
Master Thesis

Modeling a Xenon Tank, its Heat Convection and In-Orbit

Behavior with a 2D CFD Method

Alexander Merkel

Diese Arbeit wurde vorgelegt am

Institut für Strahlantriebe und Turbomaschinen

Fakultät für Maschinenwesen der

Rheinisch-Westfälischen Technischen Hochschule Aachen

Erster Prüfer: Univ.-Prof. Dr.-Ing. Michael Oschwald

Betreuer Intern: Jan Bisping, M.Sc.

Betreuer OHB: Bayrem Zitouni

Aachen, December 2019

Abstract
Xenon becomes increasingly important as a propellant for spacecrafts. As part of

the development process, the thermal control of the tank during the loading and

unloading procedure has to be designed. To aid in this task, a 2D model of xenon

inside its tank during the pressurization and depressurization process, specifically

for a zero-g environment, has been created using OpenFOAM. The physical theory

behind fluid flows as well as the methodology the model creation is based upon and

the used numerical settings are presented. The model was applied to compute the

fluid properties and heat flow during xenon loading and unloading for the ESPRIT

project. When comparing the results to 0D/1D simulations performed by Ecosim-

Pro and an internal Excel tool, phenomena not modeled with these approaches

could be observed in the OpenFOAM results. This makes it a valuable addition to

the tools available during the design of the propulsion system.

Zusammenfassung
Xenon gewinnt stetig an Bedeutung als Treibstoff für Raumfahrzeuge. Um dies zu

ermöglichen muss ein Thermalsystem ausgelegt werden, welches den Tank während

des Be- und Entladevorgangs in seinem festgelegten Temperaturbereich hält. Zur

Unterstützung der Auslegung wurde ein 2D Modell mittels OpenFOAM erstellt,

welches den Be- und Enttankungsvorgang, ins besondere in Schwerelosigkeit, mo-

delliert. Die Theorie zur Strömungsdynamik sowie die Methodik zur Modellierung

und die verwendeten numerischen Verfahren werden vorgestellt. Das Modell wurde

auf den Be- und Entladevorgang für das ESPRIT Projekt angewendet um die Flui-

deigenschaften und den Wärmestrom zu berechnen. Im Vergleich der Ergebnisse

mit Simulations, die mit EcosimPro und einem internen Excel Tool durchgeführt

wurden, konnte gezeigt werden, dass die 2D Simulation Phänomene darstellt, die

mittels der anderen Methoden nicht abgebildet werden können. Dies macht das

erstellte 2D Modell zu einer wertvollen Ergänzung der Werkzeuge, die bei der Ent-

wicklung eines Antriebssystems zur Verfügung stehen.

i

Contents

Nomenclature v

Abbreviations viii

1. Introduction 1
1.1. Electric Propulsion . 1
1.2. ESPRIT . 3
1.3. Xenon tank . 4
1.4. EcosimPro . 4
1.5. Excel Tool . 5
1.6. Objective of this Thesis . 5

2. Theory of Fluid Flows 6
2.1. Continuity Equation . 7
2.2. Momentum Equation . 8

2.2.1. Surface forces . 9
2.2.2. Body forces . 9
2.2.3. Stress tensor . 10

2.3. Energy Equation . 10
2.4. Dimensionless Quantities . 13

2.4.1. Reynolds number . 13
2.4.2. Prandtl number . 14
2.4.3. Grashof number . 15
2.4.4. Nusselt number . 15
2.4.5. Rayleigh number . 15

3. Computational Fluid Dynamics 16
3.1. OpenFOAM . 16
3.2. Solver selection . 16
3.3. rhoPimpleFoam . 18

3.3.1. SIMPLE . 18
3.3.2. SIMPLEC . 21
3.3.3. PISO . 21
3.3.4. PIMPLE . 23

ii

Contents

3.4. Numerical Schemes . 24
3.4.1. Temporal Discretization . 25

3.4.1.1. Forward Euler Scheme 25
3.4.1.2. Backward Euler Scheme 25
3.4.1.3. Crank-Nicolson Scheme 26

3.4.2. Convection Discretization 26
3.4.2.1. Upwind scheme . 27
3.4.2.2. Central Difference scheme 27
3.4.2.3. Second Order Upwind scheme 28

3.5. Turbulence Modeling . 29
3.5.1. Standard 𝑘 − 𝜀 Model . 30

4. Tank model 32
4.1. General Structure . 32
4.2. Mesh and Solver Setup . 33

4.2.1. Mesh . 33
4.2.2. Schemes and Solution Algorithm Control 35

4.3. Thermophysical and Turbulence Properties 36
4.3.1. Thermophysical Properties 36
4.3.2. Turbulence Properties . 37

4.4. Initial and Boundary Conditions . 37
4.4.1. Initial conditions . 37
4.4.2. Boundary conditions . 37

4.4.2.1. Inlet/Outlet port 38
4.4.2.1.1. Pressure 38
4.4.2.1.2. Temperature 38
4.4.2.1.3. Velocity 38

4.4.2.2. Wall . 39
4.4.2.2.1. Pressure 39
4.4.2.2.2. Temperature 39
4.4.2.2.3. Velocity 39
4.4.2.2.4. Turbulence 39

4.5. Comparison models . 40
4.5.1. Excel tool . 40
4.5.2. EcosimPro Model . 42

5. Results 44
5.1. Parameter study . 44

5.1.1. Cell size . 44
5.1.2. Time step . 46
5.1.3. Processor cores . 47

iii

Contents

5.2. Client case . 49
5.2.1. EcosimPro comparison . 55
5.2.2. Excel tool comparison . 56

5.3. Servicer case . 57
5.3.1. EcosimPro comparison . 62

6. Conclusion 64
6.1. Summary . 64
6.2. Future Work . 66

List of Figures 67

List of Tables 69

Bibliography 70

A. Usage guide for Python scripts 74
A.1. nistToOpenFoam.py . 74
A.2. meshGen.py . 75

iv

Nomenclature

𝑐𝑃 Specific heat capacity at constant pressure J/(kgK)

