in the
film (details are in Section 2.4.4). The photoresponse technique operates at temperatures close
to TC (T ≥ TC) and can be extended to lower temperatures by applying a magnetic field. It
is important to mention here that the magnetoconductance technique provides a value of the
e-ph scattering rate at the Fermi level (single-particle), which can be directly compared with
one predicted by the microscopic theory. However, the photoresponse technique, which implies
electron heating, provides the e-ph energy relaxation rate (see subsection 2.4.2). In the current
section, both experimental techniques are considered in detail, including models used for the
data analysis. Further, in Section 3.2, both techniques will be applied.

2.4.1 Magnetoconductance technique: Electron dephasing time

The superconducting films used for fabricating SNSPD represent a disordered system. In such
films at low temperatures, the electron transport is in a quantum diffusive regime. The diffusive
regime denotes that a conduction electron traveling through a disordered medium experiences
many scattering events. This implies that the electron mean free path, the average distance
between elastic scattering centers, le, is much smaller than the size of the system. The wave
behavior of an electron is described by the electron wave function with the amplitude and the
phase. The quantum diffusive regime additionally implies that le is much smaller than the
phase-breaking length, Lϕ. The length scale Lϕ corresponds to the distance between inelastic
(phase-breaking) scattering centers, i.e. the distance a conduction electron can travel before the
phase of its wave function becomes randomized. In contrast to inelastic scattering, after the
elastic scattering event, the phase is (partially) preserved. Preservation of the phase maintains
quantum interference of the electron waves that can be illustrated as follows. An electron moving
from one point to another (over a distance shorter than Lϕ) is presented as a set of partial waves
with their amplitudes and phases. Each wave corresponds to a different path along which the
electron experiences many elastic scattering events. The probability of finding the electron at
the final point is equal to the square of the modulus of a sum of the partial waves, i.e. it
includes the amplitudes, as well as the phases acquired while traveling along the corresponding
paths. There is a certain probability for the electron to make a loop, i.e. to return to the initial
point. It arises because two partial waves corresponding to clockwise and counter-clockwise paths
along the same loop acquire the same phase. Consequently, such waves interfere constructively.
Constructive interference implies that an electron tends to remain at its initial position, it is
“localized”, resulting in a reduction of the conductance. This effect is known as weak localization
(WL). Externally, the quantum interference can be affected by applying a magnetic field. The
presence of the magnetic field adds different (positive and negative) phase shifts to clockwise and
counter-clockwise wave functions along the same loop. The constructive interference becomes
destructive, and the conductance increases. Without a field, the largest length of a loop is limited
to Lϕ. What limits the phase-breaking length Lϕ by destroying the phase of the wave function
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are inelastic scattering events. These are scattering at other electrons, phonons, exchange of
superconducting fluctuations, and also extrinsic sources as magnetic impurities or two-level
systems. Hence, the field which eliminates the longest active loop allows one to estimate Lϕ and,
consequently, the associated with it dephasing time τϕ. Although the mechanisms of dephasing
are all due to inelastic scattering, the dephasing time is, in general, different from the inelastic
time (see Subsection 2.4.1.2).

The magnetoconductance technique is based on transport measurements in the magnetic
field. From these measurements one can extract the dimensionless change in the conductance
(reciprocal resistance per sample square) induced by the magnetic field at a fixed temperature
T as follows

δG(B, T ) =
2π2ℏ
e2

[︃
1

RS(B, T )
− 1

RS(0, T )

]︃
, (2.5)

where 2π2ℏ/e2 has the dimension of Ω.

The experimentally obtained magnetoconductance, δG(B, T ), is further analyzed in terms
of the theory of quantum corrections to the classical Drude conductance. The Drude model does
not account for the quantum effects relying on the assumption that after an elastic scattering
event, the information on the initial velocity and direction of an electron is completely lost. The
conductance of the film in the quantum diffusive regime differs from the Drude conductance by
the value of the quantum correction. We use the following notation. Dimensionless quantum
corrections to the Drude conductance we denote as ∆G. Theoretical dimensionless magnetocon-
ductance can be expressed as δG(B, T ) =

[︂
2π2ℏ
e2
G0 +∆G(B, T )

]︂
−
[︂
2π2ℏ
e2
G0 +∆G(0, T )

]︂
, where

G0 is the Drude conductance. Computing the change in the conductance allows for excluding
the term with the Drude conductance, and we arrive at δG(B, T ) = ∆G(B, T )−∆G(0, T ).

All quantum corrections could be divided into two main groups [51], namely single-particle
and two-particle corrections. The single-particle corrections are caused by the quantum inter-
ference between waves from one electron (electron interferes with itself). They are known as
weak-localization (WL) corrections. The two-particle corrections are caused by the quantum
interference between waves from different electrons, responsible for the electron-electron interac-
tion. This group can be further divided into electron-electron interaction in the cooper channel
and the diffusive channel. The quantum correction from interaction in the diffusive channel is
negligibly small [52] in the range of magnetic fields (0 – 9 T) and temperatures (10 – 30 K)
considered in this thesis (see Section 3.2), therefore we neglect it. The quantum corrections
from electron interaction in the cooper channel include superconducting fluctuations described
by Aslamazov and Larkin, and Maki and Thompson, and fluctuations due to the suppression of
the electronic density of states. All these corrections are considered below.
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2.4.1.1 Quantum corrections

The theory of quantum corrections was developed for degenerate electron gas at the limit
kF le > 1. Each quantum correction exhibits its inherent magnetic field and temperature
behaviors. These behaviors strongly depend on the dimensionality of the electron gas with re-
spect to the characteristic scales of the theory. NbN films under the present study fall into the
category of a quasi-two-dimensional system (the dimensionality is examined in Section 3.1.1). A
film is treated as a quasi-2-d system if le, λF < d < Lϕ, LT , where d is the thickness of the film
and LT =

√︁
2πℏD/(kBT ) is the thermal coherence length. Consequently, the analytical expres-

sions of quantum corrections, which are necessary for the further analysis of the experimental
data (presented in Section 3.2.1), will be given only for the 2-d limit.

Weak Localization (WL)
In the quantum diffusive regime, scattering of non-interacting electrons on elastic impurities
yields the effects of quantum interference. As was discussed above, quantum interference re-
sults in a higher probability of finding an electron at the initial point. Such an effect, the
weak-localization effect, provides a negative correction to the classical Drude conductance, the
amplitude of which increases with lowering the temperature. So far, the electron spin was ig-
nored. However, in the presence of strong spin-orbit (s.o.) scattering, the former illustration of
quantum interference becomes different. Two partial waves, corresponding to the clockwise and
counterclockwise paths of the loop and interfering constructively (in the absence of the exter-
nal magnetic field) at the initial point, have the fixed spin +1/2 or -1/2. Spin-orbit scattering
rotates the spins of the partial waves in the opposite directions resulting in destructive interfer-
ence. This leads to the positive correction to the Drude conductance. This effect is contrary to
(normal) weak localization and known as weak anti-localization (WAL). The amplitude of the
WAL correction increases with lowering the temperature.

The total correction to the Drude conductance caused by the weak-localization effect in-
cluding spin-orbit scattering and magnetic impurities scattering is given by [53, 54]:

∆GWL(B, T ) = −
[︃
ψ

(︃
1

2
+
B1

B

)︃
− ψ

(︃
1

2
+
B2

B

)︃
+ ψ

(︃
1

2
+
B3

B

)︃
− ψ

(︃
1

2
+
B4

B

)︃]︃
, (2.6)

where ψ(x) is the digamma function and fields are:

B1 = Be +Bs.o. +Bs,

B2 =
4

3
Bs.o. +

2

3
Bs +Bin,

B3 = 2Bs +Bin, (2.7)

B4 = B2.

Here the characteristic fields, Bj , are connected with the characteristic scattering times, τj ,
as Bj = ℏ/(4eDτj), where indices stand for the following scattering processes: ‘e’ is elastic
scattering, ‘in’ - inelastic scattering, ‘s’ - magnetic scattering, and ‘s.o.’ - spin-orbit scattering.
Although the index ‘in’ denotes inelastic scattering, the corresponding time to the field Bin is the
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Figure 2.7: Simulated quantum corrections to the Drude conductance caused by the weak localization
(WL) effect. Solid curves correspond to WL in the absence of spin-orbit and magnetic impurities scatter-
ing. Dashed curves correspond to WAL in the presence of strong spin-orbit scattering and the absence of
magnetic impurities scattering. Dotted curves correspond to the weak spin-orbit scattering (τs.o. < τϕ)
and the absence of scattering on magnetic impurities. a) Dimensionless weak-localization correction vs.
magnetic field and b) vs. temperature at zero magnetic field. c) Dimensionless weak-localization mag-
netoconductance vs. magnetic field. For each curve we fixed the parameters τϕ = 8 ps, τe = 1 fs and
D = 0.5 cm2/s (D enters the expression for the characteristic fields); in the panels a) and c) the solid,
dashed and dotted curves were simulated with τs.o. = 2 ns, 0.5 ps, and 4 ps respectively. In the panel b)
τϕ was taken to scale with the temperature as τϕ ∼ T−2, for the dashed curve, τs.o. = 2 ns.

electron dephasing time τϕ which is, in general, different from the inelastic electron scattering
time τin (see Subsection 2.4.1.2). The term Bs ∝ 1/τs is zero for non-magnetic materials due
to the absence of magnetic impurities. NbN films studied in this thesis (Section 3.1) are not
a magnetic material. Therefore, we exclude the term Bs from consideration. Consequently,
Eqs. (2.7) reduce to B1 = Be + Bs.o., B2 = B4 = 4

3Bs.o. + Bin and B3 = Bin. Further, since τe
is the shortest time scale, i.e τe ≪ τs.o., τϕ, therefore B1 = Be and the first digamma function
in Eq. (2.6) can be approximated by its asymptotic limit, ln(Be/B), which is valid for large
arguments (Be/B ≫ 1). Eq. (2.6) consequently becomes:

∆GWL(B, T ) = −

[︄
ln

(︃
Be

B

)︃
− 3

2
ψ

(︄
1

2
+

4
3Bs.o. +Bin

B

)︄
+

1

2
ψ

(︃
1

2
+
Bin

B

)︃]︄
. (2.8)

In the limit x → 0, the digamma function ψ(1/2 + 1/x) has the asymptotic ln(1/x). Hence, in
the zero field limit, B → 0, Eq. (2.8) becomes:

∆GWL(0, T ) = − lim
B→0

[︄
ln

(︃
Be

B

)︃
− 3

2
ln

(︄
4
3Bs.o. +Bin

B

)︄
+

1

2
ln

(︃
Bin

B

)︃]︄
. (2.9)

In the absence of spin-orbit scattering, τs.o. → ∞ and τs.o. ≫ τϕ, and magnetic scatter-
ing, the quantum correction is given by ∆G(0, T ) = − ln(Be/B) = −ln(τϕ/τe). Since 1/τϕ

decreases with the temperature and τe < τϕ at any temperature, the correction is negative and
its magnitude increases with the decrease of temperature (solid curve in Fig. 2.7(b)). At a
fixed temperature, its magnitude decreases with the increase of the magnetic field (solid curve
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in Fig. 2.7(a)). In the presence of very strong spin-orbit scattering (weak-antilocalization),
τe ≪ τs.o. ≪ τϕ, the correction is given by ∆G(0, T ) ∝ 1

2 ln(Bs.o./Bin) = 1
2 ln(τϕ/τs.o.). Here,

the inequality τe ≪ τs.o. holds because not every elastic-scattering event is accompanied by a
spin flip. Since τs.o. is temperature-independent, for τs.o. ≪ τϕ the WAL correction to the Drude
conductance is positive, its magnitude increases with the decrease of the temperature (dashed
curve in Fig. 2.7(b)). At the fixed temperature the magnitude of the WAL correction increases
with the magnetic field (dashed curve in Fig. 2.7(a)). Spin-orbit scattering arises due to interac-
tion between the spin magnetic moment of an electron and the magnetic field generated at the
electron by a moving nucleus around the electron, in the electron rest frame. This interaction is
proportional to the charge of the nucleus. Therefore, spin-orbit scattering is more pronounced
in materials containing heavy atoms, 1/τs.o. ∝ Z4 [55], where Z is the atomic number. For
NbN films studied in this thesis, we expect the spin-orbit coupling to be weak, even if Nb is
relatively heavy, Z = 41, however, N has small atomic number Z = 7. Moreover these films are
characterized by higher content of nitrogen (see Section 3.1).

If the spin-orbit interaction is weak and in the absence of magnetic scattering, the dimen-
sionless magnetoconductance (dotted curve in Fig. 2.7(c)) is given by:

δGWL(B, T ) =

[︄
3

2
ψ

(︄
1

2
+

4
3Bs.o. +Bin

B

)︄
− 1

2
ψ

(︃
1

2
+
Bin

B

)︃

−3

2
ln

(︄
4
3Bs.o. +Bin

B

)︄
+

1

2
ln

(︃
Bin

B

)︃]︄
. (2.10)

Or in the notation of the universal function Y (x) = ln(1/x) + ψ(1/2 + 1/x), it becomes:

δGWL(B, T ) =

[︄
3

2
Y

(︄
B

4
3Bs.o. +Bin

)︄
− 1

2
Y

(︃
B

Bin

)︃]︄
.

The behavior of the magnetoconductance with the magnetic field is shown in Fig. 2.7(c) for
different limiting cases.

Aslamazov-Larkin (AL) fluctuations
Superconducting fluctuations, i.e. stochastic formation of Cooper pair above TC , lead to the
opening of a ”new channel” for charge transfer and contribute to the conductivity. This causes
broadening of the superconducting transition at T > TC . The effect is commonly denoted as
the Aslamazov-Larkin (AL) correction to the conductance. The AL correction is positive and
its magnitude increases with lowering the temperature and the magnetic field. In the 2-d limit,
in the immediate vicinity of TC , where the AL contribution dominates, it has the form [56]

∆GAL(B, T ) =
π2

2 ln(T/TC)

{︃
BC

B

(︃
1− 2

BC

B

[︃
ψ

(︃
1 +

BC

B

)︃
− ψ

(︃
1

2
+
BC

B

)︃]︃)︃}︃
. (2.11)

Here BC is the characteristic field defined by the relation BC = C∗ 2kBT
pieD ln(T/TC) or differently

BC = C∗ℏ/(4eDτGL), where τGL = (πℏ)/(8kBT ln(T/TC)) is the Ginzburg-Landau time rep-
resenting the lifetime of Cooper pairs. In different publications the numerical factor C∗ was

21



Figure 2.8: Simulated quantum corrections to the Drude conductance caused by Aslamazov-Larkin
(AL) fluctuations. a) Dimensionless correction AL vs. magnetic field and b) vs. temperature at zero
magnetic field. c) Dimensionless AL magnetoconductance vs. magnetic field. Three different curves in
a) and c) correspond to different values of τGL as it is indicated in the legends. For each computed curve,
we fixed the following parameters: TC = 10 K, τϕ = 8 ps, and D = 0.5 cm2/s (D enters the expression
for the characteristic field).

assigned values from 1 to 3 [54, 57, 58, 59]. In the limit, B → 0, the term in curly brackets
approaches a value 1/4, therefore the AL correction becomes:

∆GAL(0, T ) =

(︃
2π2ℏ
e2

)︃
e2

16ℏ ln(T/TC)
. (2.12)

This correction is positive and its magnitude rapidly increases with decreasing temperature
(Fig. 2.8(b)). In the vicinity of TC , the AL correction exhibits temperature singularity. The
magnetoconductance caused by the AL corrections is given by:

δGAL(B, T ) =
π2

2 ln(T/TC)

{︃
BC

B

(︃
1− 2

BC

B

[︃
ψ

(︃
1 +

BC

B

)︃
− ψ

(︃
1

2
+
BC

B

)︃]︃)︃
− 1

4

}︃
. (2.13)

The behavior of the magnetoconductance with magnetic field is shown if Fig. 2.8(c) at different
fixed temperatures.

Maki-Thomson (MT) fluctuations
The Maki-Thompson correction to the Drude conductance accounts for stochastic, for a time
shorter than τϕ, pairing of two electrons, which are about to simultaneously (coherently) scatter
at the same impurity. Pairing eliminates scattering that effectively increases the electron mean
free path and weakens the effect of localization. Numerous experimental studies [60, 61, 62, 63]
demonstrate that the MT correction gives the main contribution to the magnetoconductance at
T > TC . The MT correction [64, 65] for the 2-d limit was elaborated by Larkin [66] for large
temperatures and further modified by Lopes dos Santos and Abrahams (LSA) [67] for lower
temperatures close to TC , i.e. when ln(T/TC) ≪ 1, as

∆GMT (B, T ) = −βLSA(T, δ)
[︃
ψ

(︃
1

2
+
Bin

B

)︃
− ψ

(︃
1

2
+
BC

B

)︃]︃
. (2.14)

Here, the parameter βLSA(T, δ) = π2/(4[ln(T/TC) − δ]) is the MT pair-breaking parameter,
where δ = (πeDBin)/(2kBT ) =

Bin
BC

ln(T/TC). Differently this parameter can be expressed as
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Figure 2.9: Simulated quantum corrections to the Drude conductance caused by Maki-Thomson (MT)
fluctuations. a) Dimensionless MT correction vs. magnetic field and b) vs. temperature at zero magnetic
field. c) Dimensionless MT magnetoconductance vs. magnetic field. Three different curves in a) and c)
correspond to different values of τGL as it is indicated in the legends. For each computed curve, we fixed
the following parameters: TC = 10 K, τϕ = 8 ps, and D = 0.5 cm2/s (D enters the expression for the
characteristic field).

βLSA(T, δ) =
2πkBT

ℏ
τGL

1−τGL/τϕ
. In the zero field limit, B → 0, the MT correction becomes:

∆GMT (0, T ) = −βLSA(T, δ) ln
(︃
Bin

BC

)︃
. (2.15)

In contrast to the (normal) WL correction, the MT correction is positive and has temperature
singularity. The magnitude of the MT correction increases with the decrease of the temperature
(Fig. 2.9(b)) and decreases with the increase of the magnetic field (Fig. 2.9(a)). Finally, the
magnetoconductance caused by the MT correction (Fig. 2.9(c)) is given by:

δGMT (B, T ) = −βLSA(T, δ)
[︃
ψ

(︃
1

2
+
Bin

B

)︃
− ψ

(︃
1

2
+
BC

B

)︃
+ ln

(︃
BC

Bin

)︃]︃
. (2.16)

In the notation of the universal function it becomes:

δGMT (B, T ) = −βLSA(T, δ) [Y (B/Bin)− Y (B/BC)] .

Density of states (DOS) fluctuations
Because above TC some electrons are involved in stochastic formation of Cooper pairs, the
electron density of states decreases. The pairing electrons cannot simultaneously participate in
charge transfer, the effective number of carriers taking part in charge transfer reduces. This
results in the decrease of the normal state (Drude) conductance. This indirect fluctuation
correction to the Drude conductance is known as the density of states (DOS) correction and it
appears side by side with the AL correction. The DOS correction has the opposite (negative)
sign and is less singular in the vicinity of TC as compared to the AL correction (Fig. 2.10(a) and
(b)). The DOS correction is given by [68, 69]:

∆GDOS(B, T ) =
28ς(3)

π2

[︃
ln

(︃
B

BC
ln(T/TC)

)︃
+ ψ

(︃
1

2
+
BC

B

)︃]︃
, (2.17)
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Figure 2.10: Simulated quantum corrections to the Drude conductance caused by fluctuations of
the electron density of states (DOS). a) Dimensionless DOS correction vs. magnetic field and b) vs.
temperature at zero magnetic field. c) Dimensionless DOS magnetoconductance vs. magnetic field.
Three different curves in a) and c) correspond to different values of τGL as it is indicated in the legends.
For each computed curve, we fixed the following parameters: TC = 10 K, τϕ = 8 ps, and D = 0.5 cm2/s
(D enters the expression for the characteristic field).

where ς(3) = 1.202 is Riemann zeta function. In the limit of zero magnetic field, it becomes

∆GDOS(0, T ) =
28ς(3)

π2
ln [ln(T/TC)] . (2.18)

The DOS correction (Fig. 2.10(b)) has the opposite sign with respect to the AL and MT correc-
tions and is less singular in temperature than those. Its magnitude decreases with increase of
the temperature and of the magnetic field. The dimensionless magnetoconductance due to the
DOS correction is

δGDOS(B, T ) =
28ς(3)

π2

[︃
ln

(︃
B

BC

)︃
+ ψ

(︃
1

2
+
BC

B

)︃]︃
. (2.19)

In the notation of the universal function it becomes δGDOS(B, T ) = 28ς(3)
π2 Y (B/BC). It is worth

mentioning that δGMT expression given by Eq. (2.16) includes the same field dependence as
δGDOS (Eq. (2.19)) with the accuracy of the prefactor βLSA(T, δ).

Total magnetoconductance
Here, we simulate the contribution of each quantum correction to the total magnetoconductance
at different temperatures. The total magnetoconductance is a sum of magnetoconductances
caused by each quantum correction considered above: δG(B, T ) = δGWL(B, T )+δGAL(B, T )+

δGMT (B, T ) + δGDOS(B, T ). The WL term was computed with Eq. (2.10) which corresponds
to the case of weak spin-orbit scattering and the absence of magnetic impurity scattering. For
computing AL, MT and DOS terms, Eqs. (2.13), (2.16) and (2.19) were used, respectively.
The total magnetoconductance as well as each term are shown in Fig. 2.11 at three different
temperatures 10.1, 12, and 25 K. Values of other parameters were chosen to be similar to those
for studied here NbN films (see Section 3.2.1) as TC = 10 K, τϕ = 8 ps, and D = 0.5 cm2/s.
Fig. 2.11(a) corresponds to the vicinity of the superconducting temperature, ln(T/TC) ≪ 1,
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Figure 2.11: Simulated magnetoconductance caused by different quantum corrections to the Drude con-
ductance vs. magnetic field. a) Total magnetoconductance was computed as δG(B, T ) = δGWL(B, T )+

δGAL(B, T ) + δGMT (B, T ) + δGDOS(B, T ). Simulation were done at three different temperatures a)
10.1 K, b) 12 K, c) 25 K. Simulations were done with the following parameters: TC = 10 K, τϕ = 8 ps,
D = 0.5 cm2/s and τs.o. = 4 ps.

where the AL correction is the dominant term. However, already for ln(T/TC) < 1 (Fig. 2.11(b))
the MT term dominates over others. Fig. 2.11(c) corresponds to the temperature far above TC ,
ln(T/TC) ≈ 1, the total change in conductance, δG(B, T ), is almost completely determined by
the MT term.

Further in Section 3.2.1, we will fit the experimental data with the total change in conduc-
tance as

δG(B, T ) = δGWL(B, T ) + δGAL(B, T ) + δGMT (B, T ).

Here the DOS term is intentionally omitted to simplify the fitting procedure. To account for
DOS fluctuations, the prefactor βLSA(T, δ) in the MT term can be used as a fitting parameter
because the MT term includes the same expression as the DOS term with the accuracy of the
prefactor. To summarise, the following fitting parameters will be used: C∗, Bs.o. and Bin. The
dephasing rate will be found from the magnetic field as τϕ = ℏ/(4eDBin).

2.4.1.2 Electron dephasing and inelastic scattering times

Theory predicts that, in the absence of extrinsic phase-breaking sources, the total dephasing rate
is a sum of the rates affiliated with independent inelastic scattering events in which electrons
are involved. They are electron-electron scattering (e-e) [70], electron-phonon scattering (e-ph)
and electron-fluctuation scattering (e-fl) [71]. The latter is associated with losses of the electron
energy and phase coherence due to the recombination of electrons into superconducting pairs
[71]. Hence, the total dephasing rate is

1

τϕ
=

1

τe−e
+

1

τe−ph
+

1

τe−fl
. (2.20)
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Although the dephasing rate 1/τϕ is governed by inelastic processes, in principle, 1/τϕ may
differ from the inelastic scattering rate 1/τin. The difference is most pronounced for scattering
processes in which the change in the electron energy is smaller than thermal energy. With respect
to e-e scattering, at low temperatures, the dephasing rate is dominated by Nyquist noise, i.e.
scattering events with small-energy transfer [72, 70]. This is equivalent to the interaction of a
conduction electron with electromagnetic fluctuations produced by the environment, i.e. other
electrons. In the 2-d limit, Altshuler and Aronov [72, 70] showed that the dephasing (Nyquist)
e-e rate is given by

1

τe−e
=
kBT

ℏ
1

2C1
ln(C1), (2.21)

where C1 = πℏ/(RSNe
2). At temperatures larger than the crossover temperature ℏ/(kBτe), the

e-e dephasing rate is dominated by Landau scattering, i.e., scattering events with large energy
transfer. In this latter case the rate has a different temperature dependence ∝ T 2 ln(T−1) [73]
(for strongly disordered NbN films the crossover is expected to occur at temperatures > 103 K).
With respect to e-ph scattering, the processes with small-energy transfer are suppressed [74]
and typical energy exchange is ∼ kBT . Therefore, the e-ph dephasing rate is identical to e-ph
inelastic scattering rate [75]. In a general form, the e-ph scattering rate can be described as

1

τe−ph
= C2

(︃
T

TC

)︃n

, (2.22)

where C2 is a constant. According to the theory of e-ph scattering in disordered conductors [76],
the exponent n in Eq. (2.22) depends on the degree of disorder and the kind of impurities and
around a fixed temperature may have any value between 2 and 4 (see Section 2.4.2). In super-
conducting materials, at temperatures close to TC , the dephasing rate due to superconducting
fluctuations is given by [71]

1

τe−fl
=
kBT

ℏ
1

2C1

2 ln(2)

ln(T/TC) + C3
, (2.23)

where C3 = 4 ln(2)/[
√︁

ln(C1)2 + 128C1/π − ln(C1)] [71].

Fig. 2.12 illustrates the contribution of the e-e, e-ph, and e-fl dephasing rates to the total
dephasing rate for three values of the exponent n = 4, 3, and 2. Simulations were done according
to Eqs. (2.21 - 2.23) with parameters RSN = 530 Ω/sq, TC = 10 K, and C2 = 10−13 s−1, which
are close to those of NbN films studied in Chapter 3. The total dephasing rate is shown with
dashed curves. It is clearly seen that at T ≫ TC (TC was taken to be 10 K), for n = 3 and 4,
the term τ−1

e−ph dominates and defines both the temperature dependence and the magnitude of
the dephasing rate (Fig. 2.12 (a) and b). Contrarily, close to TC , the term τ−1

e−fl dominates and
controls the upturn in the τ−1

ϕ (T ) dependence.

To conclude, the magnetoconductance technique allows for finding the dephasing time. For
e-ph interaction, the dephasing time due to this interaction and the inelastic (single-particle)
e-ph scattering time are identical [75]. In disordered conductors and at low temperatures, the
latter is predicted by the SM model, to which we devote the next section.
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Figure 2.12: Simulated total electron dephasing rate (dashed curves) and contributing rates vs. tem-
perature for different values of the exponent in τ−1

e−ph ∝ Tn a) n = 4, b) n = 3, c) n = 2. For simulations
Eqs. (2.21 - 2.23) were used with the following parameters RSN = 530 Ω/sq, TC = 10 K, and C2 =
10−13 s−1. These parameters were chosen to be similar to those for NbN films studied in this thesis (see
Section 3.2.1)

2.4.2 Sergeev-Mitin (SM) model: Inelastic electron-phonon scattering time

In clean metals at low temperatures, the inelastic e-ph scattering rate obeys a power-law tem-
perature dependence, 1/τe−ph ∝ Tn, with the exponent n = 3 [49]. In disordered metals, e-ph
scattering is modified by disorder and impurities that makes n temperature-dependent. Models
of e-ph scattering in disordered metals were developed by Pippard [77], Schmid [78], and Ram-
mer and Schmid [75]. In these models, the scattering centers are always taken to vibrate in phase
with the lattice atoms. Later, Sergeev and Mitin [76] generalized the Pippard-Schmid-Rammer
model accounting for the presence of “static” (non-vibrating) scattering centers. Today, the
Sergeev-Mitin (SM) model is the most advanced model describing e-ph scattering in disordered
conductors.

