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Abstract

Ontologies are the backbone of the Semantic Web. As a result, the number of existing ontologies and the number of topics
covered by them has increased considerably. With this, reusing these ontologies becomes preferable to constructing new
ontologies from scratch. However, a user might be interested in a part and/or a set of parts of a given ontology, only.
Therefore, ontology modularization, i.e., splitting up an ontology into smaller parts that can be independently used, becomes
a necessity. In this paper, we introduce a new approach to partition ontology based on the seeding-based scheme, which is
developed and implemented through the Ontology Analysis and Partitioning Tool (OAPT). This tool proceeds according to
the following methodology: first, before a candidate ontology is partitioned, OAPT optionally analyzes the input ontology
to determine, if this ontology is worth considering using a predefined set of criteria that quantify the semantic and structural
richness of the ontology. After that, we apply the seeding-based partitioning algorithm to modularize it into a set of modules.
To decide upon a suitable number of modules that will be generated by partitioning the ontology, we provide the user a
recommendation based on an information theoretic model selection method. We demonstrate the effectiveness of the OAPT
tool and validate the performance of the partitioning approach by conducting an extensive set of experiments. The results
prove the quality and the efficiency of the proposed tool.

1 Introduction

Ontologies are the backbone of the Semantic Web, which
provides facilities for integrating, searching, and sharing
information on the Web by making it understandable for
machines [25,26]. According to a study by d’Aquin et al. [10]
already in 2007, at least 7000 ontologies existed in the
Semantic Web, providing an unprecedented set of resources
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for developers of semantic applications. However, this large
number of available ontologies makes it hard for users to
determine which ontologies suitable for their needs. Even, if
the user settles on an ontology (or a set of ontologies), she
might be interested in a subset of concepts of the ontology,
only. For example, if a user plans to use the CHEBI ontology,'
with 132,082 2 fully annotated concepts, she is typically not
interested in all concepts of the ontology, but just a few of
them.

In this situation, in order to create a knowledge base for
a specific scenario, the developer has two options: creating
proper ontologies from scratch or reusing existing ones. The
first option is a time-consuming and labor-intensive process.
The maintenance, reuse, and integration of existing ontolo-
gies, on the other hand, are also highly complex tasks. In
particular, extracting only relevant parts from ontologies that
often contain thousands of concepts is a key challenge. Ontol-
ogy modularization can be used to support this task [11,31,
43.,49]. In general, modularization approaches can be classi-
fied into two main categories: module extraction and module
partitioning. An ontology module is defined as a reusable

! https://www.ebi.ac.uk/chebi/.

% information  retrieved from https:/bioportal.bioontology.org/
ontologies/CHEBI on 07.05.2019.
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component of a larger or more complex ontology [12,43],
which is self-contained but bears a definite association to
other ontology modules, including the original ontology.
Ontology partitioning aims at grouping entities with similar
characteristics together in order to facilitate their further pro-
cessing. It has been used for different applications: ontology
matching [1,4,27], knowledge selection [11], and reason-
ing [24,45]. Module extraction extracts from the given ontol-
ogy a small fragment that captures the intended meaning of
the input terms [7,17], while ontology partitioning splits the
given ontology into a set of modules [1,20,51]. In this paper,
we focus on the second problem: ontology partitioning.
The main challenge of ontology modularization is to
balance between modularization quality and modulariza-
tion efficiency. To cope with these challenges, we introduce
the Ontology Analysis and Partitioning Tool (OAPT), a
framework for analyzing and partitioning ontologies. Before
partitioning an ontology, the tool optionally investigates the
semantic and structural richness of input ontologies using
a predefined set of quality criteria. Once an ontology has
been selected, the partitioning algorithm is applied to parti-
tion it into a set of modules. The partition algorithm is based
on a seeding-based clustering approach, called SeeCOnt,
which starts by determining and identifying which ontol-
ogy concepts can potentially be used as cluster seeds, called
cluster heads, C'Hs. To achieve this goal, we develop a new
ranking function that quantifies the importance of ontology
concepts based on their contexts. In the next step, OAPT
determines how many of these important concepts should be
actually used as cluster heads, i.e., the most suitable number
of modules. This step adopts an information theoretic selec-
tion method. The proposed method considerably reduces the
required effort compared to the naive approach which sim-
ply tests all possible number of modules from one to the
number of concepts in the ontology. After settling on the
desirable number of modules, we apply the SeeCOnt algo-
rithm to assign the remaining concepts to the proper cluster
head, creating a set of disjoint partitions. Finally, we obtain
the set of output modules, by constructing a module for each
partition. In contrast to partitions, modules are not necessar-
ily disjoint: we allow for some concepts to be shared across
different modules in order to preserve the knowledge residing
in the original ontology. To validate the proposed approach,
we carried out an extensive set of experiments. We collected a
set of the ontologies from BioPortal.? These ontologies have
different characteristics and represent different domains. The
experimental results show that the proposed approach per-
forms well w.r.t. a set of criteria that validate the trade-off
between the modularization quality and the modularization
efficiency. A qualitative user evaluation confirms the useful-

3 http://bioportal.bioontology.org/.
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ness of the proposed approach but also shows some areas for
improvement.
To sum up, the main contributions of this work are:

— Introducing a set of quality criteria to investigate and
analyze the semantic and structural richness of ontologies
before reuse,

— Introducing a new seeding-based approach to partition
the selected ontology,

— Employing an information-theory-based method to rec-
ommend the desirable number of modules to partition the
ontology

— Developing and implementing a tool to analyze and mod-
ularize ontologies, called OAPT,

— Conducting a set of experiments to validate different
components of the tool.

The remainder of the paper is organized as follows: back-
ground and related work are presented in Sect. 2. Section 3
provides an overview of the proposed tool. Detailed descrip-
tions of different components of the tool are introduced in
Sect. 4. The performance of the proposed OAPT tool is inves-
tigated in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Background

This section is devoted to first present basic preliminaries that
are used throughout the paper, and then to introduce related
work.

2.1 Definitions

Definition 1 An ontology, O, is defined as a formal, explicit
specification of a shared conceptualization [22,59]. We
describe an ontology as a 6-tuple,denotedas O = {C, P, H ¢
HP A, I}. C and P are two disjoint sets of classes (con-
cepts) and properties, respectively. HC = {(C1, C2) €
C x C| Cy, Cy € C} represents the hierarchy of class sub-
sumption. Similarly, H ” is the hierarchy between properties.
Aisasetof axioms and / is a set of instances associated with
the set concepts C and properties P.

The set of properties includes two subsets: P is the built-
in properties, such as rdfs:domain and rdfs:range
and P, is the user-defined properties, i.e., P = P, U P,. A
signature S of an ontology O based on a description logic
L is the union of concepts, properties, and instances, i.e.,
S=CuPUI

In general, ontology modularization covers the problem of
identifying a fragment or a set of fragments of an ontology.
The process of identifying a fragment of an ontology given a
user input (request) is called ontology module extraction [17,
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48,491, while the process that partitions the ontology into a
set of fragments is called ontology partitioning [2,6,45]. In
this work, we distinguish between an ontology partition and
ontology module. We see the ontology partition as a subset
of the ontology concepts, (i.e., £ C), while the ontology
module can be defined as a reusable part of the ontology,
which is self-contained but bears a definite association with
other ontology modules, including the original ontology [12].
Formally, we define an ontology module M;(O) following
[17,19,32]:

Definition 2 A module M;(O) is a module of the ontology
O w.r.t. a description logic L, if for every axiom « over £
with S(a) € S, wehave M;(O) ma if O E «a.

An ontology module can be represented as a 6-tuple
M;(O) = {Cr;, Prm;, Hf/li, Hf/ti, Am;s I, ), where
Cm;, € C, Ppq; € P, etc. This definition implies that
any information that exists or can be entailed from the mod-
ule M;(O) should also exist or could be entailed from
the original ontology O. This enables reusing of ontology
modules either as they are or by enlarging them by adding
more concepts and relations. Therefore, each module can be
considered as an ontology by itself. To achieve this, each
ontology module should be self-contained, consistent, and
topic-centric [6,12,58].
To support dealing with different ontology formats, we
represent each ontology internally as a concept graph. We
define a concept graph as follows:

Definition 3 A concept graph G = (N, R, LAB) is defined
as a labeled directed graph, where

- N = {ny,na,...,n,} is a finite set of nodes presenting
the entities of the ontology, i.e., concepts, object proper-
ties, and instances.

- R = {r1,r,...,ry} stands for a finite set of directed
edges showing various relationships between entities in
an ontology O, such that ry € R represents a directed
relation between two adjacent entities, and

— LAB is a finite set of labels of graph nodes and graph
edges defining the features of each entity, such as the
names of concepts and the name of a relationship between
two entities.

To construct such a concept graph from the ontology, we
make use of a set of the rules similar to those rules in [27].

We define the ontology modularization process (partition-
ing) as follows: given an ontology O represented as a concept
graph G, partition concepts C of the graph into a set of mod-
ules M1, Ma, ..., My such that the cohesion of concepts in
each module is high (i.e., intra-module distance is low), while
the coupling between any pair of modules is low. To achieve
this goal, we make use of the following set of criteria, which

have been designed as a trade-off between the modulariza-
tion quality and the modularization efficiency [3,50]. The
first four criteria were originally introduced in [50], while
the last one was developed in our own previous work [3].

— Size. Given an ontology O which has been partitioned
into /C modules My, Ms, ..., M, the relative size of
any module pair M;, M ; should be within an acceptable
range, i.e., Ilff\\/l/l_;\ > €, where M; and M are the two
modules with the minimum and the maximum number of
concepts, respectively. The size of a module has a strong
influence on its maintainability and on the robustness of
the applications relying on it.

— Correctness. A module M; of an ontology O should
contain only the information that is present in O. This
means that any knowledge that can be inferred from M;,
should also be inferrable from O.

— Completeness. The generated set of modules should pre-
serve the original ontology, i.e., M UMpU....UM; =
(@]

— Connectedness. The original ontology is represented as
a concept graph, a module M; of an ontology O can
also be represented as an independent concept graph. The
connectedness of a module is then evaluated on the basis
of the number of edges it shares with other modules. That
means that a good module should have low inter-related
connections to other modules.

— Distance. Given an ontology O modularized into a set
of modules M1, M», ..., My, it is worth to measure
intra-module distance as well as inter-module distance.
The intra-module distance (module cohesion) is to quan-
tify how the concepts in a module move closer to each
other as an indication of the homogeneous structure of the
module. The inter-module distance (module coupling) is
to determine the number of modules that have to be con-
sidered to relate two entities.