𝑒 Specific total energy J
kg

𝑒 Normalized error -

𝐸 Total energy J

𝑓 External forces N

𝑓𝑆 Surface forces N

𝑓𝑏 Body forces N

𝐹𝑇 Thrust N

𝐺𝑟 Grashof number -

𝑔⃗ Gravitational acceleration m/s2

𝑔0 Standard acceleration due to gravity m/s2

ℎ Specific enthalpy J
kg

ℎ Heat transfer coefficient W/(m2K)

𝐼𝑠𝑝 Specific impulse s

I Identity tensor -

𝑘 Thermal conductivity W/(mK)

𝑘 Turbulence kinetic energy W/(Jkg)

𝐿 Characteristic length m

𝑚 Mass kg

𝑚𝑃 Propellant mass kg

𝑚0 Initial mass kg

𝑚̇ Mass flow kg
s

v

Nomencalture

𝑀 Molar mass kg
mol

𝑛⃗ Normal vector of a surface -

𝑁𝑢 Nusselt number -

𝑝 Pressure Pa

𝑝𝑒 Exhaust pressure Pa

𝑝0 Ambient pressure Pa

𝑃𝑟 Prandtl number -

𝑄̇ Heat flow W

𝑄̇𝑆 Heat flow across surfaces W

𝑄̇𝑉 Heat changes inside the volume W

𝑅 Ideal gas constant m3Pa/(molK)

𝑅𝑎 Rayleigh number -

𝑅𝑒 Reynolds number -

𝑆 Volume surface m2

𝑡 Normalized computation time -

𝑇 Temperature K

𝑇𝑠 Surface temperature K

𝑇∞ Ambient temperature K

T Total stress tensor N/m2

𝑈 Velocity m
s

𝑈̇ Change of internal energy J
s

𝑢 Velocity in x direction m
s

𝑣 Velocity m
s

𝑣 Velocity in y direction m
s

𝑣⃗ Velocity m
s

𝑣𝑒 Exhaust velocity m
s

𝑉 Volume m3

𝑤 Velocity in z direction m
s

𝑊̇ Technical work W

𝑊̇𝑆 Work performed by surface forces W

𝑊̇𝑏 Work performed by body forces W

𝑥⃗ Position vector m

𝛼 Thermal diffusivity m2/s

𝛼𝑡 Turbulent thermal diffusivity m2/s

vi

Nomenclature

𝛼 Phase volume fraction -

𝛽 Coefficient of thermal expansion 1
K

Γ Source term -

∆𝑣 Velocity increase m
s

𝜖 Specific internal energy J
kg

𝜀 Turbulence energy dissipation rate J/(kgs)

𝜂 Turbulent micro length m

𝜇 Dynamic viscosity s/m2

𝜇𝑃 Propellant mass fraction -

𝜈 Kinematic viscosity m2/s

𝜈𝑡 Turbulent kinematic viscosity m2/s

𝜌 Density kg/m3

𝜏 Viscous stress tensor N/m2

𝜑 Fluid property -

𝜙 Fluid property -

Ψ Crank-Nicolson off-centering coefficient -

vii

Abbreviations

Abbriviation Description

CFD Computational fluid dynamics

CPU Central processing unit

CSA Canadian Space Agency

CV Control volume

DIC Simplified Diagonal-based Incomplete Cholesky

ESA European Space Agency

ESPRIT European System Providing Refueling, Infrastructure

and Telecommunications

ESPSS European Space Propulsion System Simulation

FOAM Field Operation And Manipulation

GAMG Geometric agglomerated algebraic multigrid

JAXA Japan Aerospace Exploration Agency

MV Material volume

NASA National Aeronautics and Space Administration

NIST National Institute of Standards and Technology

OHB Orbitale Hochtechnologie Bremen

PISO Pressure-Implicit with Splitting of Operators

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

SIMPLEC Semi-Implicit Method for Pressure Linked Equations-Consistent

URL Uniform Resource Locator

viii

1. Introduction

When increasing the pressure 𝑝 of a compressible fluid in an adiabatic system, the
temperature of the fluid 𝑇 increases. This can be derived from the ideal gas law

𝑝𝑉 =
𝑚

𝑀
𝑅𝑇 (1.1)

which gives a proportionality between the pressure and the temperature for an ideal
gas that depends on the volume 𝑉 , the mass 𝑚 and the molar mass of the fluid
𝑀 . For a fixed volume and mass, the temperature rises faster if the molar mass is
bigger.

Xenon becomes increasingly important for space missions as a propellant for electric
thrusters. Inside the tanks, the xenon is stored at a very high pressure of more than
100 bar. This results in large thermal loads on the tank and the spacecraft during
loading and unloading that have to be considered during the design process and
make timely loading of large propellant masses challenging.

A number of researchers have looked at this problem from the on-ground loading
perspective using numerical [12, 11] and experimental [7] approaches. For the
ESPRIT project, the in-orbit behavior of xenon becomes relevant.

In this thesis, a 2D model for a xenon tank in a zero-g environment is described.
Initially, the mathematical and physical theory behind fluid flows is presented.
Afterwards, the methods of Computational Fluid Dynamics are described and the
setup of the numerical model is presented. Finally, the results of the 2D simulations
are discussed and compared 1D/0D simulations performed using EcosimPro and an
internal Excel tool.