The SM model predicts inelastic (single-particle) scattering rate of electrons at the Fermi
level on 3-d Debye phonons. At low temperatures, the rate of e-ph scattering obeys power law
temperature dependence, τ−1

e−ph ∝ Tn. The magnitude of τ−1
e−ph and the exponent n are controlled

by the degree of disorder and the property of elastic scattering centers, which are presented by
vibrating or heavy impurities, rigid boundaries, and defects. E-ph scattering is a non-local
process with a characteristic size of the interaction region of the order of 1/qT (qT = kBT/ℏu is
the wave vector of a thermal phonon and u is the sound velocity). The product qT le characterizes
the degree of disorder. The limit qT le ≪ 1 corresponds to a strongly disordered regime, and
qT le ≫ 1 to a clean regime. In the regime of strong disorder, the exponent n can take a value
between 2 and 4 that depends on the property of electron scattering centers. Scattering centers
vibrating together with the host lattice lead to τ−1

e−ph ∝ T 4. In the presence of static scattering
centers, which are not dragged by phonons, τ−1

e−ph ∝ T 2.

The inelastic scattering rate of an electron at the Fermi surface via interaction with longi-
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tudinal phonons is given by

τ−1
e−ph(l) =

7πζ(3)

2ℏ
βl(kBT )

3

(pFul)2
Fl(qT (l)le). (2.24)

We use indices ’l’ and ’t’ to denote values associated with longitudinal and transverse phonon
modes. Here, βl(t) = (2EF /3)

2(N(0)/(2ρu2l(t))) is the dimensionless coupling constant, where
EF = p2F /(2me) is the Fermi energy, N(0) is the electron two spin density of states, pF =

N(0)π2ℏ3/me is the Fermi momentum, me is the electron mass, ρ is the mass density, u is the
phonon velocity for a particular phonon mode, and ζ(x) is the Riemann zeta function. The
effect of disorder on the scattering rate is controlled by the integral

Fl(z) =
2

7ζ(3)

∫︂ Al

0
dxΦl(xz)[N(x) + n(x)]x2,

where N(x) and n(x) are Bose and Fermi distribution functions, and

Φl(x) =
2

π

(︃
x arctan(x)

x− arctan(x)
− 3

x
k

)︃
is the Pippard function. The upper limit of the integral Fl(z) is Al(t) = (6π2)1/3(a0 qT,l(t))

−1,
where a0 is the size of the unit cell. The parameter 1 ≥ k ≥ 0 reveals the property of elec-
tron scattering centers. It is defined by the ratio between the fractions of vibrating and static
scattering centers. k = 1 corresponds to scattering centers vibrating in the same way as the
host lattice, k = 0 corresponds to the static (‘non-vibrating’) scattering centers such as heavy
impurities and rigid boundaries. Differently, the role of k can be illustrated as follows. One can
take k = 1− le/l∗ where le is the total mean free path, and l∗ is the average distance an electron
can travel between static-impurity scattering centers. Therefore, if all scattering centers are
static, then l∗ → le and k = 0. In contrast, if there is no static scattering center then l∗ → ∞
and k = 1.

The inelastic scattering rate of an electron at the Fermi surface interacting with transverse
phonons (two polarizations are taken into account) is given by

τ−1
e−ph(t) = 3π2

βt(kBT )
2

(pFut)(pF le)
kFt(qT (t)le), (2.25)

where

Ft(z) =
4

π2

∫︂ At

0
dxΦt(xz)[N(x) + n(x)]x,

and the Pippard function

Φt(x) = 1 + k
3x− 3(x2 + 1) arctan(x)

2x3
.

The total inelastic e-ph scattering rate is a sum of the two rates

τ−1
e−ph = τ−1

e−ph(l) + τ−1
e−ph(t). (2.26)

Effect of the degree and the property of disorder on τe−ph

In order to illustrate the effect of the degree and the property of disorder on the τe−ph we compute
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τe−ph with Eqs. (2.24 - 2.26) for different parameters. Fig. 2.13(a) shows τe−ph as a function of
temperature for different values of k and fixed values of other parameters a0, le, ut(l), ρ, N(0) and
me (these values were taken for the specimen M-2259 from the present study, see Section 3.2.1).
As seen in the figure, the value of k drastically changes both the magnitude and the temperature
dependence of τe−ph, i.e. the exponent n. Complete vibrating scattering centers (k = 1) result
in τe−ph ∝ T 4. However, the dependence T 2 appears already for k = 0.99 at low temperatures.
Furthermore, if scattering centers are static (k = 0) then only longitudinal phonons interact
with electrons, while already for k > 0.15 (not shown in the figure) the transverse phonons
dominate over a wide temperature range. For the fixed k = 1, the temperature dependence of
the e-ph scattering rate changes from T 4 to T 2 where the transition region (qT le ≈ 1) between
two asymptotics corresponds to the transition temperature ℏu/(kBle). Therefore for a fixed k,
the model allows to adjust the temperature dependence of τe−ph by varying the ratio ul−1

e . In
Fig. 2.13(b) we plotted the computed τe−ph as a function of the electron mean free path, le, for
two temperatures (1 and 15 K) and different k specified in the legend, while other parameters
remained the same. The dependence τe−ph(le, T ) illustrates the effect of disorder. In the case of
vibrating scattering centers (k = 1), the scattering time τe−ph ∝ 1/le in the dirty limit (short le
and low temperatures). On the other hand, in the presence of static scattering centers (k < 1),
the dependence changes to τe−ph ∝ le. The difference between scattering times for these two
cases becomes more pronounced with lowering the temperature that corresponds to increasing
disorder.

Figure 2.13: Computed e-ph scattering time as a function of a) temperature and b) electron mean free
path with Eqs. (2.24-2.26). Each curve was computed with the same fixed parameters a, le, ut,l, ρ,N(0)

and me taken from Section 3.2.1 for specimen M-2259. Dotted curves on the panel (a) are simple power
functions of T with exponents specified in the figure. Other curves correspond to different values of k,
where k = 1 corresponds to completely vibrating scattering centers, while k < 1 stands for the presence
of ‘non-vibrating’, static scattering centers. In the panel (b), three upper curves were calculated for T
= 1 K, and three lower for T = 15 K.
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The e-ph energy relaxation time (τEP )
Since the photon-detection process implies a non-equilibrium state, it is rather described by the
relaxation time of electron energy via e-ph interaction, τEP , which is proportional but not equal
to the inelastic (single-particle) e-ph scattering time τe−ph used in the SM model. The propor-
tionality coefficient between these times depends on the exponent n at a given temperature.
The energy relaxation rate τ−1

EP is an average of τ−1
e−ph over an electron ensemble from the energy

layer ∼ kBT . The relationship between these two rates was obtained in [79] as follows

τ−1
EP

τ−1
e−ph

=
3(n+ 2)Γ(n+ 2)ζ(n+ 2)

2π2(2− 21−n)Γ(n)ζ(n)
, (2.27)

where Γ(n) is the gamma function, n is the exponent in the power law dependence τ−1
e−ph ∝ Tn

around a fixed temperature, and ζ(n) is the Riemann zeta function. This ratio is computed in
Table 2.1 for several values of the exponent n. The photoresponse technique, which provides the
τEP , will be described in Section 2.4.4.

Table 2.1: The ratio between the e-ph energy relaxation rate (measured in experiments with electron
heating) and the inelastic (single-particle) e-ph scattering rate (Eq. 2.27) for different values of the
exponent n in the power law τ−1

e−ph ∝ Tn

n 2 2.5 3 3.5 4
τ−1
EP /τ

−1
e−ph 1.6 2.9 4.5 6.6 9.1

2.4.3 Acoustic mismatch model: Phonon escape time

Total reflection of phonons at an unmatched interface between the film and the substrate allows
for different definitions of the phonon escape time, τesc. Here, we compute phonon transparency
for the interfaces studied in the present work and discuss different definitions of τesc in the
framework of a two-temperature and three-temperature models which will be introduced in
Section 2.4.4.1 and 2.4.4.2, respectively.

Escape of from the superconducting film to the underlying substrate is one of the mechanisms
of energy relaxation. For the case of isotropic 3-d Debye phonons it is well described by the
acoustic mismatch model (AMM), which was first proposed by Little [80] and then reviewed by
Kaplan [48]. We use this model to compute transmission coefficients for certain film/substrate
interfaces. In the framework of the model, one considers a phonon flux as acoustic (elastic)
plane waves propagating through an interface between two media. These media are assumed to
be isotropic, semi-infinite, and lossless for waves of all polarizations. Incident waves of different
polarizations are associated with different phonon modes, these are one longitudinal (l) and
two transversal (t), namely, vertical (SV) and horizontal (SH), with respect to the plane of
incidence. The model takes into account mode conversion and total reflection at the interface.
For instance, either l or SV wave incident at the solid/solid interface generates four outgoing
waves: reflected and transmitted pairs of l and SV waves. The calculation of the transmission
coefficient for this case results in four coupled equations with four boundary conditions. Applied
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boundary conditions require the parallel and perpendicular components of strain and stress
vectors to be continuous at the interface. An incident SH wave does not generate waves of
other polarizations. Therefore the calculation of the transmission coefficient for this case is
straightforward. Transmission coefficients were defined separately for each phonon mode as
the ratio of the energy flux of all transmitted modes to the energy flux of the incident mode
Pi ∝ uiρA

2
i cos(Θ). Here, index ’i’ denotes the phonon mode, A is the amplitude of the incident

mode, Θ is the angle of incidence, ρ is the mass density of the medium, and u is the propagation
velocity. The product u1(2)iρ1(2) is the acoustic impedance, where indices ’1’ and ’2’ refer to the
film and the substrate, respectively. As a result, transmission coefficients depend on the angle
of incidence and the difference between acoustic impedances and sound velocities.

Fig. 2.14 shows transmission coefficients ηΘi computed for longitudinal and two transverse
modes vs. angle of incidence Θ for two interfaces NbN/SiO2 and NbN/Al2O3. For calculations,
we used the following parameters. For NbN we took u1t = 2400 m/s, u1l = 2u1t, ρ = 7.5 g/cm3;
for SiO2, u2t = 4090 m/s, u2l = 6090 m/s, ρ = 2.66 g/cm3; and for Al2O3, u2t = 6450 m/s,
u2l = 1090 m/s, ρ = 3.99 g/cm3. Parameters for NbN were taken from the present study
(Section 3.2), and for substrates from [48]. As it is seen from Fig. 2.14(a), for NbN/SiO2 the
incident l-wave exhibits only one critical angle Θmax,l = arcsin(u1l/u2l) = 52◦. Below this
angle, the l-wave is transmitted as l- and SV-waves, and above this angle, the transmitted l-
wave disappears, and only the transmitted SV-wave remains. For the incident SV-wave, there
are two critical angles. Above the first angle arcsin(u1t/u2l) = 23.2◦, the transmitted l-wave
disappears and the incident SV-wave is transmitted only as SV-wave. The second angle Θmax,t =

arcsin(u1t/u2l) = 35.9◦ is the angle of total reflection.

To define the phonon escape time we consider a phonon flux propagating within a film of
thickness d. The film has two boundaries with the surrounding, one is with the substrate and
the other is either the vacuum boundary or contact to liquid helium, depending on experimental

Figure 2.14: Computed transmission coefficients vs. angle of incidence in the framework of the acoustic
mismatch model a) for NbN/SiO2 and b) for NbN/Al2O3 interfaces. Different colors correspond to the
certain polarization of an incident phonon wave specified in the legends.
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conditions. The propagating phonon flux emitted by electrons undergoes reflections at these
two interfaces. The film/vacuum (or film/helium) interface is assumed to be zero transparent.
Reaching it, the flux is fully specular reflected. By reaching the film/substrate interface, the
phonon flux is partly reflected and partly transmitted with transmission coefficients shown in
Fig. 2.14. The remaining phonons undergo reflection at the other interface. Therefore the es-
cape time of a particular phonon mode is defined as τesc(Θ)i = P (t)(dP (t)/dt)−1 where P (t)
is the phonon flux remaining in the film. After each reflection at the film/substrate interface,
P (t) decreases by the factor 1 − ηΘi. After the q-th reflection, a relative amount of the re-
maining phonon flux is 1 − ηΘi

∑︁N
q=1(1 − ηΘi)

q−1. Two sequential reflections are separated by
the time (2d)/(ui cosΘ) that results in the dimensionless rate of the decrease in the phonon
flux τesc(Θ)−1

i = uiηΘi cosΘ/(2d). Integration over the solid angle gives the escape time per
mode τ−1

esc,i = uiηi/(4d) with the angle-averaged transmission coefficient for a particular mode
ηi = 2

∫︁ Θmax,i

0 ηΘi sinΘ cosΘ dΘ. The total decay rate of the phonon flux energy is a sum of
the decay rates of the phonon energy through particular phonon mode, which in turn is pro-
portional to the heat capacity of the mode. According to the Debye model the heat capacity
is proportional to the cube of the propagation velocity of the mode. Hence, the total weighted

escape rate is τ−1
esc, g =

ηu

4d
, where ηu =

∑︁
i u

−2
i ηi∑︁

i u
−3
i

. The index g means general rate and is related

to all phonons.

In Fig. 2.15 we show the products ηΘiui for each particular phonon mode taken with its

weight, i.e.
∑︁

i u
−2
i ηΘi∑︁
i u

−3
i

, and also a sum of these products (dashed curve) for both interfaces

NbN/SiO2 and NbN/Al2O3. As seen in the figure, energy transfer from the film to the substrate
is primarily dominated by the transverse phonons for both interfaces NbN/SiO2 and NbN/Al2O3.
Therefore, for simplicity, describing the energy transfer one can consider only transverse phonons.
Another approximation is to simplify the total weighted product ηu by a product of weighted

values for the transmission coefficients, η =

∑︁
i u

−3
i ηi∑︁

i u
−3
i

, and mode velocities, u =

∑︁
i u

−2
i∑︁

i u
−3
i

, as

η u. It has to be mentioned that formally calculated ηu ̸= η u, although the difference for two
mentioned interfaces remains less than ten per cent. One can use another approximation. The
total weighted product ηu can be approximated as η0u(sinΘmax)

2, where η0 is the transmission
coefficient at zero degrees and Θmax is the angle of total reflection for SH phonon mode. Here
the sum of weighted products (dashed curves in Fig. 2.15) is approximated by a step function.

As a result the phonon escape rate can be defined differently. One approach is the total
weighted phonon escape rate defined as τ−1

esc, g = ηu/(4d) ≈ η u/(4d) ≈ η0u(sinΘmax)
2/(4d).

Here, the same transparency is assigned to phonons with all incident angles. This approach is
applied in the two-temperature model (Section 2.4.4.1). For instance, for NbN/Al2O3, η = 0.12.
Another approach is to split all phonons into two groups with respect to their angles of inci-
dence. For phonons with Θ > Θmax, the transparency is zero and τesc → ∞. For phonons
with Θ < Θmax, the interface transparency is defined at zero angle of incidence η0 (η0 ≈
0.92 for NbN/Al2O3) and, consequently, τ−1

esc = η0u/(2d). This approach is applied in the
three-temperature model [81] (Section 2.4.4.2) and in the phonon ray-tracing model [82] (Sec-
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Figure 2.15: Computed products of transmission coefficients and sound velocities taken with their
weight vs. angle of incidence (a) for NbN/SiO2 and (b) for NbN/Al2O3 interfaces. Different colors
correspond to the certain polarization of an incident phonon wave specified in legends. Dashed curves
correspond to a sum of weighted products.

tion 2.4.4.3).

We found for NbN/SiO2 interface η = 0.28, u1 = 2.54 ×103 m/s, u2 = 4.35 ×103 m/s. For
NbN/Al2O3 interface η = 0.12, u2 = 6.87 ×103 m/s. Here indexes 1 and 2 are referred to the
NbN film and to the substrate, respectively. For NbN/SiO2 we obtained τesc, g [ps] = 5.9 d [nm]
and for NbN/Al2O3, τesc, g[ps]=12.3 d [nm], these values of phonon escape times are used in
Section 3.2.

2.4.4 Photoresponse technique: Energy relaxation time

Measurements of the sample photoresponse to electromagnetic radiation with varying intensity
allows for finding the relaxation rate of the electron energy. Depending on whether the intensity
of radiation is modulated periodically or by forming short pulses, the photoresponse is mea-
sured in the time domain or the frequency domain, respectively. Corresponding experimental
techniques are usually referred to as the photoresponse in the frequency domain to amplitude-
modulated radiation (FDAM) and the time domain to a short pulse (TDP) excitation. Mea-
surements of the photoresponse to radiation in the sub-THz range are sometimes referred to
as AMAR technique (Absorption of Modulated (Amplitude) sub-THz Radiation) [83], while to
radiation in the optical range as FDAM.

Schematically FDAM and TDP techniques are illustrated in Fig. 2.16. Operating conditions
for these techniques are similar. A superconducting microbridge is biased with a small direct
current (dc), kept at the superconducting transition temperature, and illuminated by radiation
with varying intensity. The planar sizes (width and length) of a microbridge are designed in
a way that minimizes diffusion cooling compared to phonon cooling and matches the electrical
impedances between a readout circuit and the microbridge at the operating condition. A directly
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Figure 2.16: Schematic illustration of the photoresponse measurements a) in the frequency domain
(FDAM technique) and b) in the time domain (TDP technique). In both techniques, the sample, mi-
crobridge, is kept in the vicinity of the superconducting transition. (a) The power of incident radia-
tion alternates periodically and causes modulation of the electron temperature. This leads to periodic
sinusoidal variations in the voltage across the microbridge, δU(t) ∝ δTe(t). The magnitude of the pho-
toresponse, δU2(t), is measured at the beating frequency, fIF , with a spectrum analyzer (is not shown
here). At a certain roll-off frequency, f0, the magnitude δU2(f) decreases to one half of its value at small
frequencies 1/2 δU2(0). The decay time of the photoresponse, τε, is extracted from the roll-off frequency
as f0 = (2πτε)

−1. (b) In the TDP technique, the intensity of incident radiation is modulated by forming
short pulses. The photoresponse represents a voltage transient in the time domain measured with an
osciloscope. The decay time of the photoresponse can be found by fitting the falling edge of the voltage
transient with an exponent, exp(−t/τε). In both techniques, the photoresponse is initially amplified.

measured parameter in the experiment is a change in the voltage drop caused by the flow of
the bias current through the microbridge with changing resistance. It is implied here that
the change in the resistance is induced by intensity-varied radiation. This is not immediately
obvious because the radiation energy transferred to the electrons increases its temperature,
but it does not change the resistance. The resistance is determined by the size of the normal
domain or by the density of free vortices. It is assumed that the size of the domain or the
vortex density instantly follows the electron temperature, which quickly adjusts itself to the
absorbed energy. The small absorbed power is of crucial importance in these techniques because
it ensures exponential relaxation of the electron temperature and linearity of the photoresponse.
In Fig. 2.16, τε denotes the decay time of the photoresponse.

Although the resistance is determined by either the vortex density occurring in the BKT
(Berezinskii-Kosterlitz-Thouless) theory or the normal domain along the current path, the pho-
toresponse is described in terms of quasiparticles and Cooper pairs (the theory of non-equilibrium
superconductivity). The analysis of experimental photoresponse can be done with the two-
temperature (2-T) model (see Section 2.4.4.1) and the three-temperature (3-T) model (see Sec-
tion 2.4.4.2). There is another model, the phonon ray-tracing model, which was developed in
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[82] from the Rothwarf-Taylor model [84] and applied for decay pulse experiments at the temper-
atures well below TC . In this thesis, we extend the phonon ray-tracing model to temperatures
at the superconducting transition (Sec. 2.4.4.3).

2.4.4.1 Two-temperature (2-T) model

The 2-T model is the most frequently applied model for the analysis of the photoresponse to
electromagnetic radiation measured with FDAM, AMAR, and TDP techniques. At tempera-
tures close to T ≥ TC , the concentration of Copper pairs is very low, and the superconductor
is treated as a normal metal. The 2-T model was first developed by Kaganov, Lifshitz, and
Tanatarov in 1957 [85]. The model implies that after absorption of incident radiation, electrons
and phonons are instantly in the internal equilibrium and described by their distribution func-
tions with two different effective temperatures, which slightly exceed the bath temperature. For
electrons, it is valid because the time required for them to thermalize is much less than the time
required for establishing equilibrium between electrons and phonons. Since the phonon-phonon
scattering time is very long, the thermalization of phonons occurs only via electron-phonon and
phonon-electron relaxation. The 2-T model provides time evolution of electron and phonon
temperatures. Qualitatively, the 2-T model describes the energy transfer as it is schematically
shown in Fig. 2.17. The energy absorbed in the electronic subsystem increases the electron
temperature, Te according to the electron heat capacity, ce. The electron energy flows to the
phonon subsystem via e-ph relaxation, on a time scale τEP . The energy transferred to phonons
increases the phonon temperature, Tph, according to the heat capacity of phonons, cph. Energy
from phonons flows to the surrounding via phonon escaping on a time scale τesc, g, and also back
to electrons via ph-e relaxation on a time scale τPE . Forward e-ph and backward ph-e energy
flows are connected through the principle of detailed balance. In equilibrium, it requires the for-
ward energy flow from electrons to phonons to be equal to the backward flow, ce/τEP = cph/τPE .
The equations of the 2-T model in dimensionless form look as follows:⎧⎪⎨⎪⎩

dTe(ξ)

dξ
= −Γ1[Te(ξ)− Tph(ξ)] +

τ0
dce

PRF (ξ) +
τ0
ce
Pdc,

dTph(ξ)

dξ
= Γ2[Te(ξ)− Tph(ξ)]− Γ3[Tph(ξ)− T0],

(2.28)

where Te and Tph are temperatures of the electron and phonon subsystems, T0 is the bath
temperature, d is the film thickness. Γ1 = τ0/τEP , Γ2 = Γ1ce/cph , Γ3 = τ0/τesc, g , ξ = t/τ0

is the dimensionless time, Pdc is the Joule power dissipated in the unit volume of the film.
Usually in measurements with TDP, AMAR, and FDAM techniques, the magnitude of Pdc is
kept extremely small and therefore can be neglected. PRF (t) describes the power (the shape) of
the excitation incident on the unit area of the film. Eqs. (2.28) are written for small deviations
from equilibrium: P (t) = P0+δP (t), Te(t) = Te,0+δTe(t), Tph(t) = Tph,0+δTph(t), Te,0 ≈ Tph,0,
and |δTe(t)| → 0, |δTph(t)| → 0. Depending on the form of the excitation PRF (t) the solution of
Eqs. (2.28) is different. Below the solution will be given for short-pulsed (used in TDP technique)
and periodic excitations (used in AMAR and FDAM techniques).
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Figure 2.17: Energy balance diagram in a thin metal film (or superconducting film in the resistive
state) on a dielectric substrate. The film is presented by two systems electrons and phonons, which are
characterized by their temperatures and heat capacities Te, ce and Tph, cph, respectively. The electron
and the phonon systems are coupled through e-ph scattering. The underlying substrate is presented by
phonons which are characterized by the bath temperature, T0.

The 2-T model accounts for the critical angle of total phonon reflection at the interface
between a film and a substrate by assigning to all phonons the same escape rate τ−1

esc, g (see
Section 2.4.3). This mean escape rate is less than the escape rate for phonons with incident
angles Θ < Θmax. In the 3-T model (Sec. 2.4.4.2) and the ray-tracing model (Sec. 2.4.4.3) total
phonon reflection is accounted differently.

2-T model: Short-pulsed excitation
The solution of Eqs. (2.28) in time domain to short-pulsed excitation was derived in [86, 87].
The analytical expression describing instantaneous power (the shape) of the excitation pulse is
given by PRF (t) = m3ξ2e−mξE0/τ0. For m = 3.4, τ0 represents the full width at half maximum
and E0 represents the total pulse energy absorbed by the unit area of the film. With PRF (t) in
this form, Eqs. (2.28) is a system of non-homogeneous differential equations of the first order.
The solution of the system is a sum of homogeneous and non-homogeneous solutions. Solving
Eqs. (2.28) we obtain time-dependent Te(ξ) and Tph(ξ) in the form

Te(ξ)− T0
T0

= A1
χ1 + Γ2 + Γ3

Γ2
exp(χ1ξ) +A2

χ2 + Γ2 + Γ3

Γ2
exp(χ2ξ) +Q1(ξ) exp(−mξ),

Tph(ξ)− T0
T0

= A1 exp(χ1ξ) +A2 exp(χ2ξ) +Q2(ξ) exp(−mξ), (2.29)
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with parameters given by

χ1,2 =
1

2

(︃
Σ3
iΓi ∓

√︂
(Σ3

iΓi)2 − 4Γ1Γ3

)︃
,

A1,2 = ±Γ2E0m
3

dceT0

1

(χ1 − χ2)(m+ χ1,2)3
,

Q2 =
Γ2E0m

3

dceT0
(aξ2 + bξ + c), (2.30)

Q1 =
E0m

3

dceT0
[(Γ2 + Γ3 −m)(aξ2 + bξ + c) + 2aξ + b],

a =
1

2γ1γ2
; b =

γ1 + γ2
(γ1γ2)2

; c =
γ21 + γ1γ2 + γ22

(γ1γ2)3
; γ1,2 = m+ χ1,2.

Here in the case of double sign ∓ or ±, the first index corresponds to the upper sign while the
second to the lower. The voltage transient at the film, Uin(ξ), is proportional to the change
in the electron temperature, Te(ξ)− T0. The photoresponse measured with the TDP technique
is unavoidably modified by the readout electronics (amplifiers, bias-T, cables, and oscilloscope)
with the finite bandpass. It is represented by the transient Uout(ξ). These two transients are
connected through the Duhamel’s integral as

Uout(ξ) =

∫︂ ξ

0
U̇(ξ′)h(ξ − ξ′)dξ′, (2.31)

where h(ξ) is the unit-step response function, i.e. the response of a readout system to a unit
vertical voltage step at the input. This function characterizes the readout and can be adequately
described as:

h(ξ) = exp(2
√
2f0ξ)

[︃
1− exp

(︃
−2

√
2fCξ

P

Q

)︃]︃[︃
1 + exp

(︃
−2

√
2fCξ

Q

P
+
P

Q

)︃]︃−1

, (2.32)

where fC and f0 are upper and lower band-pass frequencies, respectively, P and Q are constants.
The form of the unit-step response function is shown in Fig. 2.18. The inset in Fig. 2.18 zooms
the rising edge. The parameter Q controls the delay of the function, Q = 0 corresponds to a
zero delay. The parameter P controls the rise time of the function, at P → ∞, the rise time
→ 0.

Another important fact to be accounted for is the impedance mismatch between the sample
and the readout line. The impedance mismatch results in ringing due to multiple reflections of
the voltage transient. It can be simply simulated by adding a series of equidistant transients
with identical shapes and decreasing magnitudes Uin, as

Uin(t) = (1− r)
[︁
U(t) + ΣN

i=1r
iU(t+ i∆t)

]︁
, (2.33)

where r = (R−R0)/(R+R0) is the reflection coefficient, R is the impedance of the sample, and
R0 = 50 Ω is the impedance of the readout line. The interval ∆t is defined by traveling time of
the voltage transient between the sample and a plane of reflection in the transmission line (for
instance, it can be an amplifier). We further use the formalism described by Eqs. (2.28 - 2.33)
in Section 3.2.2 to fit voltage transients obtained with the TDP technique.
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Figure 2.18: The transient characteristic of conventional electronics given by Eq. (2.32) with following
parameters fC = 4.5 GHz, f0 = 50 MHz, P = 4.4 and Q = 2.0.

2-T model: Periodic excitation
Periodic excitation used in the AMAR and FDAM techniques can be mathematically described
as PRF (t) = P0e

−jωt. Here ω = 2πf is the circular frequency and P0 is the radiation power
absorbed per unit area of the film. The solution of Eq. (2.28) in the frequency domain in the
form δTe(t) = δTe(ω)e

−jωt (here δTe(t) is the alternating part of the electron temperature) was
obtained by Perrin and Vanneste in [88] as

δTe(ω) = P0
1

dce

τ2τ3
τ1

⃓⃓⃓⃓
(1 + jωτ1)

(1 + jωτ2)(1 + jωτ3)

⃓⃓⃓⃓
, (2.34)

with the characteristic times τ1 = τ0/(Γ2 + Γ3) and τ2(3) = τ0/χ1(2). Parameters Γ2,3 are
defined in the text after Eq. (2.28), and χ1,2, is given in Eq. (2.30). The spectrum of the sample
photoresponse (Eq. (2.30)) crucially depends on the specific heat ratio ce/cph. For instance,
if (ce/cph + τEP /τesc, g) ≫ 1, Eq. (2.34) reduces to δTe(ω) ≈ P0τ2(dce)

−1|(1 + jωτ2)
−1|, with

τ2 ≈ τEP + τesc, g ce/cph. Exactly this limiting case is valid for thin Nb films [89]. Although this
limiting case was also used for thin NbN films in several works [90, 91], the required inequalities
are not satisfied for NbN material. Indeed, the ratios ce/cph obtained in [92] (for 5.5 nm NbN
film at TC) as well as in [93] all give ce < cph. For NbN, the use of the limiting case would
overestimate τEP . Therefore further in our study (Section 3.2.3) we use the full solution given
by Eq. (2.34).