2.2 Related Work

The proposed tool will address several aspects with respect to
ontologies. It first starts by analyzing candidate input ontolo-
gies in order to check their semantic and structural richness
for ontology reuse, then the chosen ontology will be modular-
ized into a set of modules, where the number of modules will
be recommended by an information-theory-based approach.
Along this line of thinking, the related work section covers
these aspects: ontology analysis, ontology modularization/
partitioning, and selection of an optimal number of modules.

2.2.1 Ontology Analysis

Ontology analysis is a well recognized and useful technique
to facilitate ontology understanding and then support ontol-
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ogy reuse. There are a number of efforts that apply different
criteria, addressing different features of ontologies, to extract
ontology summaries [34-36,46,47,54,60]. The OntoEnrich
web platform is used to analyze and detect ontology lex-
ical regularities which might help the detection of hidden
semantics. The platform provides a series of useful observa-
tions about the structure and content of the concepts’ labels,
which can be helpful for the study of the engineering of
the ontology and their axiomatic enrichment [46,47]. The
framework proposed in [36] first loads and parses the input
ontology and transforms it into a semantic derived model
(SDM). Furthermore, the framework analyzes and summa-
rizes the measurement entities, and an approach is developed
to collect and calculate these entities based on the semantic
derived model.

OntoMetrics is an ontology evaluation tool used to auto-
matically calculate a set of indicators that can be used
to assess ontology quality. Readability, adaptability, and
reusability are examples of these indicators [34]. The tool
defines five dimensions for description of metric-based ontol-
ogy evaluation: ontology scopes, ontology layers, ontology
life-cycle, ontology quality criteria, and ontology. Two exam-
ples are provided to illustrate the usage scenarios: ontology
design pattern and analysis of enterprise architecture lan-
guages and models [34]. OntoQA is another tool that is used
to analyze ontologies based on a set of metrics [60]. These
metrics emphasize key features of an ontology schema as well
as its population. The set of metrics covers both schema and
instance dimensions. Within each dimension, specific met-
rics have been proposed to evaluate the quality of an ontology
with respect to this dimension. Therefore, OntoQA can be
considered as a useful tool for ontology users before consid-
ering an ontology as a source of information. A recent study
is introduced to describe different use cases when select-
ing a unit ontology to a specific application [56]. The study
presents a different groups for these cases, such as data anno-
tation, conversion, and consistency checking.

While there are many approaches for ontology analysis,
each of them has been developed for a specific context and a
specific case study. To the best of our knowledge, no ontology
analysis tool for the ontology modularization context exists.
Therefore, we introduce an ontology analysis method that
can be used specifically in the context of ontology modular-
ization.

2.2.2 Ontology Modularization

Ontology modularization is a valuable solution to over-
come challenges of large ontologies such as maintainability,
reusability, complexity, and scalability. The modularization
process is motivated by the problem of dealing with complex
and large-scale ontologies by decomposing them into mod-
ules. Therefore, many ontology modularization approaches

@ Springer

have been proposed, and several prototypes have been devel-
oped [7,8,17,43,61,63]. These approaches can be classified
into two main categories: ontology module extraction and
ontology partitioning. In each category, either structure-
based or logic-based approaches can be used. The logic-
based approaches develop formal algorithms based on sound
logical foundations for module extraction that are correct
and complete [17-19,48]. The structure-based approaches
present simpler algorithms to modularize an ontology by
traversing the ontology hierarchy, and applying heuristic
rules to identify the set of sub-graphs [7,12,53].

Several approaches aim at ontology modularization with
the goal of partitioning ontologies into a set of modules.
SWOOP is an web-based OWL ontology browser and edi-
tor [29]. The tool offers a set of different ontology operations,
such as OWL validation, various OWL representation syn-
tax views, and ontology partitioning. It partitions an ontology
into a set of modules connected by € — connections [21]. It
aims at preserving the completeness of local reasoning within
all created modules. This requirement is supposed to make
the approach suitable for supporting selective use and reuse
since every module can be exploited independently of the
others. ModOnt is a modularization tool proposed based on
a graph/hierarchy traversal approach [12]. The tool inherits
some of the main principles from object-oriented software
engineering, such as encapsulation and information hiding.
The PATO tool is a tool used to partition large ontologies
into smaller modules based on the structure of the class
hierarchy [51]. The approach has three main steps: first, it
creates a dependency graph corresponding to the subclass
hierarchy; it then measures the strength of these dependen-
cies; and finally, it determines modules. Aquin et.al. [11]
propose an ontology modularization framework based also
on graph transformation. A recent survey aims to identify
and locate dimensions of modules, experimentally evaluate
and characterize 189 existing modules, and create a frame-
work for modularity based on these results [31]. The work in
[62] introduces large-scale investigation into decomposabil-
ity and modular aspects of the NCBO BioPortal ontologies
and demonstrates that most of them can be split into small
logically coherent parts, called atoms.

Extracting a module by a logic-based approach was pro-
posed by Grau et.al. The authors propose a definition of a
module that guarantees to completely capture the meaning of
a given set of terms, i.e., to include all axioms relevant to the
meaning of these terms, and study the problem of extracting
minimal modules [17,19]. They use two approximations: the
first approximation is semantic and can be computed using
existing DL reasoners; the second is syntactic.

Our modularization approach is a partitioning-based
approach, however, it differs from the current approaches in
the following: we analyze input ontologies before modular-
izing in order to extract some useful facts that help understand
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the behavior of the partitioning process. Furthermore, it is a
seeding-based approach, which supports modularization of
very large ontologies, and we recommend the optimal num-
ber of modules that an ontology should be partitioned into.

2.2.3 K-selection

It is obvious that the number of modules, K, plays a crucial
role in ontology partitioning and affects the performance of
ontology modularization. In general, the number of mod-
ules (partitions) is an unknown parameter which needs to
be either specified by users based on their prior knowledge
or estimated by the program. Since partitioning shows sim-
ilarities to clustering, it is worthwhile to have look at how
clustering approaches determine the number of clusters. A
variety of methods have been proposed to estimate the num-
ber of clusters [33,38,44,65]. In the following, we present a
summary of these methods.

— Values of K specified by the user. Many data mining and
data analysis softwares require the number of partitions to
be specified by the user. To find a satisfactory clustering
result, usually, a number of iterations are needed where
the user executes the algorithm with different values of
K.

— Values of K specified within a range. The performance
of a clustering algorithm may be affected by the chosen
value of /C. Therefore, instead of using a single predefined
KC, a set of values might be adopted.

— Values of K determined by statistical methods. There
are several statistical measures available for selecting /C.
These measures are often applied in combination with
probabilistic clustering approaches. They are calculated
with certain assumptions about the underlying distribu-
tion of the data. The Bayesian information criterion (BIC)
or Akaike information criterion (AIC) is calculated on
data sets which are constructed by a set of Gaussian dis-
tributions [28].

— Values of KC determined through visualization. Visual ver-
ification is applied widely because of its simplicity and
explanation possibilities. Visual examples are often used
to illustrate the drawbacks of an algorithm or to present
the expected clustering results [65].

— Values of K determined in a later process. When K-means
clustering is used as a preprocessing tool, the number of
clusters is determined by the specific requirements of the
main processing algorithm [65].

In the proposed framework, we provide two different pos-
sibilities depending on the user experience. First, if the user
has sufficient experience with the input ontology, she can
specify the number of modules, otherwise, she can ask the
tool to recommend a suitable number of modules.

3 The Proposed Approach: An Overview

The main objective of the proposed framework is to partition
a given ontology into a set of modules after investigating
whether this ontology is worthy to be reused. To achieve
this objective, we developed and implemented an ontology
analysis and partitioning tool, (OAPT), consisting of a set of
components, as shown in Fig. 1. In this section, we give an
overview about these components and their functionalities,
while we provide more technical details about them in the
next section.

3.1 Preprocessing Component

The main goal of this component is to allow the proposed
approach be able to cope with ontologies represented in
different formats and languages. To this end, each input ontol-
ogy is checked to identify its format, and a format conversion
is applied when necessary. After that, input ontologies are
parsed and then represented internally as concepts graphs.

3.2 Analysis Component

After aninput ontology is parsed and represented as a concept
graph, the OAPT tool analyzes the candidate ontology based
on a predefined set of criteria. There are two main objectives
behind using this analysis component: the first is to direct our
proposed partitioning algorithm to be adaptive based on the
internal characteristics of the input ontology, and the second
is to extract some facts from ontology analysis to be able to
understand the behavior of ontology partitioning. To this end,
we first promote collecting relevant information that can be
used to validate and evaluate the quality of ontologies. As it
is known that the way an ontology is engineered is largely
based on the domain in which it is designed and modeled,
the ontology design and its potential to represent knowledge
should be examined [60]. To cover these different aspects, we
classify required relevant information for analysis into three
categories: structural, semantic, and syntactic. For each cat-
egory, we propose a richness metric to calculate the ontology
richness with respect to this dimension. Finally, we use the
total ontology richness as a metric for its quality. To this end,
we make use of ontology design metric, as an indicator for
the structural dimension, knowledge-base metric and class
metric for the semantic and syntactic metrics as follows:

— Design metric This dimension describes the topology of
the concept hierarchy of an ontology. It includes several
criteria, such as relationship, attribute, depth richness.
The relation richness, RR, reflects the variability in
types of relations and placement of relations in the ontol-
ogy. An ontology that contains numerous relation types
other than class—subclass (is-a) relations is richer than

@ Springer
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Fig.1 Proposed tool architecture

a taxonomy with just class—subclass relations. The rela-
tion richness (RR) can be defined as: RR(O) = IRl\gCI s
where R = HC U H” is the set of all relationships in
the ontology, and |H C| is the number of subclass (is-a)
relations. The value of the relation richness criterion is
normalized between O and 1, where the value of 0 means
that the ontology contains only subclass relationships.
Another criterion that can be used to evaluate the struc-
tural richness of an ontology is the connection richness,
ConnR. It indicates the number of connected compo-
nents of the concept graph, i.e., the number of trees.
The root classes show the disconnected components, so
for calculating ConnR, we determine the number of root
classes. ConnR(O) = m This metric can
help if “islands” form in the knowledge based as a result
of extracting data from separate sources that do not have
common knowledge. The total design metric richness
(DMR) is the combination (weighted sum) of these rich-
ness metrics.