1.1. Electric Propulsion

In order to generate thrust, a space propulsion system exhausts a gas at a high
velocity in the opposite direction of the desired acceleration vector. In accordance

1

1. Introduction

with Newton’s Third law of motion[15], this results in a thrust force in the aspired
direction. In general, the methods of accelerating the exhaust gas can be grouped
into three categories: Cold gas systems, chemical systems, and electrical systems.
The generated thrust can be calculated using the general thrust equation[28]

𝐹𝑇 = 𝑚̇𝑣𝑒 + (𝑝𝑒 − 𝑝0)𝐴𝑒 (1.2)

where 𝑚̇ is the exhaust gas mass flow and 𝑣𝑒 the exhaust velocity. Generally, the
pressure term can be neglected because a convergent-divergent nozzle is used to
expand the exhaust gas to the ambient pressure 𝑝0. Hence, it can be said that the
thrust depends on the mass flow and the exhaust velocity.

In a cold gas thruster, a pressurized inert gas is expanded through a convergent-
divergent nozzle into the vacuum of space, thus generating thrust. This system has
the advantage of being cheaper and less complex than the other two systems, how-
ever this comes at the expense of thrust and efficiency.[32] In a chemical propulsion
system, the chemical potential of the fluid (monopropellant system) or fluids (bi-
propellant system) is used to increase the pressure and temperature of the exhaust
gas dramatically before expanding it using a convergent-divergent nozzle. This
method uses very large mass flow compared to the other two, resulting in a large
thrust vector. In an electric propulsion system, electric energy is used to accelerate
an inert gas to generate thrust. This acceleration can be accomplished by heating
the exhaust gas and expanding it through a convergent-divergent nozzle (electro-
thermal propulsion) or by ionizing the gas and accelerating the ions using an electric
(electrostatic propulsion) or an electromagnetic field. As a propellant for an elec-
trostatic thruster, xenon or krypton are typically used.[28, 45] These thrusters have
a very small propellant mass flow, but the exhaust gases are accelerated to very
high velocities (> 15 km

s
for a hall-effect thruster[22]). While the generated thrust

is very small compared to a chemical propulsion system, the specific impulse

𝐼𝑠𝑝 =
𝑣𝑒
𝑔0

(1.3)

is large (> 1500 s compared to ≈ 320 s for a typical bipropellant system[28]).
Therefore, the propellant mass fraction 𝜇𝑃 , defined as

𝑚𝑃

𝑚0

= 𝜇𝑃 = 1 − exp

(︂
−∆𝑣

𝑣𝑒

)︂
(1.4)

2

1.2. ESPRIT

required to achieve a given velocity increase ∆𝑣 is much smaller for an electric
propulsion system compared to a chemical one.

Due to the low thrust, electric propulsion systems are not viable for boosters,
but they are increasingly used on satellites as orbit raising and station keeping
engines.[10] The Hispasat 36W-1 satellite built by OHB uses OKB Fakel SPT100
hall-effect thrusters as part of the station keeping system. Additionally, an all
electric satellite, meaning electric propulsion for the orbit raising as well as for the
station keeping, called Electra is currently in development for ESA.[36]

1.2. ESPRIT

The Lunar Orbital Platform-Gateway is a NASA-led project involving the ESA,
Roscosmos, JAXA and CSA. The goal of the project is to create a space station in
the lunar orbit that can serve as a communication hub, a habitation module, and a
transfer gateway for lunar missions, specifically the Artemis missions.[30, 31] One of
the major european contributions to the Gateway is the European System Providing
Refueling, Infrastructure and Telecommunications module (short ESPRIT). This
module is currently in the development stage at Thales Alenia Space under con-
tract from ESA. OHB System AG is a subcontractor for two studies involving the
structure, the thermal control system and a refueling system.[35] One of the func-
tionalities of the ESPRIT module will be refueling the Gateway ’s xenon tanks from
a visiting vehicle.

Figure 1.1.: Planned configuration of the Gateway with the ESPRIT module B [31]

3

1. Introduction

1.3. Xenon tank

As previously mentioned, an electric propulsion system typically uses xenon or
sometimes krypton as propellant fluid. The tank proposed for ESPRIT is Northrop
Grumman’s 80458-1 Xenon Propellant Tank. This is a composite overwrapped
pressure vessel with a center cylinder welded to dome-like end caps and overwrapped
with T1000 carbon fiber. The tank is rated for an operational pressure of 186.16 bar,
has an internal diameter of 419.1 mm, an internal height of 1125.22 mm, and a
propellant volume of 132.74 l. The tank is mounted using polar bosses and is
connected via an inlet/outlet tube with a diameter of 9.525 mm.[34]

Figure 1.2.: Picture and schematics of the 80458-1 [34]

1.4. EcosimPro

EcosimPro is a simulation software developed by the Spanish company Empres-
arios Agrupados since 1989 with the original funding coming from ESA. It can be
used to model physical processes with 0D or 1D equations utilizing a graphical
user interface and/or an object-oriented programming language called EL.[8] To
speed up and simplify the creation of new models, libraries of components have
been developed. Each component contains the modeling equations for the physical
objects it represents. One of said libraries is the European Space Propulsion System
Simulation (short ESPSS) which contain a number of components typically needed

4

1.5. Excel Tool

in propulsion systems, such as tanks, valves, pumps, combustion chambers, and
nozzles.[25] Using these components, a 1D model of a propulsion system or parts
of it can be modeled with relative ease. At OHB, EcosimPro and the ESPSS are
used extensively, especially during early development.

1.5. Excel Tool

Internally at OHB, an Excel tool was created to estimate the tank shell temperature
during tank pressurization on ground using a 0D method. The assumptions and
the used formulas are discussed in chapter 4.5.1.

