Quantitative Assessment of Current and Emerging Space Weather Modelling Capabilities for Improved Space Weather Services (PSW.1)
Consider for oral presentation.

NEAR-EARTH RADIATION AND PLASMA ENVIRONMENT COMMUNITY APPROACH TO MODEL VALIDATION REGARDING IMPACTS ON (AERO)SPACE ASSETS

Dr. Yihua Zheng, yihua.zheng@nasa.gov
NASA/GSFC, GREENBELT, Maryland, United States
Natalia Ganushkina
Finnish Meteorological Institute, Helsinki, Finland, natalia.ganushkina@fmi.fi
Piers Jiggens
ESA ESTEC, Noordwijk, Netherlands, piers.jiggens@esa.int
Vania Jordanova
Los Alamos National Laboratory, Los Alamos, United States, vania@lanl.gov
Insoo Jun
NASA Jet Propulsion laboratory, Pasadena, United States, insoo.jun@jpl.nasa.gov
Matthias M. Meier
DLR - Inst. of Aerospace Medicine, Koeln, Germany, matthias.meier@dlr.de
Ian Mann
University of Alberta, Edmonton, Canada, imann@ualberta.ca
Joseph Minow
NASA Marshall Space Flight Center, Huntsville, United States, joseph.i.minow@nasa.gov
Paul O’Brien
The Aerospace Corporation, Chantilly, United States, paul.obrien@aero.org
Dave Pitchford
SES, Betzdorf, Luxembourg, dave.pitchford@ses.com
Yuri Shprits
German Research Centre for Geosciences, Potsdam, Germany, shprits@gmail.com
W Kent Tobiska
Space Environment Technologies, Pacific Palisades, United States, ktobiska@spacenvironment.net
Michael Xapsos
NASA Goddard Space Flight Center, Greenbelt, United States, michael.a.xapsos@nasa.gov
Lutz Rastaetter
NASA Goddard Space Flight Center/Heliophysics Science Division, Greenbelt, United States, lutz.rastaetter-1@nasa.gov
Maria Kuznetsova
NASA Goddard Space Flight Center/Heliophysics Science Division, Greenbelt, United States, maria.m.kuznetsova@nasa.gov
In order to assess the performance of space environment models that are relevant to various impacts on (aero)space assets, the ISWAT Near-Earth Radiation and Plasma Environment community has been actively involved in engaging different communities together with the goal of addressing the issue from a systematic perspective. Information will be provided in first defining the essential space environment quantities (ESEQ) that are most relevant to the impacts (also directly measurable) and the corresponding essential effect quantities that are more easily understandable/useful for end-users. Metrics for measuring the model performance for different impacts/applications, uncertainties of models and observations, and methods of carrying out and archiving such model validation efforts/results for long-term performance assessment and tracking will be the focus of the presentation.