Knowledge-base metric This dimension describes the
semantics and the content information of the ontology.
We make use of several metrics: class richness, aver-
age population, and readability [60]. The class richness,
CR, is an instance-based criterion used to reflect how
instances in an ontology are distributed across classes.
The class richness for an ontology O can be defined as

@ Springer

follows: CR(O) = % where |C!| is the number of
classes having instances. Another criterion that is impor-
tant during the evaluation of the semantic richness of an
ontology is the descriptivity richness, (DR). This mea-
sure indicates the level of detail in the representation of
the knowledge provided by the ontology. The descrip-
tivity of an ontology can be defined as the number of
concepts that have comments and/or labels. It can be
defined as: DR(O) = % where |C’| is the number
of concepts having comments and/or labels. The total
knowledge-base metric richness (KMR) is the combi-
nation of these richness metrics.

— Class metric This dimension is used to reflect the rela-
tive importance of each concept in the ontology. To this
end, we consider the context of a concept by including its
superclasses, subclasses, and siblings. This metric is an
important analysis metric depicting the concept sparse-
ness in the ontology. This indicator can be used to select a
suitable graph traversal algorithm during the partitioning
process.

Given these three dimensions, we combine them to get the
total richness of an ontology using a simple weighted-sum
approach. Therefore, the ontology richness (OR) criterion
can be defined as follows:
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OR(O) = wi x DMR(O) 4+ wy x KMR(O)
+w3 x CMR(O) (M

where DM R(O), KM R(O), and CMR(O) are the total
design, knowledge-base, and class richness of the ontol-
ogy (0), respectively. wi, wy, w3 are weights reflecting the
importance of each of richness metric, such that Z?:l w; =
1. The normalized score is then listed for the user to decide
to partition the ontology or look for another one.

Algorithm 1 Ontology modularization algorithm

Require: An ontology O,

Ensure: A set of module, M(O) = {M, M», ..., M}
{// Phase 1: Preprocessing }

I: M(0O) < 0;

2: CG < build_ConceptGraph(O);
{// Phase 2: Concept Ranking}

3: for ¢; € Cdo
4:  Score.li] < Ranker(c;);
5: end for
{// Phase 3: Optimal number of modules determination }
6: CH(= {CHy,CHa, ...,CH}) &=

deteremine_Optimal_No._Modules(CG, Score.[]);
{//Phase 4: Partitioning }
7: initialize a partition with each C’H node;
8: add direct concepts of C’H to each corresponding partition;
9: for non — clustered c; € C do
10: max_sim < 0;
11:  for CH; € CH do

12: sim;j <= MemFun(c;,CH;);
13: if sim;; > max_sim then
14: max_sim <= sim;j;

15: concept_place < j;

16: end if

17:  end for

18:  Clust.put(C;,CH;)

19: end for{//Phase 5: Module Generation }
20: fori € {1,2,...K} do

21:  M; < Module_generate(Clust.get(i))
22: M(O).put(M,)

23: end for

3.3 Modularization and Determination of Optimal
Number of Modules Components

Once an ontology is investigated, the next step is to split
the concepts C of the concept graph G into a set of disjoint
partitions, and then generate a set of separate ( possibly over-
lapping) modules M, M, ..., My such that the cohesion
of concepts in one module is high, while the coupling of
any two modules is low. To this end, we develop a seeding-
based partitioning algorithm. The outline of the algorithm is
described in the following, as shown in Algorithm 1. In the
next section, we present a detailed description of the parti-
tioning component.

e Ranking the concepts The partitioning algorithm starts
by selecting a set of nodes distinguished as important
nodes, some of them are then elected to be cluster heads,
C’H. In order to identify a node as an important one, we
quantify its role in the concept graph. To this end, we
introduce a new rank function, called Ranker, (Algorithm
1 lines 3-5). This function should be as simple as pos-
sible but effective, i.e., computing the Ranker function
should not consume much time, but still correctly rank
the concepts inside an ontology.

e Determining cluster heads Once having computed the
importance of the concepts of a concept graph, the next
step is to select which concepts represent cluster heads,
C’H. We have to cope with two questions: how many clus-
ter heads should we select? and which cluster heads? If
simply the nodes with the highest score were accepted as
the cluster heads, the distribution of cluster heads across
the concept graph would be disregarded. To avoid this
problem, the distance between two cluster heads is mea-
sured, and among the highest scored nodes, those with
at least a minimum distance of D from each other are
selected as the cluster heads. Furthermore, to estimate the
optimal number of modules (cluster heads), we deploy an
information theory-based approach to recommend this
number, (Algorithm 1, line 6).

e Partitioning The seed-based algorithm initiates one par-
tition for each cluster head. Then, it places direct children
in the corresponding cluster, and finally, for the remaining
(non-clustered) nodes, we develop a membership func-
tion to assign remaining nodes to their fitting partition.
The direct placement of children reduces the time com-
plexity, since it reduces the number of comparisons by
avoiding to compute the membership function for all con-
cepts, (Algorithm 1, lines 7 — 19).

e Generating Modules Once we have obtained the set of
disjoint partitions (clusters), the following step is to gen-
erate a module for each partition preserving the required
intra-relationships between concepts in the same parti-
tion as well as inter-links between concepts from different
partitions, (Algorithm 1, lines 20 — 23).

In the following section, we provide more details on the ontol-
ogy partitioning steps.

3.4 Evaluation Component

We need to evaluate and quantify the modularization process
to make sure that the modularization solution meets the set of
requirements. In general, the quality of an ontology (module)
can be defined as the degree of conformance to functional and
non-functional requirements [13,30]. This degree should be
measurable. Current studies of the evaluation of modular-
ization approaches focus on modularization algorithms and
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the evaluation of the taxonomical structure of a created mod-
ule [41]. According to [14], ontology evaluation determines
the quality and adequacy of an ontology for reuse in a specific
context for a specific goal.

To this end, in this paper, we make use of our ontol-
ogy modularization evaluation metrics that can be used to
assess the goodness of ontology modules [3]. To make this
paper self-contained, we present some details about these
metrics. In particular, we propose the module homogeneity
(H O M O) as ametric of the internal characteristics of the set
of concepts within the module, and the module heterogene-
ity (H EM O) as an assessment of interdependency between
ontology modules.

4 SeeCOnt: The Ontology Partitioning
Approach

In this section, we present technical details of the seed-based
partitioning approach, called SeeCOnt. As shown in Fig.
1, SeeCOnt consists mainly of two components: the mod-
ularization component, and the optimal number of modules
component. As mentioned, input ontologies are parsed and
represented internally as concept graphs. We quantify the
importance of graph concepts by introducing a new rank
function exploiting the concept graph features. The number
of cluster heads (C’H) is to be determined using the opti-
mal number determination component. Finally, we assign the
remaining graph concepts to their corresponding partitions
(clusters) according to a proposed membership function. The
outline of the SeeCOnt approach is shown in Algorithm 1
lines 5-23. In the following sections, we portray the descrip-
tion of each phase of the algorithm. To demonstrate the steps
and procedure of the proposed approach, we use the cmt
ontology” illustrated in Figs. 2 and 3, where Fig. 2 represents
the tree structure of the ontology (only the is-A relationships),
while Fig. 3 represents the concept graph of the ontology. We
select this ontology as an example for demonstration since it
represents a very common domain (the conference domain),
which will be easy to understand without the need for help
from a domain expert. Furthermore, the cmt ontology has
29 concepts, but it has a quite enough number of relations
(59 beside is-relations), which supports the description of the
proposed approach.

4.1 Concepts Ranking

The partitioning algorithm starts by selecting a set of impor-
tant nodes. Among them, a set of cluster heads, CH, is
identified. To this end, we developed the Ranker function.

4 an ontology from the conference track of OAEI (https://oaei.

ontologymatching.org/).
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Fig.2 Tree representation of “cmt”

The initial version of this function was based on the central-
ity measure of the concept. This centrality measure, derived
from social network analysis [15], considers different aspects
of centrality, such as degree, closeness, betweeness, and
stress. Given that our problem is to deal with large-scale
ontologies, despite its effectiveness, the centrality-based
ranking function needs much time to rank the graph con-
cepts.” Therefore, we propose a new ranking function, which
accounts for the context of the concept.

Concept context Given a concept graph G = (C, R,

LAB), the context set of a concept ¢; € C is the set of sur-
rounding concepts to a specific level d. The context includes
the set of sub- and superclasses of ¢; up to a level d. We also
consider the set of properties a concept is involved in i.e.,

5 Interested readers can access our previous work [1].
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Contx(ci,d) = {SubClass(ci,d)U SuperClass(ci,d) U
propSet(c;)}, where SubClass(c;, d) and SuperClass(c;,
d) are the subclasses and superclasses of ¢; within d hier-
archical levels, respectively, and propSet(c;) is the set of
properties belonging to ¢;. It is evident that the importance
of a concept increases as it has a larger number of the entities
in Contx(c;, d). In the current implementation, the value of
the level d is determined based on the outcome of the analysis
component.

Furthermore, in order to exploit more information a con-
cept may have, we add the list of properties the concept
has as well as other kinds of relations that connect the
concept to other concepts. For example, the context of
the concept “Paper” is the set of its superclasses Doc-
ument, subclasses {PaperAbstract, PaperFullVersion}, its
data properties {paperID, title}, and its object properties,
such as {acceptPaper, acceptedBy, readPaper; rejectPaper,
rejectedBy, hasAuthor, writePaper,...}. We can formulate the
importance of a concept as follows:

Import(c;) = w1 x |SubClass(c;, d)|
+ wy x |SuperClass(c;, d)|

+ w3 x |propSet(c;)| + wqg X No_oth_rel
(2

Meta-Review

unsignedLong
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Meta-Revie

eadByMsgareviewsr
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sSubjectarea
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AuthorNotReviewer

ceeptsHardeopySubmissions

© praference
boolzan

where |SubClass(c;, d)]|, |SuperClass(ci, d)|,
|propSet(ci)|, and No_oth_rel are the number of sub-
classes, the number of superclasses, the number of properties,
and the number of other relations (e.g., equivalent) the con-
cept ¢; has to a level d. The weighting scheme is determined
based on the results of the analysis phase, where >/, w; =
1. Based on the computed importance value for each concept,
we rank graph concepts.

Example 1 Applying the concept ranking method to the cmt
ontology represented in Figs. 2 and 3 using a hierarchical
distance d = 2, we get the result as shown in Table 1.

Table 1 shows that the Person concept is the most
important concept using either tree-based or concept graph
representation. However, the table gives two different rank-
ings based on the type of information exploited during the
ranking process. The table indicates that including more con-
text results in better concept ranking. For example, the Paper
concept does not appear when using the tree-based repre-
sentation, while it has the second position when using the
concept graph representation.