1.6. Objective of this Thesis

The intention is to create a 2D model that can be used to analyze the xenon
tank pressurization and its consequences for the thermal control system in a zero-g
environment, and to perform this analysis for the ESPRIT case. The model shall
be created using the open source framework OpenFOAM. Since OpenFOAM ships
with a number of solvers optimized for various fluid dynamics problems, a suitable
solver shall be selected and appropriate numerical schemes shall be investigated. A
parameter study shall be performed to find suitable settings for the time step, the
processor cores and the mesh size. The resulting model shall then be applied to the
ESPRIT case and the calculated results shall be compared to results created using
EcosimPro and the above mentioned Excel tool.

5

2. Theory of Fluid Flows

The described problem concerns xenon as a fluid, in either its gaseous or its super-
critical state. Therefore, in this chapter the mathematical descriptions of a fluid
flow are briefly discussed. There exists a lot of literature that goes into detail about
the mathematics and physics beyond what is presented here.[26, 9, 17]

In general, a fluid flow is described by the continuity, momentum and energy equa-
tions which describe the conservation of mass, momentum and total energy re-
spectively. These are collectively known as the Navier-Stokes equations and are
highly nonlinear second order partial differential equations with four independent
variables (three spacial coordinates and one temporal coordinate).

There are two different approaches to describing the conservation laws, namely the
Lagrangian and the Eulerian approach. In the Lagrangian approach, the fluid is
divided into fluid parcels that are tracked as they move through time and space.
Each parcel is tagged by a position vector 𝑥⃗0, usually set in the parcel’s center of
mass at time 𝑡0. The movement of the parcel then is described by the function
𝑥⃗(𝑡,𝑥⃗0). The Eulerian approach on the other hand focuses on a specific volume
element through which the fluid flows over time. The flow variables are therefore
a function of the position 𝑥⃗, the time 𝑡 and the flow velocity 𝑣⃗(𝑥⃗,𝑡). The two
descriptions are related by

𝑣⃗(𝑥⃗(𝑥⃗0,𝑡),𝑡) =
𝜕

𝜕𝑡
𝑥⃗(𝑥⃗0,𝑡) (2.1)

To describe the change of a material volume in the Eulerian specification, Reyn-
olds Transport Theorem is used. It gives a relation between the change of a fluid
property 𝜑 in a material volume over time with the volume integral and the surface
fluxes of this property

(︂
𝑑𝜑

𝑑𝑡

)︂
𝑀𝑉

=

∫︁
𝑉

[︃
𝜕

𝜕𝑡

(︂
𝜌
𝑑𝜑

𝑑𝑚

)︂
+ ∇ ·

(︂
𝜌𝑣⃗

𝑑𝜑

𝑑𝑚

)︂]︃
𝑑𝑉 (2.2)

6

2.1. Continuity Equation

a b

t

t+dt

CV

Figure 2.1.: a Eulerian and b Lagrangian representation of the fluid flow

2.1. Continuity Equation

The continuity equation describes the conservation of mass, meaning without sources
or sinks, an object will have a constant mass. In the Lagrangian system this can
be written as

(︂
𝑑𝑚

𝑑𝑡

)︂
𝑀𝑉

= 0 (2.3)

We can convert this into the Eulerian system using Eq. (2.2). For a fluid of mass
𝑚, density 𝜌, and velocity 𝑣⃗, this will give

𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌𝑣⃗] = 0 (2.4)

or in the integral form for a control volume 𝑉

∫︁
𝑉

(︂
𝜕𝜌

𝜕𝑡
+ ∇ · [𝜌𝑣⃗]

)︂
𝑑𝑉 = 0 (2.5)

7

2. Theory of Fluid Flows

For an incompressible fluid, the density 𝜌 does not change over time, therefore Eq.
(2.4) can be simplified to

∇ · 𝑣⃗ = 0 (2.6)

or in the integral form with the control volume surfaces 𝑆 and their normal vectors
𝑛⃗

∮︁
𝑆

(𝑣⃗ · 𝑛⃗) 𝑑𝑆 = 0 (2.7)

2.2. Momentum Equation

The conservation of momentum describes that without external forces acting on a
body, the total momentum of the body will remain constant. Additionally, since the
momentum is a vector quantity, the directional components will also be conserved.
This phenomenon is described in Newton’s Second Law of Motion. For a material
volume and in the Lagrangian System, this can be written as

(︂
𝑑(𝑚𝑣⃗)

𝑑𝑡

)︂
𝑀𝑉

=

⎛⎜⎝∫︁
𝑉

𝑓𝑑𝑉

⎞⎟⎠
𝑀𝑉

(2.8)

where 𝑓 is the sum of the external forces acting on the material volume with mass
𝑚, density 𝜌, and velocity 𝑣⃗. Using Eq. (2.2), one can write this in the conservative
form for an Eulerian system

𝜕

𝜕𝑡
[𝜌𝑣⃗] + ∇ · (𝜌𝑣⃗𝑣⃗) = 𝑓 (2.9)

or in the integral form with a control volume 𝑉

∫︁
𝑉

[︂
𝜕

𝜕𝑡
[𝜌𝑣⃗] + ∇ · (𝜌𝑣⃗𝑣⃗) − 𝑓

]︂
𝑑𝑉 = 0 (2.10)

8

2.2. Momentum Equation

The external forces 𝑓 consist of the surface forces 𝑓𝑆 and the body forces 𝑓𝑏 so
that

𝑓 = 𝑓𝑆 + 𝑓𝑏 (2.11)

2.2.1. Surface forces

The forces acting on a volume element result from the pressure and viscous stresses.
These can be expressed in terms of the total stress tensor T where 𝑇𝑖𝑖 represents
the normal stresses and 𝑇𝑖𝑗 the shear stresses acting on face 𝑖 in the 𝑗 direction. In
practice, the stress tensor can be split such that

T = −𝑝I + 𝜏 (2.12)

where I is the identity tensor, 𝑝 the pressure and 𝜏 the viscous stress tensor.