2.4.4.2 Three-temperature (3-T) model

As well as the 2-T model, the 3-T model is applied for data analysis in photoresponse measure-
ments. Qualitatively, the 3-T model describes the energy transfer as follows (the energy diagram
is schematically shown in Fig. 2.19). The energy absorbed in the electronic subsystem increases
the electron temperature according to the electron heat capacity, ce. The electron energy flows
to two phonon subsystems via e-ph scattering, on a time scale τEP . Phonons are divided into
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Figure 2.19: Energy balance diagram in a thin metal film (or superconducting film in the resistive
state) on a dielectric substrate. The film is presented by three subsystems, electrons and two groups
of phonons. Each subsystem is characterized by its temperature and heat capacity, Te, ce and Tph,
cph, respectively. The electron and phonon subsystems are coupled through e-ph scattering. Phonon
subsystems are different in terms of their coupling to the substrate (ability directly to leave to the
substrate). The phonon subsystem (1) is coupled to the substrate and is called the escaped phonons, the
subsystem (2) is decoupled from the substrate and called the trapped phonons. The underlying substrate
is presented by phonons which are characterized by the bath temperature, T0.

two subsystems by their ability to pass through the film/substrate interface (see Section 2.4.3).
We refer to phonons inside the cone defined by the critical angle as escaped phonons (group 1).
Phonons outside the cone are referred to as trapped phonons (group 2). The energy transferred
to phonons increases the temperature, Tph, of a corresponding phonon subsystem according to
its heat capacity, cph. Each phonon subsystem is characterized by its temperature and heat
capacity. Only escaped phonons are coupled to the substrate, while trapped phonons are de-
coupled from the substrate. We neglect conversion between two phonon groups. Energy from
escaped phonons flows to the surrounding via phonon escaping on a time scale τesc, and also
back to electrons via ph-e scattering on a time scale τPE . Energy from trapped phonons flows
out of the film only indirectly via sequential ph-e and e-ph scattering events. Forward e-ph
and backward ph-e energy flows are connected through the principle of detailed balance. The
principle of detailed balance requires in equilibrium the equality between forward and backward
energy flows, ce/τEP = cph/τPE . The equations of the 3-T model in a general form can be
written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ce
dTe(t)

dt
= −G1[Te(t)− Tph,1(t)]−G2[Te(t)− Tph,2(t)] +

1

d
PRF (t) + Pdc

cph,1
dTph,1(t)

dt
= G1[Te(t)− Tph,1(t)]−Gb[Tph,1(t)− T0]

cph,2
dTph,2(t)

dt
= G2[Te(t)− Tph,2(t)]

(2.35)

The total thermal conductance for e-ph scattering is G = G1+G2 = ce/τEP , where G1 = G
cph,1
cph

and G2 = G
cph,2
cph

. The ratio cph,1/cph defines the fraction of escaped phonons with angles
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Θ > Θmax. A simple calculation of this fraction yields cph,1/cph = 1−cos(Θmax). The total heat
capacity of phonons is cph = cph,1 + cph,2, Gb = cph,1/τesc is the thermal conductance describing
the energy exchange between escaped phonons (group 1) and the thermal bath. Te, Tph,1,
Tph,2, and T0 are temperatures of the corresponding systems. Eqs. (2.35) are written for small
deviations from equilibrium: P (t) = P0+δP (t), Te(t) = Te,0+δTe(t), Tph,1(t) = Tph,10+δTph,1(t),
Tph,2(t) = Tph,20 + δTph,2(t), Te,0 ≈ Tph,10 ≈ Tph,20 ≈ T0, and |δTe(t)| → 0, |δTph,1(t)| → 0 and
|δTph,2(t)| → 0. The solution of Eqs. (2.35) depends on the excitation form PRF .

In a similar form, the 3-T model was developed in [94] and, without neglecting the phonon
conversion, was proposed in [81]. In [95], authors also developed a 3-T model, where phonons
were divided into two groups: acoustic and optical phonons.

3-T model: Periodic excitation
Here, we consider the system of Eqs. (2.35) with periodic excitation in the form PRF (t) =

P0e
−jωt, where ω = 2πf is the circular frequency and P0 is the radiation power absorbed per

unit area of the film. Usually in measurements the magnitude of Pdc is kept extremely small
and therefore can be neglected. With redefined constants, Eq. (2.35) can be written as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dTe(t)

dt
= −Q1Q4[Te(t)− Tph,1(t)]−Q1(1−Q4)[Te(t)− Tph,2(t)] +

1

dce
PRF (t)

dTph,1(t)

dt
= Q2[Te(t)− Tph,1(t)]−Q3[Tph,1(t)− T0]

dTph,2(t)

dt
= Q2[Te(t)− Tph,2(t)]

(2.36)

where Q1 = 1/τEP , Q2 = Q1ce/cph, Q3 = 1/τesc and Q4 = cph,1/cph. This system can be
solved using Fourier transformation which turns the system of coupled differential equations
into a system of linear algebraic equations. The solution of the system (2.36) in the form
δTe(t) = δTe(ω)e

−jωt, where δTe(t) is the alternating part of the electron temperature is given
by

δTe(ω) = P0
1

dce

⃓⃓⃓⃓
⃓
(︃
jω +Q1 −

Q1Q2Q4

jω +Q2 +Q3
− Q1Q2(1−Q4)

jω +Q2

)︃−1
⃓⃓⃓⃓
⃓ . (2.37)

This solution depends on four independent parameters: the e-ph energy relaxation time, τEP ,
the escape time of escaped phonons (group 1), τesc, the ratio between electron and phonon heat
capacities, ce/cph, and the ratio of heat capacity of escaped phonons to the total phonon heat
capacity, cph,1/cph. Taking in Eq. (2.35) cph,1/cph = 1, one arrives at G1 = G and G2 = 0, that
corresponds to the conventional 2-T model.

2.4.4.3 Phonon ray-tracing model

Here we describe a phonon ray-tracing model which was developed by Eisenmenger et al. [82]
for temperatures well below TC . For the first time, to the best of our knowledge, we extended
the phonon ray-tracing model to the temperature range in the vicinity of TC . This section is
placed here for the sake of completeness of Chapter 2.
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Figure 2.20: Computed ratios τε/τEP as a function of d/ΛPE with Eq. (2.38). Both curves were
computed with the same ΛPE = 10 and Λbulk/ΛPE = 1000 and different angles of total phonon reflection,
Θmax = 5◦ (blue dashed curve) and Θmax = 30◦ (orange solid curve).

The reduced ability of phonons to transfer the energy from electrons to the substrate, the so-
called phonon trapping effect, was considered by Eisenmenger et al. [82]. The effect of phonon
trapping slows down the relaxation rate of the electron energy. The authors of [82] aimed
to describe the difference between the experimental recombination lifetime of quasiparticles
measured at temperatures well below TC and the intrinsic recombination lifetime. The following
approach was used. The authors found the mean lifetime of a phonon flux within the film
by tracing the flux over several scattering events with the film/substrate boundary. Assuming
specular boundary reflection, phonons reflected at angles larger the angle of total reflection,
Θ > Θmax, propagate within the film. These phonons can leave the film via sequential
reabsorption and reemission within the cone defined by the critical angle. Phonons can be
absorbed either by Cooper pairs or phonon losses in the bulk material. The authors of [82]
considered two mean free paths of phonons with energies exceeding the binding energy of a
Cooper pair. They are the mean free path for reabsorption of a phonon by a Cooper pair
and a mean free path for phonon losses in the bulk of the film. For temperatures close to the
transition temperature, the binding energy of a Cooper pair (energy gap) is negligibly small that
eliminates the difference between scattering rates of phonons on pairs and quasiparticles. The
intrinsic recombination time of quasiparticles appears as the e-ph energy relaxation time, τEP ,
while the experimental recombination time becomes the decay time of the photoresponse, τε.
Correspondingly, the mean free path for reabsorption of the phonon by a Cooper pair becomes
the mean free path for ph-e scattering, ΛPE , and Λbulk denotes the mean free path for bulk
phonon losses.

According to our redefinitions, Eq. (51) from [82], which is valid for critical angles
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Θmax ⩽ 30◦, becomes

τε
τEP

=

(︃
1 +

Λbulk

ΛPE

)︃(︃
1 +

1

4

Λbulk

ΛPE

Λ∗

d
Hav

)︃−1

, (2.38)

where 1/Λ∗ = 1/ΛPE+1/Λbulk,Hav = (sinΘmax)
2ηΘ(1−z)/(1−[1−ηΘ]z) and z = exp(−2d/Λ∗).

The inequality Λbulk ≫ ΛPE holds for NbN films studied in the present work, that results in
the equality Λ∗ = ΛPE . In Fig. 2.20 we illustrate the dependence τε/τEP = f(d/ΛPE) for two
critical angles Θmax = 30◦ (typical for many film/substrate pairs) and Θmax = 5◦ (implies very
bad acoustic matching). As it is seen in Fig. 2.20, one can define three characteristic ranges
of the thickness dependence of the experimental decay time τε(d). For very small d as com-
pared to ΛPE , the ratio τε/τEP saturates and reaches a value defined by Θmax. Further, in
the limit d > ΛPE , τε grows linearly with d. Finally, for very large d, d ≫ Λbulk, the ratio
τε/τEP saturates and reaches the value defined by Λbulk. It is important to mention here that
the ray-tracing model in the form of Eq. (2.38) is valid for τEP ≫ τPE (applying the principle
of detailed balance it results in ce ≫ cph).

2.4.4.4 Comparison between 2-T, 3-T, and phonon ray-tracing models

This section is devoted to a comparative analysis of the 2-T, 3-T, and phonon ray-tracing models,
which were described in subsections 2.4.4.1, 2.4.4.2 and 2.4.4.3, respectively. To the best of our
knowledge, such a comparison has not been done before. However, we place this section here
for the sake of completeness of Chapter 2. All three models take into account the effect of total
internal reflection occurring for phonons incident at the film/substrate interface. The critical
angle for total internal reflection Θmax, together with the transmission coefficient η0, is described
in the framework of the acoustic mismatch model (AMM) (see Section 2.4.3).

The 2-T model accounts for the effect of total phonon reflection via the total weighted escape
time, τesc, g = 4d/(η u), where the same transmission coefficient η is assigned to phonons with
all incident angles (see Section 2.4.3). The solution of the 2-T problem for periodic excitation
(Eq. (2.34)) is a decay function in the frequency domain, δTe(ω), of three independent parameters
τesc, g, τEP , and ce/cph. The decay time τε of the function δTe(ω) can be found using the relation
δT 2

e (1/τε) =
1
2δT

2
e (0) (for an example see the right graph in Fiq. 2.16(a)). One can differently

define τesc, g = 4d/(η0u sin(Θmax)
2), where η0 is the transmission coefficient at zero angle. (see

Section 2.4.3). Therefore the decay time τε provided by the 2-T model depends on the following
parameters τε = f(τEP ; ce/cph; η0; Θmax; d; u).

The 3-T model differently accounts for the effect of total phonon reflection. Phonons with
angles of incidence < Θmax can quickly leave the film. The escape time for them is τesc =

2d/(η0u). For phonons with angles of incidence > Θmax the transmission coefficient is zero and,
consequently, τesc → ∞. The 3-T model in the form of Eqs. (2.35) neglects conversion between
phonons. The solution of the 3-T problem for periodic excitation (Eq. (2.37)) is a decay function
δTe(ω) in the frequency domain of the following parameters τesc, τEP , ce/cph and cph,1/cph. We
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Figure 2.21: Calculated ratio τε/τEP as a function of d/Λ∗ for fixed Λ∗ ≈ ΛPE = 1 nm, Λbulk = 105 nm,
Θmax = 21.8◦, η0 = 0.985, u = 2.5 nm/ps, η ≈ η0 sin(Θmax)

2, τPE = 0.4 ps, and different τEP a) 0.4 ps,
b) 0.04 ps, c) 4 ps.

define the ratio cph,1/cph as a fraction of escaped phonons inside the critical cone, that is given
by 1 − cosΘmax. The decay time τε of δTe(ω) can be found in the same way as for the 2-T
model. In analogy to the 2-T model, the decay time in the 3-T model depends on the very same
parameters τε = f(τEP ; ce/cph; η0; Θmax; d; u).

The phonon ray-tracing model accounts for the effect of phonon trapping and neglects
phonon conversion. The model additionally accounts for phonon losses in the bulk of the film
via the corresponding mean free path Λbulk. The solution of the ray-tracing model is the decay
time (Eq. (2.38)) which is a function of τEP , η0, Θmax, d, u, Λbulk and ΛPE . The mean free
path for ph-e relaxation is given by ΛPE = uτPE . Applying the principle of detailed balance,
we arrive at ΛPE = uτEP /(ce/cph). If the film thickness is small enough one can neglect the
bulk losses (it is the case of the present study). Therefore, the decay time depends on the very
same parameters for all three models

τε = f

(︃
τEP ;

ce
cph

; η0; Θmax; d; u

)︃
. (2.39)

In Fig. 2.21 we show the calculated ratio τε/τEP vs. d/Λ∗ for all three models. The used
parameters are specified in the caption. In the limit ΛPE ≪ Λbulk, we arrive at Λ∗ ≈ ΛPE (we
remind that 1/Λ∗ = 1/ΛPE + 1/Λbulk, see subsection 2.4.4.3).

Peculiarities of these three models can be summarized as follows. (i) The ray-tracing model
in the form of Eq. (2.38) is valid in the limit τEP ≫ τPE (equivalently, ce ≫ cph) and Θmax ≤ 30◦.
In this limit, the solution coincides with the solution of the 3-T model for small and middle
thicknesses (Fig. 2.21(c)). (ii) In the limit of very thick films where bulk losses are dominant,
d ≥ Λbulk, the phonon ray-tracing model results in saturation of the ratio τε/τEP , while the
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Figure 2.22: Calculated pairs of ce/cph and Θmax for fixed parameters τε, τEP , η0, d and u obtained via
Eq. (2.39) for three models specified in the legend. (a) τε = 421 ps, τEP = 0.46 ps, η0 = 0.985, d= 33.2 nm.
(b) τε = 124.3 ps, τEP = 1.16 ps, η0 = 0.985, d = 3.15 nm. In both cases u = 2.54 nm/ps. These
parameters correspond to the thickest (a) and the thinnest (b) films of K-series studied in Section 3.2.3.

2-T and 3-T models result in the linear thickness dependence. This is because the 2-T and 3-T
models do not account for bulk losses. (iii) In the limit of very thin films, d/Λ∗ ≪ 1, and in the
presence of the critical angle, the 2-T model results in τε → τEP , while the 3-T and ray-tracing
models lead to a saturated value of τε > τEP . This is because the 2-T model neglects implicitly
phonon trapping which occurs when the mean free path of phonons becomes larger than the
film thickness. (iv) In the limit of relatively thick films, d ≥ Λ∗, the solutions of the 2-T and
3-T model coincide.

We continue our analysis of the models with the following. In accordance with Eq. (2.39),
for each model we find such pairs ce/cph and Θmax that satisfy the fixed values of τε, τEP ,
η0, d, and u. Fig. 2.22(a) and (b) shows to two sets of fixed parameters τε, τEP , η0, d, u for
different pairs of ce/cph and Θmax. Values of the parameters are specified in the caption, they
were taken for the thickest and thinnest films of K-series studied in Section 3.2.3. As seen in
Fig. 2.22, the 3-T model provides two ratios ce/cph for the same Θmax. The reason for this is
the following. Fig 2.23 shows two solutions δTe(ω) obtained in the framework of the 3-T model
(Eq. (2.37)), which differ only by the ratio ce/cph. The difference between the computed curves
is pronounces at small magnitudes δTe(ω), while τε is defined at -3 dB level, where the curves
coincide exhibiting the same decay time. As seen in Fig. 2.22, in the limit ce ≫ cph, the pairs of
ce/cph and Θmax for the phonon ray-tracing model are similar to those for the 2-T model and one
solution of the 3-T model. This is because the ray-tracing model is valid in this limit. For the
same Θmax, the 3-T model offers two ce/cph solutions which cannot be distinguished. At large
Θmax, the pairs of ce/cph and Θmax for the 2-T model and for the 3-T model are approximately
equal. This is because the increase of Θmax results in the decrease of the fraction of trapped

44



Figure 2.23: Calculated pairs of ce/cph and Θmax for fixed parameters τε, τEP , η0, d, u, and Θmax

obtained via Eq. (2.39) for three models specified in the legend. (a) τε = 421 ps, τEP = 0.46 ps,
η0 = 0.985, d = 33.2 nm. (b) τε = 124.3 ps, τEP = 1.16 ps, η0 = 0.985, d = 3.15 nm. In both cases
u = 2.54 nm/ps. These parameters correspond to the thickest (a) and the thinnest (b) films of K-series
studied in Section 3.2.3.

phonons which are not accounted for in the 2-T model. Consequently, the solution of the 2-T
model approaches one solution of the 3-T model.

2.5 Summary

In this chapter, we presented the phenomenological description of the single-photon detection
mechanism in a superconducting nanowire. We introduced a definition of the timing jitter in
SNSPD and discussed extrinsic and intrinsic sources of the jitter. We considered the microscopic
mechanism of the intrinsic jitter in the framework of the microscopic 2-d model of the hot
spot. The use of the superconducting nanowire in SNSPDs implies a non-equilibrium state.
The microscopic mechanism of the intrinsic jitter points out on the internal link between the
jitter and the e-ph energy relaxation and phonon escape times, which are responsible for the
relaxation of the electron energy. These and other physical parameters present in the model were
determined. Two appropriate experimental techniques, magnetoconductance and photoresponse,
were chosen for the further study of inelastic electron-phonon scattering and energy relaxation
in NbN films. A detailed description of these techniques was given. This includes a description
of standard setups, requirements for the sample (geometrical size, electrical impedance, etc.),
and also models which are used for the analysis of experimental data. The equations derived in
the analytical form will be further used to fit experimental data in Chapter 3.
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Chapter 3

Experimental results: Electron-energy
relaxation and timing jitter

The delay time between the photon absorption and the formation of the normal domain varies
from one detection event to another resulting in jitter. Microscopic models show that the intrinsic
jitter and the delay time are connected, i.e. the longer the delay, the larger the jitter. The hot-
spot formation contributes a long part to the delay time. Among the parameters that control the
emergence time of the hot spot, the most important are the electron-phonon scattering time and
the phonon escape time. Therefore, understanding the details of electron energy relaxation is of
importance here. This chapter contains the experimental results and interpretation regarding
electron energy relaxation (Section 3.2) and timing jitter (Section 3.3). To compare our results
with theoretical predictions, we also provide a comprehensive characterization of the object
under study. Thin (< 10 nm) and narrow (∼ 100 nm) NbN nanowires studied here are fabricated
from disordered superconducting films with high square resistance (> 300 Ω/sq), small diffusion
coefficient (∼ 0.5 cm2/s), and reduced dimensionality. We address the complexity of the films,
that definitely modifies their microscopic properties, in Section 3.1. Section 3.2 is devoted to
an experimental study of electron energy relaxation. We investigate the processes of inelastic
scattering and evaluate their strengths by means of magnetoconductance (see Section 3.2.1).
Among those, we focus on electron-phonon scattering. Then in Section 3.2.2, we study the
relaxation of the electron energy by means of photoresponse. Applying several experimental
techniques and models, we reveal how the nanowire thickness affects the energy outflow that
is discussed in Section 3.2.4. The chapter continues with an experimental investigation of the
jitter (Section 3.3) and concludes with a summary.
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3.1 Specimens and parameters

Specimens
We studied NbN films from two series (M- and K0-series). The films of M-series were fabricated
on Si/SiO2 substrate by magnetron sputtering. Their thicknesses ranged from 5 to 9.5 nm.
Magnetoconductance measurements (Section 3.2.1) were carried out with non-structured ap-
proximately squared 1×1 cm2 films. Photoresponse measurements to pulsed excitation (Sec-
tion 3.2.2) were carried out with the same films which were shaped in the form of microbridges.
A film of K0-series was fabricated on an Al2O3 substrate by magnetron sputtering. This film
was structured in a nanowire with a length of 40 µm, a nominal width of 100 nm, and a thick-
ness of 5 nm. The width and thickness of the wire were chosen to be similar to those utilized
by a practical SNSPDs. Patterning was done by the electron-beam lithography over a standard
positive-tone PMMA (Polymethyl Methacrylate) resist in the negative lithographic process. This
process results in the improvement of the fabrication quality and superconducting characteris-
tics of nanowires [96]. Jitter measurements were carried out with the nanowire of K0-series (see
Section 3.3).

Physical parameters of described specimens were derived by carrying out magneto-transport
measurements. The measurements were performed in a Physical Property Measurement Sys-
tem (PPMS from Quantum Design). The applied bias currents were extremely small to avoid
heating. The square resistance, RS , was measured with a four-point van der Pauw method [97].
This method is generally used to measure RS of arbitrary shaped two-dimensional samples, to
eliminate geometric differences between them. Additionally, to eliminate the inhomogeneity of
samples, the resistances measurements were repeated by changing current and voltage terminals
clockwise four times.

Fig. 3.1 shows with symbols experimental dependences RS(T ) for four NbN films of M-series
of different thicknesses recorded in zero magnetic field. As seen in the inset, the RS of each film
increases with lowering the temperature from 300 K down to 20 K. Such an increase in the
resistance is most likely due to due to Anderson localization. At approximately 20 K, the square
resistance reaches its maximum value. We refer to this value as RSN . With further lowering
of the temperature, the RS drops to zero within a finite transition region. The finite transition
region is caused by superconducting fluctuations (see subsection 2.4.1).

The temperature dependence of RS at zero magnetic field in the vicinity of the supercon-
ducting transition is well described by the theory of fluctuation conductivity of Aslamazov and
Larkin (AL) [56] and Maki and Thompson (MT) [64, 65]. For 2-d films (the dimensionality of
the films under study is examined in Section 3.1.1), it is given by

RS(T ) =

[︃
1

RSN
+A2d

1

16

e2

ℏ ln(T/TC)

]︃−1

, (3.1)

where ℏ is the reduced Planck constant, e is the elementary charge. We fit the experimental
dependences RS(T ) with Eq. (3.1) in a very narrow temperature range where the inequality
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Figure 3.1: Temperature variation of the square resistance around the superconducting transition for
four exemplary films with different thicknesses. Experimental data are shown with symbols. Solid lines
represent extrapolations of the best fits obtained with Eq. (3.1). The inset shows resistances in a larger
temperature range up to 300 K.

ln(T/TC) ≤ 1 holds. Parameters TC , RSN , and A2d were used as fitting parameters. Solid curves
shown in Fig. 3.1(a) are extrapolations of the obtained fit to a broader temperature range. The
best fit values of the normal state resistance are 540.1 Ohm/sq for M-2559, 1032 Ohm/sq for M-
A853, 395.2 Ohm/sq for M-A854, and 335.2 Ohm/sq for M-A855. These values are slightly larger
than those measured at 20 K. The fitting parameter A2d for all films varies between 1.9 – 2.6.
The best fit values of TC are listed in Table 3.1 which also contains the values of RSN measured
at 20 K. Highly resistive 2-d films exhibit two transition temperatures due to the presence of
two types of excitation: topological (magnetic vortices) and electronic (quasiparticles). The
resistance of a superconducting film appears when there are free vortices which move under
the Lorentz force imposed by the current perpendicular to the direction of the current. The
emergence of free vortices sets in at the BKT (Berezinskii-Kosterlitz-Thouless) temperature,
TBKT . With increasing the temperature, the density of free vortices increases resulting in an
exponential rise of the resistance beyond the TBKT . In general, the TBKT is close to but below
the BCS mean-field transition temperature, TC . The mean-field transition temperature controls
the energy gap and does not cause the emergence of resistance. A larger value of RSN leads
to a lower value of the TBKT compared to TC . For NbN film of RSN = 431 Ohm/sq these
temperatures are related as TBKT = 0.85TC [98]. Anyway, right above the superconducting
transition, our experimental RS(T ) dependences are well described by AL and MT fluctuations.

We applied an external magnetic field perpendicularly to the film surface and recorded RS(T )

at a set of fields for each specimen (Fig. 3.2). The preset field was taken as the second critical
magnetic field, BC2, at the temperature at which RS = RSN/2. From these measurements, we
obtained temperature dependences of the BC2 at temperatures T < TC . The linear part of the
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Figure 3.2: Temperature variation of the square resistance at different magnetic fields for specimen
M-2259. Solid lines are to guide the eyes. The dotted line shows the RSN/2 level which was used to
determine the temperature dependence of the second critical magnetic field, BC2. The inset shows the
BC2(T ) dependence, a linear part of which was used to compute the diffusion coefficient D with Eq. (3.2)
and BC2(0) at zero temperature.

BC2(T ) dependence was used to compute the electron diffusion coefficient as

D =
4kB
πe

(︃
dBC2

dT

)︃−1

, (3.2)

where kB is the Boltzmann constant.

The total density of electron states (two spin density) at the Fermi level, N(0), can be
derived from the Einstein-Smoluchowski equation [99, 100] as follows

N(0) =
1

e2RSNdD
. (3.3)

Values of D and N(0) are listed in Table 3.1.

The second critical magnetic field at zero temperature, BC2(0), can be obtained by linear
extrapolation of the experimental BC2(T ) dependences to zero temperature. However, this
certainly overestimates the real second critical field at zero temperature. To obtain more realistic
values in the dirty limit, BC2(0) must be multiplied with a factor of 0.69 [101, 102]. According to
the Ginzburg-Landau (GL) model, the second critical field is connected with the superconducting
coherence length, ξ, and the magnetic flux, Φ0 = h/2e, as follows

BC2(T ) =
Φ0

2πξ2(T )
. (3.4)

Therefore, the GL coherence length at zero temperature is

ξ(0) =

√︄
Φ0

2π0.69BC2(0)
, (3.5)
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Table 3.1: Parameters of studied NbN films. R300K/R20K is the ratio of square resistances at 300 and
20 K, N(0) is the total (two spin) density of states for electrons at the Fermi level.

Sample d TC RSN D N(0) R300K/R20K BC2(0) ξ(0)

(film) (nm) (K) (Ω/sq) (cm2/s) (eV−1m−3) (T) (nm)
M-2259 5.0 10.74 529.5 0.474 4.98×1028 0.793 25.24 4.35
M-A853 6.4 8.35 954.0 0.339 3.02×1028 0.709 27.77 4.15
M-A854 7.5 10.84 387.9 0.453 4.74×1028 0.809 26.62 4.23
M-A855 9.5 10.94 330.6 0.418 4.75×1028 0.788 28.99 4.06

K0 5.0 12.55 260.0 0.560 8.58×1028 0.960 27.20 4.80

where BC2(0) was obtained by linear extrapolation. Values of BC2(0) and ξ(0) are listed in
Table 3.1.

As seen from Table 3.1, films M-2259, -A854, and -A855 have similar electron diffusion
coefficients, transition temperatures, and electron densities of states. These parameters are
noticeably smaller for film M-A853. Moreover, this film has a much larger square resistance
(and resistivity ρSNd) as compared to others. Such a difference in parameters is evidence that
film M-A853 is characterized by a higher degree of disorder compared to other films of M-
series. The Ioffe-Regel parameter, kF le (kF is the wave vector of electrons at the Fermi energy),
estimated for films M-2259, M-A854, and M-A855 as kF le = 3meD/ℏ varies from 1.08 to 1.22.
This characterizes these films as strongly disordered. It has been shown [103, 104] that with the
increase of disorder, in the limit kF le ∼ 1, a homogeneously disordered superconductor becomes
a granular system where superconducting grains (islands) are immersed in an insulating sea and
connected by Josephson coupling. More likely, the film M-A853 with kF le = 0.88 corresponds
to this case. This film is close to the superconducting-insulator transition and may additionally
have an enhanced degree of granularity. The emergence of inhomogeneities in NbN films with
lowering the thickness was experimentally investigated in [105].