4.2 Model Selection and Clusters Head
Determination

Once ranking the concepts, the next step is to decide how
many concepts should be selected to constitute the cluster
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Table 1 Top-5 concepts

Position Using tree Using concept graph
representation (w1 =0.3, 0y =
(w1 = 0.6,y = 0.3, w3 =0.3, w4 =
0.4, w3 = w4 =0) 0.1)

Ist Person Person

2nd ConferenceMember Paper

3rd User Reviewer

4th Document ConferenceMember

5th Author Author

heads (number of modules). Determining the proper num-
ber of modules for a given ontology is a really challenging
problem due to the subjective nature of deciding what com-
plements the correct partitioning. It can be considered as a
trial-and-error process. Therefore, instead of using a single
predefined number, /C, a set of values can be used. This set
of values should satisfy some trade-off characteristics. First,
it should be large enough to reflect a wide range of features
of the input ontology. At the same time, it should be small
enough to not consume much time and resources. To this
end, we propose an information theoretical model to cope
with these challenges. The proposed method makes use of the
Bayesian information criterion (BIC) to estimate the optimal
model. Here and within the context of ontology modulariza-
tion, by a model, we mean the modularization output (the
set I of modules). Changing the value of I, we get a new
model. A optimal model is the modularization output with
the optimal number of modules.

To achieve this goal, first, we estimate lower and upper
bounds to reduce the search space of the optimization pro-
cess. Then, we exploit BIC to evaluate the quality of each
model generated from each iteration by introducing a new
cost function based on the modules’ properties.

4.2.1 Estimating the Interval

The search space of the optimization problem extends from
a single cluster head to the size of the graph (the number
of concepts). To reduce this search space, we propose an
estimation for a range of values based on the characteristics
of the concept graph, called the boundary interval. This range
of values extends between a lower bound (£53) and an upper
bound (U B). To achieve this goal, we introduce a definition
for point-wise, (PVV) that captures information about the
size of the graph as well as the hierarchy of concepts inside
the ontology, as defined below.

PW =log(IC|) x AVD 3)

@ Springer

where |C| is the number of concepts in the ontology O and
AVD isthe average hierarchical distance of the concepts. The
motivation behind using this formula is to combine some sta-
tistical information about the ontology such as the number
of the concepts as well as structural information like the con-
cept hierarchy. To compute the average hierarchical distance
AVD, we use the following formula that sums the concept
hierarchy w.r.t. the total number of the concepts within the
concept graph.

IC|
1
AVD = ﬁ X Z Path_length(c;) “)
i=1

where Path_length(c;)is the path length extending between
the concept ¢; and the root concept of the graph. After defin-
ing the point-wise PV, we formulate the boundaries (LB
and U B) as follows:

LB=PW-—x
UB=PW+21 &)

while A is an integer value added to give the proposed
approach more flexibility during the boundaries estimation.
The selection of X is subjected to two trading-off factors. If
we set larger values to it that means we cover a wide range
of models, however, it will take much time to settle on a suit-
able model and vice versa. To this end, we set the values of
A between 5 and 10 (i.e., 5 < A < 10) depending on the
number of concepts. If LB < 0, we set it to 1 (as minimal
number), while if /B > |C|, we set it to |C].

4.2.2 Model Selection

The next step is how to select the optimal model that rep-
resents the modularization output, i.e., how many modules
should be generated by the partitioning process? To cope
with this problem, we develop an information theoretic
approach that makes use of the Bayesian information cri-
terion (BIC) [55]. BIC is used to score individual models,
and the model with the minimum BIC value can be chosen
as the optimal model. A general description of the proposed
approach is depicted in Algorithm 2.

The algorithm accepts an ontology O to determine the
optimal model that represents the modularization output.
First, it identifies the boundaries for the model selection pro-
cess by estimating the lower and upper bounds £5 and U B,
Algorithm 2 (linel). It initializes K with the lower bound
value. The algorithm then iterates till K reaches the upper
bound value, (lines 3 — 8). In each iteration, we apply the
SeeCOnt algorithm to get a candidate model, (l/ine 4). This
candidate model is then evaluated using BIC and the model
with the minimum BIC value is recorded, (lines 5 and 6).
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Algorithm 2 Optimal module numbers selection

Require: An Ontology, O

Ensure: Optimal number of modules, K

1: LB&UB <= get LU_B(O);

2: K < LB;

3: while X < UB do

4 apply_SeeCOnt(K);

5 BICy < computeBIC(Model_K);
6:  keep_minimum(BICg)
7

8:

K<K+1;
end while

4.2.3 Computing BIC

The problem of model selection can be stated as follows:
Let O be an ontology with n concepts. Based on the ontol-
ogy characteristics, we get the value of the lower bound L3
and the upper bound /5. Applying the SeeCOnt partitioning
algorithm on the given ontology generates a set of models,
MODg3, MODrpy1,....MODy, ..., M O Dyp. The aris-
ing question now is which model should be selected as the
output of the modularization process. By a model M O D;;,
we mean the set of modules generated from the partitioning
process at specific run i, such that LB < i < UB. To settle
on a precise model, we need to evaluate the quality of all can-
didate models. To this end, we make use of the BIC criterion
as an evaluation metric for the model selection [52].

BIC is an approximation to Bayesian statistics and evi-
dence [42]. It is precisely the quantity which updates the
prior model probability to the posterior model probability.
The Bayesian evidence, also known as the model likelihood,
comes from the full implementation of Bayesian inference
at the model level, which is very hard to calculate. There-
fore, BIC as an approximation of the evidence that could be
used, which is simpler but effective. It has been subsequently
applied to the model selection problem, and we adopt it to
the ontology modularization problem.

The BIC was introduced by Schwartz [52] and can be
defined as:

BIC(MOD;) = |C| x In(Lmax) + K x In(|C]) (©6)

where |C| is the number of ontology concepts, K is the num-
ber of modules, and L.« is the maximum likelihood (ML)
achieved by the model. We adopt the ML estimation since
it has many elegant features. Among them are: sufficiency
(complete information about the parameter of interest con-
tained in its ML estimator); and efficiency (lowest-possible
variance of parameter estimates) [37,39]. The problem can
be stated as: given a set of observed data (set of concepts)
and a model of interest (the set of modules) find a probability
distribution function that is most likely to have produced the
data. Under the assumption that when sets of observations
are independent of one another and are normally distributed,

then maximizing the log-likelihood function is equivalent to
minimizing the sum of square errors (SSE) [39]. Therefore,
and since it is more simpler to compute in the context of
ontology modularization, we make use of the SSE to repre-
sent the maximum likelihood for the ontology.

Given a model M O D; containing I of modules M;i,
M;, ..., M;x such that each module has a cluster head (CH).
We can consider the cluster head of each module as the cen-
tral point of the module. In order to preserve the property that
each module should contain the set of concepts with the min-
imum distance between them, we define the sum of square
errors, SSE, for the model MOD; as follows:

IC no_size
SSE(MOD) =»" > dist(CH;.c)) @)

i=1 j=1

where no_size is the number of concepts inside the mod-
ule M;;, K is the number of modules inside this model, and
dist(CH;, c;) is the length of the minimal path between CH;
and c;. The reason behind the selection of this function is to
reflect one of the criteria mentioned in Sect. 2 (distance) to
ensure that an optimal partition is the partition where the set
of its concepts having zero distance between each and the
cluster head (CH) of the partition.

4.2.4 Cluster Heads Selection

Once we obtain the optimal number of modules that an
ontology can be partitioned into using the model selection
component, the next step is to select the cluster heads among
the set of ranked concepts. In order to have a good distribu-
tion of cluster heads over the concept graph, we should select
concepts that are of distance D from each other. For exam-
ple, assume that the optimal number of modules for the cm¢
ontology shown in Figs. 2 and 3 is 3.° Investigating the list of
ranked concepts (see Table 1, the first concept (Person) will
be directly selected as a cluster head. Then, we can select the
second concept (Paper) as the next cluster head since it has
no common parents/children with the already selected clus-
ter heads. However, we do not choose the last cluster head
from the remaining concepts in the list of Table 1 since all
of them are direct children of the Person concept. We then
follow the same procedure to select the Review concept as
the third cluster head.

4.3 Finalizing Partitioning
Atfirst, the SeeCOnt algorithm initiates one partition for each

cluster head. Then, it places direct children in the correspond-
ing cluster and finally, for remaining nodes, a membership

6 Actually the optimal number of modules for this ontology is 1, but
we assume it 3 to use it during the explanation of the algorithm.
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Table2 Cluster after direct

. 1st partition
partitioning

2nd partition 3rd partition

Person (CH)
ExternalReviewer
ProgramCommitteeMember
ConferenceMember
Chairman

User

Paper (CH>) Review (CH3)
PaperFull Version Meta-Review
PaperAbstract

function is used to determine the fitting partition of each
node. In general, clustering is done through the following
three steps:

— Seeding Creating a partition for each cluster head, Algo-
rithm 1,(line 7).

— Direct Spread Assigning direct children of each cluster
head to the corresponding partition, Algorithm 1, (line 8).
By direct children, we mean that there is 1s-A relation-
ship between a cluster head and the concept. For example,
as shown in Fig. 2, the cluster head Paper has two direct
children PaperFullVersion and PaperAbstract that can be
assigned directly to this partition as shown in Table 2.

— Indirect Spread Calling a membership function for the
remaining nodes, Algorithm 1, (lines 9-18).

Indeed, the direct spread step reduces the time complexity
since the number of comparisons will be reduced as well as
applying the membership function for all nodes. The result
of applying the first two steps is presented in Table 2.

4.3.1 Membership Function

Once determining cluster heads (CH) and assigning direct
children to their proper heads, the next step is to place remain-
ing concepts into their fitting partitions. To this end, we
develop a membership function, MemFun, where each con-
cept is associated with a flag, 7, such that if the F of concept
c is false, it means c is not assigned to any partition yet and
thus, the membership function is called for the concept c.
In addition, the F flag can only be set once, i.e., each con-
cept can be placed in only one cluster so that no overlap is
observed in clusters. The membership function determines
in which partition a concept ¢; € C should be placed. For
this, the similarity of ¢; with all C’Hs is calculated and then
¢; is placed in a cluster with the maximum similarity value.
Using the proposed membership function, each concept is
compared with cluster heads (CHs), instead of comparing
with all concepts like in [4,27], which also reduces the com-
plexity of comparison.

