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ABSTRACT

We consider the problem of distributed subsurface imaging in seis-
mic receiver networks. This problem is particularly relevant for
future planetary exploration missions where multi-agent networks
shall autonomously reconstruct a subsurface based on network-wide
measurements. To this end, we propose a distributed implementa-
tion of the full waveform inversion (FWI) for distributed imaging of
subsurfaces in seismic networks. In particular, we show that the gra-
dient of FWI is equivalent to the sum of locally computed gradients.
To obtain estimates of the global gradient and subsurface model at
each receiver we employ the adapt-then-combine technique that re-
lies on data exchange among neighboring receivers only. Numerical
evaluations show that the proposed distributed FWI performs close
to its centralized version for different source-receiver constellations.

Index Terms— Distributed imaging, full waveform inversion,
seismic imaging, inverse problems

1. INTRODUCTION

Full waveform inversion (FWI) is one of the state-of-the-art tech-
niques for subsurface imaging in seismic surveys. Initially, it has
been proposed in the time-domain using the acoustic wave equa-
tion by [1] and has been applied to geophysical exploration to obtain
high-resolution images of subsurfaces [2, 3, 4, 5]. Recently, it has
also gained much interest from the medical imaging community for
ultrasound imaging of the human brain or breast [6, 7]. In FWI, a
least-squares cost between observed and synthesized data is mini-
mized with respect to a model parameter of the subsurface, e.g., the
seismic wave velocity. The objective of FWI is then to iteratively im-
prove the model of the subsurface by reducing the residual between
the observed and synthesized receiver data. The strength of FWI lies
in the use of the whole measured waveforms of the receivers and the
exploitation of a wave equation that properly describes the underly-
ing physics of wave propagation. However, FWI needs to solve a
non-convex optimization problem with respect to the model param-
eter, which requires careful selection of a numerical optimization
method.

FWI has been nearly exclusively considered with a centralized
inversion of the measurement data where the complete data of the
receivers are available at a central entity. However, we envision the
use of a multi-agent network without such a central entity that au-
tonomously explores a certain subsurface e.g. in future planetary ex-
ploration missions [8]. For such an application, a distributed imaging
technique is required. Here, each agent shall obtain a global subsur-
face model by interacting with other agents in the network such that
dependency on a central entity is avoided.

Distributed inference methods have been thoroughly studied
during the last decade, see e.g. [9, 10] and references therein. Nev-

ertheless, they have not yet been largely adopted by geophysical
imaging techniques such as FWI. In [11] a decentralized FWI is
proposed using the alternating direction method of multipliers while
in [12] the authors describe a distributed reverse time migration.
However, both works assume a central master node that fuses model
updates of all receivers and therefore, do not enable for a fully dis-
tributed imaging of the subsurface. In [13, 14] distributed methods
are proposed that exploit the physics of the wave equation for their
inference task. However, both works focus on the localization of
sources only.

In this paper, we propose a method that estimates the global
FWI subsurface model in a distributed fashion at each receiver by
exchanging data among neighboring receivers only. Then each re-
ceiver itself is able to compute a local model of the subsurface. Fur-
thermore, we derive that the global gradient in FWI is equivalent
to the sum of locally computed gradients. We show that the global
gradient and the model can be estimated at each receiver using the
adapt-then-combine method. We verify our proposed method by nu-
merical simulations and show that the models obtained at each re-
ceiver are indeed close to those of a centralized FWI.

2. SEISMIC NETWORK MODEL

We consider a seismic network of J geophone receivers placed uni-
formly on a line for a two-dimensional exploration task. The topol-
ogy of the seismic network is described via a graph G = {J , E}
with a set of nodes J = {1, 2, . . . , J} and a set of edges E =
{(j, i)|j, i ∈ J , j 6= i}. We assume that the graph G is undirected
and strongly connected, i.e., each receiver can be reached by any
other receiver in the network over multiple hops. Furthermore, we
define a neighborhood setNj for each receiver j that contains those
receivers that are directly connected to receiver j and the receiver j
itself. Each neighbor contained in Nj can exchange data with re-
ceiver j and vice versa. For the exploration task, we assume Ns dif-
ferent shot locations on the surface and a total measurement time of
T per shot s = {1, 2, . . . , Ns}. Each receiver j has a fixed Cartesian
position denoted by xj = (xj , zj) with the x- and z-coordinate.