Although the exact composition of our NbN films is unknown, it can be estimated. In [106,
107, 108], the authors examined how the transition temperatures change with the compositions
(N/Nb = x) of NbNx films. They found that films with nearly stoichiometric compositions
(x = 1) exhibit higher transition temperatures and with increasing nitrogen compound, both the
sheet resistance, R20K

S , and the ratio R300K
S /R20K

S increase. The author of [109] (Chapter 3 there)
investigated the influence of deposition conditions of thin NbN films, namely the discharged
current, on their superconducting and transport properties (such as TC , RSN , R300K

S /R20K
S ).

Because the discharge current controls the composition (x) of NbNx films, we used the data from
[106, 107, 108] to estimate their relationship. According to these studies [106, 107, 108, 109] we
can conclude that our films of M-series are NbNx compositions with x ≈ 1.18. Whereas, the film
of K0-series is characterized by x ≈ 1.04. Therefore, the films of M-series contain more nitrogen
as compared to the film of K0-series.

The film of K0-series was used for jitter measurements. Transport measurements of non-
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Figure 3.3: Critical current of the wire in external magnetic field. Straight lines approximate the linear
decrease of the current at small magnetic fields. The arrow marks the field B∗ discussed in the text.

structured NbN film of K0-series showed TC = 12.55 K, and RSN = 260 Ω/sq. After patterning
into a nanowire, the resistance was found to be larger, RSN = 331.8 Ω/sq. The resistivity of the
wire is defined as ρ0 = RSNd = 165.9 µΩ×cm. The experimental critical current of the wire is
IC = 50.2 µA, and the critical current density is jC = IC/(wd) = 10.4 MA/cm2. Although the
current crowding effect is significantly minimized in straight nanowires as compared to meanders,
the experimental critical current is still less than the theoretical depairing current, IDEP . The
reason for this is damaged nanowire edges, which suffer in the lithographic process [47], with
significantly suppressed superconductivity across their width. Damaged edges turn the nanowire
into a planar NSN structure, i.e. a superconducting core with non-superconducting edges on both
sides of the core (NSN model in [47]). To check the quality of edges in our nanowire, we studied
the suppression of the critical current by an external magnetic field applied perpendicularly to
the substrate. The measured IC(B) dependence is shown in Fig. 3.3.

As seen in Fig. 3.3, the IC(B) dependence is symmetric with respect to zero magnetic
field and exhibits the sharp maximum at B = 0. At small fields, the critical current linearly
decreases with increasing the field. Then at some fields, the decrease slows down that indicates
the transition from the vortex-free Meissner state to the mixed vortex state. A part where IC
depends linearly on B can be extrapolated by IC(B) = IC(0)(1− B/B∗), where B∗ = 734 mT
is the field at which an extrapolated straight line crosses the field axes at zero current. The
transition from the Meissner state to the mixed vortex state occurs at approximately B∗/2.
Theoretically, B∗ is predicted by the London-Maxwell (LM) [110] model as

B∗
LM =

ηΦ0

µeπξw
, (3.6)

and by the Ginzburg-Landau (GL) [111] models as

B∗
GL =

ηΦ0√
3πξw

, (3.7)

where µ ≈ 0.715 is the ratio of the current that suppresses the potential barrier for the vortex
entry and the GL depairing current [110], η is the ratio of the experimental critical current to
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the depairing critical current at B = 0. The coherence length amounts to ξ = 4.8 nm. Both
predictions result in B∗ smaller than the experimental value. The density of the Ginzburg-
Landau depairing current with the dirty-limit correction [112], KL(T ), is given by [93]

jDEP = KL(T )
4
√
π exp(2γ)

21ζ(3)
√
3

β20(kBTC)
3/2

eρ
√
Dℏ

[︁
1− (T/TC)

2
]︁3/2

,

KL(T ) = 0.65
[︁
3− (T/TC)

5
]︁1/2

, (3.8)

where γ = 0.577, ζ(3) = 1.202, β0 = 2.05 is the ratio between the energy gap in NbN and kBTC ,
and e is the electron charge. With nominal width and thickness of our nanowire, w = 100 nm
and d = 5 nm, we obtained IDEP = 113 µA at T = 4.2 K and the ratio IC/IDEP ≈ 0.44. This
ratio is comparable to those reported in [96] for straight wires of the same width.

A disagreement between the theoretical (Eqs. (3.6 and 3.7)) and experimental fields B∗

is hardly surprising, because for computing B∗ we used the nominal width w of the nanowire
without accounting for the damaged edges. However, assuming that the actual width, which
carries the superconducting current, is less than nominal, one can find an agreement between the
model predictions and the experimental data for B∗. Such an approach has been suggested in
[47], where the wire was considered as a planar NSN (normal-superconducting-normal) structure.
The effective width of the superconducting core, wS , is smaller than the nominal width of the
wire, w, by a value of wN , where wN is the total width of two damaged edges around the core.
Consequently, w = wS+wN . Such a wire can be represented by two resistors connected in parallel
with different resistances. We allow the central core to have the resistance of the non-structured
film RSN(film) = ρS/wS , where the resistivity is defined as ρS = RSN(film)d = 130 µΩ×cm.
The damaged, normal edges, consequently, have the resistance RN = ρN/wN . The experimental
resistance of the nanowire is RSN(wire) = ρ0/w, where ρ0 = RSN(wire)d = 165.9µΩ×cm, or
differently after algebraic transformation it becomes

ρ0 =
ρNρSw

ρSwN + ρN (w − wN )
. (3.9)

Further, we assume that the experimental critical current is concentrated in the superconducting
core of the nanowire. Theoretically, this current corresponds to either the depairing current of
the core I = jDEP wS d, according to the GL model, or the current I = µ jDEP wS d, which
suppresses the barrier for vortex-entry in the core, according to the LM model. Thus, simulta-
neously satisfying experimental values of ρ0, the currents given by the last expressions, and the
experimental B∗, we obtained the following pairs of wS and ρN . In the framework of the GL
model, wS = 61 nm and ρN = 292µΩ×cm. In the framework of the LM model, wS = 57.5 nm
and ρN = 265µΩ×cm. The evaluated widths of the superconducting core with both approaches
are close to each other and almost twice as small as the nominal width. Now, knowing the actual
width of the core, which carries the superconducting current, we can correct the ratio between
experimental and theoretical currents. The corrected ratios are 0.57 for the the GL model and
0.84 for the LM model, that still amounts to only a fraction of the predicted current.
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Figure 3.4: (a) Phonon spectral density in arbitrary units as a function of the phonon wavelength,
λ = 2πu/Ω. Various colors correspond to different temperatures. The maximum of the distribution
corresponds to the dominant wavelength λdom. (b) The dominant wavelength as a function of tempera-
ture (Eq. (3.10)). Calculations were done using the averaged kinematic velocity for phonons in the film
u = 4u1t/3 ≈3.2 nm/ps found from the analysis of magnetoconductance data in Section 3.2.1.

3.1.1 Dimensionality of studied films

In this subsection, we discuss the dimensionality of films under the present study with respect
to different physical phenomena. The dimensionality is especially important in the theory of
quantum corrections (see Section 2.4.1), which will be applied for the analysis of magnetoconduc-
tance data in Section 3.2.1. Magnetoconductance data will be acquired in the temperature range
from a corresponding critical temperature up to 30 K. We consider the following dimensionality
criterion:

• With respect to electron-electron scattering a film is 2-d when d ≪ LT , where LT =√︁
2πDℏ/(kBT ) is the thermal coherence length. The inequality d < LT holds for our

films in the temperature range of interest. This corresponds to the quasi-two-dimensional
(quasi-2-d) case. Only for the thickest film M-A855, the thickness slightly exceeds LT at
temperatures > 23 K.

• With respect to the normal conduction a film is three-dimensional (3-d) when d ≫ le.
The elastic mean free path le in NbN is of the order of the lattice parameter. According
to [107, 113], for different compositions of NbNx with x in the range 0.6 - 1.2, the lattice
parameter approximately changes from 0.435 to 0.47 nm. Therefore, the inequality d≫ le

holds for each specimen.

• The dimensionality of the films with respect to phonons is more specific. The spectral
density of phonons emitted isotopically covers a wide spectral range (Fig. 3.4(a)). In the
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3-d limit is given by D(Ω)ℏΩN(Ω), where Ω is the phonon circular frequency, D(Ω) =

Ω2/(2π2u3) is the density of phonon states per each phonon mode, and N(ω) is the Bose-
Einstein distribution. At temperatures below the Debye temperature, the wavelength
position of the spectral maximum depends on the temperature as

λdom =
2πℏu

2.82kBT
. (3.10)

λdom is known as the phonon dominant wavelength. Here u = 4u1t/3 is the averaged
kinematic velocity for phonons in the film (Section 3.2.1). We computed λdom taking
u1t = 2.40 nm/ps found from the analysis of magnetoconductance data in Section 3.2.1.
Fig. 2.20(b) shows the temperature dependence of the λdom, and the inset zooms the
λdom(T ) dependence for the temperature range of interest. Although the λdom is compa-
rable with the thickness of the thinnest film, the fact that our films are in direct contact
with the bulk substrate may enhance the three-dimensionality of phonons. Therefore, we
conclude that phonons in our NbN films can be treated as the 3-d Debye phonons in the
temperature range of interest far from TC . However, at temperatures around TC , the
films more likely approach the 2-d - 3-d crossover. The dimensionality of phonons will be
important for comparing the experimental τe−ph with the one predicted by the SM model
(Section 2.4.2), because the model assumes 3-d Debye phonons.

• The commonly accepted 2-d criterion with respect to superconductivity is : d < ξ, where
ξ is the superconducting coherence length. Our NbN films (see Table 3.1) approach the
vicinity of the 2-d - 3-d crossover.

3.2 Electron-phonon scattering and phonon escape times

3.2.1 Magnetoconductance measurements

As discussed in Section 2.4.1, magnetoconductance measurements allow for funding the electron
dephasing time τϕ. The measurements were carried out with non-structured NbN films of M-
series (Table 3.1). We measured resistance at different fixed temperatures in the range from
a corresponding TC up to 30 K by varying magnetic field applied perpendicular to the sample
surface in the range from 0 to 9 T. The measurements were performed in a Physical Property
Measurement System (PPMS from Quantum Design) by applying very small bias currents to
prevent heating. The square resistance was found for each sample by means of the four-point
van der Pauw method. Fig. 3.5 shows RS as a function of the magnetic field at various fixed
temperatures indicated by different colors. Since RS(B, T ) dependences are monotonous and
look pretty similar for all studied specimens, we plot in Fig. 3.5 data for only one representative
NbN film with the thickness 5 nm (specimen M-2259 in Table 3.1). At high temperatures, the
change in the resistance due to the magnetic field is relatively small. At temperatures near TC ,
the effect of magnetic field on RS is very pronounced.
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Figure 3.5: Square resistance as a function of magnetic field at different temperatures for 5 nm thick
NbN film (specimen M-2259). Various colours correspond to different temperatures specified in the
legend. The inset shows RS(B) data recorded at 30 K.

Fitting procedure
The magnetoconductance is the change in the reciprocal resistance caused by the magnetic field.
The dimensionless magnetoconductance is computed according to Eq. (2.5) as δG(B, T ) =
2π2ℏ
e2

[︂
1

RS(B,T ) −
1

RS(0,T )

]︂
. Here 2π2ℏ/e2 has the dimension of Ω. From the measurements of

RS(B, T ), we extract the experimental magnetoconductance per sample square, which is shown
for the representative specimen M-2559 in Fig. 3.6 with symbols. In the low-temperature range
near TC , where superconducting fluctuations are strong, the square resistance considerably
changes with the magnetic field. With increasing temperature, the change in the resistance
induced by the magnetic field decreases. At temperature 30 K far from TC (Fig. 3.6, inset), the
change in the resistance is small.

For the analysis of experimental data, we apply the theory of quantum corrections described
in subsection 2.4.1. We fit the experimental δG(B, T ) with a sum of magnetoconductances
caused by weak-localization (WL, Eqs. (2.10)), Aslamazov-Larkin (AL, Eqs. (2.13)), and Maki-
Thomson (MT, Eqs. (2.16)) quantum corrections, i.e. δG(B, T ) = δGWL(B, T )+ δGAL(B, T )+

δGMT (B, T ). Although we explicitly omit the magnetoconductance term caused by fluctua-
tions of the electron density of states (DOS) from the fitting procedure. However, we indirectly
account for it via the prefactor βLSA(T, δ) present in the MT correction by using it as a fit-
ting parameter (see paragraph "Total magnetoconductance" in subsection 2.4.1.1). As shown in
Fig. 2.11 on page 25, the contribution of each quantum correction to the total magnetoconduc-
tance strongly depends on the temperature. At relatively high temperatures, for instance, 15 -
30 K, the magnetoconductance caused by AL fluctuations is negligibly small, and the total mag-
netoconductance is dominated by MT fluctuations. Therefore, in order to simplify the fitting
procedure, we neglected the AL term at high temperatures. At low temperatures near TC , the
situation is different. The WL and MT terms alone fail to describe the experimental magneto-
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Figure 3.6: Dimensionless magnetoconductance. Symbols correspond to experimental data for 5 nm
thick NbN film (specimen M-2259) obtained from resistance measurements and with Eq. (2.5). Different
colours correspond to different temperatures. The solid lines are fits according to Eqs. (2.10, 2.13, 2.16).

conductance, and the AL term should be necessarily included. In the immediate vicinity of TC ,
magnetoconductance is dominated by AL fluctuations. Finally, the experimental magnetocon-
ductance was fitted with four parameters: βLSA(T, δ), Bs.o., C∗, and Bin. For temperatures 10.9
and 17 K, the typical values are βLSA(T, δ) = − 67.32, Bs.o. = 0.98 T, C∗ = 2.97, Bin = 0.52 T,
and βLSA(T, δ) = 6.61, Bs.o. = 0.91 T, C∗ = 3.00, Bin = 2.69 T, respectively. The best fits are
shown in Fig. 3.6 with solid curves.

Dephasing time
The electron dephasing time τϕ was extracted from the best fit values of the magnetic field
Bin as τϕ = ℏ/(4eDBin), where the electron diffusion coefficient D was taken from Table 3.1.
The obtained values of τϕ are plotted with symbols in Fig. 3.7 vs temperature for four studied
specimens M–2259, M–A853, M–A854, and M–A855.

Above the superconducting transition, the total dephasing rate is a sum of the electron-
electron, τ−1

e−e, electron-phonon, τ−1
e−ph, and electron-superconducting fluctuation, τ−1

e−fl scatter-
ing rates. In order to compute each of them we used existing theoretical predictions given in
Eqs. (2.21 - 2.23). For each specimen, we took RSN and TC from Table 3.1 and computed
τe−fl(T )

−1 and τ−1
e−e(T ). The two parameters C2 and n entering the expression for the e-ph

scattering rate τ−1
e−ph = C2(T/TC)

n are unknown. We assumed that in the given temperature
range, n is temperature-independent, and used C2 and n as fitting parameters. As it has been
noted in [114], it is not possible to fit the V-shape behavior of the experimental τϕ at tempera-
tures close to TC . The reason is not clear and goes beyond the scope of the present study. To
circumvent the problem, we included in the fitting procedure only the data obtained at temper-
atures above 14 K. The resulting fit with τ−1

ϕ = τ−1
e−e + τ−1

e−ph + τ−1
e−fl is shown in Fig. 3.7(a). As

discussed in Section 2.4.1.2 and seen in the inset of Fig. 3.7(a), in the temperature range 14 -
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Figure 3.7: (a) Dephasing rate vs. temperature (symbols) extracted from magnetoconductance mea-
surements in the double logarithmic scale. Various colors correspond to different specimens specified in
the legend. Solid lines are fits made with a sum of the e-e, e-ph, e-fl scattering rates given in Eqs. (2.21 -
2.23), τ−1

ϕ = τ−1
e−e+τ

−1
e−ph+τ

−1
e−fl. The inset shows the best fitting curve (thick green curve) for specimen

M-A855 and the contribution of each scattering rate to the total rate (thin curves). In the temperature
range 14 - 30 K, the contribution of τ−1

e−ph dominates. This contribution is shown with symbols in panel
(b) for each specimen. The solid lines are the best fits according to Eqs. (2.22) with fitting parameters
listed in Table 3.2. The legend specifies specimens for both panels.

30 K, e-ph scattering is the dominant scattering mechanism that defines the magnitude and the
temperature dependence of τ−1

ϕ . Therefore, such a fitting procedure is consistent with the scope
of the present study. The best fit values of C2 and n are listed in Table 3.2, together with τe−ph,
which were extrapolated to 10 K and the corresponding TC . Fig. 3.7(b) shows τe−ph (symbols)
extracted from experimental rates τ−1

ϕ and the corresponding best fits τ−1
e−ph = C2(T/TC)

n (solid
lines) for four studied specimens.

As discussed in Section 2.4.1.2, with respect to e-ph scattering, the dephasing time is identi-
cal to the inelastic single-particle time. The later is predicted by the SM model (Section 2.4.2).
Therefore, further, we analyze the derived dependences τe−ph(T ) with the SM model.

Table 3.2: Parameters extracted from magnetoconductance measurements

Sample τe−ph(10 K) τe−ph(TC) n C2 × 1010

(ps) (ps) (s−1)
M-2259 11.9 ± 0.7 9.3 ± 0.4 3.53 ± 0.19 10.80 ± 0.52
M-A853 12.4 ± 1.4 21.7 ± 3.3 3.21 ± 0.19 4.60 ± 0.69
M-A854 15.9 ± 1.1 11.8 ± 0.7 3.75 ± 0.13 8.48 ± 0.48
M-A855 17.5 ± 1.7 12.5 ± 1.0 3.77 ± 0.23 8.02 ± 0.65

Analysis of experimental dependences τe−ph(T ) with the SM model
Due to τϕ ≈ τin with respect to e-ph scattering (see Section 2.4.1.2), we can directly compare
τe−ph with the predictions of the theory. We analyze the τe−ph acquired with magnetoconduc-
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Table 3.3: Best fit parameters present in the SM model (Eqs. 2.24 - 2.26).

Sample le ρ ut k

(nm) (g/cm3) (m/s)
M-2259 0.13 7.8 2.42×103 1
M-A853 - 5.2 2.2×103 -
M-A854 0.14 7.5 2.4×103 1
M-A855 0.12 7.5 2.37×103 1

tance measurements in the temperature range 14 - 30 K in the framework of the SM model.
Since the model assumes 3-d Debye phonons, we first refer to Section 3.1.1 where we concluded
that phonons in the studied films can be treated as 3-d Debye phonons. We fit experimental
data shown in Fig. 3.7(b) with symbols with Eqs. (2.24 - 2.26, on page 28). To do this, we used
three fitting parameters: the electron mean free path le, the mass density ρ, and the velocity of
transverse phonons ut. Because in the temperature range where our MC data were acquired, the
scattering rate of electrons via transverse phonons dominate, the parameter ul does not affect
the result of simulations. We therefore excluded ul from the set of fit parameters and took it
ul = 2ut that is approximately valid for a large variety of materials (for an example see Table I
in [48]). Other parameters which are present in the SM model were taken from Table 3.1. To
compute the Fermi momentum and Fermi energy we took the effective electron mass to be equal
to the mass of a free electron. For fixed k, fine tuning of the exponent n in the τ−1

e−ph ∼ Tn de-
pendence can be achieved only by varying the transition temperature between two asymptotes.
This transition temperature is given by ℏut(kBle)−1. Therefore, the fine tuning of n was done
by changing the ratio utl−1

e . The variations in the mass density ρ affect only the magnitude of
the e-ph scattering rate. The best fit values of le, ρ, and ut are listed in Table 3.3.

It turned out that reasonable fits of the temperature dependence of the inelastic e-ph scat-
tering rate could only be obtained with k → 1. For specimens M-2559, M-A854, and M-A855,
the best fits were obtained with k = 1. Fitting the data for the film M-A853 with k = 1 gives
enormously large le = 0.31 nm that contradicts to other parameters (D and RSN ) found for this
specimen. Although the exact reason is not clear, we have to note that using k ∼ 0.9 results in
a reasonably small l. In the SM model, k < 1 corresponds to the presence of static scattering
centers. Since the grain boundaries act as static, non-vibrating scatterers, experimental data can
be qualitatively related to enhanced granularity of the film M-A853 as compared to other films
of the M-series. Recall here that the Ioffe-Regel parameter estimated for this film is kF le < 1

that may also indicate enhanced granularity [104]. For our films in the entire temperature range
from 14 to 30 K, we found qT le ≪ 1. It can be presented as qT le = βT , where the coefficient β
falls into the range 0.075± 0.005 K−1. Hence, the films of the M-series are strongly disordered
with a very close degree of disorder.

Comparison with previously reported data on NbN
The best fit values of mass density and sound velocity obtained for our NbN films (see Table 3.3)
deviate from those reported in [115] for bulk hexagonal NbN, where ρ = 8.5 g/cm3 and ut =
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4500 m/s. This deviation is predictable since the crystallographic structure and stoichiometry in
thin films is modified as compared to bulk material. For example, excess nitrogen content with
respect to the optimal stoichiometric composition reduces the mass density while the granularity
and weak bounds at film surfaces reduce the sound velocity.

For all specimens (except for specimen M-A853), the best fit values of le are by a factor of two
smaller than those obtained from Hall-effect measurements by different groups [116, 117, 118],
and by a factor of 4 to 6 smaller than values reported in [101]. The data in [101] were computed
as le =

√
3Dτe with independently measured diffusion constant and the elastic scattering time

τe obtained by means of spectral ellipsometry. Such a difference from previously reported data
can originate from a different stoichiometry of the films studied here and in [116, 117, 118, 101].
Alternatively, the reason for such a difference can be artificial and inherent in the SM model.
One of the mechanisms in the model that controls e-ph scattering is disorder. If the scattering
rate in the specimen under study changes due to any other reason, the only way to account for
that in the framework of the model is to increase or decrease disorder, i.e. to change the value
of le.

To the best of our knowledge, there are two published experimental studies [119, 91] where
the magnitude of τe−ph and the exponent n were defined for NbN films. In Table 3.4, we list
the parameters for NbN films reported in [119, 91] and for one representative NbN film M-2259
from the present study. In both studies [119] and [91], the reported exponent n differs from
what we obtained for our NbN films. In order to understand the nature of such a difference, we
first simulate the data in a corresponding temperature range and then describe it with the SM
model.

In Fig. 3.8, with blue symbols we show the simulated data from [119], where the τe−ph was
defined by means of magnetoconductance in the temperature range from 10 to 30 K. Green
symbols in the figure correspond to the simulated data from [91], where the τe−ph was defined
by means of photoresponse (AMAR) in the temperature range 1.6 – 10.2 K. In the same figure
with red symbols, we plot τe−ph(T ) acquired for specimen M-2259 in the present study. For
each film, we define the electron density of states with Eq. (3.3), which enters the SM model.
Further, we describe these data with the SM model using following fitting parameters ρ, ut, le,
and k, and taking ul = 2ut. The best fitting values of these parameters are listed in Table 3.4.
The best fits are shown in Fig. 3.8 with solid curves. Since n < 2 cannot be achieved in the
framework of the SM model (in the dirty regime), we described the simulated data with the
closest value n = 2. We note here that in the dirty regime, n = 2 can be obtained only if static
scattering centers are present, i.e. if k < 1. Because the true value of k is unknown we take
k = 0. For both data sets, ρ and ut are smaller than for bulk material.

Although the properties of our film are very similar to those from [91] (Table 3.4), there
are noticeable differences in temperature dependences of e-ph scattering times. This can be
a result of different degrees of granularity caused by different deposition rates. We suppose
that granules are responsible for enhanced resistivity while their boundaries act as static, non-
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Table 3.4: Reported properties of NbN films and fitting parameters present in the SM model. n is the
exponent in τ−1

e−ph ∝ Tn.

Properties of NbN sample
Best fit parameters

present in the SM model
sample d TC RSN D n τ10Ke−ph le ρ ut k

(nm) (K) (Ω/sq) (cm2/s) (ps) (nm) (g/cm3) (nm/ps)
X-Aa 200 10.3 34 0.2 1.64 7.2 0.20 7.5 3.90 0.0
X-Bb 7 11 500 0.4 1.6c 5.6c 0.20 7.5 2.70 0.0

M-2259d 5.0 10.74 529.5 0.474 3.53 11.9 0.13 7.8 2.42 1.0
a NbN film on Si/SiO2 substrate, [119]. The authors defined the e-ph scattering time τe−ph by means
of magnetoconductance in the temperature range from 10 to 30 K.
b NbN film on Al2O3 substrate, [91]. The authors defined the decay times of the photoresponse τϵ by
means of photoresponse (AMAR) in the temperature range from 1.6 to 10.2 K.
c The authors identified measured decay times of the photoresponse, τϵ, with the e-ph energy
relaxation time, τEP . The exponent n relates to the temperature dependence of the photoresponse
time. The τe−ph was computed according to Eq. (2.27).
d NbN film on Si/SiO2 substrate, the present study.

Figure 3.8: E-ph scattering time vs temperature. Blue and green symbols correspond to the simulated
τe−ph(T ) from [119] and [91], respectively. Red symbols correspond to τe−ph(T ) for specimen M-2259
from the present study. Solid curves correspond to the best fits with the SM model (material and fitting
parameters are listed in Table 3.4).
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Figure 3.9: Scheme of experimental setup for photoresponse measurements in the time domain. The
light from the Ti:sapphire laser (800 nm pulsed mode) in free space is sent to the sample. The RF and
dc paths are de-coupled at room temperature. The voltage transients from the sample are amplified at
room temperature before they are recorded by a sampling scope. The relative power of incoming light
from the laser is controlled by an attenuator.

vibrating scatterers. For thick NbN films from [119], the difference in the exponent n as compared
to our films is not surprising. The morphology of those films of 200 nm thick can be quite
different from ours. Usually, a small value of the electron diffusion coefficient in such thick films
indicates either the presence of defects (vacancies or impurities) or pronounced granularity [116].
The granular morphology of thick NbN films in the form of vertical columnar metallic grains
with amorphous grain boundaries was observed in [120]. Grain boundaries can act as static,
non-vibrating scattering centers. According to the SM model, the presence of static scattering
centers is indicated by the parameter k < 1 that is consistent with our simulations.

To summarise, we ascribe the difference in the exponent n for NbN films studied in this
thesis (n = 3.53 - 3.77) and those studied in [91, 119] (n = 1.6) to the difference in the degree
of granularity.

3.2.2 Photoresponse measurements in the time domain

Specimens and experimental setup
Relaxation of the electron energy was studied by means of photoresponse in the time domain
with microbridges patterned from NbN films of M-series described in Section 3.1 (M-2259, M-
A853, M-A854, and M-A855). The widths of microbridges varied from 0.615 to 0.69 µm and
the lengths from 3.6 to 7 µm. Their planar sizes with respect to thicknesses were chosen in such
a way as to match the normal square resistance of each microbridge to the electrical impedance
of the readout circuit 50 Ω. The experimental setup is schematically shown in Fig. 3.9. The
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measurements were done using a continuous flow cryostat. Optical pulses with a duration
of σt = 0.017 ps were generated by a Ti-sapphire laser (Femtosource, synergy 20) with the
central wavelength at 800 nm at a repetition rate of 80 MHz. The light from the laser was
collimated and sent into the cryostat in free space through a quartz window. The laser power
was controlled by a powermeter (Thorlabs, PM100, sensor S120C) and could be adjusted by a
variable attenuator placed between the laser and the cryostat. The microbridges were mounted
on a holder together with the temperature sensor and the heater and were kept in the resistive
state at an ambient temperature slightly larger than TC . The temperature was controlled with
a temperature controller (LakeShore, Model 331). On the holder, microbridges were connected
to the coplanar line via bonding. A coaxial cable connected the line and a bias-tee, which was
plugged to the SMA output of the cryostat. Samples were biased by a small direct current
from a battery-powered dc source. Photoresponse of the microbridge, a voltage transient, was
amplified by a low-noise amplifier connected directly to the bias-tee, and further acquired with a
50 GHz sampling scope (Keysight Infiniium DCA-X 86100D) connected to the amplifier through
a coaxial cable. The resulting bandwidth of the readout setup was 0.05 - 4.5 GHz.