In order to measure the membership of a concept to a
cluster head, a linear weighted combination of the following

@ Springer

structural and semantic similarity measures is calculated as
in the following equation:

MemFun(c;,CHy) =8 x SNSim(c;, CHy)
+ (1 —=38) x SemSim(c;,CHr) (8)

where § is constant between 0 and 1 to reflect the importance
of each similarity measure, ShareNeighbors(SN Sim) and
semantic similarity (SemSim) are two similarity measures
that quantify the structural properties of the concept c;,
respectively.

4.3.2 Shared Neighbors

This measure considers the number of shared neighbors
between ¢; and CHj. The shared neighbor measure plays
an important role in structural similarity, because similar
concepts have similar neighbors [5,27]. The neighbors of
a concept are the concept’s children, concept’s parents, con-
cept’s siblings, and the concept itself. In our implementation,
we determine the neighbors of the concept ¢; and the neigh-
bors of the cluster head CHy, then determine how many
concepts are common between these two sets.

[ISN¢; N SNep, |

SNSim(ci, CHy) = o 2CH!
im(ci, CHr) |SN., USNcr, |

€))

where SN, and S§N¢y, are the neighbor sets of the concept
¢; and the cluster head C'Hy, respectively.

4.3.3 Hierarchical Semantic Similarity

It is evident that a higher semantic similarity implies a
stronger semantic connection, so we calculate the semantic
similarities between the concept ¢; and the cluster head CH.
The most classic semantic similarity calculation is based on
the concept hierarchy by identifying their lowest common
ancestor [64]. To this end, for each concept, we extract local
names of its surrounding (children, parents, and siblings) and
make use of the I-sub similarity measure [57] to compute the
semantic similarity between the concept ¢; and the cluster
head C’Hy. The hierarchy semantic similarity between ¢; and
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CHj, can be defined as below:

SemSim(c;, CHy) = Comm(c;, CHy) — Diff(ci, CHy)
+ winkler(c;, CHy) (10)

where Comm(c;, CHy), stands for the commonality between
¢i and CHy, Diff(ci,CHy) for the difference, and
winkler(c;, CHy) for the improvement of the result using the
method introduced by Winkler. It should be that this similar-
ity measure considers the commonalities of the two concepts
as well as their differences during computing the similarity
value.

During the partitioning phase, we consider the following
points:

— The role of the analysis phase; After analyzing the can-
didate ontology, we get a set of metrics that describe
the ontology. We make use of some of these metrics to
adapt the partitioning process. For example, if the relation
richness (RR) of the ontology is higher than a predefined
value (in our implementation 0.1), then we should invest
much time considering other kinds of relations than is-
A during the computation of membership function. This
explains why the concept Reviewer is assigned to the
third partition not to the first one, as shown in Table 3.

— The second point that we should consider during the indi-
rect assignment is the size of a cluster. Based on the
criteria mentioned in Sect. 2, the set of resulting clus-
ters should have a comparable size. For that, we have to
trade-off between the quality of clustering solution and
the cluster size. If we aim to have high quality solution, we
do not need to set any constraint on the cluster size. But,
in this case, different clusters will have un-comparable
sizes. On the other hand, to have such clusters with com-
parable size, we have to set a condition on each cluster
size. For example, the concept ConferenceChair is closer
to the cluster head Person than the cluster head Paper, but
since we are applying the cluster size limit, then the con-
cept ConferenceChair is assigned to the second partition
not to the first one, as shown in Table 3.

— Equal similarity values; when computing the similarity
between a concept and the given set of cluster heads, it
happens that two or more cluster heads have equal sim-
ilarity values to the same concept. In that case, a more
sophisticated similarity measure is used to resolve this
equal value issue.

4.4 Generating Modules

Once we have the set of disjoint partitions, each contains a
set of concepts as shown in Table 3, the next step is to con-
struct a set of consistent modules corresponding to the set

of partitions in the presence of the original ontology. Each
module should represent a stand-alone ontology, which can
be later re-used. To this end, we reconstruct each module to
preserve the full knowledge from the original ontology. Dur-
ing the construction process, we keep inter-module links to
be able to reconstruct the original ontology, given the output
set of modules, as shown in Fig. 4. The figure shows that this
module contains the set of concepts from the correspond-
ing partition, Review, MetaReview, Reviewer, MetaReviewer
as well as another set of concepts, which are necessary to
constitute a consistent and self-contained ontology.

5 Evaluation

In order to evaluate our proposed system, we looked at two
different aspects: First, we ran a number of experiments using
aset of ontologies with different characteristics and measured
a number of performance metrics. This part of the evalua-
tion shows that our approach is sufficiently efficient to be
of use and that the metrics we define are indeed achieved.
Second, we performed a user survey to evaluate whether the
method delivers a partitioning that meets user expectation
that is whether the metrics we defined to indeed result in
meaningful partitions from a user perspective. This evalu-
ation is thus focused on the effectiveness of the approach.
To evaluate the performance of the proposed approach, we
conducted a set of experiments utilizing a set of ontologies.
We ran all our experiments on a 3.4GHz Intel (R) Core i7
processor with 16GB RAM running Windows 7. The pro-
posed approach has been developed and implemented in
Java. The tool implementation is currently available through
GitHub under the following link (https://github.com/fusion-
jena/OAPT). In the following evaluation, we aim to validate
the quality of the OAPT components, particularly, the anal-
ysis component and the modularization component.

5.1 Dataset

We validated the proposed approach using several ontolo-
gies (33 ontologies) collected from different domains, (such
as biological, medical, health, environmental, and generic
domains) and having different characteristics, as shown in
Table 4. Some of these ontologies and their characteristics
have been collected from BioPortal” and some others have
been collected from the ontology matching evaluation.®

7 https://bioportal.bioontology.org/.
8 https://oaei.ontologymatching.org/.

@ Springer


https://github.com/ fusion-jena/OAPT
https://github.com/ fusion-jena/OAPT
https://bioportal.bioontology.org/
https://oaei.ontologymatching.org/

66

A. Algergawy et al.

Table 3 Cluster after final
partitioning

Step 1st partition 2nd partition 3rd partition
Initial Person (CHy) Paper (CH3) Review (CH3)
Direct ExternalReviewer PaperFullVersion Meta-Review
ProgramCommitteeMember PaperAbstract
ConferenceMember
Chairman
User
Indirect Conference Bid Reviewer
ProgramCommittee Decision Meta-Reviewer
ConferenceMember Document
Preference Rejection
Administrator Acceptance
AuthorNotReviewer AssociatedChair
Author ConferenceChair
Co-author SubjectArea

ProgramCommittee Chair

| %/ Graph

Graph

@ Thing

Administrator
assignedByAdministrator

assignExternalReviewer
Meta-Reviewer

Meta-Review

ExternalReviewer

Fig.4 Module_3 of “cmt”
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Table4 Ontology data set

Ontology Domain No. class Ontology Domain No. class
ADO Medical (Alzheimers 1564 AIDSClinic Medical 159
disease ontology)
ASDPTO Phenotype(Autism 284 Asthma Health 209
Spectrum Disorder
Phenotype Ontology)
BCO Biological Collections 126 BFO Basic (Basic Formal 35
Ontology Ontology)
BHN Health (Biologie Hors 2534 BMT Medical (Biomedical 252
Nomenclature) Topics)
BP Biological (BioPAX 68 CBO biological (Cell 241
Ontology of Behavior Ontology)
Biological Pathways)
CCON Plant (Cerrado concepts 85 CHEBI Chemical Entities of 45,436
and plant community Biological Interest
dynamics) Ontology
CMT conference 40 CN Computer Network 537
Conference conference 92 ENVO Biodiversity 6191
(Environment
Ontology)
EOL Environment Ontology 648 EPILONT Biomedical (Epilepsy 137
for Livestock Ontology)
FLOPO Plant (Flora Phenotype 26,866 GFO-basic General (General 44
Ontology) Formal Ontology)
GFO-bio Organisms, Anatomy 166 mouse_anatomy Anatomy 2743
NCI_anatomy Anatomy 3304 OBOE-sbc Observation (Extensible 630
Observation
Ontology)
Ontobio Biodiversity 188 OntoDM Data mining 1501 (unnamed classes)
(Biodiversity
Ontology)
PATO Phenotype (Phenotypic 2603 PL philosophical 377
Quality Ontology)
PW Biological (Pathway 1852 ROO Health (Radiation 1182
Ontology) Oncology Ontology)
SBO Biology ( Systems 640 TOK Terminological and 192
Biology Ontology) Ontological
Knowledge Resources
Ontology
Travel Travel 34 Travel Travel 34

5.2 Experimental Results

The main focus of the OAPT tool is to analyze and partition
ontologies, thus, we demonstrate the effectiveness of the tool
w.r.t. each component first and then discuss the overall per-
formance of the tool.

5.2.1 Ontology Analysis

To validate the performance of the ontology analysis compo-
nent, we conducted a set of experiments utilizing the set of
ontologies listed in Table 4. We first extracted ontology basic

metrics for each ontology, and we then computed the ontol-
ogy richness based on these metrics. The results are reported
in Tables ? 5 and 6.