3. BRIEF REVIEW OF FULL WAVEFORM INVERSION

The objective of FWI is to minimize a cost function with respect to
a specific model parameter of the wave equation to obtain a model
that is close to the true one. The used cost function usually consists
of some norm of a residual between measured seismic data and esti-
mated, synthetic measurements generated from the estimated model.
By minimizing this residual with respect to the parameters of the
propagating wave, FWI is then able to reconstruct the original sub-
surface model. Here, we consider the P -wave velocity as the pa-



rameter of interest in the subsurface and we aim at recovering the
velocity distribution over the considered area. A typical choice for
the cost function in FWI is a least-squares cost between original seis-
mic measurements dobs and synthetically generated measurements
dsyn as a function of the model parameter m, cf. [2]:

L(m) =
1

2
||dobs − dsyn(m)||22. (1)

In our case, the parameterm = m(x) is a function that describes the
wave velocity at a certain position x = (x, z) of the explored subsur-
face X ∈ R2. The variable dobs is a stacked vector of the measured,
discrete time signals of each receiver while dsyn contains estimated,
synthetic measurements based on the model m. Assuming a total
number of NT time samples per measurement and receiver j, dobs

and dsyn are vectors of dimension JNT × 1. The objective is to
minimize the misfit between observed and generated measurements
with respect to the model parameterm. To model the propagation of
seismic waves in the subsurface we use the acoustic wave equation:

1

m(x)2
∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
= f(x, t), (2)

where f(x, t) is the seismic source term and u(x, t) is the seismic
wavefield at position x and time t, respectively, that describes the
wave propagation through the subsurface. Since (2) describes the
propagation of P -waves only, conversion into other wave types such
as S-waves at subsurface interfaces is not considered here. To reduce
unwanted reflections at the borders of the considered computational
domain we include absorbing boundary layers in the numerical sim-
ulation. To minimize (1) iteratively with respect to the velocity m
we need to compute the gradient of L(m). A common approach
is to use the adjoint-state method to obtain the gradient, cf. [15].
Accordingly, the gradient can then be computed via

w(x) =
∂L(m)

∂m
= − 2

m3(x)

Ns∑
s=1

∫ T

0

qs(x, T − t)∂
2us(x, t)

∂t2
dt.

(3)
The field us(x, t) is the forward-solved wavefield for the shot s us-
ing the model m. The field qs(x, T − t) is called adjoint wave-
field is generated by injecting the residual data dobs − dsyn(m) at
the receiver locations as a source term and solving the wave equa-
tion backwards in time for a specific shot s. It can be shown that
qs(x, T − t) satisfies the following wave equation [15]:(

1

m2(x)

∂2

∂t2
−∆

)
qs(x, t) =

∑
j∈J

(dobs,j−dsyn,j(m))δ(x−xj),

(4)
where ∆ is the spatial Laplace operator and δ(·) is the Delta-
function. The time correlation of both fields under the integral in
(3) is well known as the imaging condition or migration [16]. With
the gradient w(x) at hand, a gradient-descent method can be em-
ployed to iteratively minimize the cost L(m). To employ numerical
optimization, we discretize the continuous space X into grid cells
assuming using e.g. a finite-difference method. If we then collect
velocity values of the model over all grid cells into a vector m[k]

and likewise all gradient values into a vector w[k] at iteration k, we
can update the current model via

m[k+1] = m[k] + α[k]w[k]. (5)

The step size α[k] > 0 is usually found using a line search method
to guarantee a reduction of the cost L(m) in each iteration k. To
improve the convergence behavior of FWI, other methods such as
the conjugate gradient method or L-BFGS can be used.

4. DISTRIBUTED FULL WAVEFORM INVERSION

The FWI described in Section 3 is a centralized processing algo-
rithm since the adjoint wavefield qs(x, t) per shot s is solved using
the complete residual data of all J receivers. Based on qs(x, t) the
global gradient w is computed. To enable a distributed FWI the
global gradient needs to be estimated locally at each receiver such
that a local update of the velocity model per receiver is possible. In
the following, we employ the adapt-then-combine technique to ob-
tain an estimate of the global gradient w and the global model m
at each receiver j. First, we find that the cost L(m) in (1) can be
separated over the receivers:

L(m) =
1

2
||dobs − dsyn(m)||22 =

∑
j∈J

Lj(m) (6)

with Lj(m) = 1
2
||dobs,j − dsyn,j(m)||22 being the local cost func-

tion and dobs,j and dsyn,j(m) being the measured and generated
data vector at receiver j of dimension NT × 1, respectively. Then
we compute the gradient of each local cost Lj(m) with respect to
the model parameter m. Analogous to (3) we obtain the following
gradient per receiver j:

wj(x) =
∂Lj(m)

∂m

= − 2

m3(x)

Ns∑
s=1

∫ T

0

qj,s(x, T − t)∂
2uj,s(x, t)

∂t2
dt. (7)

The wavefield uj,s(x, t) is now the receiver-specific forward field
that is generated using the velocity model m and the current shot s
as input signal. Different from the central case, the adjoint wavefield
qj,s(x, t) is generated by injecting only the local receiver-specific
residual dobs,j −dsyn,j(m) at the receiver position xj per shot s. It
therefore satisfies the following wave equation:(

1

m2(x)

∂2

∂t2
−∆

)
qj,s(x, t) = (dobs,j − dsyn,j(m)) δ(x−xj).