Therefore, the surface forces can be expressed as

𝑓𝑆 = ∇ ·T = −∇𝑝 + ∇ · 𝜏 (2.13)

2.2.2. Body forces

There are a number of forces acting on the volume body, such as the Coriolis
forces and the Centrifugal forces for a rotating body. However, the predominant
body force is the gravitational force. Therefore, the body forces 𝑓𝑏 can usually be
written as

𝑓𝑏 = 𝜌𝑔⃗ (2.14)

where 𝑔⃗ is the gravitational acceleration vector.

Using Eq. (2.11), (2.13), and (2.14), the momentum equation (2.9) can be written
as

𝜕

𝜕𝑡
[𝜌𝑣⃗] + ∇ · (𝜌𝑣⃗𝑣⃗) = −∇𝑝 + ∇ · 𝜏 + 𝜌𝑔⃗ (2.15)

9

2. Theory of Fluid Flows

2.2.3. Stress tensor

The momentum equation (2.15) contains the viscous stress tensor 𝜏 . It is desirable
to express the stresses in terms of flow variables instead. For a Newtonian fluid,
i.e. a fluid with a linear relationship between shear stress and shear rate, the shear
tensor is given by

𝜏 = 𝜇

(︂
∇𝑣⃗ + (∇𝑣⃗)ᵀ − 2

3
(∇ · 𝑢⃗) I

)︂
(2.16)

where 𝜇 is the dynamic viscosity, ᵀ indicates the transpose of ∇𝑣⃗, and I is the
identity tensor.

Substituting the stress tensor 𝜏 in Eq. (2.15) with Eq. (2.16) as well as including
∇ (∇𝑣⃗) = ∇2𝑣⃗ and (∇𝑣⃗)ᵀ = ∇ (∇ · 𝑣⃗), one arrives at the general Navier-Stokes
momentum equation for compressible fluids

𝜕

𝜕𝑡
[𝜌𝑣⃗] + ∇ · (𝜌𝑣⃗𝑣⃗) = −∇𝑝 + 𝜇∇2𝑣⃗ +

1

3
𝜇∇ (∇ · 𝑣⃗) + 𝜌𝑔⃗ (2.17)

2.3. Energy Equation

The conservation of energy is based on the first law of thermodynamics, which
states that energy can only be transformed from one form to another, but it cannot
be created or destroyed. Therefore the total energy of an isolated system remains
constant. The total energy 𝐸 of a material volume can be expressed as the sum of
its internal and kinetic energies

𝐸 = 𝑚

(︂
𝜖 +

1

2
𝑣⃗ · 𝑣⃗

)︂
(2.18)

where 𝑚 is the material mass and 𝜖 is the specific internal energy of the fluid.
The total energy of a material volume changes only through the heat flow 𝑄̇ and
performed work 𝑊̇

(︂
𝑑𝐸

𝑑𝑡

)︂
𝑀𝑉

= 𝑄̇− 𝑊̇ (2.19)

10

2.3. Energy Equation

The heat flow can be split into the flow across the surfaces 𝑄̇𝑆 and the heat gener-
ated or destroyed inside the volume, e.g. through chemical reaction, 𝑄̇𝑉 . The work
can be split as well: into the work performed by the surface forces 𝑊̇𝑆 and work
performed by the body forces 𝑊̇𝑏

(︂
𝑑𝐸

𝑑𝑡

)︂
𝑀𝑉

= 𝑄̇𝑆 + 𝑄̇𝑉 − 𝑊̇𝑆 − 𝑊̇𝑏 (2.20)

The work terms are defined by

𝑊̇𝑆 = −
∮︁
𝑆

(︁
𝑓𝑆 · 𝑣⃗

)︁
𝑑𝑆

𝑊̇𝑏 = −
∫︁
𝑉

(︁
𝑓𝑏 · 𝑣⃗

)︁
𝑑𝑉

(2.21)

Replacing 𝑓𝑆 with Eq. (2.13) as well as 𝑓𝑏 with Eq. (2.14) leads to

𝑊̇𝑆 = −
∫︁
𝑉

(︁
−∇ · [𝑝𝑣⃗] + ∇ ·

[︀
𝜏 · 𝑣⃗

]︀)︁
𝑑𝑉

𝑊̇𝑏 = −
∫︁
𝑉

(𝜌𝑔⃗ · 𝑣⃗) 𝑑𝑉

(2.22)

The volume and surface heat fluxes can be expressed in terms of the specific rate
of heat source or sink inside the volume 𝑞𝑉 and the specific rate of heat transfer
through the surfaces 𝑞𝑆

𝑄̇𝑉 = −
∫︁
𝑉

𝑞𝑉 𝑑𝑉

𝑄̇𝑆 = −
∫︁
𝑉

∇ · 𝑞𝑆𝑑𝑉
(2.23)

11

2. Theory of Fluid Flows

Using these equations, one can express the conservation of energy in terms of the
specific total energy 𝑒 = 𝐸

𝑚
as

𝜕

𝜕𝑡
(𝜌𝑒) + ∇ · [𝜌𝑣⃗𝑒] = −∇ · 𝑞𝑆 −∇ · [𝑝𝑣⃗] + ∇ ·

[︀
𝜏 · 𝑣⃗

]︀
+ 𝜌𝑔⃗ · 𝑣⃗ + 𝑞𝑉 (2.24)

or in its integral form for a control volume 𝑉

∫︁
𝑉

(︂
𝜕

𝜕𝑡
(𝜌𝑒) + ∇ · [𝜌𝑣⃗𝑒] + ∇ · 𝑞𝑆 + ∇ · [𝑝𝑣⃗] −∇ ·

[︀
𝜏 · 𝑣⃗

]︀
− 𝜌𝑔⃗ · 𝑣⃗ − 𝑞𝑉

)︂
𝑑𝑉 = 0

(2.25)

Additionally, the energy equation can also be expressed in terms of the specific
internal energy 𝜖, the specific enthalpy ℎ, and the temperature 𝑇 , if the fluid is
Newtonian and ℎ = ℎ(𝑝,𝑇). Only the final equations are presented here, the
mathematical derivation of these can be found in [26].