Fig. 3.10 shows representative voltage transients acquired by the oscilloscope for each studied
microbridge. For microbridges of different thicknesses, transients look similar. They all exhibit
fast rising and slow falling parts. Rising times for all microbridges regardless their thickness
are identical and equal to 45 ps, which also corresponds to the upper frequency of our readout.
Therefore, we conclude that the rising time is limited to the bandwidth of our readout. The
falling parts of transients still contain valuable information. As seen in Fig. 3.10, the falling parts
of transients exhibit ringing. This is caused by multiple reflections between the microbridge and
the readout occurring due to impedance mismatch. The ringing period is approximately 250 ps

Figure 3.10: (a) Voltage transient for the microbridge with the thickness 5 nm in the linear scale.
(b) Voltage transients for NbN microbridges of four different thicknesses in the semi-logarithmic scale.
Black curves are best fits according to the 2-T model (Eqs. (2.29 - 2.33)) with parameters: for M-2259
ce/cph = 0.83 ± 0.18, τesc = 25.9 ps; for M-A853 ce/cph = 0.25 ± 0.03, τesc = 39 ps; for M-A854
ce/cph = 0.35± 0.05, τesc = 39 ps; and for M-A855 ce/cph = 0.11± 0.03, τesc = 51.3 ps. For each bridge
< τe−ph > was fixed at the value obtained for original film from MC measurements and further averaged
over the electron distribution according to Eq. (2.27). Legends specify film numbers from Table 3.1.
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that corresponds to 2.5 cm electrical path between the microbridge and the first SMA connector
at the microbridge holder.

Fitting procedure
We describe the photoresponse data shown in Fig. 3.10 with the 2-T model (Eq. (2.28)) and
the 3-T model (Eq. 2.35). We simulate the photoresponse as Uout(t), which we find from the
solution Te(t) of the corresponding model and the formalism described by Eqs. (2.31 - 2.33). This
formalism accounts for the limited bandwidth of the readout electronics and signal ringing. To
compute the dependences Te(t) we used analytical solution for the 2-T model given by Eqs. (2.29)
and numerically solved the system (Eq. (2.35)) for the 3-T model. The 2-T model has three
independent parameters, these are the e-ph energy relaxation time, τEP , the ratio between
electron and phonon heat capacities, ce/cph, and the averaged phonon escape time, τesc,g. The
3-T model has four independent parameters, these are τEP , ce/cph, the phonon escape time, τesc,
and the ratio between heat capacities of escaping phonons to the total phonon heat capacity,
cph,1/cph. All these parameters can be extracted for our films from the magnetoconductance
data (Section 3.2) and the data obtained with transport measurements (Section 3.1). As it
was discussed in Section 2.4.2, because the photoresponse technique implies electron heating,
the relaxation time τEP present in the 2-T and 3-T models is an average of the single-particle
scattering rate τe−ph over the range of electron states ∼ kBT . For each sample, we found
τEP at TC with Eq. (2.27), which are listed in Table 3.5. The heat capacity of electrons is
predicted by the Drude model, ce(Drude) = 1

3π
2k2BN(0)T , and for 3-d phonons by the Debye

model, cph(Debye) = 2π2kB
15 [(kBT )/ℏ]3

[︁
2/u3t + 1/u3l

]︁
. Here ut(l) is the propagation velocity of

transverse (longitudinal) phonons within the film. The total weighted phonon escape time
present in the 2-T model can be found as τesc,g ≈ 4d/(η0u(sinΘmax)

2) (see Section 2.4.3). Both
the transmission coefficient at the film/substrate interface at zero degrees η0 and the critical
angle for total internal reflection of phonons Θmax can be found with the acoustic mismatch
model (AMM) (see Section 2.4.3). Their values are η0 = 0.9− 1.0 and Θmax = 32.3◦ − 35.5◦ To
compute u we used values of ut from Table 3.3 and took ul = 2ut. The phonon escape time in
the 3-T model is τesc ≈ 2d/(η0u). The ratio cph,1/cph = 1 − cos(Θmax) defines the fraction of
escaping phonons. All these parameters are listed in Table 3.5.

Although all parameters present in the 2-T and 3-T models are found (Table 3.5), the
experimental photoresponse can not be well described by fixing all of them. Therefore, at least

Table 3.5: Computed parameters for NbN films of M-series on SiO2 substrates present in the 2-T and
3-T models.

Sample d τEP (TC)
ce(Drude)

cph(Debye)
τesc,g τesc

cph,1
cph

ce/cph ce/cph

(microbridge) (nm) (ps) (ps) (ps) (2-T model) (3-T model)
M-2259 5.0 1.4 ± 0.2 0.28 25.9 4.4 0.19 0.83 ± 0.18 0.65 ± 0.19
M-A853 6.4 4.2 ± 1.1 0.21 39.0 5.6 0.15 0.25 ± 0.03 0.25 ± 0.03
M-A854 7.5 1.5 ± 0.2 0.25 39.0 6.6 0.19 0.35 ± 0.05 0.29 ± 0.06
M-A855 9.5 1.6 ± 0.3 0.24 51.3 8.5 0.18 0.11 ± 0.03 0.32 ± 0.04
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Figure 3.11: Voltage transient for the microbridge with the thickness 5 nm in the linear scale. The
black solid curve corresponds to the best fit with the 2-T model (Eqs. (2.29 - 2.33)) and the yellow
dashed curve to the best fit with the 3-T model (Eqs. (2.35), Eqs. (2.31 - 2.33)). Parameters present in
the models are specified in the legend.

one fitting parameter is required. Since τEP was derived from MC measurements of the original
films, we fixed its value for each bridge. We also fixed the phonon escape times for each bridge
and the fraction of escaping phonons according to the acoustic mismatch model. This leaves
only one fitting parameter, the ratio ce/cph. Fig. 3.11 shows the best fits of the photoresponse
(the solid and dashed curves) with the 2-T and 3-T models for specimen M-2259. The fitting
curves are very close to each other. Because for other specimens the best fits with both models
look very similar, in Fig. 3.10 we show fits (solid curves) only for the 2-T model. The best fit
ratios ce/cph obtained with both models are listed in Table 3.5. For thicker specimens (M-A853,
M-A854, M-A855), both models provide ratios ce/cph close to those predicted by the Debye
and the Drude models. However, for the thinnest specimen M-2259, the best fit ratios ce/cph
considerably deviate from the predicted one.

To summarise, the experimental photoresponse data in the time domain were described with
the 2-T and 3-T models. We found that for the thinnest film the best fit ratios ce/cph strongly
deviate from the ration ce/cph predicted by the Debye and Drude models as compared to thicker
films. The discussion of such a discrepancy is presented in Section 3.2.4.

3.2.3 Photoresponse measurements in the frequency domain

In order to improve the reliability of the photoresponse analysis, we additionally analyzed the
photoresponse data in the frequency domain for NbN microbridges with different thicknesses
from 3.2 to 33.2 nm on Al2O3 substrates. We will refer to these samples as samples of K-series.
The advantage of this series is that the substrate is transparent for the excitation wavelength.
The combination of TC and RSN for films of K-series indicates that their compositions are
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Figure 3.12: Decay time of the photoresponse, τε, vs. thickness for NbN microbridges of K-series
(symbols). The black line represents the linear fit τε = 11.5d that corresponds to the computed phonon
escape time versus film thickness. The inset shows a representative experimental photoresponse δU2(f)

(symbols) for sample K-8 from Table 3.6. The black curve there is a fit obtained as δU2(f) = δU2(0)/(1+

f2/f20 ), where f0 is the roll-off frequency. The experimental decay time of the photoresponse is found
from the roll-off frequency as τε = (2πf0)

−1.

characterized by a larger relative amount of niobium (Nb) than the composition of films of
M-series. The composition of films of K-series is very similar to the film of K0-series.

Raw data obtained with the frequency domain technique were partly reported in [109] and
[121]. The technique in detail was described in [109]. Shortly, beams of two continuous-wave
near-infrared lasers (wavelength 850 nm) with the controllable difference between radiation fre-
quencies were overlapped on the microbridge. The microbridge was cooled down to an operating
temperature on the resistive transition and biased by a small dc current IB. The amplitude of
the periodic variations of the photoresponse at the beating frequency f (the difference between
frequencies of two lasers) was monitored for different beating frequencies in the interval from
10 MHz to 10 GHz. The power of the absorbed radiation, PRF , alternates periodically and
causes modulation of the electron temperature. This leads to periodic sinusoidal variations in
the voltage δU(t) = IB

dR
dT δT (t) which are amplified and controlled with a spectrum analyzer.

The roll-off frequency f0 in the dependence of the photoresponse magnitude δU2(f) on the
beating frequency is the frequency at which the magnitude decreases to one half of its value
at small frequencies 1

2δU
2(0). In the inset in Fig. 3.12 we show with symbols representative

experimental data δU2(f) corresponding to microbridge K-8 from Table 3.6 and the solid fitting
curve obtained as δU2(f) = δU2(0)/(1 + f2/f20 ). For each microbridge, the roll-off frequencies
were measured at T ≈ TC and the response time was found as τε = (2πf0)

−1. In Fig. 3.12 we
plot the values of the response time τε as a function of film thickness. They vary from 124 ps
for the thinnest film to 421 ps for the thickest film. Generally, τε decreases when d decreases.
However, the rate of the decrease is noticeably less for microbridges with smaller thicknesses.
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Table 3.6: Computed parameters for NbN films of K-series on Al2O3 substrates present in the 2-T and
3-T models.

Sample d TC τEP (TC)
ce(Drude)

cph(Debye)
τesc,g τesc ce/cph ce/cph

(microbridge) (nm) (K) (ps) (ps) (ps) (2-T mod.) (3-T mod.)
K-1 3.2 12.70 0.32 0.25 36.5 2.5 2.15 ± 0.08 2.10 ± 0.06
K-2 4.2 12.90 0.30 0.24 48.7 3.4 1.55 ± 0.07 1.52 ± 0.06
K-3 5.8 14.60 0.19 0.19 67.3 4.6 0.90 ± 0.05 0.88 ± 0.05
K-4 7.5 14.80 0.19 0.19 86.6 5.9 0.66 ± 0.06 0.62 ± 0.05
K-5 8.6 15.35 0.16 0.17 100.0 6.9 0.82 ± 0.03 0.84 ± 0.03
K-6 9.9 10.80 0.15 0.17 115.5 7.9 0.67 ± 0.04 0.68 ± 0.03
K-7 14.9 16.00 0.13 0.16 172.7 11.9 0.22 ± 0.07 0.17 ± 0.06
K-8 21.6 16.35 0.12 0.15 250.4 17.3 0.13 ± 0.06 0.10 ± 0.08
K-9 33.2 16.35 0.12 0.15 384.9 26.5 0.10 ± 0.06 0.09 ± 0.06

Fitting procedure
In our analysis we describe experimental response times, τε, with the 2-T model (Eq. (2.28))
and with the 3-T model (Eq. 2.35). For this reason, we first define the parameters for the films
of K-series present in the corresponding models. These are τEP , ce/cph, and τesc,g for the 2-T
model and τEP , ce/cph, τesc, and cph,1/cph for the 3-T model. As seen in Table 3.3, the best fit
parameters found with the SM model (Table 3.3) for films of M-series, ut, ρ, and le do not vary
much with the degree of disorder. Therefore, for less disordered films K1-K9 we expect close
values. We assign the mean values of the mass density (ρ = 7.5 g/cm3), the phonon velocity
(ut = 2.4×103 m/s) and the electron mean free path (le = 0.13 nm) found for films of M-series
(except the most disordered film M-A853), and the averaged N(0) = 6.5× 1028 eV−1m−3 taken
from [109] to films of K-series. By applying the SM model (Section 2.4.2) we computed values of
τe−ph at the actual transition temperatures of each film of K-series. The fall into the range from
2.68 ps for the thinnest film K-1 to 1.02 ps for the thickest film K-9. At given TC from 12.70 K
to 16.35 K, the derived τe−ph(TC) represent a power function of temperature with a mean value
of the exponent n = 3.85. Further, from τe−ph(TC) and n = 3.85, with Eq. (2.27) we compute
averaged times τEP (TC) for each film of K-series. These averaged values, τEP (TC), are listed in
Table 3.6. For NbN films of K-series on Al2O3 substrate, applying the acoustic mismatch model
we found the critical angle Θmax(AMM) = 21.8◦ and the transmission coefficient η0 = 0.985.
Therefore, the ratio cph,1/cph = 1− cos(Θmax(AMM)) for these films is 0.07. We also computed
other parameters present in the 2-T and 3-T models and list them in Table 3.6.

To describe experimental response times, τε, we find the theoretical response times τ∗ε from
Eq. (2.34) within the 2-T model and from Eq. (2.37) within the 3-T model using the relation
δT 2

e (1/τ
∗
ε ) = 1/2 δT 2

e (0). To compute the theoretical dependence δTe(ω), we fixed values of
τEP , τesc,g for the 2-T model and τEP , τesc, and cph,1/cph for the 3-T model (Table 3.6). This
approach leaves us the only one fitting parameter ce/cph. The best fit ratios ce/cph, i.e. those
providing the theoretical response times equal to the experimental response times (τε = τ∗ε ),
are listed in Table 3.6. As it was shown in Section 2.4.4.4, the 3-T model offers two best fit
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values of ce/cph, both correspond to the same τε (the reason of this is discussed there). One of
these values is almost independent on the film thickness and ≪ 1. Such small ratios ce/cph for
NbN are considerably different from the previously reported ones in [92] and [86]. Therefore, we
exclude them from our discussion. The other value of the ratio ce/cph offered by the 3-T model
is very close to those found within the 2-T model. They monotonously vary from 0.09 for the
thickest film with d = 33.2 nm to 2.1 for the thinnest film with d = 3.2 nm. In both cases, with
decreasing the film thickness, the best fit ratios ce/cph deviate stronger from those predicted by
the Drude and Debye models. The reason for such a discrepancy is discussed in the next section.

3.2.4 Discussion: Effect of the phonon spectrum and film thickness

The analysis of the photoresponse in the time (Section 3.2.2) and frequency domains (Sec-
tion 3.2.3) for NbN films of M- and K-series, respectively, showed that for very thin films the
best fit ratios ce/cph obtained within both the 2-T and 3-T models deviate from ratios ce/cph
predicted by the Debye and Drude models. With respect to normal conduction, the studied NbN
film are 3-d (see Section 3.1.1), therefore, we assume that the electron heat capacity is described
quantitatively well by the Drude model. Then from the best fit ratios ce/cph, we derive the
phonon heat capacities. The values cph computed with the Debye model are shown in Fig. 3.13
together with the best fit values. We assigned averaged values of N(0) and n to films of K-series.
However, as seen from Table 3.2 and [101] these parameters vary with thickness. Error bars in
the right panel of Fig. 3.13 show corresponding variations in the phonon heat capacities.

Figure 3.13: Phonon heat capacities vs. film thickness for films of M-series (left panel) and K-series
(right panel) in the semi-logarithmic scale. Values cph(Debye) (closed red symbols) were computed with
the 3-d Debye model and phonon velocities found in Section 3.2.1. Values cph(2−T ) and cph(3−T ) were
extracted from the best fit ratios ce/cph with values of ce predicted by the Drude model. Error bars in
the right graph show the impact of variations in N(0) and the exponent n between films of the K-series.
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As seen in Fig. 3.13, in thin films the phonon heat capacities cph obtained within either the
2-T or 3-T models are less than those computed in the framework of the Debye model is more
pronounced for thin films. We attribute such a difference to changes in the phonon spectrum.
There are at least two effects which may result in a decrease in the phonon heat capacity in thin
films on the substrate. One is depletion of the transverse phonon modes in thin films specifically
for the mode with polarization along the normal to the film [122]. Another effect is an increase
of the phonon wavelength at low temperatures. In thin films at low temperatures, the phonon
wavelength becomes comparable or even larger than the film thickness. This effect eliminates
low-energy phonons propagating at small angles Θ and hence destroys isotropy of the phonon
spectrum and reduces the phonon density of states. The reduction in the phonon spectrum
emitted perpendicularly to the film/substrate interface with the decrease of the film thickness
was observed and modeled in [50]. The authors showed that in the restricted direction, the
phonon spectrum is modified. Phonon states with small frequencies are forbidden, that resulted
in discrete, sharp steps in the number of excited phonons. Qualitatively, this effect reduces the
phonon heat capacity, however, quantitatively we cannot estimate it. (ii) Generally, transverse
sound velocity is approximately as twice as small than the longitudinal one [48]. According
to the Debye model cph,t(l) ∝ 1/u3t(l). Consequently, the heat capacity of transverse phonons is
eigth times larger than of longitudinal phonons. Therefore, the absence of the transverse phonon
mode will indeed result in a much lower heat capacity of phonons.

We further estimate the Debye temperature of our NbN films. In the framework of the
3-dimensional Debye model, it is given by TD = (ℏ(6π2)1/3u)/(kBa0). Assuming a0 = 0.44 nm
and u = 2.54 nm/ps, we found TD = 172 K. Such value is typical for Debye temperatures
reported for similar films [123] and is a few times less than the values reported for the bulk NbN
material. The reduction of the Debye temperature is usually denoted as "phonon softening"
caused by granularity and weakening of ion bonds on film surfaces [124].

3.3 Timing jitter

To probe the intrinsic jitter, we first develop a formalism (Section 3.3.1) that aims to extract
the intrinsic jitter from the analysis of experimental data. Then we evaluate all other jitter
contributions which are unavoidably present at the experimental setup. Then, in Section 3.3.4,
we study the effect of the bias current and magnetic field on the intrinsic jitter. The section
contains main experimental findings that clarify and validate existing microscopic models of the
photon detection process.
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Figure 3.14: Schematic representation of a photon detection event in a nanowire. The detection event
is a sequence of elementary events. Each event except for the last contributes to the total delay time and
each adds uncertanty to the jitter. The standard deviation of each delay with a particular probability
density function is the measure of the corresponding jitter.

3.3.1 Probability density function: Formalism

As discussed in Section 2.2.3, the experimental probability density function (PDF) of the delay
time between the arrival of a photon at the optical input of a nanowire and registration of the
corresponding voltage transient exhibit a non-Gaussian profile. The profile is well described
by exponentially-modified Gaussian distribution. At small delays, such a distribution obeys
Gaussian statistics and at large delays exponential one. Non-Gaussian statistics is attributed
to intrinsic effects. Here we develop a formalism aiming to extract the intrinsic jitter from
the analysis of experimental PDFs where Gaussian and exponential statistics are assigned to
different stages of the photon-detection process.

The standard deviation (std), σ, of the PDF is a measure of the timing jitter. It is generally
defined as follows

σ2 =

∫︂ ∞

−∞
(t− µ)2 f(t) dt; µ =

∫︂ ∞

−∞
t f(t) dt, (3.11)

where f(t) is the PDF of the random variable t, and µ is the mean value of the PDF.

In Section 2.1, we described a photon-detection process by separating it into several stages.
Here we refer to that description and represent a photon-detection event as a sequence of the
following elementary events (Fig. 3.14): (1) absorption of a photon in the nanowire, (2) the
emergence of the hot spot, (3) the start of vortex crossing, (4) arrival of the voltage transient at
the input of the first amplifier, and (5) acquiring the voltage transient with readout electronics
(amplifier, scope, timing reference from a fast photodiode, coaxial cables). Each event from (1)
to (4) is associated with its time delay (Fig. 3.14). The noise of the amplifier does not introduce a
delay, however, it distorts the voltage transient and adds uncertainty to the measured jitter (see
Section 2.2.2). The additional instrumental jitter is caused by the timing accuracy of the scope
and the timing stability of the reference from a fast photodiode. A contribution to the jitter
from coaxial cables as compared to that from the amplifier is negligible. However, the cables
add to the time delay. Each time delay is considered as an independent random variable. These
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variables are flight time of a photon through the fiber (event 1), time delay in the emergence of
the hot spot (event 2), time delay in the start of the vortex crossing (event 3), traveling time
of the voltage transient from the hot spot to the amplifier (event 4), and joint contribution of
electrical noise and instruments (event 5). The total delay time is a sum of delays associated with
the particular events. A PDF of the total delay time or, differently, the whole set of random
variables is the joint PDF. Each variable is characterized by a particular PDF. All variables
enumerated above are statistically independent, however, those which are affiliated with the
adjacent events (from 1 to 4) are connected via conditional probability. A conditional joint PDF
for two sequential events implies that the latter event occurs only if and after the earlier has
occurred. It is given by [125]

f(t) =

∫︂ t

−∞
f1(u)f2(t− u)du, (3.12)

where f1(t) and f2(t) are particular PDFs for two sequential events. The conditional joint PDF
given in Eq. (3.12) also implies that f2(t) = 0 at t < 0. The adjacent events (4) and (5) are not
connected via conditional probability. These two events are connected via the joint PDF:

f(t) =

∫︂ ∞

−∞
f4(u)f5(t− u)du. (3.13)

Therefore, an experimental PDF of the total delay time is described by the joint PDF in the
form of a multiple integral [125]

F (t) =∫︂ ∞

−∞

{︃∫︂ t4

−∞

[︃∫︂ t3

−∞

(︃∫︂ t2

−∞
f1(t1)f2(t2 − t1) dt1

)︃
f3(t3 − t2) dt2

]︃
f4(t4 − t3) dt3

}︃
f5(t− t4) dt4.

(3.14)

Now we will describe each particular PDF which enters Eq. (3.14). The PDF of the optical
delay added by flight time of a photon through a short single-mode fiber, f1(t), is Gaussian [39],
in the form

f1(t, σopt) =
1

σopt
√
2π

exp

[︄
−(t− µ)2

2σ2opt

]︄
, (3.15)

where σopt is the std and µ is the mean value. The mean value is defined by the delay time
in a setup (flight time of a photon through the fiber, traveling time of a reference signal to the
scope, etc). The experimental techniques (subsection 2.2.1) for measuring jitter do not allow
for finding the absolute delay time. Therefore, for simplicity of calculations, we take µ = 0.
Now we consider the PDF of the delay time in the emergence of the hot spot, f2(t). As shown
in [11], the physical origin of the variance in this delay is Fano fluctuations [126] and spatial
non-uniformity of the nanowire. Because both obey Gaussian statistics, we assign to the PDF
f2(t, σ) the Gaussian distribution of the same form as Eq. (3.15) but with std σ.

Two sequential events (1 and 2) are connected via a conditional probability. Because the
delay in the emergence of the hot spot is non-zero, the mean values of f1(t, σopt) and f2(t, σ)
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are separated by a time delay, ∆t. The delay time ∆t is the latency in the models of Allmaras
et al. [11] and Vodolazov [10]. The conditional joint PDF of two sequential events (1) and (2)
(round brackets in Eq. (3.14)) can be evaluated analytically [127] as

p(t) =

∫︂ t

−∞
f1(u, σopt)f2(t−∆t− u, σ)du =

1√︂
2π(σ2opt + σ2)

exp

[︄
− (t−∆t)2

2(σ2opt + σ2)

]︄⎛⎝1 + (erf)

⎡⎣ t−∆t√︂
2(σ2opt + σ2)

σ

σopt
+∆t

√︂
σ2opt + σ2

σoptσ
√
2

⎤⎦⎞⎠ .

(3.16)

For ∆t ≥ 2.5σ, the function p(t) is Gaussian with the standard deviation
√︂
σ2opt + σ2. With

lowering ∆t, p(t) quickly becomes asymmetric and non-Gaussian.

The next PDF, f3(t), is the PDF of the start time of vortex crossing (event 3). Vortex
crossing in the presence of the energy barrier is a Poisson process [125, 23]. In that, the start
time of a single crossing obeys the same statistics as, e.g., nuclear decay and is described by an
exponential PDF in the form

f3(t, τ) =
1

τ
exp

(︃
− t

τ

)︃
. (3.17)

For an exponential distribution, both the mean value and the std are equal to τ . The conditional
joint PDF of the delay times from events (2) and (3) can be analytically derived as

g(t, σ, τ) =

∫︂ t

−∞
f2(u, σ)f3(t− u, τ)du =

1

2τ
exp

[︃
1

2τ

(︃
σ2

τ
− 2t

)︃]︃[︄
1− erf

(︄
σ2

τ − t

σ
√
2

)︄]︄
. (3.18)

This distribution is known as an exponentially-modified Gaussian distribution. In Fig. 3.15, we
show this PDF for different ratios τ/σ. It can be shown [127] that the std and the mean value
for this distribution are

√
σ2 + τ2 and τ , respectively. This std

√
σ2 + τ2 corresponds to the

local jitter, σloc (see Section 2.2.2). The function g(t, σ, τ) exhibits a Gaussian shape for t ≤ t0

and an exponential tail at t > t0, where t0 stands for the position of the maximum value of
g(t, σ, τ).

Further, it can be shown that the conditional joint PDF of the sequential events (1), (2), and
(3) (square brackets in Eq. (3.14)) is also an exponentially-modified Gaussian distribution. It can
be described by the function g(t,

√︂
σ2opt + σ2 + τ2, τ) in Eq. (3.18) with the std

√︂
σ2opt + σ2 + τ2

and the mean value τ .

In Section 3.3.3.1 it will be shown that for our experimental conditions, the geometric jitter
is negligibly small. Therefore, we skip the PDF for event (4). Finally, we come to the last
event in the sequence, (event 5), noise and instrumental contributions. Their PDF is Gaussian
(Eq. (3.15)) with the std

√︂
σ2N + σ2ins. As noted at the beginning of this section, the last event
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Figure 3.15: Simulated exponentially-modified Gaussian distributions given by Eq. (3.18) for different
ratios between τ and σ, where τ = 9 ps.

(5) does not introduce a delay, and therefore it is not connected to the previous event (4) via a
conditional PDF. The total joint PDF in Eq. (3.14) is presented by the convolution integral

F (t) =

∫︂ ∞

−∞
g(u,

√︂
σ2opt + σ2 + τ2, τ)f(u− t,

√︂
σ2N + σ2ins)du =

1

2τ
exp

[︄
1

2τ

(︄
σ2sys
τ

− 2t

)︄]︄⎡⎣1− erf

⎛⎝ σ2
sys

τ − 2t

σsys
√
2

⎞⎠⎤⎦ . (3.19)

The resulting PDF, F (t), represents the exponentially-modified Gaussian distribution with the
std given by

σsys =
√︂
σ2opt + σ2 + τ2 + σ2N + σ2ins. (3.20)

Further, this PDF (Eq. (3.19)) is used for fitting experimental PDFs. Experimentally, the std
of F (t) defines the system jitter.

3.3.2 Experimental approach

Specimens
Jitter measurements were carried out with an NbN nanowire of K0-series on Al2O3 substrate
described in Section 3.1. The straight nanowire was 5 nm thick, 100 nm wide, and 40 µm
long. The transport measurements of the wire showed an experimental critical current of IC =
50.2 µA, a critical temperature of TC = 12.55 K, and a square resistance of RSN = 260 Ω/sq.
The experimental IC of the wire is almost twice as less as the depairing current, IC/IDEP = 0.57

(see Section 3.1). Fig. 3.16 shows a scanning-electron-microscope image of the film of K0-
series patterned in parallel, geometrically identical nanowires. The only active nanowire was
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Figure 3.16: Images of the nanowire of K0-series obtained with a scanning electron microscope. The
active wire is surrounded by parallel equally spaced and electrically suspended wires of the same width.
Dark color represents the NbN film.

surrounded by parallel equally spaced and electrically suspended wires of the same width. It
was done in order to eliminate diffraction and obtain the same optical coupling as for meandered
wires.