(8)
By comparing the local residual field (8) to the global one in (4) we
can deduce that qs(x, t) =

∑
j∈J qj,s(x, t). Hence, we obtain the

important result that the gradient w(x) of the global cost L(m) is
equivalent to the sum over all local gradients in the network:

w(x) = − 2

m3(x)

∑
j∈J

Ns∑
s=1

∫ T

0

qj,s(x, t− T )
∂2uj,s(x, t)

∂t2
dt

=
∑
j∈J

wj(x) (9)

To compute the global gradient in a distributed fashion we employ
the adapt-then-combine (ATC) strategy which is a distributed opti-
mization method [10]. The ATC consists of a local model update and
a local model fusion step where both steps incorporate a weighted
average of neighboring gradients and models. To apply the ATC
strategy to the FWI, we introduce a local velocity model m[k]

j and

an intermediate model m̃[k]
j per receiver j and iteration k. We can

then derive the ATC update equations at receiver j as follows:

m̃
[k+1]
j = m

[k]
j + α[k]

∑
i∈Nj

cijw
[k]
i (10a)

m
[k+1]
j =

∑
i∈Nj

aijm̃
[k+1]
i (10b)



(a) True velocity model
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(b) Starting model
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Fig. 1: (a) True velocity model with receivers ( ) and shots ( ) placed
on surface and (b) smoothed version as starting model.

The coefficients aij , cij ∈ R determine how data from neighbor i is
weighted for the averaging operation at receiver j. They need to sat-
isfy the conditions [17, Eq. (23)] to guarantee convergence towards
the global model. Here, we specifically choose these coefficients to

aij = cij =

{
1/|Nj | if i ∈ Nj ,

0 else.
(11)

An overview of other possible coefficient weights can be found in
[18, Section 8]. From (10) we observe that two averaging opera-
tions are performed per iteration k: one over the gradients w[k]

i and
another one over the models m̃[k+1]

i . Applying these operations iter-
atively eventually enable each receiver j to obtain an estimate of the
sum of all local gradients, i.e., the global gradient in (9). Hence, each
receiver-specific model m[k]

j converges towards the global model m
for strongly connected networks [10]. In each iteration k the gradi-
ents w

[k]
i and models m̃

[k+1]
i need to be exchanged among neigh-

boring receivers. Algorithm 1 summarizes the proposed adapt-then-
combine full waveform inversion (ATC-FWI). To simplify notation
and stick to the introduced formalism we use both continuous and
discrete variables here. Since ATC-FWI relies on the acoustic wave
equation (2), it can be applied to any other imaging application that
uses the same wave equation.

5. NUMERICAL EVALUATION

In the following, we verify our proposed method in numerical sim-
ulations. We consider a subsurface of an area of 1 km × 1 km with
a background velocity of mbg = 2 km/s that contains a rectangular
anomaly in its center with a velocity of man = 2.5 km/s, cf. Fig-
ure 1a. We employ a network of J = 20 receivers placed evenly in
a line on the surface. Accordingly, for the network we assume a line
topology where each receiver is connected to its next three receivers
to its left and right side. Thus, in total each receiver has at most
six neighbors and at least three (i.e., for the first and last receiver in
the line). For the exploration survey we use Ns = 7 shots evenly
placed on the surface. The input source is a Ricker wavelet with
center frequency f = 10 Hz and 0° phase shift. The total observa-
tion time is T = 1 s. To solve the wave equation numerically we
use the Devito package [19] which is a symbolic finite-difference
framework for partial differential equations. For the discretization
by finite-differences we set each spatial cell to a size of 10 m×10 m
and use absorbing boundaries with 20 grid cells.

