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Abstract

Urbanisation is an ongoing process and will gain importance in the future. It comes with
multiple challenges as inhabitants are dependent on water and energy supply, a function-
ing street network and health care system — all these require a deliberate management.
However, this is not an easy demand as administrative areas can cover several thousands
of square kilometers. Therewith, remote sensing methods constitute a reliable source to
observe large areas as cities. To observe the growth of cities, variables as built-up height
and built-up density have emerged as reliable attributes that characterize well the urban
morphology. They can be obtained by integrating remote sensing data from optical and
other sensors such as synthetic aperture radar (SAR). The application of machine learning
algorithms makes it feasible to interpret the large amount of data generated in remote
sensing.

This study focuses on the optimization of machine learning algorithms for predicting built-
up height and built-up density in four German major cities based on remote sensing data,
by integrating so-called multi-output regression (MOR) methods. Instead of processing
and predicting each target variable independently, MOR methods incorporate all target
variables into one process which, in the best case, increases the accuracy of predictions.
Recent literature highlights the benefit of exploiting possible correlations between target
variables. In this work, four methods are applied and modified according to state-of-the-art
models: multi-target stacking (MTS), multi-target regressor chains (MTRC), multi-target
regressor chains without repetitive permutation (MTRC-nrp) and single-target stacking
(STS). Each method is used with four different regression models, namely random forest
(RF), Gaussian process (GP), support vector regression (SVR) and neural networks (NN).
Additionally, the impact of different stacking options as well as the impact of the feature
space is evaluated.

The extensive and systematic evaluation of the aforementioned parameters provides several
insights. It shows, that all models (MTS, MTRC, MTRC-nrp, STS) outperform models
that do not use multi-target stacking or chaining or single-target stacking. Furthermore, it
shows that MOR models behave differently depending on which regression model is used
for the prediction. Finally, it gives recommendations on which MOR methods and which
additional parameters are suitable for particular use cases similar to those evaluated in
this study and discusses possibilities for future research.
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Chapter 1

Introduction

Our population is growing rapidly and so are the challenges accompanying this process.
Challenges of growing cities and the demand of living space, of growing food demand, of
energy and water supply, of security and health. As the United Nations prospect, a number
of 9.8 billion people will inhabit the world by the year 2050 of which 68% will live in urban
areas. [United Nations and Affairs, 2019] This makes the necessity of a good organisation
and a good management of societies and communities on a local level to a task, we have
to start tackling today to be prepared for changes that will confront us in the future.

Growing cities imply a growing floor space covered by buildings and other man-made
structures and thus the necessity of suitable methods to investigate an area which already
nowadays can measure several thousand square kilometers (e.g. Tokyo: 2.2 thousand km?
Rome 1.3 thousand km?, Hong Kong: 1.1 thousand km?). It is evident that methods
which overlook large areas from above outperform those working in-situ, as they manage
to retrieve information much faster and consistently over time and space — such as remote
sensing methods do. In remote sensing, satellite imagery is retrieved at daily intervals from
numerous satellite missions such as Sentinel, Landsat or TanDEM-X. They provide freely
available data from multiple sensors, for example optical or radar, in a spatial resolution
of up to 10 m. [Attema et al., 2007], [Gascon et al., 2014] This makes remote sensing a
popular and convenient method for the inspection of urbanisation processes.

From an aerial perspective, an urban area is basically characterized by its physical struc-
tures, as the network of streets, the distribution of green areas or the shape and height
of buildings and building complexes. Especially the latter, the attributes of built-up area
like built-up height and built-up density, constitute a basis in urban morphology research.
They give a strong indication on where population in urban areas is concentrated and
which areas are only sparsely populated. For organisational challenges, these information
are crucial. Therewith, they also gain importance in remote sensing research and studies
aim to develop methods which derive built-up attributes from remote sensing data (e.g.
[Brunner et al., 2009], [Guida et al., 2010], [Kim et al., 2007], [Kajimoto and Susaki, 2013]).
It is a common approach to integrate remote sensing data of various sensors to increase



2 1. Introduction

the level of information. The integration of data derived by spaceborne Synthetic Aper-
ture Radar (SAR), for example, can augment common satellite imagery by information on
height of recorded objects. Conventional satellite imagery, which is derived from missions
such as Sentinel or Landsat, focus on optical information. Their sensors record reflected
solar or thermal radiation in multiple bands where each focuses on a specific frequency
range. A common way to derive information from these data is to combine the actual val-
ues recorded by particular bands of interest to so-called features and map them according
to their geographical appearance. With the help of statistical learning methods, such as
conventional machine learning algorithms, it is possible to identify correlations between
calculated features and the actual target variable, such as built-up attributes.