Table 5 illustrates a set of basic ontology metrics, such
as the number of ontology named classes (No. class), the
number of total classes (No. of total class), the number of
object and data properties (No. of object prop., No. of data
prop.), etc. as well as the time needed to extract these metrics
and carrying out the ontology analysis. The table shows that
there are few ontologies without blank nodes, i.e., the num-

9 We get these metrics without applying any reasoner
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Table 6 Ontology analysis metrics
Ontology w.r.t. named classes w.r.t. total classes

Design metric KB metric class metric richness Design metric KB metric class metric richness
AIDSClinic 0.4 0.33 0.54 0.42 0.4 0.03 0.01 0.15
ADO 0.4 0.33 0.27 0.33 0.4 0.33 0.34 0.36
ASDPTO 0.4 0.33 0.52 0.42 0.4 0.33 0.52 0.42
Asthma 0.4 0 0.52 0.31 0.4 0 0.52 0.31
BCO 0.53 0.38 0.22 0.38 0.53 0.25 0.31 0.36
BFO 0.4 0.33 0.62 0.45 0.4 0.33 0.62 0.45
BHN 0.4 0 0.52 0.31 0.4 0 0.52 0.31
BMT 0.4 0.33 0.51 0.41 0.4 0.33 0.51 0.41
BP 0.47 0.33 0.19 0.33 0.44 0.15 0.24 0.28
CBO 0.41 0.33 0.52 0.42 0.41 0.33 0.52 0.42
CCON 0.37 0.66 0.55 0.53 0.38 0.33 0.16 0.29
CHEBI 0.4 0.33 0.04 0.26 0.4 0.16 0.24 0.27
CMT 0.41 0.03 0.33 0.26 0.41 0.03 0.35 0.26
CN 0.39 0.05 0.1 0.18 0.4 0.02 0.23 0.22
Conference 0.43 0 0.18 0.2 0.43 0 0.28 0.24
ENVO 0.4 0.33 0.34 0.36 0.4 0.27 0.38 0.35
EOL 0.4 0.33 0.51 0.41 0.4 0.33 0.51 0.41
EPILONT 0.41 0.33 0.54 0.43 0.41 0.33 0.54 0.43
FLOPO 0.4 0.33 0.5 0.41 0.4 0.09 0.13 0.21
GFO-basic 0.36 0.33 0.22 0.3 0.36 0.2 0.31 0.29
GFO-bio 0.38 0.1 0.25 0.24 0.38 0.06 0.33 0.26
mouse_anatomy 0.4 0.38 0.21 0.33 0.4 0.24 0.31 0.32
NCI_anatomy 0.4 0.67 0.25 0.44 0.4 0.56 0.33 0.43
OBOE-sbc 0.4 0.18 0.35 0.31 0.4 0.07 0.19 0.22
Ontobio 0.43 0.34 0.41 0.39 0.43 0.34 0.42 0.4
OntoDM 0 0 0 0 0 0 0 0
PATO 0.4 0.33 0.19 0.31 0.4 0.27 0.25 0.31
PL 0.36 0.33 0.34 0.34 0.38 0.13 0.19 0.23
PW 0.4 0.33 0.47 0.4 0.4 0.31 0.47 0.39
ROO 0.38 0.33 0.27 0.33 0.39 0.23 0.34 0.32
SBO 0.4 0.33 0.51 0.41 0.4 0.33 0.51 0.41
TOK 0.39 0.22 0.51 0.37 0.39 0.07 0.17 0.21
Travel 0.42 0.22 0.12 0.25 0.42 0.12 0.21 0.25

ber of named classes is equal to the number of total classes,
e.g., the ASDPTO and SBO ontologies. This kind of ontolo-
gies needs less time to carry out the analysis process. The
table also indicates that ontologies containing higher num-
ber of blank nodes compared to the number of named nodes
require more time to be analyzed. For example, the AID-
SClinic ontology has 159 total classes, only 9 of those are
named classes, however, the tool needs more than 7 seconds
to analyze this ontology. Another important finding from this
table is that ontology engineers are not engaging with docu-
menting and annotating ontology concepts, which makes it
hard to reuse them. For example, only 12 (out of 33) ontolo-

gies have reasonable amount of comments and annotations
(15% of the named classes have comments). Furthermore,
the table also shows that only one-third of these ontologies
do not have any label.

Based on these basic metrics, we computed a set of anal-
ysis metrics including the ontology design metric (design),
the knowledge base metric (KB), the class metric (class met-
ric), as well as the ontology richness (richness) as acombined
metric for these individual metrics, as given in Table 6. Since
these analysis metrics are computed based on basic metrics,
we consider two cases: the first is using the number of named
classes, while the second is considering the total number
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Fig.5 Ontology richness w.r.t number of named classes

of classes during computing these metrics. The results are
reported in Table 6. In general, ontologies having small dif-
ference between the number of named classes and the number
of total classes such as ASDPTO, Asthma, EOL, and SBO
have approximately the same richness. However, ontologies
with big differences such as FLOPO, AIDSClinic and OBOE-
sbc have different richness. We also observed that ontologies
with high numbers of object and data properties have higher
design metric values. For example, the CMT ontology has
59 object and data properties, while it has only 24 is-a
(subclass) relations. This is a very important indicator when
partitioning such ontologies. It tells us we have to focus more
on relations other than the i s-a relations. Another example
is the mouse_anatomy contains only 3 object properties and
1807 is-a relations. So, it is a simple hierarchy, and we
need to focus only on these simple relations.

Table 6 also illustrates the distribution of semantic-related
information, such as individuals and comments within ontol-
ogy through the KB metric. For example, the Asthma,
OntoDM and Conference ontologies have no such seman-
tic information, so their KB metric values are 0. However,
the NCI_anatomy ontology has the highest KB metric since
it has more such semantic information. As shown in Table 5,
it has a large number of individuals and labels, but it has no
comment. So, its KB metric value is less than one. Table 6 as
well shows that the two KB metric values for the same ontol-
ogy are not the same, if the number of named classes is less
than the total number of classes. This is also the same obser-
vation when considering the ontology class metric. Another
interesting observation from the table is that the AIDClinic
ontology has a high class metric value (in the case of consid-
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Table 7 OntoComplex results

Class-level
NOC DIT CID COD

Ontology Ontology-level
SOV ENR TIP EOG

CMT 89
BCO 347

0.787 11
0936 41

29
2.55

0.86
1.15

2.3
4.52

1.06 2.34
1.96 1.47

ering only named classes). This can be explained as follows:
this ontology has only 9 named classes and 2 subclass rela-
tions, as shown in Table 5. So, the relative importance of a
class with the ontology is high, which increases its class met-
ric value. But, this value decreases when considering the total
number of classes, since the relative importance of a class
becomes very small. The class metric is an important indica-
tor for the ontology reuse, especially our context “ontology
modularization.” Such that a high class metric means that
the relative importance of a class in the ontology is high, and
there is strong connection between ontology concepts. So, the
number of modules generated by partitioning this ontology
should be small.

To summarize these observations, we figure out the rela-
tionship between the number of classes and the ontology
richness, as depicted in Fig. 5. In general, the two ontology
richness values (richness_I and richness_2) are the same
if the number of named classes (No. class) is equal to the
total number of classes (No. of total classes), such as Asthma
and SBO ontologies. However, there is an exception for that
rule. The OntoDM ontology has the same ontology richness
value for the two different cases. This ontology has no named
classes, it only has a set of object properties, which affects
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Table8 OntoMetric results Ontology  schema Knowledge class graph
Rel.rich  Classrel.  Avg.pop  Classrich. @~ NOC - Av. depth  Av. breadth

CMT 0.7 0.27 0 0 1.67 - 1.06 2.34

BCO 0.55 0.28 0.21 0.03 4.52 - 55 3.07
Tales Comemmngon =

Ist ConferenceMember Person Person

2nd Person ConferenceMember ConferenceMember

3rd Author User User

4th User Author Author

5th Paper Reviewer Reviewer

6th Reviewer Document Document

7th Decision Paper Paper

8th Document ProgramCommitteeMember ProgramCommitteeMember

on deign metric value. One more interesting finding is that
the FLOPO richness values are highly different due to the
big difference between the number of named classes and the
total number of classes the FLOPO ontology have.

Ontology analysis comparison Although the importance of
ontology evaluation within different application scenarios, a
quite few number of tools and metrics have been proposed
and developed to validate the quality of ontologies, such as
OntoMetrics*'°[34], OntComplexity "' [66], and Ontology
Auditor [9]. We select the first two metrics to compare with
for their availability. OntComplexity proposes a set of met-
rics based on the graph-centric representation of ontologies.
This set of metrics is grouped into two categories: Onfology-
level and class-level metrics. The size of vocabulary (SOV),
the edge node ratio (ENR), tree impurity (TIP), and entropy
of graph (EOG) are ontology-level metrics, while number of
children (NOC), depth of inheritance (DIT), class-in-degree
(CID), and class-out-degree (DOG) are class-level metrics.
The OntoMetric includes a set of predefined metrics, which
can be classified into four categories: schema and graph
from [16], while knowledgebase and class metrics from [60].
For the comparison, we use cmt and BCO ontologies. The
results are reported in Tables 7 and 8.

Table 7 shows the results of applying OntComplexity,
while Table 8 represents results of OntoMetrics. Table 7
illustrates that the BCO ontology has a higher edge-to-node
ratio than the CMTontology, which indicates that BCO has
a higher connectivity denisty. The table also indicates that
the BCO ontology has a less EOG value than the CMT ontol-
ogy, which indicates the existence of more structural patterns

10" https://ontometrics.informatik.uni-rostock.de/ontologymetrics/.

I https://users.monash.edu/~yli/ontComplexity/index.html.

Table 10 Ranking time for d time (sec) memory (MB)
CHEBI concepts
4522 30.0
2 850 70.4
1131.5 135

and BCO is more regular and less complex than CMT. These
results are consistent with our results illustrated in Table 6,
which indicate BCO has a higher design metric than CMT.
Also, comparing our analysis results to the results obtained
by OntoMetrics (Table 8) demonstrates that our results are
consistent with OntoMetrics.

5.2.2 Ontology Modularization

In this section, we validate the performance of ontology mod-
ularization components including: ranking, model section,
and partitioning.

Concept Ranking To quantify the importance of concepts
inside a concept graph, we conducted a set of experiments to
examine the effect of the level on the concept ranking. We
apply the ranking algorithm on the CMT ontology'? with dif-
ferent levels (different values of d that appears in the concept
context definition). The results are reported in Table 9. The
table shows that as more concept contexts we consider, as we
determine the correct importance of the concept. For exam-
ple, when we use the set of subclasses and superclasses as the
concept context, i.e., d = 1, we have the conferenceMem-
berconcept as the top-1 concept. However, considering more

12 We selected it for the purpose of presentation, since it is easily to
present results with an ontology with 30 concepts.
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surrounding concepts, increasing the value of d, the User
concept becomes the top-1 concept. However, this requires
a penalty to be paid as the time needed to consider such sur-
roundings. In such small ontologies, it does not matter, but for
large-scale ontologies, we did another test to study the effect
of d on the ranking time. For this, we carried out this experi-
ment using the CHEBI ontology. The results are reported in
Table 10. The table shows that as more contexts the ranking
algorithm considers, the more resources it requires. There-
fore, in our implementation, we trade-off between the ranking
quality with the minimum resources required, and we select
the ranking process with the second level, i.e., d = 2.

Model selection In our implementation, we attempt to get
answers to the following questions:

— What is the added value behind using interval boundaries
(LB and UB)?