In terms of the specific internal energy

𝜕

𝜕𝑡
(𝜌𝜖) + ∇ · [𝜌𝑣⃗𝜖] = −∇ · 𝑞𝑆 − 𝑝∇ · 𝑣⃗ +

(︀
𝜏 : ∇𝑣⃗

)︀
+ 𝑞𝑉 (2.26)

In terms of the specific enthalpy

𝜕

𝜕𝑡
(𝜌ℎ) + ∇ · [𝜌𝑣⃗ℎ] = −∇ · 𝑞𝑆 +

𝜕𝑝

𝜕𝑡
+ 𝑣⃗ · ∇𝑝 +

(︀
𝜏 : ∇𝑣⃗

)︀
+ 𝑞𝑉 (2.27)

In terms of the temperature

𝑐𝑃

(︂
𝜕

𝜕𝑡
(𝜌𝑇) + ∇ · [𝜌𝑣⃗𝑇]

)︂
= ∇· [𝑘∇𝑇]−

(︂
𝜕𝑝

𝜕𝑡
+ 𝑣⃗ · ∇𝑝

)︂(︂
𝜕 ln 𝜌

𝜕 ln𝑇

)︂
𝑝

+
(︀
𝜏 : ∇𝑣⃗

)︀
+ 𝑞𝑉

(2.28)

Here, 𝑘 is the thermal conductivity of the fluid, 𝑐𝑃 the specific heat capacity at
constant pressure, and : indicates a double inner product.

12

2.4. Dimensionless Quantities

2.4. Dimensionless Quantities

For fluid flows, a number of dimensionless quantities have been defined in literature.
They all try to characterize specific properties of the flow and are useful to compare
flows with each other. Additionally they can be used to transfer measurements from
a scaled down experiment to the full scale problem. The most relevant quantities
to the given problem are discussed below.

2.4.1. Reynolds number

The Reynolds number measures the ratio between the advection or inertia and the
diffusion or viscous forces and is defined as

𝑅𝑒 =
𝜌𝑣𝐿

𝜇
=

𝑣𝐿

𝜈
(2.29)

where 𝑣 is the velocity of the fluid relative to the considered object, 𝐿 the character-
istic length of the object, 𝜇 the dynamic and 𝜈 the kinematic viscosity of the fluid.
The Reynolds number indicates whether a flow is laminar, transient, or turbulent.
For a free flow over a flat plate, the flow becomes turbulent at 𝑅𝑒𝑥 ≈ 5 × 105. For
a fully developed flow through a pipe, turbulent flow begins at 𝑅𝑒𝐷 ≈ 2300.[39]

Viscous sublayer

Flow
𝑅𝑒 < 5× 105

𝑅𝑒 > 5× 105
Laminar flow region

Transition region

Turbulent flow region

Figure 2.2.: Flow regimes over a flat plate for different Reynolds number values [26]

13

2. Theory of Fluid Flows

2.4.2. Prandtl number

The Prandtl number 𝑃𝑟 is the ratio of the momentum diffusivity to the thermal
diffusivity and can be calculated by

𝑃𝑟 =
𝜇𝑐𝑝
𝑘

=
𝜈

𝛼
(2.30)

where 𝜈 is the kinematic viscosity and 𝛼 is the thermal diffusivity. If 𝑃𝑟 < 1, the
thermal boundary layer is larger than the hydrodynamic boundary layer. If 𝑃𝑟 > 1,
the opposite is true.[5]

a

𝑃𝑟 < 1

b

𝑃𝑟 > 1

y

Thermal boundary

layer

Wall temperature

Temperature

𝑇 (𝑥,𝑦)

Free Stream

Temperature

𝑢(𝑥,𝑦)

Hydrodynamic boundary

layer
Free Stream Velocity

Velocity

y

Hydrodynamic boundary

layer

𝑢(𝑥,𝑦)

Free Stream Velocity

Temperature Velocity

𝑇 (𝑥,𝑦)

Wall

temperatureFree Stream

Temperature

Thermal boundary

layer

Figure 2.3.: Thermal and hydrodynamic boundary layer for a 𝑃𝑟 < 1 and b 𝑃𝑟 > 1
[26]

14

2.4. Dimensionless Quantities

2.4.3. Grashof number

The Grashof number 𝐺𝑟 represents the ratio between the buoyant and the viscous
forces acting on a fluid. It plays a similar role in natural convection as the Reynolds
number does in forced convection. It is defined as

𝐺𝑟 =
𝑔𝛽(𝑇𝑠 − 𝑇∞)𝐿3

𝜈2
(2.31)

where 𝑔 is the acceleration due to gravity, 𝛽 is the thermal expansion coefficient, 𝑇𝑠

and 𝑇∞ are the temperature of the surface and the ambient environment respect-
ively, 𝐿 is the characteristic length, and 𝜈 is the kinematic viscosity of the fluid. A
higher Grashof number results in a higher natural convection.[26]