Experimental setup
Jitter measurements were performed at 4.2 K at two wavelengths 800 nm and 1560 nm in a
continuous-flow cryostat with a quartz window (either a dipstick immersed in a Dewar with liquid
helium). To minimize contributions to the system jitter from optics and readout electronics, we
used short-pulse light sources and low noise electrical readout. A 800 nm Ti-sapphire laser
(Femtosource, synergy 20) and a 1560 nm fiber-based laser (C-Fiber, Menlo Systems) generated
the optical pulses with a duration (std) of 17 and 27 fs at a repetition rate of 80 and 100 MHz,
respectively. The laser power was controlled by a powermeter (Thorlabs, PM100 with S120UV
sensor for 800 nm and PM20C for 1560 nm) and could be adjusted by a variable attenuator placed
between the laser and the fiber input (either the cryostat). Fig. 3.17 schematically illustrates the
experimental setup. The active nanowire was uniformly illuminated by laser pulses. The light
from lasers was coupled to the nanowire either via single-mode fibers (SM980 for 800 nm and
SMF28 for 1560 nm) or in free space. To ensure the uniform illumination for the fiber-coupled
light between the nanowire and the fiber end, there was a distance of 15 mm. So that the light
spot on the nanowire plane had a diameter of 2 mm. A chip with the nanowire was mounted
on a holder together with a temperature sensor and a heater and was kept at the temperature
4.2 K. The temperature was controlled with a temperature controller (LakeShore, Model 331).
We used a conventional method to read out the nanowire response where the nanowire builds a
part of the central strip in a shortened coplanar line (more details in Section 3.3.3.1). On the
holder, one end of the active nanowire was connected to the shortened coplanar line via bonding
and the other one to the ground plane. So that the nanowire had one common output. A coaxial
cable connected the coplanar line and a bias-tee. The bias-tee was plugged to the SMA output of
the cryostat (either the dipstick). The wire was biased by a small direct current from a battery-
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Figure 3.17: Schematic block diagram of the experimental setup for measuring the timing jitter. The
light from a pulsed laser (either at 800 nm or 1560 nm) is sent to a sample via a single-mode fiber
(either in free space through a quartz window of a cryostat). Rf and dc paths are de-coupled at room
temperature with a bias-tee. Voltage transients from the sample are amplified at room temperature
before they are recorded by a scope (either sampling or real-time). The relative power of incoming light
from the laser is adjusted by an attenuator. For measuring the jitter in magnetic field, a superconducting
solenoid was used to create the magnetic field perpendicularly to the sample substrate.

powered dc source. The nanowire response, a voltage transient, was amplified by a low noise
amplifier with a bandwidth from 100 MHz to 8 GHz, which was connected directly to the bias-
tee. Further, voltage transients were acquired with a scope connected to the amplifier through a
coaxial cable. We used a sampling scope (Keysight Infiniium DCA-X 86100D) with a bandwidth
of 50 GHz or, alternatively, a real-time oscilloscope (Keysight Infiniium X-series 93204A) with
an effective bandwidth of 33 GHz for both active channels. The effects of the photon flux and
bias currents on the jitter (Section 3.3.3.3 and 3.3.4) were studied in the cryostat. It allowed us
to couple the light from lasers to the nanowire in free space and drastically minimize the optical
contribution to the jitter. For measurements in the magnetic field (Section 3.3.4), we used the
dipstick with a superconducting solenoid, which was immersed in a Dewar with liquid helium.
In the dipstick, the laser light was coupled to the nanowire via optical fibers. The magnetic field
was applied perpendicularly to the sample substrate.

Experimental PDF
We consider the time delay between the arrival of a photon at the fiber input (either directly at
the nanowire when free-space coupling used) and arrival of the corresponding voltage transient
to the scope as a random variable. To obtain the PDF of the arrival time, we measured the
difference between arrival times of two voltage transients appearing at two different channels of
the real-time scope (either the sampling scope that is discussed further). As shown in Fig. 3.17,
one of the transients was generated by a fast photodiode, which was illuminated by the same
laser, while the other was generated by the nanowire itself. Triggering was done at the rising
edge of the voltage transient from the nanowire. To eliminate the contribution to the jitter due
to amplitude fluctuations, the arrival times of the transients were measured at the 50% level of
their instantaneous amplitudes. To build one PDF, we accumulated 10 000 measurements. The
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Figure 3.18: Screen shot from the sampling scope shows the rising edge of many voltage transients
acquired in a persistence display mode. The inset shows the histogram of noise in the base line.

system jitter was obtained either as the numerical std (Eq. (3.11)) of the experimental PDF
or the std of the fitting exponentially-modified Gaussian distribution (Eq. (3.19)). Std for the
noise contribution to the system jitter was estimated as σN = σUN

τrise/Amean (Eq. 2.1). When
the sampling scope was used, triggering was done by the transient from the fast photodiode,
while the transient from the nanowire was acquired. To build one PDF, we accumulated 10 000
points inside an acquisition window on the rising edge of the voltage transient from the nanowire
(shown by the rectangle in Fig. 3.18). The arrival time of the transient was associated with the
time when the points from this transient appear within the window. The contribution to the
system jitter due to amplitude fluctuations was estimated as σamp =

√︂
σ2UΣ

− σ2UN
τriseH/A

2
mean

(the parameters are defined in Eq. (2.2) and also shown in Fig. 3.18). In our measurements,
this contribution had a Gaussian distribution and amounted to only a fraction of the noise jitter
σamp = (0.34− 0.51)σN in the range of the relative bias currents IB = (0.9− 0.7)IC .

3.3.3 Jitter contributions

3.3.3.1 Geometric jitter

In Section 2.2.2 we gave estimations for the geometric jitter in the differential readout method.
However, as it will be shown bellow, for our nanowire of 40 µm long, the geometric jitter in
the conventional readout method is negligible. Moreover, this method is easier to implement
as compared to the differential one. Therefore, in our measurements, we used the conventional
readout method, i.e. a shortened coplanar line which is schematically illustrated in Fig. 3.19.
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Figure 3.19: Schematic representation of the propagation of the voltage transient in a straight nanowire
connected to a shortened coplanar line.

At the photon absorption site after the formation of the normal domain, two current steps
are generated. They have opposite polarities and propagate to opposite directions along the
nanowire of length L with velocity v ≈ 12 µm/ps [40]. One of the current steps propagates to
the shortened end, is reflected and then propagates via the outer ground plane of the coplanar
line. The propagation velocity in the ground plane of the coplanar line is (on the sapphire
substrate) v∗ ≈ 140 µm/ps. The outer size a between nanowire contacts depends on the layout.
For meander layouts a is less than the length of a meandered nanowire, a < L, while for layouts
with straight wires a = L. The maximum difference between arrival times of two current steps
at the input of the amplifier is |t1 − t2| = x/v + ((L − x)/v + a/v∗) ∼ L/v. Here L is the
nanowire length and x ∈ [0;L] is the longitudinal random variable assigned to each photon
absorption site along the nanowire. As an example, in Fig. 3.20 we show computed voltage steps
before, Uin(t), and after, Uout(t), the amplifier for several absorption sites x along a 1000 µm
long nanowire. Amplified voltage steps in Fig. 3.20(b) were computed with Eqs. (2.31 and 2.32)
for the bandwidth 50 MHz – 4.5 GHz. As seen in Fig. 3.20(b), the difference in arrival times of
voltage transients for such a long nanowire is resolved by the readout electronics with a given
bandwidth that will result in the geometric jitter.

If the time difference is much less than the time resolution of the readout electronics, the two
voltage steps cannot be resolved. This situation is shown in Fig. 3.21 for a 40 µm long nanowire
and the same bandwidth of the readout electronics (50 MHz – 4.5 GHz). This corresponds to
our experimental conditions. As seen in Fig. 3.21(b), all amplified voltage steps exhibit the same
rising edges. Therefore, it does not introduce an additional jitter. However, in the shortened
coplanar line, another source of the geometric jitter may appear. It is the difference in dispersion
and losses in the superconducting nanowire and in the ground plane. This difference results in
the effective propagation velocity. In [38], the effective velocity of 70 µm/ps was found for NbN
meandered nanowires with parameters similar to our nanowires. This scenario results in the
geometric jitter < 1 ps. Hence, further, we exclude the geometric jitter from the analysis. It is
worth mentioning that in our simulations, we neglected electrical reflections at both ends of the
nanowire, which occur due to impedance mismatch.
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Figure 3.20: (a) Computed voltage steps arriving at a reference plane before amplifier for five absorption
sites x = 0, L/4, L/2, 3L/4, L, where L = 1000 µm. (b) Rising edges of amplified voltage steps were
computed with Eqs. (2.31 and 2.32). In simulations reflections at both ends of the nanowire due to
impedance mismatch, and also the difference in dispersion and losses in the nanowire and in the ground
plane were neglected.

3.3.3.2 Fiber coupling: Optical jitter

In order to estimate the optical contribution, σopt, to the jitter due to chromatic dispersion in
single-mode fibers (Eq. (2.4)), we first characterize the spectral width, σλ, of the optical pulses.
The spectrum of the 800 nm Ti-sapphire laser in a pulsed mode was acquired with a spectrometer
(OceanOptics, USB4000). Fig. 3.22(a) shows this spectrum with the central wavelength λ0 ≈
800 nm. This spectrum is well described by a Gaussian distribution with a std of σλ = 19 nm.
At this central wavelength, for the fibers we used (SM980 and SMF28), the material dispersion
coefficient is Dm = - 120 ps/(km nm). Therefore, we expected the optical jitter per fiber length
to amount to 2.3 ps/m. The spectrum for the 1560 nm fiber-based laser in a pulsed mode

Figure 3.21: (a) Computed voltage steps arriving at a reference plane before amplifier for five absorption
sites x = 0, L/4, L/2, 3L/4, L, where L = 40 µm. (b) Rising edges of amplified voltage steps were
computed with Eqs. (2.31 and 2.32). In simulations reflections at both ends of the nanowire due to
impedance mismatch, and also the difference in dispersion and losses in the nanowire and in the ground
plane were neglected.
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Figure 3.22: Spectra of lasers in pulsed mode with a central wavelength at (a) 800 nm and (b) 1560
nm. Solid black curves are fits with (a) one Gaussian and (b) a sum of three Gaussians.

was taken from a data sheet provided by manufacturers. Fig. 3.22(b) shows the spectrum with
λ0 ≈ 1560 nm. This spectrum can be described by a sum of three Gaussians with a total std
of σλ = 28.6 nm given by the square root of the sum of the squares of a particular std. For the
fiber SMF28 at 1560 nm, the coefficient Dm = - 18 ps/(km nm) that results in an optical jitter
of 0.5 ps/m. The parameters characterizing lasers pulses are listed in Table 3.7.

The optical contributions to the jitter introduced by fibers at 800 and 1560 nm were evalu-
ated experimentally as well. For this, we carried out several measurements by varying the length
and the type of fibers placed between the laser and the nanowire, while the rest of the experi-
mental conditions (bias current, light intensity, etc.) were the same. Some of the experimental
PDFs of the delay time are plotted with symbols in Fig. 3.23. Fig. 3.23(a) shows experimental
PDFs acquired at the wavelength 800 nm and the relative bias current 0.9 IC . The PDFs are
normalized to one and shifted to zero delay. The narrower PDF (open symbols) was measured
with a 4 m long fiber and the wider one with a 9 m long fiber. The former PDF exhibits an
almost Gaussian shape (black curve) while the latter is asymmetric with a tail extended to
larger delays. Further, each measured PDF we fitted with Eq. (3.19) in the framework of the
formalism described in Section 3.3.1. It allowed us to evaluate the optical contribution to the

Table 3.7: Parameters of the laser pulses and the optical jitter in the experimental setup

SM980 fiber SMF28 fiber
σopt

in the setup with
the fiber-coupled light

theor. exp. theor. exper.
λ0 σt σλ σopt

(nm) (fs) (nm) (ps/m)

800 17 19 2.3 2.4 ± 0.5 2.3 3.9 ± 0.5
σopt = 8.0 ps
(2 m of SM980 and
2 m of SMF28 fibers)

1560 27 28.6 0.5 0.5 ± 0.1
σopt = 3.0 ps
(6 m of SMF28 fiber)
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Figure 3.23: PDF of the delay time obtained for a straight nanowire at 4.2 K and two wavelengths.
Maxima of PDFs were normalized to one and shifted to zero delay. PDFs were obtained (a) at the relative
bias current 0.9 IC and 800 nm wavelength by use of 9 m (closed symbols) and 4 m (open symbols) long
fibers (combined from two fiber types SMF28 and SM980), (b) at 0.95 IC , 1560 nm by use of 16 m (open
symbols) and 6 m (closed symbols) of SMF28 fibers. Solid curves are fits with a Gaussian distribution,
and dashed curves are fits with an exponentially-modified Gaussian distribution (Eq. (3.18))

jitter that amounts to 2.4 ± 0.5 at 800 nm and 3.9 ± 0.5 ps/m in SM980 and SMF28 fibers,
respectively [128]. The jitter added by the fiber SMF28 at 800 nm is larger because the fiber
at this wavelength operates at the border of the single-mode regime. Fig. 3.23(b) shows with
symbols two experimental PDFs acquired at 1560 nm at the relative bias current 0.95 IC by
use of 16 m and 6 m of SMF28 fiber. The evaluated optical jitter amounts to 0.5 ± 0.1 ps/nm.
The optical jitters evaluated experimentally at 1560 nm in SMF28 and 800 nm in SM980 fibers
agree well with estimations due to the chromatic dispersion alone. Our experimental setup with
a superconducting solenoid, which unavoidably includes fibers, is characterized by the optical
jitter σopt = 3 ps at 1560 nm (6 m of SMF28 fiber) and σopt = 8 ps at 800 nm (2 m of SM980
and 2 m of SMF28 fibers). All evaluated σopt are listed in Table 3.7.

3.3.3.3 Free-space optical coupling: Effect of photon flux, local jitter

The effect of photon flux was studied with free-space optical coupling in a continuous-flow
cryostat. Removing optical fibers excludes the optical contribution due to chromatic dispersion
in the fiber material. The only remaining contribution to the optical jitter comes from the
temporal width of the laser pulses, that is negligible in our experiment (17 fs at 800 nm and
27 fs at 1560 nm). Thus optical coupling in free space eliminates the optical jitter. We carried
out jitter measurements with free-space optical coupling at both wavelengths (800 nm and 1560
nm) and a relative bias current IB = 0.88IC . Two experimental PDFs shown in Fig. 3.24
with circles and squares were measured at relatively small photon flux (≈ 10−3 arb.u.). The
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Figure 3.24: PDF of delay time measured for two wavelengths and two different photon fluxes at a
fixed relative current of 0.88 IC , at the wavelength 800 nm (circles) and 1560 nm (squares) with relatively
small flux (≈ 10−3 arb.u.) and at the wavelength 800 nm (triangles) with relatively large flux (≈ 10

arb.u.). Maxima of PDFs were normalized to one and shifted to zero delay. The solid curves show the
best fits described in Section 3.3.1. The legend specifies the system jitter (numeric std) for corresponding
PDFs.

relative photon flux incident on the nanowire was controlled with a powermeter inserted in front
of the cryostat and adjusted with a variable attenuator. Then, at 800 nm, we considerably
increased the photon flux (up to ≈ 10 arb.u.) by decreasing the attenuation and repeated the
measurements. The PDF measured at large photon flux is shown in Fig. 3.24 with triangles.
This PDF is considerably narrower as compared to two PDFs measured with small photon flux.
Moreover, the narrowest PDF exhibits a pure Gaussian shape, while the other two are better
discribed by an exponentially-modified Gaussian distribution (Eq. (3.18)). The corresponding
distributions are shown in Fig. 3.24 with lines. The std of each PDF amounts to σsys = 6.7 ps
for 800 nm and σsys = 9.2 ps for 1560 nm with small photon flux and σsys = 2.2 ps for 800 nm
with large photon flux. These values are listed in Table 3.8.

To qualitatively characterize the difference between detection regimes at small and large
photon fluxes, we carried out the following measurements. At a fixed current IB = 0.88IC , by
varying the photon flux at 800 nm, we measured the amplitude of the voltage transient and the
count rate, i.e. the number of voltage transients from the nanowire that crossed a trigger value
of the scope. Fig. 3.25(a) shows the amplitude of the voltage transient vs. photon flux. As
seen in the figure, for relatively small photon fluxes 10−3 − 10−2 arb.u., the amplitude of the
voltage transient remains constant and then grows with a further increase in the flux. At large
fluxes, the amplitude saturates as it is shown in the inset to Fig. 3.25(a) on the linear flux scale.
Fig. 3.25(b) shows a current dependence of the count rate obtained at small (∼ 10−3 arb.u.)
and large (∼ 10 arb.u.) photon fluxes. Depending on the flux, the current dependence of the
count rate changes significantly. At small flux, the dependence has a shape typical for the
single-photon detection regime. At large photon flux, it exhibits a saturated plateau, which
is equal to a laser repetition rate of 80 MHz. This rate is smaller than the fastest count rate
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Figure 3.25: (a) Amplitude of the voltage transient at 800 nm and fixed relative current of 0.88 IC vs.
photon flux. The dashed curve is a guide to the eye. The inset shows the same data on the linear flux
scale. The solid curve in the inset is the best fit described in the text. (b) Counte rate vs. bias current
at 800 nm for two different relative photon fluxes ≈ 10−3 and ≈ 10 arb.u. The solid curves are guides to
the eye. The inset shows the dependence of the count rate on the photon flux in the double logarithmic
scale. The dashed straight line in the inset shows the best linear fit. The solid line in the inset depicts
an approximately cubic increase in the count rate at large photon fluxes.

of the nanowire (500 MHz), which is defined by the reciprocal recovery time of the nanowire
(2 ns). At large photon fluxes, each laser pulse contains a large number of photons in a very
narrow timing frame (the width of the optical pulse). The nanowire counts optical pulses rather
than photons. This leads to the saturated count rate equal to the laser repetition rate. The
inset in Fig. 3.25(a) shows the count rate vs. photon flux measured at the fixed bias current
0.88 IC . It is seen that at small fluxes, the count rate grows linearly with the flux (dashed
line) that indicates the single-photon detection regime. While at large fluxes, the dependence
becomes super-linear (solid line) that corresponds to the saturated plateau in the count rate vs.
current. Such a saturation indicates the multi-photon detection regime at which many photons
are absorbed simultaneously. With increasing photon flux, the multi-photon regime remains
discrete until the number of absorbed photons becomes so large that the mean distance between
adjacent hot spots equals the mean size of hot spots. The further increase in the photon flux
results in uniform heating of electrons in the nanowire, i.e. the non-equilibrium state of electrons
in the nanowire becomes uniform. To denote such a uniform, multi-photon detection regime, we
use the term bolometric regime. The transition from the discrete, single-photon regime to the
uniform, multi-photon (bolometric) regime is supported by the flux dependence of the voltage
amplitude, which saturates at large fluxes (the inset in Fig. 3.25(a)). The fitting curve shown
in the inset in Fig. 3.25(a) was obtained with an expression f(x) = (a bx)/(Z0 + bx), where
Z0 = 50 Ω is the load impedance, bx is the resistance of the normal domain in the nanowire
proportional to the photon flux x, and a and b are adjustable parameters. The best fit values of
a = 0.5 and b = 31. For b = 31 at the photon flux x = 10, the resistance of the emerged domain
is 310 Ω. Extrapolating to the discrete single-photon regime with the kinetic inductance of our
wire 6 nH and the flux-independent rise time of the transient 70 ps, we arrive at the resistance of
the normal domain in excess of 400 Ω that corresponds to the value estimated in the framework
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Table 3.8: Jitter contributions for small and large photon fluxes. For free-space optical coupling the
local jitter was computed as σloc =

√︂
σ2
sys − σ2

ins − σ2
N . The σ is a component of the local jitter, the std

of the growth time of the hot spot.

photon flux λ0 IB/IC σsys σN σloc σ comments
(arb. u.) (nm) (ps) (ps) (ps) (ps)

∼ 10−3 800
0.88

6.7 2.0 6.1 4.3
single-photon regime

1560 9.2 3.9 8.2 3.1
∼ 10 800 2.2 1.2 bolometric regime

of the electro-thermal model [28].

The PDF measured in the bolometric detection regime (Fig. 3.24 triangles) has much smaller
std (σsys = 2.2 ps) as compared to the PDF obtained in the discrete, single-photon regime
(σsys = 6.7 ps at ) at the same wavelength (see Table 3.8). This is because the bolometric, multi-
photon detection regime eliminates the intrinsic jitter (see Section 2.2.2). Indeed, a large number
of photon absorption sites evenly distributed over the nanowire excludes a position dependence
of traveling times of the voltage transient, i.e. eliminates the geometric jitter. In the limit of a
large number of absorption sites, the local jitter associated with the difference in the growth time
of the hot spot, or, differently, in the energy released at different absorption sites (occurring due
to Fano fluctuations) is averaged out. The same is true for the local jitter associated with the
start time of vortex crossing. Hence, in the bolometric regime, the system jitter only includes
an instrumental contribution (scope, laser, and cables), σins, and a contribution from electrical
noise, σN , i.e. σsys =

√︂
σ2ins + σ2N . At IB = 0.88IC in the bolometric regime, σN = 1.2 ps

that results in σins = 1.8 ps. In the single-photon regime, the local and geometric jitters are
present so that σsys =

√︂
σ2ins + σ2N + σ2loc + σ2geom. At IB = 0.88IC in the single-photon regime,

σN = 2.0 ps at the wavelength 800 nm (circles in Fig. 3.24) and σN = 3.9 ps at the wavelength
1560 nm (squares Fig. 3.24). Here the difference in the noise jitter is due to the difference in
readout electronics. Therefore the instrument- and noise-free jitter amounts to 6.1 ps at 800 nm
and 8.2 ps at 1560 nm. In the limit of negligibly small geometric jitter, which is estimated to
be < 1 ps in our experiment (see Section 3.3.3.1), these values are entirely defined by the local
jitter. The derived jitter contributions are listed in Table 3.8.

It is worth mentioning that std -s of experimental PDFs measured with and without op-
tical fibers agree well with the system jitter expected by applying the formalism developed
in Section 3.3.1, i.e. when each component of the system jitter was derived independently
σsys =

√︂
σ2opt + σ2loc + σ2ins + σ2N . Such an agreement verifies the applied approach.

As shown in Section 3.3.1, the local jitter can be represented as σloc =
√
σ2 + τ2, where

σ is the std of the growth time of the hot spot, and τ is the std of the start time of vortex
crossing. At 0.88 IC in the single-photon regime at 800 nm, σ = 4.3 ps and at 1560 nm
σ = 3.1 ps. The ratio between these two values is very close to the reciprocal square root
of the corresponding wavelengths. Exactly this ratio is expected for Fano fluctuations which
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provide standard deviation in the number of excited electrons σE =
√
ε F ℏω∆, where ∆ is the

superconducting energy gap, ε ≈ 0.55 is the quantum yield, and F = 0.2 - 0.4 is the Fano factor.
The impact of Fano fluctuations will be discussed in more details in Section 3.3.5.

To summarise, we applied the formalism described in Section 3.3.1 to analyze raw experi-
mental PDFs. We evaluated different contributions to the jitter originated from optics, electrical
noise, instruments, and the nanowire itself. We found that the system jitter computed as nu-
merical std of an experimental PDF agrees well with the system jitter consisted of contributions
found independently. The equality between expected and measured std -s holds for PDFs mea-
sured at different currents, with very different contributions from optics and electrical noise. This
verifies the applied formalism (Section 3.3.1). The formalism is also used in the next section
where we evaluate components of the local jitter and study the effect of current and magnetic
field on it.

3.3.4 Effect of current and magnetic field on the local jitter

We start with studying a general effect of the magnetic field and the bias current on the noise-
free system jitter. The noise-free system jitter we define as follows σs =

√︂
σ2sys − σ2N , where

σN is the noise contribution. Except for the local jitter, all other contributions to the noise-free
system jitter are independent on the bias current and magnetic field. Therefore, we expect that
current and magnetic field dependences of the noise-free system jitter reveal all characteristic
features of the local jitter. Further, by applying the formalism described in Section 3.3.1, we
evaluate components of the local jitter, σ and τ , at different bias currents and magnetic fields.

Fiber coupling: Jitter in magnetic fields
The effect of the magnetic field was studied with fiber coupling in a dipstick with a supercon-
ducting solenoid. The magnetic field was applied perpendicularly to the nanowire surface. In
the setup with the fiber-coupled light, the optical jitter was evaluated in Section 3.3.3.2, and
it amounts to 8 ps at 800 nm and 3 ps at 1560 nm. The jitter measurements were carried out
at both wavelengths, different magnetic fields, and bias currents 0.63IC , 0.7IC , and 0.75IC for
800 nm and 0.75IC , 0.8IC , and 0.85IC for 1560 nm. Here we refer to the critical current, IC ,
as the critical current at zero magnetic field. Some of the experimental PDFs are shown in
Fig. 3.26 (with symbols). Fig. 3.26(a) shows PDFs measured at 800 nm and the relative bias
current 0.63IC . Fig. 3.26(b) shows PDFs measured at 1560 nm and IB = 0.75IC . As seen in
Fig. 3.26, at B = 0 mT, the PDFs for both wavelengths are narrower and less asymmetrical
exhibiting close to Gaussian shapes. With the magnetic field, the exponential tail at large delay
times appears, while at small delay times (the left part from the PDF maximum), the PDFs re-
tain Gaussian shapes. The slope of the exponential tail decreases with the field that corresponds
to an increase in the characteristic exponential time. At both wavelengths, the Gaussian part
of PDFs, i.e. the left part from the PDF maximum, slowly grows with the magnetic field, while
the exponential tail grows faster. The solid curves in Fig. 3.26 show the best fits according to
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Figure 3.26: Experimental PDFs (symbols) in different magnetic fields. Maxima of PDFs were nor-
malized to one and shifted to zero delay. (a) Data for the wavelength 800 nm were obtained at current
0.63IC and magnetic fields 0, 150, 200, and 250 mT. (b) Data for the wavelength 1560 nm were obtained
at 0.75IC and magnetic fields 0, 50, 100, and 200 mT. Solid lines show best fits according to Eq. (3.19).

the exponentially-modified Gaussian distribution (Eq. (3.19)). For each experimental PDF, we
define the system jitter and the noise jitter. Then, subtracting the noise contribution from the
system jitter, we obtained a noise-free system jitter. The derived jitter contributions for both
wavelengths (at some currents and magnetic fields) are listed in Table 3.9.

Fig. 3.27(a) shows the noise-free system jitter, σs. At both wavelengths, the σs increases
with the magnetic field. At 800 nm, the σs saturates with a decrease in the magnetic field.
It is because the σs includes the optical contribution, which is considerably larger at 800 nm

Figure 3.27: (a) Noise-free system jitter at different magnetic fields. Data were obtained for the
wavelengths 800 nm at currents 0.63IC , 0.7IC , and 0.75 IC and for 1560 nm at currents 0.75IC , 0.8IC ,
and 0.85IC . The dashed lines are to guide the eyes. (b) Spectra of the relative count rate at different
magnetic fields and bias currents. For IB = 0.8IC and B = 0, the straight lines approximate the plateau
and the linear decrease in the count rate (note the logarithmic scale for the count rate) and define the
critical wavelength λC ≈ 630 nm marked with the arrow.
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Table 3.9: Jitter contributions for PDFs measured in magnetic field. The components of the local
jitter, σ and τ , are the best fit values derived by fitting an experimental PDF with Eq. (3.19). For both
wavelengths σins = 1.8 (see Section 3.3.3.3).

λ0 IB/IC B σsys σN σopt σ τ

(nm) (mT) (ps) (ps) (ps) (ps) (ps)

800 0.63

0 12.2

4.9 8.0

5.0 ± 0.4 5.0 ± 0.9
150 14.1 5.5 ± 0.4 10.5 ± 0.8
200 19.3 6.6 ± 0.3 15.0 ± 0.8
250 24.5 7.3 ± 0.3 19.0 ± 0.7
0 6.8 3.8 ± 0.4 4.9 ± 0.9
50 8.4 3.9 ± 0.1 6.9 ± 0.3

1560 0.75 100 10.5 4.6 3.0 4.5 ± 0.1 9.1 ± 0.3
150 13.5 4.9 ± 0.1 12.3 ± 0.3
200 15.6 5.6 ± 0.4 14.0 ± 0.9

(8 ps) as compared to 1560 nm (3 ps). In Fig. 3.27(b), we show spectra of count rate. These
spectra were obtained with a monochromator (Zolix Omni-λ 1509) at different magnetic fields
and bias currents. Such spectra are typical for SNSPDs and have been reported in several publi-
cations which are reviewed in [12]. Each spectrum exhibits a plateau and a roll-off, which begins
around a particular wavelength. At small wavelengths, the count rate is almost wavelength-
independent, while beyond the roll-off, the count rate exponentially decreases with increasing
the wavelength. For each spectrum, there is a critical wavelength [93], λC . The λC is associated
with the intersection of two straight lines, which extrapolate the plateau and the decaying part
of the count rate spectrum (solid lines in Fig. 3.27(b)). For IB = 0.8IC and zero magnetic field
λC ≈ 630 nm. The critical wavelength formally demarcates two different detection scenarios.
The plateau corresponds to a deterministic detection scenario, i.e. when each absorbed photon
results in a counting event with a probability 100%. The wavelength range where the count rate
decays exponentially corresponds to a probabilistic detection scenario [12], i.e. the probability
that an absorbed photon will result in a counting event is < 100%. Around the critical wave-
length, there is a relatively broad spectral range where the nanowire response corresponds to a
mixture of these scenarios. For all magnetic fields and currents studied here, at 1560 nm, the
nanowire response obeys pure probabilistic detection scenario, while at 800 nm, the scenario is
a mixture of both. As seen in Fig. 3.27(b), at fixed bias current, the increase in the magnetic
field shifts the λC towards longer wavelengths that consequently expands the range of the de-
terministic detection scenario. In the microscopic 2-d model of the hot spot [43], the criterion
for the deterministic and probabilistic scenarios is defined by the ratio of the bias current to the
detection current (also see Section 2.2.4).