— Which A value should be used during estimation £15 and
us

To answer the first question, we used a set of ontologies,
listed in Table 4 and carried out two sets of experiments:
the first using the interval boundaries (L5 and U/ B) and the
second set without involving them. We measured both the
generated “optimal” number of modules and the time needed
to finish the modularization task. The results are reported in
Figs. 6 and 7. The first figure shows that using the boundary
interval generates smaller number of modules than the case
when no boundary interval has been used. Figure 6 also shows
that small ontologies, like CMT, Conference, and GFO-basic
ontologies, have been modularized into only one module
using both cases, however, it takes more time to carry out
the modularization process with using the boundaries than
without using the boundaries, as shown in Fig. 7. But in gen-
eral, as illustrated in Fig. 7, partitioning larger ontologies
involving the boundary intervals requires less times com-
pared to partitioning these ontologies without involving the
intervals. Figures 6 and 7 also demonstrate that using the
boundary interval outperforms the case where no interval
has been used w.r.t. the time needed to generate these opti-
mal models. For example, modularizing the BCO ontology
using the interval boundary into 4 modules needs only 0.45
seconds to complete the modularization process, however,
without using the boundary interval, it has been modularized
into 32 modules in 10 seconds. It should be noted that using
the interval boundary enables the approach to modularize
bigger ontologies, such as the FLOPO Ontology with 26,866
named classes needs 600 seconds to estimate its optimal num-
ber of modules (39), while it needs 18 seconds to estimate
the optimal number of modules for the PATO ontology with
3253 concepts. For the CHEBI ontology with 102,124 con-
cepts, the partitioning algorithm needs about 16 minutes to
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run the partitioning process using the boundaries, however,
it needs more than two days, so we stop it before complet-
ing the modularization without using the boundary interval.
So, this is missing as shown in Fig. 6. This demonstrates the
effectiveness of using the lower and upper bounds within the
modularization process.

To validate the value of A selecting during our experi-
ments, we carried out another set of experiments using a
subset of ontologies listed in Table 4. For each ontology, we
run each experiment ten times for different values of A. The
results are reported in Fig. 8. The figure shows that varying
the value of A has a great impact on the estimated value of
optimal number of modules, especially for larger ontologies.
Furthermore, increasing the values of lambda (A > 5), we
found that the lower bound especially for smaller ontologies
becomes always one. Therefore, we decide to select lambda
equal to 5 in our experiments.

Partitioning In this section, we carried out another set of
experiments to validate the performance of the partitioning
approach w.r.t. the set of criteria mentioned in Sec. 2 and
described also in [41]. These set of criteria evaluate several
perspectives of the approach: module quality, tool perfor-
mance, and usability.

Module Quality

— Cohesion and Coupling To consider these criteria
in our evaluation, we make use of our new crite-
ria used to evaluate ontology modularization [3].
We consider the intra-module similarity as a mea-
sure for the module cohesion (module homogeneity,
HOMO), and the inter-module similarity as a mea-
sure for the module coupling (module heterogeneity,
HEMO). By intra-module similarity, we mean the
similarity between concepts within the same mod-
ule, and it should be high to reflect the module
homogeneity. On the other hand, the inter-module
similarity captures the similarity between different
modules generated from partitioning, and it should be
small to reflect inter-module heterogeneity. We car-
ried out a set of experiments to validate these criteria
taking into account both with interval and without
interval cases making use of the dataset presented
in Table 4. The results are reported in Figs. 9 and
10, where Fig. 9 shows the performance of the tool
w.r.t the intra-module similarity (intra-sim) and Fig.
10 depicts the inter-module similarity performance.
Generally speaking, these figures demonstrate that
the partitioning approach is effective using both
with_interval and without_interval cases. For the
given data set, it achieves an average intra-module
similarity of 0.36 (0.328) using without_interval
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and using with_interval, respectively. It also attains
an average inter-module similarity of 0.155 (0.064)
using without_interval and with_interval, respec-
tively. One more important finding extracted from
this set of experiments is that partitioning ontolo-
gies without estimating interval boundaries results
in more modules than using the estimated interval
boundaries. For the given data, the proposed tool
generates a total of 346 and 1317 modules in the
case of using with boundary and without boundary,
respectively. This generates modules with fewer con-
cepts compared to generated modules using the lower
and upper bounds. Therefore, the intra-module sim-
ilarity using without_interval (intra_sim_without) is
higher than using with_interval (intra_sim_with).
However, the difference between the averages of

Ontology data set

these two values is not so large, as shown in Fig.
9 (e = 033 = 1.09). On the
other hand, partitioning an ontology using lower and
upper bounds outperforms partitioning without these
bounds for the following reasons: it allows partition-
ing large ontologies, such as CHEBI as shown in Figs.
6 and 7; it requires less time to carry out the parti-
tioning; it produces more loosely coupled modules,
as shown in Fig. 9 (4 ser sinvitigu (433 o
2.41); and it preserves almost the same cohesion.

— Size In this evaluation, we consider the size of a mod-

ule as the number of concepts in the module. The
aim of this evaluation is to validate the importance of
module size on the quality of modularization. In fact,
it is too hard to rely on the absolute module size as
an evaluation criterion. To this end, we consider two
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different scenarios: (i) the first is to examine the ratio
between the number of concepts belonging to mod-
ules with the maximum and the minimum number of
concepts. Let Size_Min and Size_Max be the module
size of modules with the minimum and the maximum
number of concepts, respectively. Then, the size ratio
is defined as ratio = % (i1) The second issue
is to compute the relative size (RS) among all mod-

ules. We define the average relative size as follows:
|Mi| =M,

k—1 xk .
RS =", =it size - By this measure,
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we aim to ensure that the concepts of the original
ontology have been distributed among all generated
modules. We then study the effect of module size on
both the cohesion and the coupling of the modular-
ization. The results for the first test of experiments are
shown in Table 11, which are ordered by the number
of generated modules.

The table shows that ontologies with only one mod-
ule have a ratio of 1 and a relative sizes of 0, which
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is a natural property. The table also shows that ratio
values decrease (in general with a few exceptions) as
the number of generated modules increases, while the
relative size values increase. We argue that a modu-
larization solution with a ration higher than 0.05 and
arelative size lower than 0.01 could be considered as
an acceptable solution since it could keep a good dis-
tribution of original ontology concepts among the set
of generated modules. Looking to Table 11 demon-
strates that the proposed partitioning tool (OAPT)
to a large extend achieves this goal. The results are
reported in Fig. 11.

These evaluation results show that the size of the
module has strong effect on the quality of the module
because the size of a module. Therefore, the OAPT
tool has two different options: (i) it allows the user
proposing a number of modules, or (ii) it recommends
an optimal number of modules based on the proposed
strategy.

Completeness and Consistency During the modu-
larization process, the proposed tool should preserve
the logical consistency between every module and
the original ontology [40,41], i.e., the set of classes
and axioms in the module should be logically con-
sistent with those of its original ontology [18]. To
evaluate this aspect, we make use of local correct-
ness and local completeness proposed in [18], which
are implemented as simple, but effective measures
n [41]. These measures are based on the difference
between the original ontology entities and generated

i

,
%

® HEMO_without_boundary

\ & Q90 ‘3’0 Q

é

modules’ entities. In particular, we computed the fol-
lowing indicators:

e Class difference (D_class); which is defined as
D_class = %, where |C|p and |C|pq
are the number of classes in the original ontology
and the generated set of modules, respectively.

e Hierarchical difference (D_hier); whichis defined
as D_hier = W where |isA|o and
lisA|aq are the number of subclasses (hierar-
chical) relations in the original ontology and the
generated set of modules, respectively.

e Non-Hierarchical difference (D_Nhier); which
is defined as D_Nhier W,
where |Prop|o and |Prop|aq are the number
of properties (non-hierarchical) relations in the
original ontology and the generated set of mod-
ules, respectively.

We computed these three metrics for each ontology
in the dataset and results are reported in Fig. 12. The
set of ontologies is ascending ordered on the hori-
zontal axis based on the number of modules, such
as ontologies with only one module (BP, cmt,...,
travel) are on the left side. In general, the figure shows
that ontologies that generate only one module these
metrics’ values are zero. The role of OAPT is to deter-
mine the number of optimal modules, and if it is one
(KK = 1), OAPT keeps the original ontology with-
out missing any information. The figure also shows
that the difference in classes (D_class) between the
original ontology and the set of generated modules
has a negative value for almost of ontologies (except
ontologies with one module), which means that the
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Table 11 Module size
evaluation

No_module Size_Min Size_Max ratio RS
BP 1 69 69 1.000 0.000
cmt 1 30 30 1.000 0.000
Conference 1 60 60 1.000 0.000
gfo-basic 1 45 45 1.000 0.000
Ontobio 1 189 189 1.000 0.000
travel 1 35 35 1.000 0.000
AERO 2 94 106 0.887 0.001
AIDSClinic 2 14 24 0.583 0.005
asthma 2 79 185 0.427 0.004
BCO 4 31 56 0.554 0.008
CBO 4 52 141 0.369 0.007
BFO 6 3 18 0.167 0.106
ASDPTO 7 33 150 0.220 0.011
EPILONT 7 61 0.049 0.041
CCON 9 27 0.333 0.038
pl 10 14 131 0.107 0.015
TOK 10 4 59 0.068 0.034
CN 11 8 222 0.036 0.016
ROO 11 7 321 0.022 0.012
BMT 12 13 77 0.169 0.023
mouse_anatomy 12 270 447 0.604 0.001
BHN 14 101 561 0.18 0.004
gfo-bio 14 5 28 0.179 0.042
oboe-sbc 15 13 80 0.163 0.011
pato 15 201 422 0.476 0.001
SBO 15 53 111 0.477 0.006
EOL 16 39 134 0.291 0.009
PW 22 109 253 0.431 0.003
FLOPO 24 11 45 0.244 0.407
nci_anatomy 25 147 574 0.256 0.003
ADO 27 16 313 0.051 0.014
ENVO 33 132 922 0.143 0.003
CHEBI 62 422 3912 0.145 0.0004

proposed modularization approach could preserve
the set of classes of the original ontology. These neg-
ative values of D_class demonstrate the overlapping
of concepts between different modules. One more
issue to be remarked here is about the Flopo ontol-
ogy. It is the only ontology (among tested dataset)
which has a positive D_class, which means that the
proposed modularization approach misses a set of
concepts from the original ontology. It misses more
than 80% of the original ontology.