2.4.4. Nusselt number

The Nusselt number 𝑁𝑢 is the ratio of convective heat transfer to conductive heat
transfer and is defined as

𝑁𝑢 =
ℎ𝐿

𝑘
(2.32)

where ℎ is the heat transfer coefficient, 𝐿 the characteristic length, and 𝑘 the
thermal conductivity of the fluid. A higher Nusselt number indicates a more effect-
ive convection. Typically, the Nusselt number for a laminar flow through a pipe is
in the range of 1 to 10, whereas for a turbulent flow through a pipe it is between
100 and 1000.[47]

2.4.5. Rayleigh number

The Rayleigh number 𝑅𝑎 is the product of the Grashof number and the Prandtl
number

𝑅𝑎 = 𝐺𝑟 · 𝑃𝑟 (2.33)

It characterizes the flow regime of a fluid, with a lower value indicating a laminar
flow and a higher value a turbulent flow.[5]

15

3. Computational Fluid Dynamics

In this chapter, the solver selection process is described and the algorithm used by
the selected solver is presented. Following this, the usable numerical schemes as
well as the turbulence modeling approaches are explained and compared.

3.1. OpenFOAM

OpenFOAM is the open source version of FOAM (acronym for Field Operation And
Manipulation), which was originally developed by Henry Weller and released under
the GNU General Public License in 2004.[37, 14]. The current version is distributed
by the OpenFOAM Foundation while the trademark is held by the ESI-OpenCFD
Ltd. The majority of maintenance and development contributions are made by the
CFD Direct Ltd., a company founded by Weller in 2015.

OpenFOAM is a C++ based toolbox which allows the development of solvers for
fluid and continuum mechanical problems. A variety of these solvers and libraries
for different applications has been developed over the years and are shipped with
OpenFOAM.

3.2. Solver selection

A solver has to meet a number of requirements to be suitable for the given applic-
ation. Firstly, the solver has to be able to handle non-steady flows. Additionally,
compressibility effects must be included because the fluid will be compressed during
pressurization. Lastly, the solver has to be non isothermal as the fluid will heat up
when being pressurization. During the solver selection process the question arose

16

3.2. Solver selection

whether the solver has to be able to model multiple fluid phases. OpenFOAM in-
cludes a number of solvers that are able to model two or more fluid phases. They
use 𝛼𝑖 as the fraction of the cell volume occupied by the fluid phase 𝑖:∑︁

𝛼𝑖 =

∑︀
𝑉𝑖

𝑉
= 1 (3.1)

For the given problem, in addition to the requirements listed above, the solver has
to be able to model phase changes due to pressure drops and increases. Unfortu-
nately non of the multiphase solvers included with OpenFOAM fulfill all of these
requirements. interPhaseChangeFoam looks like a promising candidate, but it can
only be used for isothermal flows, which disqualifies it for the given use case.[46]

A different approach to the problem can be taken. Here, the different phases are
not distinguished by the solver and instead of models for the fluid phases (e.g.
ideal gas or ideal liquid), real fluid property values are used. The fluid properties
are stored in tables by pressure and temperature and are interpolated by a custom
OpenFOAM library during the simulation run. The fluid properties can be obtained
from the NIST Chemistry WebBook.[23] In the given cases, the fluid is always
either gaseous or supercritical. Therefore, there are no discontinuities in the fluid
properties (see Fig. 3.1) and interpolated values can be used with a reasonable
degree of accuracy.

40

50

60

70

80

90

100

110

120

130

140

20 40 60 80 100 120 140 160 180 200

E
n
th

al
p
ie

𝐻
[k

J
k
g
]

Pressure 𝑝 [bar]

300K

350K

400K

Figure 3.1.: Xenon enthalpy 𝐻 over the pressure 𝑝 for different temperatures 𝑇 .
Red line represents critical pressure [23]

17

3. Computational Fluid Dynamics

By following this approach, no multiphase solver is required to solve the given prob-
lem and one of the provided compressible single phase solvers can be used. The
two possible candidates are rhoCentralFoam and rhoPimpleFoam. The former is a
density-based solver based on a central-upwind scheme. The latter is a pressure-
based solver which uses the PIMPLE algorithm. Unfortunately, while rhoCent-
ralFoam is able to solve discontinuity problems, it is not able to model turbu-
lences in a physically correct way due to the dissipative nature of the underlying
algorithm.[6] This leaves rhoPimpleFoam as the preferred solver.

3.3. rhoPimpleFoam

rhoPimpleFoam is solver for unsteady, compressible, non isothermal single phase
fluid flows. As mentioned above, it uses the PIMPLE algorithms to solve the
flow equations. This method is a combination of the SIMPLE and the PISO al-
gorithm.[43]

3.3.1. SIMPLE

SIMPLE (acronym for Semi-Implicit Method for Pressure-Linked Equations) was
developed by Patankar and Spalding and published in 1972.[38] SIMPLE is a
pressure-based segregated method for solving steady flows. Using an initial guess
for the pressure and velocity in the field, the momentum equations are solved for
the relative velocity corrections. The discrete form of the momentum equation (Eq.
2.17) is then substituted into the discrete form of the continuity equation (Eq. 2.4),
resulting in an equation for discrete relative pressures called pressure corrections.
This is solved iteratively. Using the found correction terms, the initial guess for the
pressure and velocities is updated with

𝑢 = 𝑢* + 𝑢′

𝑣 = 𝑣* + 𝑣′

𝑤 = 𝑤* + 𝑤′

𝑝 = 𝑝* + 𝑝′

(3.2)

where 𝑢*, 𝑣*, 𝑤* and 𝑝* are the guesses and 𝑢′, 𝑣′, 𝑤′ and 𝑝′ are the calculated correc-
tions.[2] Using the corrected velocities and pressure, additional transport equations

18

3.3. rhoPimpleFoam

can now be solved and density field can be updated. Figure 3.2 shows a simplified
flow chart of the SIMPLE algorithm.