Free-space coupling: Jitter at different bias currents and zero magnetic field
In Fig. 3.28, we show the noise-free system jitter as a function of bias current for two wavelengths
at zero magnetic field. These data were acquired with free-space optical coupling. The current
dependence of the σs is entirely defined by the current dependence of the local jitter since other
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Figure 3.28: Noise-free system jitter vs. relative bias current. Jitter measurements were carried out at
zero magnetoc field with free-space optical coupling.

jitter contributions are current-independent. Moreover, in the limit of negligibly small geometric
jitter, which is estimated to be < 1 ps in our experiment (see Section 3.3.3.1), the magnitude
of σs is defined by the local jitter. As seen in Fig. 3.28, the current dependences of the jitter
at 800 and 1560 nm are different. At 1560 nm, which corresponds to the pure probabilistic
detection scenario, the jitter grows with the current. While at 800 nm, which corresponds to a
mixture between the probabilistic and deterministic detection scenarios, the jitter decreases with
increasing current. Qualitatively similar current dependences were observed in [38], where the
authors studied NbN meanders with very similar material parameters. It has been shown [38]
that bends in the meander respond probabilistically at both photon energies (1560 and 800 nm)
while straights undergo deterministic detection scenario at higher photon energy.

Components of the local jitter at different bias currents and magnetic fields
We now determine the components of the local jitter. To do this we analyze raw PDFs obtained at
different magnetic fields and bias currents. Some of them are shown in Fig. 3.26 with symbols.
Each raw PDF we fit with Eq. (3.19), which represents an exponentially-modified Gaussian
distribution. In the fitting procedure, the following jitter contributions were fixed at their values
defined experimentally σsys, σopt, σN , and σins (Section 3.3.3). The components of the local
jitter, σ and τ , were used as independent fitting parameters. Here, σ is the std of a Gaussian
distribution associated with the emergence of the hot spot, and τ is the std of an exponential
distribution associated with the start of vortex crossing. Fig. 3.29 shows the best fit values of σ
and τ obtained at zero magnetic field and different wavelengths. At 800 nm (Fig. 3.29(a)), σ and
τ are almost equal and both decrease with the current. At 1560 nm (Fig. 3.29(b)), τ increases
with current while σ is almost current-independent. As seen in Fig. 3.29, at bias currents close
to the experimental critical current (IB ≈ 0.95IC) which are typical for SNSPD applications,
τ for the wavelength 1560 nm is almost twice as large for 800 nm. At longer wavelength, τ
provides the major contribution to the local jitter.

In Fig. 3.30 we show the best fit values of σ and τ obtained at different magnetic fields and
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Figure 3.29: Characteristic times τ and σ of the exponentially-modified Gaussian distribution associ-
ated with the intrinsic jitter vs relative bias current for B = 0 and two wavelengths (a) 800 nm and (b)
1560 nm. Values τ and σ are obtained with the fitting procedure described in the text.

bias currents. Recall here that the critical current, IC , is defined as current at zero magnetic
field. As seen in the figure, both components σ and τ grow with the magnetic field at both
wavelengths. The effect of the magnetic field is stronger on the exponential time τ as compared
to σ. The full variation of τ in the field range from 0 to 200 mT is the same for both wavelengths.

Figure 3.30: Characteristic times, τ (closed symbols) and σ (open symbols), of exponentially-modified
Gaussian PDFs associated with internal detection process vs magnetic field. (a) For the wavelength 800
nm at bias currents 0.63 IC , 0.7 IC , and 0.75 IC . (b) For the wavelength 1560 nm at bias currents 0.75
IC , 0.8 IC , and 0.85 IC .
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3.3.5 Qualitative comparison with theory

Our main experimental results contain several important findings. These are the current (at
zero magnetic field) and magnetic field dependences of the components of the local jitter that
are shown in Fig. 3.29 and Fig. 3.30, respectively, and the form of the experimental PDF
(exponentially-modified Gaussian function). We analyze these results in the framework of the
2-d hot-spot model, which describes the microscopic mechanism of the intrinsic timing jitter
(Section 2.2.4). Recall here that the model excludes the geometric jitter and, therefore, implies
equality between the local jitter and the intrinsic jitter. Here we use numerical calculations,
which were done by Vodolazov for our study in [44]. These calculations are also partly described
in Section 2.2.4. As it was shown in Section 2.2.4, the model allows for calculating the delay
time, τD, between the absorption of a photon and the formation of the corresponding normal
domain. The timing jitter can be represented as a variation of the delay time. Basically, the
model allows for translating the variation of the value of some parameter present in the model,
for example, the photon energy, in the variation of the growth time of the hot spot and, con-
sequently, the delay time. At the moment, several physical sources of such variations, intrinsic
jitter, are known. One of the sources is the position (across the nanowire) dependence of the
detection current, Idet, that was already described in Section 2.2.4. However, here, we add a
non-zero magnetic field to that description. Another source is Fano fluctuations that will be
considered in the second part of this section.

The nanowire geometry used in the model is shown in the inset in Fig.3.31(b), where the axis
y is directed across the nanowire. Fig. 3.31(a) shows a computed ratio between the detection
and depairing currents across the nanowire, Idet(y)/IDEP. The computations were done for the
photon energy ℏω = 1 eV, bath temperature T = 0.5TC , bias current IB = 0.55IDEP. In the
absence of a magnetic field, the density of the bias current across the nanowire is uniform, and
therefore the dependence Idet(y) is symmetric (black curve) with respect to the center across
the nanowire (position 10y/ξC in Fig.3.31). The current Idet(y) dictates a position dependence
of the delay time, τD(y), which is shown for B = 0 and IB = 0.55IDEP in Fig.3.31(b) with
a black curve. In [10] (see Fig. 3a there) it was shown that τD(y) monotonously decreases
and flattens with the increase of the bias current. As a result, the variation of τD, that can
be considered as a jitter, will monotonously decrease with the increase of the bias current.
Qualitatively it corresponds to our experimental finding at 800 nm, the jitter decreases with
increasing bias current (Fig. 3.29(a)). At 1560 nm, the experimental result is the opposite,
the jitter increases with the current (Fig. 3.29(b)). The deterministic 2-d hot-spot model is
not applicable in this case because the nanowire response at 1560 nm obeys pure probabilistic
detection scenario. However, in [10] it was shown that at Imin

det < IB < Imax
det the timing jitter

decreases with the decrease of the current. This is because at IB < Imax
det , only a part of the

wire, where IB > Imin
det , detects photons. Therefore, with decreasing current, the variation of

τD decreases. In the presence of a perpendicular magnetic filed, which is small enough for the
nanowire to stay in the vortex-free Meisner state, the density of the bias current across the
nanowire becomes non-uniform. It is because the magnetic field induces a screening current in
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Figure 3.31: Position-dependent detection current (a) and delay time (b) for three different magnetic
fields. The nanowire geometry is shown in the inset in the panel (b). Magnetic fields in units of BC

are specified in the legend for both panels. In both panels, the computations were done for the photon
energy ℏω = 1 eV, bath temperature T = 0.5TC , and bias current IB = 0.55IDEP.

the wire so that the density of the local bias current is a sum of the densities of the applied bias
and screening currents. The resulting tilted distribution of the bias current affects Idet(y). The
symmetric Idet at B = 0 becomes asymmetric at small B ̸= 0 (blue and red curves in Fig.3.31).
Idet increases at the edge, where the density of the local bias current decreases, and decreases
at the opposite edge [43, 129, 15]. Such a change in Idet(y) due to the magnetic field causes a
respective change in τD(y) (Fig. 3.31(b)). In Fig. 3.31(b), it is clearly seen that the variation in
τD, i.e. simply a difference between the maximum and minimum values of τD, increases with the
field. This corresponds to our experimental finding, the increase in the local jitter with magnetic
field (Fig. 3.30).

Now let us consider an effect of the deposited photon energy on τD(y). In [43, 129, 15], it
has been shown that Idet(y) shifts to smaller currents and flattens when the deposited photon
energy increases. This affects τD(y) too. Fig. 3.32(a) shows dependences of the delay time on
the deposited photon energy computed in the framework of the 2-d hot-spot model for three
magnetic fields and two photon absorption sites. At any photon energy and zero magnetic field,
τD at two symmetric minima y = 5ξC and 15ξC are equal (see the black curve Fig. 3.31(b))
and decrease with increasing photon energy as shown in Fig. 3.32(a). Qualitatively we obtained
the same result, i.e. the jitter at 800 nm is smaller than the jitter at 1560 nm (for a fixed
current). In the presence of a magnetic field, τD at locations y = 5ξC and 15ξC are different.
The difference between τD(5ξC) and τD(15ξC) increases with magnetic field. This is also clearly
seen in Fig. 3.31, where the calculations were done for the photon energy 1 eV. Fig. 3.32(b) shows
dependences of the delay time on the deposited photon energy computed in the framework of the
uniform hot-belts model [15]. For the hot-belt model, the TDGL approach was used together
with an assumption that the photon instantaneously heats both electrons and phonons at t = 0

in the area w × w. The detection current in the hot-belt model is independent on the photon

89



Figure 3.32: Relative delay time as a function of the photon energy at different magnetic fields for
the bias current 0.55IDEP and T = 0.5TC . Fields are specified in insets in units of BC . Arrows show
the direction of changes when the field increases. Solid lines are to guide the eyes. (a) Delay time for
different locations of the hot-spot in the framework of the hot-spot model. Distances from the strip edge
are specified in units of ξC . The dash-dotted line is the fit described in the text. (b) Delay time in the
framework of the uniform hot-belt model.

absorption site across the nanowire. As seen in Fig. 3.32(b) (hot-belt model), τD decreases with
increasing magnetic field. However, it does not result in the variation of τD because both the
detection current and the delay time are position-independent.

So far we have discussed only the behavior of the jitter with bias current, magnetic field,
and photon energy. Now we will discuss the form of the PDF of the delay time provided
by the 2-d hot-spot model with different physical souses of the jitter. The reconstruction of
the PDF crucially depends on the local detection scenario (deterministic or probabilistic) and
the uniformity of the absorbance across the nanowire. Consequently, we assume uniform local
absorbance across the wire and deterministic scenario with constant detection efficiency. The
form of the PDF expected for the position-dependent delays alone would have two maxima
(one arises from minimal τD(y) at the locations y = 5ξC and y = 15ξC , the other arises from
τD(y) at the central part y = 10ξC separated by a minimum. Such a PDF is inconsistent
with the experimental PDF, which is better described by the exponentially-modified Gaussian
distribution. Let us now add Fano fluctuations. Fano fluctuations randomize the amount of
energy retained in the electron system that results in σE =

√
ε F ℏω∆, where ℏω is the photon

energy, ε is the quantum yield, and F = 0.2 − 0.4 is the Fano factor. Fano fluctuations alone,
i.e. fluctuations in the retained energy, obey Gaussian distribution [126, 22] in the form

P (E) =
1

σE
√
2π

exp

[︃
−(ℏω − ε ℏω)2

2σ2E

]︃
, (3.21)

where σE is the std and (ε ℏω) is the mean value.

To reconstruct the PDF for τD in the presence of Fano fluctuations, we use the dependence
τD(ℏω) at a fixed location y = 5ξC shown in Fig. 3.32(a) for B = 0. This dependence can
be closely described by the power function τD(ℏω) = a/(ℏω − b) + c. Generally, the PDF

90



Figure 3.33: The solid curve corresponds to the PDF for the energy-dependent delay time at B = 0,
y = 5ξC , and IB = 0.55IDEP obtained in the presence of Fano fluctuations (Eq. (3.22)). The dotted
curve corresponds to the exponentially-modified Gaussian distribution (Eq. (3.18)) computed for the
experimental τ = 4.3 and σ = 4.3 at 800 nm which were extrapolated at IB = 0.55IDEP.

of the random variable z, which is the function of the random variable x, i.e. z = f(x), is
P (z) = P (g(z))|g(z)′|, where P (z) is the PDF of the variable z, g(z) is the inverse function
for f(x), and g(z)′ is the derivative. In our notation, it corresponds to P (τD) = P (E)|E(τD)

′|,
where E(τD) = (τD/a − c)−1 + b and |E(τD)

′| = a−1(τD/a − c)−2. Therefore, we arrive at the
PDF

P (τD) =
1

a(τD/a− c)2
1

σE
√
2π

exp

[︃
−((τD/a− c)−1 + b− ε hv)2

2σ2E

]︃
. (3.22)

Although, the quantum yield is unknown for our nanowire, it can be estimated via the ratio
ce/(ce + cph), which gives the fraction of photon energy delivered to the electron system. The
experimental ratios ce/(ce + cph) = 0.61 and 0.47 were found for two similar NbN films, the
4.2 nm-thick film K-2 and the 5.8 nm-thick film K-3 (Table 3.6), respectively. For our film we
take an average of these two, ε ≈ 0.55. In Fig. 3.33 (solid curve) we plot a PDF computed
with Eq. (3.22) with the following parameters ℏω = 1.55 eV (corresponds to 800 nm), F = 0.3,
and ε = 0.55. In the same figure, we show the exponentially-modified Gaussian distribution
(Eq. (3.18)) for τ = 4.3 ps and σ = 4.3 ps. These are the experimental values at 800 nm
extrapolated at IB = 0.55IDEP (Fig. 3.29(a)), to be consistent with the parameters used in
numerical calculations. Numerically computed sdt-s are 0.68 for the theoretical PDF, P (τD),
and 6.08 for the experimental PDF. As seen in Fig. 3.33, the form of the function P (τD) is closer
to our experimental PDF. At the present stage, we cannot distinguish between contributions to
the local jitter due to Fano fluctuations and the position-dependent delay times.

Due to the simplicity of the 2-d hot-spot model, we rather expected to obtain qualitative
predictions than quantitatively correct results. Hence, the difference in std -s between obtained
PDFs is not surprising. However, position-dependent delays, along with Fano fluctuations, result
in almost one order of magnitude smaller std as compared to the experimental value. Therefore,
neither of these two contributions can explain the magnitude of the intrinsic jitter. Although the
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function P (τD) is closer to the experimental PDF, it deviates from a Gaussian profile at small
delays (left from the PDF maximum) and an exponential profile at large delays (right from the
PDF maximum). These two findings indicate that there is another source of the intrinsic jitter
which has not been accounted so far.

3.4 Summary

This chapter was dedicated to the experimental results on electron-energy relaxation and timing
jitter in NbN films and nanowires. First of all, the specimens under study were comprehensively
characterized by means of magneto-transport measurements. The derived transport parameters
within these measurements showed that the studied NbN films represent very disordered 2-
d material with respect to quantum interference at impurities. The inelastic electron-phonon
scattering time was derived from the electron dephasing time by means of magnetoconductance
and further analyzed with the SM model. This allowed us to derive acoustic parameters for
the studied NbN films, namely the phonon velocity and the mass density, which were found
to be smaller than in the bulk NbN material. These parameters were used to compute the
transparency and the angle of total phonon reflection for the given film/substrate interfaces
and, further, to compute the phonon escape time. Relaxation of the electron energy was studied
by means of photoresponse (electron heating). The data extracted from magnetoconductance
measurements were used to describe the experimental photoresponse with the 2-T and 3-T
models. For relatively thick films, the photoresponse data are reasonably well described without
fitting parameters. However, for very thin films, the fit requires a smaller phonon heat capacity as
compared to the predictions of the Debye model. We attribute this finding to the reduced density
of phonon states in thin films at low temperatures. Further, on a thoroughly characterized NbN
nanowire, the intrinsic jitter was studied. We developed a formalism aiming to derive the
intrinsic jitter from raw experimental PDFs of delay time. This allowed us to quantify the
intrinsic jitter and study its behavior with photon flux, bias current, and magnetic field at two
wavelengths. Our experimental results contain several important observations. (i) The local
jitter increases with the bias current in the probabilistic detection scenario and decreases in the
deterministic detection scenario. (ii) The local jitter increases with the magnetic field. (iii) The
experimental statistical distribution in the time of the appearance of the photon count is best
described by the exponentially-modified Gaussian distribution in the range of values covering
three orders of magnitude below the maximum. We analyzed these results in the framework of
the 2-d hot-spot model. Qualitatively, the model does describe our experimental observations
(i) and (ii). Moreover, at this stage, we compared it with the hot-belt model and concluded
that the hot spot is essential in explaining the magnetic field dependence of the local jitter. The
third experimental observation (iii) could not be described even including another jitter source,
Fano fluctuations. We also found that position dependent delays, along with Fano fluctuations,
predict much smaller magnitude of the intrinsic jitter than the experimental value. We attribute
this finding to a missing source of the intrinsic jitter.
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Chapter 4

On-chip dispersive Raman
spectrometer with single-photon
sensitivity

Raman spectroscopy is a powerful tool that provides a unique “fingerprint” (Raman spectrum)
of a sample. A Raman signal is generated by inelastically scattered photons, i.e. the energy of
the scattered photon is not equal to that of the incident photon. The problems associated with
Raman spectroscopy include a relatively small intensity of the Raman signal. This is caused by
a small cross-section of inelastic Raman scattering as compared to elastic Rayleigh scattering.
To ensure a good signal-to-noise ratio, a conventional Raman spectrometer that utilizes a CCD
(Charge Coupled Device) sensor requires both a high-intensity light source and long integration
time. There is an alternative approach to resolve a Raman spectrum that exploits single-photon
sensitivity and picosecond timing resolution of an SNSPD [2, 130]. A potential application of the
SNSPD in Raman spectroscopy is a Raman spectrometer based on a multi-pixel SNSPD array.
In this chapter, we present a prototype of the spectrometer. The dispersive Raman spectrometer
comprises an SNSPD device and a dispersive element, an optical fiber. Conceptually, the Raman
spectrum can be acquired as follows. Photons corresponding to different wavelengths in the
Raman spectrum arrive at the input of the fiber at the same time. However, traveling times
of these photons through the fiber are wavelength-dependent. Consequently, at the output of
the fiber, they will arrive at different times. Therefore, by measuring photon arrival times, one
can resolve a Raman spectrum in the time domain. Further, knowing the traveling time for
photons of each wavelength, the spectrum can be reconstructed in the wavelength domain. This
chapter describes in detail this approach and demonstrates a simplified prototype of the Raman
spectrometer based on a multi-pixel SNSPD array.
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4.1 Formalism

The measure for the Raman effect in a substance is the difference in ’wavenumbers’ ν = 1/λ (λ
is the wavelength) between the absorbed and the emitted photon. This difference is also called
the Raman shift. Commonly it does not depend on the energy of the absorbed photon and is
usually presented in units of inverse centimeters, cm−1. The lines in the spectrum of the Raman
shift are called the Raman lines. In order to convert the Raman spectrum in wavenumbers into
the spectrum in wavelengths and back, the following formulas can be used:

λ
(i)
0 =

1

1/λ∗0 −∆ν(i) × 10−7
, (4.1)

∆ν(i) =

(︄
1

λ∗0
− 1

λ
(i)
0

)︄
× 107.

Here λ∗0 is the wavelength of the light exciting the Raman effect (in our case λ∗0 = 785 nm), and
λ
(i)
0 and ∆ν(i) are the wavelength (in units of nm) and the Raman shift (in units of cm−1) of the
i-th Raman line, respectively. Hereinafter the subscript ’0’ is used to denote light characteristics
in free space.

Fourier-transform-limited light pulses have a Gaussian shape in space (x), wavelength (λ),
wave vector (k = 2π/λ) and time (t). The width of a Gaussian-shaped pulse we characterize with
a corresponding std. For the transform-limited light pulse in free space, the std -s in coordinates,
x, λ, k, and t are connected as follows (c is the velocity of light in free space)

σk =
1

σx
=

2π

λ20
σλ, (4.2)

σt =
σx
c

=
λ20
2πc

1

σλ
.

After passing a distance Lf in a transparent dispersive medium, e.g. a fiber with the refractive
index n1, the transform-limited pulse loses this property and spreads in time and coordinate.
For relatively small broadening, the profile of the pulse in time and coordinate remains Gaussian,
while the spectral content (σk) does not change. The traveling velocity of the pulse through the
medium νg = dω/dk is called group velocity (ω is the circular frequency, k = 2πn1/λ0 is the wave
vector in the medium, and λ0 is the central wavelength in the wavelength profile of the pulse
in free space). Generally, the group velocity differs from the phase velocity of monochromatic
light in the medium, c/n1. Furthermore, the pulse becomes chirped. This can be interpreted
either as the time-dependent instantaneous frequency at any fixed coordinate or as non-evenly
distributed spectral components along the coordinate at any fixed time. The above effects are
controlled by the dependence of the refractive index of the medium on the wavelength n1(λ0)

(red dashed curve in Fig. 4.1). The traveling time of the light pulse through the fiber (delay
time) is

τ =
Lf

vg
, (4.3)

vg =
dω
dk

=
c

n1 − λ0dn1/dλ0
=

c

ng
,
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Figure 4.1: Index of refraction vs. wavelength. Symbols correspond to the effective group index of
refraction, n∗g, specified in the datasheet for the graded-index multi-mode fiber GIF50C. The black solid
curve corresponds to the group index of refraction and the red dashed curve correspond to the refractive
index. These two curves were obtained from the best fit of n∗g values with Eqs. (4.1) and Sellmeier
equation 4.7 using the following Sellmeier coefficients taken from [131] C = 0.9993, A = [0.49795; 0.65295;
0.83515] and B = [0.04407; 0.11754; 9.86362].

where Lf is the fiber length and ng is the group index of refraction (black solid curve in Fig. 4.1).
Note, that the group velocity of light pulses in free space (vacuum) equals the phase velocity and
equals c. Fiber manufacturers usually specify for several wavelengths the values of the effective
group index, n∗g (symbols in Fig. 4.1). The effective index is convenient because it accounts for
the wavelength-dependent penetration of the electric field of a mode into the fiber cladding. The
effective index can be considered as an average over the actual refractive index of the medium
(n1 and n2).

Commonly broadening of the light pulse in space and in time is described by the wavelength
dependence of the group velocity, the so-called group velocity dispersion. In a single-mode fiber,
pulse broadening is dominated by chromatic (also called material) dispersion. It occurs when
the phase velocity of a spectral component propagating through a medium varies non-linearly
with wavelength, i.e. when the dependence n1(λ0) is non-linear, its second derivative is not
zero (dn21/dλ20 ̸= 0). This type of dispersion was already discussed in Section 2.2.2. The pulse
broadening (std) due to chromatic dispersion is given by

σt,chr = Dmσλ0Lf , (4.4)

where Dm =

⃓⃓⃓⃓
−λ0
c

d2n1
dλ20

⃓⃓⃓⃓
is the material dispersion coefficient. In Section 3.3.3.2, we have found

that for single-mode fibers the pulse broadening per unit length of fiber computed with Eq. (4.4)
is very close to the experimental values. Another source of pulse broadening is waveguide
dispersion. It arises from the dependence of the effective refractive index on the core diameter
of the fiber. This contribution is usually much less than one given by chromatic dispersion.
Therefore, we will not consider it here. In a multi-mode fiber, there is an additional source
of pulse broadening, which is called modal dispersion. The different modes, which constitute
the pulse in the multi-mode fiber, propagate with different longitudinal components of the
group velocity. Modal dispersion dominates pulse broadening in step-index multi-mode fibers.
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However, it is minimized by use of multi-mode graded-index fibers where the refractive index of
the fiber core has a parabolic profile. When the number of allowed modes in the fiber is large,
the pulse broadening due to modal dispersion is given by [39, 132]

σt,mod = Lf
n∆

2
√
3c
, (4.5)

σt,mod = Lf
n∆2

20
√
3c
,

for a step-index fiber and for a graded-index fiber, respectively. Here ∆ = (n1 − nc)/n1 is the
relative difference between refractive indices of the fiber core n1 and cladding nc.

For an initially transform-limited pulse with the time width σt0, the std in the time-profile
after passing a few serially connected fibers becomes

σt =

⌜⃓⃓⃓
⎷σ2t0 +

⎛⎝q=N∑︂
q=1

σ
(q)
t,chr

⎞⎠2

+

q=N∑︂
q=1

(︂
σ
(q)
t,mod

)︂2
, (4.6)

where σ(q)t,chr and σ
(q)
t,mod are time broadenings contributed by the q-th fiber due to chromatic

and modal dispersions, respectively. This is the empirical expression retaining validity in the
limiting cases when either chromatic or modal dispersion dominates. We note here, that at
an interface between two media the std in the time-profile of the pulse does not change, i.e.
σt =

σ
(q)
x

v
(q)
x

= σ
(q+1)
x

v
(q+1)
x

is invariant.

For further estimation of the expected system performance of the dispersive Raman spec-
trometer, we use experimental data everywhere where measurements could be done. Where
measurements were not possible, the group velocity and the group velocity dispersion were com-
puted with an empirical relationship between the refractive index of the fiber material and the
wavelength that is given by the Sellmeier equation

n21(λ0) = C

(︃
1 +

A1λ
2
0

λ20 −B2
1

+
A2λ

2
0

λ20 −B2
2

+
A3λ

2
0

λ20 −B2
3

)︃
. (4.7)

Here A1,2,3 and B1,2,3 are Sellmeier coefficients for a particular transparent medium [131]. Since
datasheets for different fibers contain values of the effective group refractive index, n∗g, for just
a few wavelengths, we use an additional coefficient C in order to fit the datasheet data with
the Sellmeier equation. The computed broadenings and delays were also used to cross-check
the measured data. The way how expected broadening has been estimated is specified for each
optical element which will be used in the Raman spectrometer.

When SNSPDs are used for Raman spectroscopy, the std in the time-profile σt of incident
light pulses is converted into the timing jitter which is added to the timing jitter of the detector,
σSNSPD, as [128]

στ =
√︂
σ2t + σ2SNSPD. (4.8)
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Figure 4.2: Schematics of the dispersive Raman spectrometer. Arrows specify reference planes (Rfs)
which are numbered in the light-propagation sequence. Every Rf is specified by the central wavelength,
the time-width, and the spectral width of light pulses. The Rf-7 is specified by the measured jitter in
the SNSPD response.

4.2 Prototype of the dispersive Raman spectrometer

Here we describe the schematics and properties of the Raman spectrometer. The experimental
setup is shown in Fig. 4.2. The instrument consists of the five following modules. (1) Pulsed
laser (Section 4.2.1.1) for generating the Raman signal from the studied object. (2) Raman
probe (Section 4.2.1.2) that shapes the incident excitation laser pulses, collects the Raman
signal and filters out the reflected portion of the laser pulses (Rayleigh signal) from the Raman
signal. (3) Dispersive fiber (Section 4.2.1.3) that transfers the spectrum of the Raman signal into
the different arrival times of corresponding photons to the fiber output. (4) Detector module
(Section 4.2.1.4) that detects single photons, and, finally, (5) readout electronics (Section 4.2.1.5)
that measures and stores the arrival times of detected photons. The next section contains detail
description of each module and the sample under study.
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Figure 4.3: Spectra of pulsed laser excitation acquired at reference plane 1 (dashed black curve) and
reference plane 3 (solid red curve) measured with a spectrometer (OceanOptics, USB4000).

4.2.1 System modules

4.2.1.1 Pulsed laser

In our setup, the excitation source is a Ti-sapphire laser (Femtosource, synergy 20). Operating in
the pulsed mode, the laser generates Fourier-transform-limited pulses at the central wavelength
λ0 = 797 nm and a repetition rate of 80 MHz. Fig. 4.3 (dashed black curve) shows the spectrum
of the pulsed laser excitation acquired at the laser output (Rf-1 in Fig. 4.2) with a spectrometer
(OceanOptics, USB4000). The laser pulses have a sub-picosecond duration of σt0 = 0.013 ps
and a spectral width of σλ0 = 25.9 nm (σν = 403.8 cm−1). Here, the corresponding standard
deviations, σt0 and σλ0 , are related via Eq. (4.1). The laser pulses are coupled from free space
into the excitation fiber f1 of the Raman probe (Fig. 4.2)) by a collimator. The laser can also
operate in a continuous wave (CW) mode in which it emits radiation with the central wavelength
780 nm.