Figure 12 also shows that the OAPT tool could also
to a large extend preserve hierarchical relations from
the original ontology, where the values of D_hier are
0 or close to O for almost tested ontologies. However,
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OAPT could not preserve the hierarchical relations
from gfo-bio, oboes-sbc, Flopo and Chebi ontologies.
The gfb-bio ontology is a small ontology with 166
concepts and partitioned into 14 modules, which may
be the reason behind this hierarchical relations loss
(the original ontology has 179 isA relations, while
the set of generated modules has only 91).

to sum up, the proposed approach could preserve the
set of classes and hierarchical relations from the orig-
inal ontologies, while it misses a large amount of
non-hierarchical relations. It also at the same time
could preserve the set of individuals and labels from
the original ontology.
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Tool Performance and Usability In this aspect, we aim
to evaluate the functionality supporting by OAPT during
modularization. To this end, we consider some criteria
proposed in [41], such as language, modularization sup-
port, and visualization. A summary of these criteria is
reported in Table 12. The table shows that our proposed
tool supports the modularization of ontologies repre-
sented in different formats and languages, such as RDF,
OWL, and OBO. Furthermore, OAPT provides different
functionalities that supports the user interacts during the
modularization process. For example, the user can set the
number of required modules. One important feature that
tool can also support is module visualization. It is very
important, and a necessary feature of the tool is to allow
either visualizing each module or the set of generated
modules together, as shown in Figs. 4. One more impor-
tant feature that OAPT supports w.r.t. its usability is that
the tool supports download output in file format, the out-
put file can be stored and used in other tools effectively.
Comparison

Finally, we compared our approach to two well-known
approaches that are commonly used for ontology par-
titioning: PATO Partitioning Tool[51] and PBM [27].13
PATO is a tool for partitioning light-weight ontologies
based on the graph partitioning scheme. The number of
partitions to be created is automatically defined by the
approach, and it depends on a set of criteria, such as
the maximum number of concepts within a partition. In
this comparison, we set it to 250 concepts.'* PMB is an
agglomerative partitioning approach for ontology parti-
tioning. It extends the ROCK algorithm [23]. We applied
both PATO and PMB to the ontology dataset listed in
Table 4 and compared their results to results produced by
OAPT. The results are reported in Figs. 13 and 14.

Figure 13 shows the results of comparison w.r.t. the num-
ber of modules (partitions) generated by each tool. From
this figure, we get several observations: i) OAPT (our
proposed approach) could successfully partition all tested
ontologies, however, both PATO and PBM failed to parti-
tion a set of these ontologies. There are different reasons
behind this, for example, PATO fails to partition a set
of ontologies (ENVO, Pato, EOL) for reading/parsing
errors, while PMB can not partition CHEBI since it is
a very big ontology. It should be mentioned that the PBM
tool could partition a number of ontologies higher than
the PATO tool. ii) The figure shows also that PATO gen-

13 https://ws.nju.edu.cn/falcon-ao/.

14 The default value for the maximum number of concepts within a
partition was set in PATO to 300, we did such a small change to make
PATO be able to deal with smaller ontologies.
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erates a larger number of modules (partitions) compared
to other two systems. For example, the mouse_anatomy
ontology, even it has only 2743 named concepts, how-
ever, it is partitioned into 143, 100, and 12 modules
using PATO, PBM, and OAPT, respectively. It should be
noted that changing the setting of PATO results in com-
pletely different set of partitions. For example, set the
maximum partition size to 500 results in partitioning the
mouse_anatomy ontology into 75 partitions.

We also evaluated these two tools and compared them
to OAPT w.r.t. the module completeness. The results are
reported in Figs. 14 and 15, for the completeness of PBM
and PATO, respectively. Regarding to the class difference
(D_diff"), Fig. 14 shows that the PMB approach produces
a set of disjoint partitions, where the D_class values are
always greater or equal to 0, while Fig. 15 illustrates
that PATO completely preserve concepts from the orig-
inal ontology. This can be explained as PATO generates
one more module that includes non-partitioned concepts
without any kind of relations among them. this mod-
ule only contains a set of non-partitioned concepts. For
example, PATO partitions the mouse anatomy ontology
into 143 partitions. One of them only contains a set of
904 non-partitioned concepts. PATO fails only to pre-
serve concepts from two SBO and OBOEontologies, as
shown in Fig. 15.

Figures 14 and 15 shows that both tools could to
some extend preserve hierarchical relations from the
original ontologies, where D_hierpyp = 0.106 and
D_hierparo = 0.149. However, both systems can not
to a large extend preserve non-hierarchical relations from
original ontologies, where D_Nhierpyp = 0.49 and
D_NhieVpATo = 0.65.

To sum up, comparing to PATO and PMB, our proposed
tool could manage and deal with partitioning all tested
ontologies; however, these tools fail to partition some
ontologies either for its large number of concepts (e.g.,
chebi) or for 1/O related errors. The second point is
that our proposed tool generates a reasonable number
of modules for each ontology, since we first analyzed
the input ontology and recommended an optimal num-
ber of modules. Regarding to the completeness metrics,
OAPT outperforms the other two systems since it could
preserve ontology information (class, hierarchical, and
non-hierarchical relations) better than the two other sys-
tems.


https://ws.nju.edu.cn/falcon-ao/

79

Ontology Modularization with OAPT

Table 12 OAPT performance

W.r.t criteria in [41]

PATO
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Perspective
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Number of modules,

Input

Usability

size
View, file
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View, file

Output

Interoperable within

Interoperable within

Compatibility

Pajek package suite

Pajek package suite

Medium

Low

User interaction

Open repositories Local

Availability

Visual interface

No

Visual interface

Visualization
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and merging

JVM

JVM

Quick startup

Small or medium

Depending on the

Module size

Data performance
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concepts
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Weak
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Incomplete
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Fig. 13 Comparison between OAPT, PATO, and PBM w.r.t. the number of modules

this aspect involving a small number of experts. For this, we
approached the main developers of BCO, ENVO, FLOPO,

and Study to judge the quality of modularization. We first

5.2.3 User-based Evaluation

The evaluation up to now has shown that our system meets

prepared a set of modules for each ontology using the OAPT
without any guidance from their side. We asked each user to

the predefined criteria and is sufficiently performant. How-
ever, the best performance numbers mean nothing, if the
system does not provide satisfactory results from a user’s
perspective. The latter is difficult to quantify and somewhat

evaluate the modularization output based on their points of

view. We summarize the results from this evaluation into the

following two items:

subjective. We thus decided on a qualitative evaluation of

pringer

as



80

A. Algergawy et al.

1.00

0.80

0.60

0.40 -

Fig.

1.00

0.80

0.60

0.40

0.20

0.00

Fig.

B D_class ™ D_ hier

® D_Nhier ® D_Individual D_ labels
£ S8 P

& &0 Aal

& o

Ontology data set

14 PBM completeness metrics

m D_class w D_ hier m D_Nhier
_ ‘ i e
§ & O & & @& &P 00 L P & P > ¢ X O O Q& Q& P d W & & N © o> ©
¥ &K & & &L & ¥ O DY O S S VRSSO L FEON
P ¢ & & o & & F g T < , R ® < S
o & O & TF T TIEE &g e T e T
<& ® o’ &
S

Ontology data set

15 PATO completeness metrics

Recommended number of modules the BCO, FLOPO and
Study ontologies’ users accepted the number of modules
recommended by the tool, however, the ENVO ontology’
users see it is better if the ontology modularized into a
smaller number of modules than the generated by the
tool.

Module quality this is the hardest task in the user-based
evaluation since the user has to go through each module to

@ Springer

check the homogeneity of each module, as well as check
the coupling between different modules. Within each
module, the domain expertise investigated if a concept
belonging to a partition or not. We used this informa-
tion to compute the precision of each module and then
compute the overall precision for the whole ontology. To
compute the precision for each module, we consider the

following equation: Prepq, = TPZ_—PFP, where T P is the
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Zs:lljaliim&udy ontology Module No. Concept Correct Label Precision
1 25 21 mini or core ontology. HumanStudySubject 0.85
2 50 43 StudyActivity and Observation concepts 0.86
3 84 48 groups all sorts of outcomes 0.57
4 130 43 Activity and its properties 0.33
5 203 71 date-related concepts 0.35

total precision

0.54

number of correct concepts belonging to the module M;
and T P + F P is the total number of concepts belonging
to the module. For the BCO ontology, it contains 126 con-
cepts and has been modularized into four modules. The
domain expertise evaluation reports that the first mod-
ule contains just the obsolete classes, which is not useful
from the domain expertise point of view, while the second
is mostly based on material entities and the upper level
classes that are used to define material entity. The third
module also makes sense. It is based on the processes
and some of the other kinds of classes that support the
definitions of processes. And finally, the last module is
a useful module, based on information content entities.
This one is the most internally consistent of the four. We
see that this is a very good feature for the proposed tool
where it is able to provide a meaningful small partition
from the main ontology.

For the ENVO ontology, it is a bigger ontology com-
pared to BCO, which makes it harder to be evaluated by
the user. The ontology contains 6191 named concepts
and has been modularized into 33 modules. The domain
expertise provides us detailed information which enable
us to compute the precision of the modularization pro-
cess. OAPT achieves 0.79 precision when partitioning the
ENVO ontology. The attachment files give more informa-
tion about this evaluation result. Furthermore, the domain
expertise could also label a set of concepts in a module
to be used as an independent ontology. For the user eval-
uation for the Study ontology is reported in Table 13.
The table shows that this ontology has been modularized
into five modules with a total precision of 0.54. It also
illustrates that the precisions of two of these modules are
higher than 85%, where the first module represents a core
part of the main ontology with the label “HumanStudy-
Subject.” The other module represents the set of study
activity concepts.

To sum up, the use-based evaluation validates the quality
of the proposed modularization tool and confirms that the
tool is able to generate meaningful modules which can be

independently used from the original ontology. However,
it also reveals a number of rooms for improvement.

6 Conclusions

In this paper, we addressed the problem of ontology reuse. To
this end, we proposed and developed a seeding-based parti-
tioning approach that modularizes a given ontology into a set
of modules. A crucial step during the modularization process
is to determine how many modules should be generated. To
address this question, we introduced an information-theoretic
model selection algorithm that makes use of BIC to effec-
tively select the “optimal” number of modules. To reduce
the search space of the model selection step, we estimated
a boundary interval. Experimental results showed that the
proposed approach has the ability to modularize ontologies
having different characteristics and representing different
domains without the preceding knowledge of the number of
modules. We also validated the performance of the approach
w.r.t. a set of well-known criteria. In our going work, we need
to validate the semantics of the modularization output w.r.t.
the original ontology.

In future work, we want to complete the tool in order
to support scientists selecting which module (or a set of
modules) fulfills their requirements. Furthermore, we plan
to improve the ontology analysis phase by considering more
measures and criteria and to improve also the partitioning
phase by taking into account other partitioning techniques.
Furthermore, we plan to visualize all these processes and
steps to be more user-interactive.
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