Algorithm 1 Adapt-then-combine FWI (ATC-FWI)

1: Initialize starting model m[0]

2: for FWI iteration k ← 0, NFWI − 1 do
3: for receiver j ← 1, J do . Local gradient computation
4: w

[k]
j = 0

5: for shot s← 1, Ns do
6: Solve forward model withm[k]

j → uj,s(x, t),dsyn,j

7: Compute residual wavefield qj,s(x, T − t)
8: Accumulate gradients:

9: w
[k]
j ← w

[k]
j −

∫ T

0
qj,s(x, T − t) ∂2uj,s(x,t)

∂t2
dt

10: end for
11: end for
12: for receiver j ← 1, J do . Adapt-then-combine
13: m̃

[k+1]
j = m

[k]
j + α[k]∑

i∈Nj
cijw

[k]
i

14: m
[k+1]
j =

∑
i∈Nj

aijm̃
[k+1]
i

15: end for
16: end for
17: return Local model m[NFWI]

j , ∀j ∈ J

(a) First receiver no. 1
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(b) Middle receiver no. 10
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(c) Last receiver no. 20
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(d) Centralized FWI
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Fig. 2: Estimated velocity models using ATC-FWI and centralized
FWI after 20 iterations.

We apply both the centralized FWI and our proposed ATC-
FWI to the reconstruction of the above described subsurface. To
stabilize convergence behavior we choose the step size to α[k] =

0.01/max{w[k]
j } for ATC-FWI and α[k] = 0.01/max{w[k]}

for centralized FWI, respectively. For both algorithms we use a
smoothed version of the true velocity model as starting velocity
model m[0] by applying a Gaussian filter with standard deviation
σ = 10 to it, cf. Figure 1b.

Figure 2 illustrates the estimated velocity models for ATC-FWI



(a) First receiver no. 1
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(c) Last receiver no. 20
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(d) Centralized FWI
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Fig. 3: Estimated velocity models using ATC-FWI and centralized
FWI after 20 iterations for the crosshole constellation.

after NFWI = 20 iterations at three receivers. We can observe that
all receivers obtain a velocity model close or equal to the one ob-
tained by the centralized FWI. Receiver 1 and 20 obtain a model
that is slightly different from centralized FWI. This is due to the fact
that these receivers have the lowest number of neighbors in the net-
work and are therefore not able to achieve the exact global model
within the limited amount of NFWI = 20 iterations. On the con-
trary, we observe that the middle receiver 10 achieves the central
model since this receiver has the maximum number of neighbors
and can therefore fuse all gradients and models in the network over
the iterations. In another experiment, we change the source/receiver
positions from a surface to a crosshole constellation. The sources
are now uniformly placed at a distance x = 0 km over the complete
depth while receivers are placed uniformly at x = 980 km over the
complete depth. All other parameters as well as the starting model
are kept as in the surface constellation. Crosshole constellations usu-
ally lead to better imaging results since seismic rays are shot from
one side through the object and received on the opposite side [2].
The resulting velocity models can be seen in Figure 3. Also here
ATC-FWI obtains velocity models close to the central model where
the result of receiver 10 is closest to the central one. Compared to
the surface constellation the rectangular anomaly in the center part
is more accurately recovered.

In Figure 4a, we show the velocity profile over the depth at a
distance of x = 0.5 km after NFWI = 20 FWI iterations for the
first receiver. Also here we can observe that the estimated veloc-
ity profile of ATC-FWI is close to the central profile especially for
the surface constellation. One can clearly see how FWI sharpens the
edges where a high velocity gradient is present compared to the start-
ing model that has a smooth change in velocity between background

2 2.2 2.4

0

0.2

0.4

0.6

0.8

1

Velocity in km/s

D
ep

th
in

km

True model

Starting model

ATC-FWI

FWI

(a) Surface constellation.
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(b) Crosshole constellation.

Fig. 4: Velocity profile at distance x = 0.5 km for receiver no. 1 in
(a) surface and (b) crosshole constellation.
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Fig. 5: Cost function for (a) surface and (b) crosshole constellation.

and anomaly. In the crosshole experiment the center region of the
anomaly is more accurately reconstructed compared to the surface
constellation. However, a larger gap between the models of ATC-
FWI and centralized FWI can be observed. Figure 5 shows the cost
function L(m) over the FWI iterations for the surface and crosshole
constellation. For ATC-FWI the cost is summed up over all receivers
to be comparable to the centralized case. In both cases the cost of
ATC-FWI is nearly identical to the central case.

6. CONCLUSION AND FUTURE WORK

In this paper, we showed that the global gradient in FWI is equiva-
lent to the sum of local gradients. Based on this result, we proposed
the use of the adapt-then-combine method to estimate the global gra-
dient locally at each receiver and to enable a distributed implementa-
tion of the FWI. For numerical evaluations we used synthetic veloc-
ity models and showed that the ATC-FWI achieves similar perfor-
mance as the original, centralized FWI. For future work, we intend
to apply our proposed method to real seismic data and to extend the
method to 3D-exploration tasks.
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