4.2.1.2 Raman probe

The Raman probe (Ocean Optics, RPB785) (Fig. 4.2) is designed for the excitation wavelength
785 nm. It comprises a dichroic mirror (M), two filters (F1 and F2), which are located in free
space, and two multi-mode fibers (f1 and f2). The excitation fiber f1 is a multi-mode, step-index
fiber with a length of Lf1 = 1.5 m, a core diameter of 105 µm, and a numerical aperture of 0.22.
This fiber adds pulse broadening per unit fiber length σ

(f1)
t (λ

(L)
0 )/Lf1 = 18.5 ps/m. This value

was measured experimentally by using another fiber (Thorlabs, FG050LGA) with the same core
diameter (50 µm) and numerical aperture (0.22). After the fiber f1, the laser pulses pass the
band-pass filter F1, which is centered at λ(F1)

0 = 785 nm with the spectral width σ(F1)
λ = 4.9 nm

(see the solid red curve in Fig. 4.3). The wavelength of the excitation λ∗0 = 785 nm is jointly
defined by the spectrum of laser pulses and by the filter F1. Further, the laser pulses pass the
dichroic mirror M and are focused onto the sample (the sample is described in Section 4.3) at
7.5 mm working distance from the end of the Raman probe. Further, the Raman backscattered
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Figure 4.4: PDF of delay times measured at Rf-7 with laser pulses coupled at Ref-1 directly to the
detector module D1 via an additional 2 m-long SMF28 fiber.

light is collected into the Raman probe and passes the dichroic mirror (M). The mirror M filters
out the excitation (laser light) and redirects the Raman signal via another mirror to the filter
F2. The long-pass filter F2 and the dichroic mirror together provide a spectral step centered
at 806 nm. The width of the step (specified by the manufacturer) between 10 and 90 % of the
full transmission is 4 nm. After the filter F2, the Raman light is collected into the fiber f2. The
collection fiber f2 is a multi-mode, step-index fiber with a core diameter of 200 µm, a numerical
aperture of 0.22, and a length of Lf2 =1.5 m. Although the datasheets for this fiber was not
provided, we suppose that the fiber has the same modal dispersion as fiber f1. We expect that
the fiber adds pulse broadening per unit fiber length σ

(f2)
t (λ

(L)
0 )/Lf2 ≈ 18.5 ps/m.

4.2.1.3 Dispersive fiber

After the collection fiber f2, the Raman light is coupled to the fiber f3, which acts as a dispersive
element (Fig. 4.2). The dispersive fiber f3 (Thorlabs, GIF50C) is a multi-mode, graded-index
fiber with a germanium-doped core. The fiber has a length of Lf3 = 45 m and a core diameter
of 50 µm. The datasheet for this fiber specifies effective group indices of refraction n∗g = 1.482

and 1.477 for two wavelengths λ0 = 850 and 1300 nm, respectively. For the wavelength
λ0 = 850 nm, the traveling time (delay time) of a light pulse through a unit fiber length
amounts to τ = 4.96 ns/m (according to Eq. (4.1)). The dispersive fiber adds pulse broadening
per unit length σ(f3)t (λ

(L)
0 )/Lf3 = 3.5 ps/m that was measured experimentally for the wavelength

λ
(L)
0 = 797 nm. This value agrees well with the value expected due to chromatic dispersion.

4.2.1.4 Detector module

After the dispersive fiber f3, the Raman light is coupled to the detector module D1. The detector
module comprises a fiber f4, which is coupled to a SNSPD. The fiber f4 (Thorlabs, SMF28) is
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a step-index fiber with a length of Lf4 = 3 m and a core diameter of 10 µm. Experimentally we
found that the fiber f4 adds pulse broadening per unit fiber length σ(f4)t (λ

(L)
0 )/Lf4 = 5.1 ps/m.

At the wavelength 797 nm, the fiber f4 operates at the boarder of the single-mode regime;
therefore the experimental σ(f4)t is slightly larger than the expected value (3.1 ps/nm) due to
the chromatic dispersion. Finally, this fiber f4 guides the Raman light to the SNSPD device.
The SNSPD chip was manufactured by Superconducting Nanotechnology (Scontel) and installed
at the second stage of a two-stage pulse-tube cooler (TransMIT, PTD406), which has an optical
and electrical feedthroughs. During detector operation, the temperature at the second stage
was 2.3 K. At this temperature, the experimental critical current of the SNSPD amounts to
40.3 µA. The SNSPD is optically accessible through fiber f4. For our pulsed laser excitation
λ
(L)
0 = 797 nm, the detection system D1 has the system jitter σ(D1)

t = 25.5 ps. This value
was defined from jitter measurements (see Fig. 4.4) with a bias current IB = 37.0 µA and an
additional 2 m-long SMF28 fiber, which was placed between the laser output and the detector
module D1.

4.2.1.5 Readout electronics

The readout includes a control unit (bias-tee, amplifying chain, set of connecting cables), cables,
and time-correlated single-photon counting electronics (TCSPC). The control unit (Scontel, CU-
2SPD/P&T-005) provides dc-bias source for the detection system D1 and comprises a bias-tee
with the bandwidth 0.1 - 4200 MHz and two amplifiers with the bandwidth 0.1 - 1000 MHz
and total gain ∼ 46 dB. The TCSPC electronics (Becker & Hickl, SPC-150NX) measures a
delay time between two voltage transients with a time resolution of ≈ 0.4 ps (specified by the
manufacturer). The voltage transients from the fast photodiode and from SNSPD were send
to the SYNC and CFD outputs of the TCSPC electronics, respectively. The TCSPC software
allows for building the PDF (histogram) of the measured time delays, which is further stored in
the computer. Alternatively, for Raman measurements (see Section 4.3) we used a commercial
spectrometer (OceanOptics, USB4000). The spectrometer has a 3648-pixel linear silicon CCD
array with spectral sensitivity in the range 200 - 1100 nm.

4.2.1.6 Sample

In order to demonstrate a dispersive Raman spectrometer we chose a well-known object, methanol
(CH3OH). Fig. 4.5 shows a digitized image of the Raman spectrum of methanol with laser
excitation of 785 nm taken from [133] (Fig. 3 there). The choice of methanol is caused by
several reasons. Methanol is a colorless liquid, which can be placed in a transparent cuvette,
that minimizes reflection of the light exciting the Raman effect. Another reason is that the
Raman spectrum of methanol exhibits several Raman lines which are positioned at relatively
small as well as relatively large distances from each other. The Raman spectrum of methanol
contains four prominent Raman lines with the following Raman shifts: ∆ν(1) = 1034.8 cm−1,
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∆ν(2) = 1458.7 cm−1, ∆ν(3) = 2835.7 cm−1, ∆ν(4) = 2945.0 cm−1. For the pulsed laser ex-
citation used in our setup, λ∗0 = 785 nm, wavelengths of Raman lines (Eqs. (4.1)) become
λ
(1)
0 = 855.2 nm, λ(2)0 = 887.7 nm, λ(3)0 = 1012.7 nm, λ(4)0 = 1024.2 nm.

Figure 4.5: Raman spectrum of methanol (CH3OH). The data were extracted by digitizing Fig. 3 from
[133], where the excitation source was a CW laser emitting at 785 nm with σλ < 0.1 nm.

Table 4.1: Temporal broadening and spectral shaping added by optical elements of the Raman spec-
trometer and the jitter of the detector module D1. Components are shown in Fig. 4.2.

Optical
element

Central
wavelength

Spectral
std

Temporal
std

Comments

(nm) (nm) (ps)

Laser L λ
(L)
0 = 797 σλ0 = 25.9 σt0 = 0.013

Fourier-transform limited pulses,
std -s measured experimentally

Fiber f1 λ
(L)
0 = 797

σλ0 = 25.9

(chirping)
σ
(f1)
t = 27.8 σ

(f1)
t measured experimentally

Filter F1 λ
(F1)
0 = 785 σ

(F1)
λ = 4.9 σ

(F1)
t ≈ 5.2

σ
(F1)
t estimated as

σ
(F1)
t = [(σ

(Rf−3)
t )2 − (σ

(f1)
t )2]1/2

σ
(Rf−3)
t defined in Table 4.2

Fiber f2 λ
(L)
0 = 797

σλ0 = 25.9

(chirping)
σ
(f2)
t = 27.8 σ

(f2)
t assumed to be equal to σ(f1)t

Sample λ
(1)
0 = 855.2 σ

(1)
λ < 1.0 σ

(1)
t < 1.0

σ
(1)
t assumed to be Fourier-trans.-

limit. λ(1)0 and σ(1)λ are from [133]
Fiber f3 λ

(L)
0 = 797 σλ0 = 25.9 σ

(f3)
t = 157.4 measured experimentally

Fiber f4 λ
(L)
0 = 797 σλ0 = 25.9 σ

(f4)
t = 15.3 measured experimentally

detector
module D1

λ
(L)
0 = 797 σ

(D1)
t = 25.5 measured experimentally
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4.2.2 Evaluation of the pulse broadening

To evaluate pulse broadening in the Raman spectrometer with the proposed configurations
at each reference plane (see Fig 4.2), we carried out the following measurements. The initial
parameters of the laser pulses were measured in the reference plane Rf-1. Transform-limited laser
pulses were coupled into the optical path at different reference planes. We measured temporal
and spectral profiles of pulses appearing at the next reference plane. The measurements were
performed at the wavelength λ(L)0 = 797 nm within a pair Rf-1 – Rf-3 and Rf-5 – Rf-6, where
the sequence, for example, Rf-1 – Rf-3, means that the laser light was coupled at Rf-1 and
measured at Rf-3. The results are presented in Table 4.1. The experimental broadening added
by fiber f3, 157.4 ps, measured for the coupled light with λ

(L)
0 = 797 nm and σλ0 = 25.9 nm

agrees well with the value σ(f3)t,chr = 156.2 ps expected due to chromatic dispersion (Eq. (4.4)).
Hence, we conclude that the pulse broadening added by the fiber f3 is dominated by chromatic
dispersion.

Table 4.2 contains either measured or expected spectral and temporal widths at reference
planes from Rf-1 to Rf-6 and the expected jitter at Rf-7 for the Raman line λ(1)0 of methanol.
In our setup, the spectral widths of the Raman line at Rf-4 is defined by the spectral width of
laser excitation at Rf-3. We assumed that at Rf-5 the Raman line λ(1)0 = 855.2 nm of methanol
is filtered out from the laser excitation. For the light with the central wavelength 855.2 nm
and width σλ = 4.9 nm propagating through fiber f3, the expected pulse broadening due to
chromatic dispersion (Eq. (4.4)) amounts to σ(f3)t = 21.6 ps. To estimate the jitter at Rf-7, we
took the jitter of the detector module D1 from Table 4.1 as an upper boundary.

4.2.3 System performance

To evaluate the system performance, we used data of light-pulse broadening (Tables 4.1 and 4.2).
The 45 m-long dispersive fiber f3 dominates the traveling time of the light pulse through the
instrument. While the broadenings of the light pulse added by fibers f1 and f2 in the Raman
Probe and the fiber f3 are comparable. Under this condition, the resolution is set by the
difference between the central wavelengths of two pulses for which the difference in traveling
times equals ≈ 2.5 times the pulse broadening. In other words, to resolve the two overlapping
Gaussian peaks with equal widths, the minimum separable peak–peak interval should be ≥ 2.5

its width (std) [134]. Fig. 4.6 shows the simulated timing jitter at Rf-7 (open symbols) for the
Raman line λ(1)0 = 855.2 nm of methanol as a function of the length of fiber f3. The timing
jitter for different fiber lengths was computed (Eqs. (4.6, 4.8)) as

στ (L) =

√︂
(σ

(Rf−7)
τ )2 + (σ

(f3)
t )2 [(L/Lf3)2 − 1]. (4.9)

Here σ
(Rf−7)
τ and σ

(f3)
t are the jitter at Rf-7 and the broadening of the light pulse added

by the fiber f3, respectively, for the fiber length Lf3 = 45 m. The values are specified in
Tables 4.1 and 4.2. For fiber lengths < 30 m, the jitter is limited to the "setup" jitter coming
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Table 4.2: Temporal and spectral widths of light pulses at different reference planes and the expected
jitter at Rf-7. Reference planes are defined in Fig. 4.2.

Reference
plane

Central
wavelength

Spectral
std

Temporal
std

Comments

(nm) (nm) or (cm−1) (ps)
1 λ

(L)
0 = 797 σλ0 = 25.9 σt0 = 0.013 Fourier-transform limited

2 λ
(L)
0 = 797 σλ0 = 25.9 σ

(Rf−2)
t = 27.8

σ
(Rf−2)
t =

[σ2t0 + (σ
(f1)
t )2]1/2,

expected value

3 λ∗0 = 785
σ
(F1)
λ = 4.9

σ
(F1)
ν = 77.2

σ
(Rf−3)
t ≈ 28.3

σ
(F1)
λ , σ(Rf−3)

t ,
measured experimentally

4 λ
(1)
0 = 855.2

σ
(Rf−4)
λ = 4.9

σ
(F1)
ν = 77.2

σ
(Rf−4)
t = 28.3

σ
(Rf−4)
λ =

[(σ
(F1)
λ )2 + (σ

(1)
λ )2]1/2,

σ
(Rf−4)
t =

[(σ
(Rf−3)
t )2 + (σ

(1)
t )2]1/2,

expected values

5 λ
(1)
0 = 855.2 σ

(Rf−5)
λ = 4.9 σ

(Rf−5)
t = 39.7

σ
(Rf−5)
t =

[(σ
(Rf−4)
t )2 + (σ

(f2)
t )2]1/2

6 λ
(1)
0 = 855.2 σ

(Rf−6)
λ = 4.9 σ

(Rf−6)
t = 45.2

σ
(Rf−6)
t =

[(σ
(Rf−5)
t )2 + (σ

(f3)
t )2]1/2

7 σ
(Rf−7)
t = 51.8

σ
(Rf−7)
t =

[(σ
(Rf−6)
t )2 + (σ

(D1)
t )2]1/2

from other modules of the spectrometer. The curves in Fig. 4.6 represent the difference between
traveling times, ∆τ , for three pairs of pulses with different central wavelengths as a function
of Lf3. The central wavelengths of the pairs correspond to the wavelengths of Raman lines of
methanol, λ(1)0 −λ(2)0 , λ(1)0 −λ(3)0 , and λ(1)0 −λ(4)0 (see Section 4.2.1.6). We associate the traveling
time of a pulse through fibers f1, f2, f3, and f4 with the delay time between the pulse launch
by the laser and the arrival of the signal at the readout. The difference in delay times imposed
by fibers f1, f2, and f4 amounts to ≈ 8 ps. The difference in the delay times was computed
with Eqs. (4.1). The values of n∗g at two wavelengths were obtained via linear interpolation of
the data provided by the manufacturer.

For computing delay times and pulse broadening, the following parameters were used:
n1(λ

(L)
0 ) = 1.4691, dn1(λ

(L)
0 )/d(λ(L)0 ) = -0.01853 µm−1, dn21(λ

(L)
0 )/d(λ(L)0 )2 = 0.04686 µm−2,

Dm = -124.95459 ps/(nm × km). The dependence n1(λ0) was obtained from the best fit of
datasheet values for n∗g with Eqs. (4.1) and (4.7). The best fit value of the fitting parameter
was C =0.9993. As the seed n1(λ0) dependence, the output of Eq. ((4.7)) with the Sellmeier
coefficients A = [0.49795; 0.65295; 0.83515] and B = [0.04407; 0.11754; 9.86362] from [131] was
used. The broadening added by fiber f3 was also computed with Eq. (4.4).
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Figure 4.6: Simulation of the system performance for different lengths of the fiber f3. Open symbols
correspond to the timing jitter (στ ) at the readout (Rf-7) for light pulses with the central wavelength
λ
(L)
0 = 800 nm. Curves correspond to the difference (∆τ) between traveling times (through fibers f1,

f2, f3, and f4) for pairs of light pulses with different central wavelengths specified in the legend. These
wavelengths correspond to the wavelengths in the Raman spectrum of methanol (see Section 4.2.1.6).

To summarize, with the 45 m-long fiber f3, the difference in traveling times for two out-
most Raman lines of methanol (λ(1)0 and λ

(4)
0 ) amounts to ∆τ = 530 ps (Fig 4.6). This value

defines the size of an acquisition window for reconstruction of the Raman spectrum of methanol.
∆τ = 530 ps is less than a typical duration of the response transient of the SNSPD (∼ 5 ns) and
much less than the inverse repetition rate of laser pulses (12.5 ns). With 45 m-long fiber f3, the
total computed jitter at Rf-7 for λ(1)0 = 855.2 nm and σλ = 4.9 nm amounts to σRf−7

τ = 51.8 ps.
Using the resolution criterion 2.5σ, the spectral resolution of our system is 129.5 ps that corre-
sponds to two Raman lines separated by an interval of ≈ 30 nm. Therefore, the Raman lines of
methanol λ(3)0 and λ

(4)
0 , which are separated by the interval 11.5 nm, can not be resolved with

Lf3 = 45 m.

4.3 Raman measurements: experimental results and discussion

We measured Raman spectra of methanol with three different approaches. One was performed
with the experimental setup shown in Fig 4.2, the so-called SNSPD-based Raman spectrum
(Fig. 4.7(c)). The two others, spectrometer-based Raman spectra, were obtained with a com-
mercial spectrometer (OceanOptics, USB4000), which was connected at the reference plane 3
(Rf-3) to the collection fiber f2 of the Raman probe. These two spectrometer-based measure-
ments differ with respect to the mode of laser excitation, the CW (Fig. 4.7(a)) mode and the
pulsed mode (Fig. 4.7(b)). Both spectrometer-based spectra were acquired with integration
time of 10 s. As seen in Fig. 4.7(a), the Raman spectrum with CW laser excitation of 782 nm
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exhibits four expected Raman shifts. We fit the acquired spectrum with a sum of four Gaussian
finctions. The best fit std -s of the corresponding Raman lines are σλ(λ(1)) = 4.0 ± 0.1 nm,
σλ(λ

(2)) = 5.2 ± 0.1 nm, σλ(λ(3)) = 3.0 ± 0.4 nm, and σλ(λ
(4)) = 5.7 ± 2.6 nm. The Raman

lines are slightly broader than the spectral width of the CW laser excitation σλ = 2.6 nm. The
spectrometer-based spectrum obtained with pulsed laser excitation (Fig. 4.7(b)) clearly exhibits
only three Raman peaks at central wavelengths λ(1) = 854.1± 0.1 nm, λ(2) = 885.8.1± 0.2 nm,
and λ(3) = 1010.0±0.3 nm. The third peak is an overlap of two not resolved Raman lines. We fit
the spectrum with a sum of three Gaussian functions. The corresponding line widths given by the
best fit std -s are σλ(λ(1)) = 5.5± 0.1 nm, σλ(λ(2)) = 6.4± 0.2 nm, and σλ(λ(3)) = 8.9± 0.9 nm.
Here, the widths of the first two resolved Raman lines slightly exceed the spectral width of
the pulsed laser excitation, σλ = 4.9 nm. Because the excitation with broader spectrum re-
sults in broader Raman lines of smaller amplitude, within the same integration time (10 s), the
signal-to-noise ratio for this spectrum is lower as compared to one acquired with the CW laser.

Fig. 4.7(c) shows the SNSPD-based Raman spectrum obtained with a dispersive Raman
spectrometer of the proposed configuration. The spectrum represents a histogram of delay
times between arrival times of voltage transients from the SNSPD and the fast photodiode.
These results were obtained within the integration time 437 s. Because the traveling time
through the fiber f3 decreases with increasing wavelength, the spectrum acquired in the time
domain is a mirror-reversal of the spectrum in the wavelength domain. The reconstruction of
the spectrum in the wavelength domain was done by the use of a calibration curve shown in
the right panel of Fig. 4.7(c). The curve was obtained with Eq. (4.1). The spectrum exhibits
three Raman peaks, which appear at the positions with the expected temporal distance between
them ∆τ(λ(1) − λ(2)) = 139.1 ± 2.8 ps and ∆τ(λ(1) − λ(3)) = 512 ± 2.3 ps. The third peak
represents two overlapping not resolved Raman lines of methanol. Because the SNSPD exhibits
non-Gaussian statistics of delay times, we fit the SNSPD-based spectrum with a sum of three
exponentially-modified Gaussian functions (Eq. 3.18). The best fit std -s of the corresponding
lines are σt(λ(1)) = 54.5 ± 1.5 ps, σt(λ(2)) = 40.0 ± 1.6 ps, and σt(λ

(3)) = 62.8 ± 1.4 ps, that
corresponds to σλ(λ(1)) = 11.5±0.3 nm, σλ(λ(2)) = 10.7±0.5 nm, and σλ(λ(3)) = 31.8±0.6 nm
in the wavelength domain. The temporal width of the first Raman line σt(λ(1)) = 54.5± 1.5 ps
is slightly larger that the expected value 51.8 ps (see Table 4.2). The width of the resolved
lines in the wavelength domain, λ(1) and λ(2), is almost twice as large as the width of those
in the spectrometer-based spectrum measured with the same laser excitation. This is because
the broadenings in time are converted into broadenings in wavelength when the SNSPD-based
spectrum is reconstructed. The SNSPD-based spectrum does reproduce the difference in the
peak intensities for the first two Raman lines, λ(1) and λ(2), however, the intensity of the third
Raman peak is much larger than expected. We explain it by a difference in the spectral sensitivity
between the SNSPD device and a silicon sensor in the spectrometer. The third Raman peak
appears around 1020 nm. This wavelength is close to the edge of the spectral range 200 -
1100 nm of the silicon sensor. In contrast, because the used SNSPD was optimized for the
telecommunication wavelength, the sensitivity of the SNSPD at 1020 nm is higher than at smaller
wavelengths. It is worth mentioning here that we also performed the Raman measurements of
cyclohexane, which has six prominent Raman shifts at the wavelengths: 835, 853, 872, 884,
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Figure 4.7: Raman spectra of methanol. (a) Spectrometer-based Raman spectrum with CW laser
excitation of 782 nm and integration time 10 s (the CW laser excitation measured at Rf-3 is shown
on the right panel). (b) Spectrometer-based Raman spectrum with pulsed laser excitation of 785 nm
(the pulsed laser excitation measured at Rf-3 is shown on the right panel) and integration time 10 s.
(c) SNSPD-based Raman spectrum with pulsed laser excitation of 785 nm. The right panel shows the
calibration curve used for the reconstruction of the spectrum in either wavelengths or wavenumbers.

1015, and 1020 nm [135]. The distances between the first four lines and the last two lines of
cyclohexane are beyond the resolution of the proposed spectrometer. As a result, the SNSPD-
based spectrum exhibited only two peaks, one is an overall peak of the first four overlapping
Raman lines, and the other is the last two overlapping Raman lines. We do not show these
results here.
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4.4 Summary

Here we have demonstrated a simplified prototype of a Raman spectrometer utilizing a single-
pixel SNSPD device. In the present modification, the temporal resolution of the spectrome-
ter is determined by several factors. The main factor is the spectral width of the excitation
(σν = 77 cm−1 or σλ = 4.9 nm), which is jointly defined by the filter F1 in the Raman
probe and the spectrum of Fourier-transform-limited pulses of the laser. Because the pulse
broadening due to chromatic dispersion is proportional to a spectral width of the propagated
pulse (στ ∝ σλ), such a broad spectrum results in a large pulse broadening due to chromatic
dispersion in fiber f3. Another limiting factor is the pulse broadening (στ ) added due to modal
dispersion in multi-mode step-index fibers f1 and f2 in the Raman probe. Using the resolution
criterion ∆τ = 2.5στ , the resolution of the proposed spectrometer is ≈ 29 nm. Broadenings due
to chromatic and modal dispersion contribute almost evenly to the resulting resolution. There
are several ways to improve the resolution. One is to use a light source with Fourier-transform-
limited pulses of picosecond duration. It would result in a smaller spectral width of the laser
excitation and, therefore, decrease the broadening due to chromatic dispersion. Another way is
to reduce the length of fibers in the Raman probe and replace them with graded-index fibers.
A relatively long acquisition time of the spectrum (437 s) is caused by non-efficient optical
coupling. The Raman signal is sequentially coupled to fibers with a core diameter of 200, 50,
and 10 µm. This problem can be solved by improving the optical coupling and replacing the
multi-mode fibers with single-mode ones.
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Chapter 5

Conclusions and outlook

In this thesis, we have presented results of an experimental study of two mutually interconnected
phenomena: the intrinsic timing jitter in photon detection by an NbN superconducting nanowire
and the relaxation of the electron energy in NbN superconducting films. The practical use of
SNSPDs relies on a non-equilibrium state in superconducting nanowires where its relaxation
is controlled by the dynamics of the electron energy. The relaxation of the electron energy,
plays an essential role in the physics of such detectors. Experimental studies of the microscopic
mechanism of the intrinsic jitter of a superconducting nanowire provide hints about the rela-
tionship between the jitter magnitude and the characteristic time scales of processes involved in
the energy relaxation.

To reveal the processes of energy relaxation, we have studied inelastic scattering and energy
relaxation of electrons by means of magnetoconductance and photoresponse, respectively, in a
series of superconducting NbN films on Si/SiO2 and Al2O3 substrates with thicknesses in the
range from 3 to 33 nm. The main results are:

• The inelastic electron-phonon scattering rate defined by magnetoconductance technique
depends on temperature as τ−1

e−ph ∝ Tn with an exponent n ≈ 3.2 - 3.8. The magnitude
of τe−ph at 10 K falls into the range 11.9 - 17.5 ps. The studied NbN films are strongly
disordered. The degree of disorder qT le = βT ≪ 1 at T = 10 K, with β = 0.075±0.005 K−1

and the Ioffe-Regel parameter, kF le, varying from 0.88 to 1.22.

• The Debye temperature in our films (≈ 172 K) is noticeably smaller than the Debye
temperature of bulk NbN. We attribute this to phonon softening caused by granularity
and weakening of ion bonds at the film surfaces.

• Experimental photoresponse data for thicker films are described reasonably well in the
framework of the 3-d Debye model and either the 2-T or 3-T models with the film parame-
ters extracted from magnetoconductance measurements. For thin films the photoresponse

108



can only be described with the reduced heat capacity of phonons. We attribute this finding
to the reduced density of phonon states in thin films with thicknesses comparable to or
smaller than the mean free path of thermal phonons.

We have studied the timing jitter of an NbN nanowire by analyzing PDFs of delay times
of the appearance of photon counts with respect to the photon absorption. To describe an
experimental PDF, we have developed a formalism, which accounts for different jitter sources
such as noise, optics, and the detection process in the nanowire itself and allows for extracting
the intrinsic jitter. The main results are:

• Development of an experimental technique which eliminates the geometric jitter and allows
separation of the instrumental, optical, and noise components of the system jitter from
the intrinsic jitter.

• We have shown that increasing the photon flux turns the nanowire from a discrete, single-
photon to bolometric detection regime. In the bolometric regime, the intrinsic jitter of a
single-photon detection is averaged out that allows direct measurements of the instrument
and noise contributions to the system jitter.

• At 800 nm, the magnitude of the intrinsic jitter increases with increasing magnetic field
and decreasing bias current.

• Comparing the experimental data with the microscopic 2-d hot-spot model has shown that
the "hot spot" is essential in explaining the magnetic field dependence of the jitter. In
contrast, the uniform hot-belt model fails to describe it qualitatively.

• The position dependence (across the wire) of the delay time and Fano fluctuations are not
sufficient to explain the experimental magnitude of the intrinsic jitter. This finding hints
about a missing source of the intrinsic jitter.

In this thesis, we have also demonstrated a prototype of a Raman spectrometer utilizing an
SNSPD device and a dispersive fiber. An alternative method for obtaining a Raman spectrum
has been demonstrated. The Raman spectrum of methanol has been acquired with a one-
pixel commercial SNSPD device. We have found two limiting factors for this spectrometer
configuration: the spectral resolution and the acquisition time. They can be further improved
by using only single-mode fibers and optimizing optical coupling. Compared to conventional
Raman spectrometers based on CCD sensors, the SNSPD approach provides a single-photon
sensitivity over a wide spectral range from visible to near-infrared wavelength range.

The study presented in this thesis reveals a few topics for further research in the field of
SNSPD applications. For instance, there are remaining questions on the microscopic mechanism
of single-photon detection in superconducting nanowire and specifically on the physical sources
of the intrinsic jitter. So far, two sources have been considered, the dependence of the delay time
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on the position of the photon absorption site and Fano fluctuations. According to our results,
they do not provide a good explanation of the magnitude of the experimental intrinsic jitter. We
anticipate the larger impact of thermal fluctuations and spacial non-uniformities on the intrinsic
jitter and suggest them as directions for future work.
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