Machine learning methods constitute a powerful set of algorithms, which are capable
of learning and improving from the experience of their performance on particular tasks.
[Mitchell et al., 1997] Based on their experience, they can make predictions on the expec-
ted behaviour in contexts similar to their learning environment. Therewith, these methods
can strongly support the investigation of data which is too complex or too large to be
investigated manually. [Mitchell, 2006] Applying machine learning methods in the area of
remote sensing boosts the possibilities of aerial analysis remarkably. They make it feasible
to process a large amount of data and to generate information in areas, in which appropri-
ate data might not be available or accessible. The combination of both, machine learning
and remote sensing, gives scientists and political stakeholders the opportunity to observe,
investigate and regulate processes on a local, regional and global level and on a temporal
and spatial consistent basis. Processes, such as the ongoing process of urbanisation.

This work aims to contribute to existing methodological approaches of predicting built-up
height and built-up density in remote sensing with the application of machine learning
methods. It will modify existing approaches and conduct a systematic and extensive eval-
uation on the impact of particular experimental parameters.

As two variables, built-up height and density, constitute the target of this study, the focus
will lay on the application of so-called multi-output regression (MOR) methods. A multi-
output regression, or multi-target regression, as it is also called in literature, describes a
method which is constructed to predict multiple target variables. In the best case, the
prediction of each single target variable can benefit from information gained trough the
involvement of the other target variables in the regression process. Several authors have
already applied and tested MOR on various datasets.

Numerous studies exist, which apply existing MOR methods on their explicit research
problem of interest or on several datasets, and evaluate and compare the performance of
tested MOR methods (e.g. [Tuia et al., 2011], [Stojanova et al., 2010], [Kocev et al., 2009],
[Melki et al., 2017], [Segal and Xiao, 2011]). [Tuia et al., 2011], for example, analyze
the prediction of the biophysical parameters leaf chlorophyll content, leaf area index and
fractional vegetation cover by adapting a support vector regression algorithm to predict
multiple target variables (M-SVR). They compare it to a conventional support vector re-
gression (SVR), where each parameter is predicted separately and found that the M-SVR



approach outperforms the conventional SVR when target variables are correlated. [Santana
et al., 2017] adapts an existing multi-target stacking (M'TS) approach to predict air ticket
prices. They claim, that their adapted MTS approach outperforms conventional methods
such as single-target regression, in which each variable is predicted independently. MOR
methods are also applied explicitly in remote sensing. [Stojanova et al., 2010], for example,
apply state-of-the-art MOR algorithms on the estimation of vegetation height and canopy
cover. Their findings show a benefit of ensemble MOR algorithms over single-target models.

On the other hand, studies exist which focus on a theoretical perspective on MOR. [Borch-
ani et al., 2015], [Spyromitros-Xioufis et al., 2012] and [Waegeman et al., 2019] for example
focus on the methodological part of MOR. All three give a detailed theoretical introduction
on state of the art MOR methods. [Spyromitros-Xioufis et al., 2012] focus on the adapt-
ation of multilabel classification methods on regression problems and introduce suitable
multi-output stacking and chaining methods. They outline the importance of including
cross-validation in the process of test and training set splitting and emphasize the benefit
of applying the presented MOR methods over conventional single-target methods. While
[Borchani et al., 2015] mainly focus on the presentation of MOR methods, datasets and an
overview on advantages and disadvantages of particular methods, [Waegeman et al., 2019]
goes beyond that and postulates the need of putting more effort in the investigation of
MOR to increase deeper understanding.

The here presented work is conceptualized to address this demand. It concentrates on
the particular problem of predicting built-up height and built-up density based on remote
sensing imagery and applies suitable MOR methods. The chosen methods are then sys-
tematically tested and each relevant parameter constituting the experiment configuration
is evaluated. Subsequently, this work should be an attempt to the investigation of the
actual behaviour of multi-output regression methods.

This work is structured as follows: Chapter 2 will give a theoretical introduction in the
applied methods. It will first outline the functioning of multi-output regression methods
(section 2.1) and continues with a theoretical description of the machine learning methods
used in this study (section 2.2). Chapter 3 first describes the input data ( section3.1) and
then focuses on the description of all parameters that constitute the conducted experiments
(section 3.2). It gives a clear definition on how MOR methods are applied and modified
in the context of this study (subsection 3.2.1 - 3.2.3) and finally outlines the experiments
that have been used for evaluation (section 3.2.4). Subsequently, chapter 4 will combine
the presentation of all results as well as the discussion on the presented findings. Lastly,
chapter 5 will conclude the work and give an outlook on suggested follow up research.
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