In order for the SIMPLE algorithm to converge, under-relaxation factors have to
be added to the correction equations (Eq. 3.2). These factors are typically in the
range of 0.1-0.3 for the pressure and ≈ 0.7 for the velocities.[2] Additionally, the
Courant number, defined as

𝐶 =
𝑢∆𝑡

∆𝑥
(3.3)

where 𝑢 is the velocity magnitude, has to be 𝐶 ≤ 1.

19

3. Computational Fluid Dynamics

Solution
converged?

Done

yes

Initial guess

for 𝑝*, 𝑢*, 𝑣*, 𝑤*

Compute velocity

corrections 𝑢′ , 𝑣′, 𝑤′

Compute pressure

correction 𝑝′

Update pressure and

velocity field with

correction terms

Solve additional

transport equations

Set last results as

new guesses

no

Figure 3.2.: Flow chart of the SIMPLE algorithm

20

3.3. rhoPimpleFoam

3.3.2. SIMPLEC

A modified version of the SIMPLE algorithm is called SIMPLEC (acronym for
Semi-Implicit Method for Pressure Linked Equations-Consistent). The algorithm
follows the same steps as SIMPLE, but the neighbor velocity correction terms
are approximated instead of dropped. The equations for calculating the velocity
correction terms change to:

(𝑎𝑒 −
∑︁
𝑛𝑏

𝑎𝑛𝑏) · 𝑢′
𝑒 = ∆𝑦(𝑝′ − 𝑝′𝑒)

(𝑎𝑛 −
∑︁
𝑛𝑏

𝑎𝑛𝑏) · 𝑣′𝑛 = ∆𝑥(𝑝′ − 𝑝′𝑛) (3.4)

where 𝑛𝑏 refers to the neighboring cells, 𝑒 refers to the cell to the right of the
current cell and 𝑛 refers to the cell above the current one. The same equations can
be given for the cell to the left and below the current cell. This change eliminates
the need to under-relax the pressure correction term. The momentum correction
still requires under-relaxation for the algorithm to be stable.[29]

3.3.3. PISO

The PISO algorithm (acronym for Pressure-Implicit with Splitting of Operators)
was published by Issa in 1986.[19] PISO is a pressure-based method for solving
unsteady flows. As with SIMPLE, an initial guess of the pressure and velocity
field is required. After this, the velocity correction terms are calculated from the
momentum equations and the pressure correction term is calculated using the Pois-
son equation. These correction terms are used to correct the pressure and velocity
guesses. Then a second pressure correction term is calculated and the pressure and
velocities are revised again. These values for the pressure and velocities are used to
solve all other transport equations. The whole process is repeated until convergence
is reached, after which the solver moves to the next time step. An overview of the
process is shown in figure 3.3.

21

3. Computational Fluid Dynamics

Solution

converged?

Done

yes

Initial guess

for 𝑝*, 𝑢*, 𝑣*, 𝑤*

Compute velocity

corrections 𝑢′ , 𝑣′, 𝑤′

Compute pressure

correction 𝑝′

Update pressure and

velocity field with

correction terms

Solve additional

transport equations

Set last results as

new guesses

no

Solve second

pressure correction 𝑝′′

Update pressure

with second correction

Figure 3.3.: Flow chart of the PISO algorithm for each time step

22

3.3. rhoPimpleFoam

3.3.4. PIMPLE

The PIMPLE algorithm is a combination of the SIMPLE and the PISO algorithm.
For each time step, a steady state solution that converges is sought after, using a
specified number of correction loops. After that, all other transport equations are
solved. This would be equal to the PISO algorithms with the specified number of
correction loops. But following this, the algorithm loops back over the entire time
step and solves the PISO algorithm again with a new initial guess.[27] A simplified
flow diagram of the algorithm is shown in figure 3.4.

Done

yes

Solve momentum

equations

Solve additional

transport equations

no

Solve pressure

equation

Start

For each
time step

Update pressure and

velocity field with

correction terms

No. inner

corrections reached?

No. outer

corrections reached?

yes

noLast

time step?

yes

Figure 3.4.: Simplified flow chart of the PIMPLE algorithm

The usage of the PIMPLE algorithm entails the advantage that the Courant number

23

3. Computational Fluid Dynamics

(Eq. 3.3) can be much larger than 1 and no under-relaxation is required for a stable
solution. This allows for larger time steps, but the computational effort for each
time step is bigger than with PISO.

3.4. Numerical Schemes

To solve the fluid problem, the Finite Volume method is applied. The computa-
tional domain is divided into a finite number of volumes, also called mesh. The
method is based on the partial differential equation of the general law of conserva-
tion

𝜕𝑢

𝜕𝑡
+ ∇ · 𝑓(𝑢) = Γ (3.5)

where 𝑓 is the flux of the conserved state and Γ is the source term.

By applying Gauss’s theorem

∫︁
𝑉

∇ · 𝐹𝑑𝑉 =

∮︁
𝑆

𝐹 · 𝑛⃗𝑑𝑆 (3.6)

to the divergence term, the change of a quantity within a volume can be described
by integrating over all fluxes through the volume faces:

∫︁
𝑉𝑖

𝜕𝑢

𝜕𝑡
𝑑𝑣 +

∮︁
𝑆𝑖

𝑓(𝑢) · 𝑛⃗𝑑𝑆 = 𝛾 (3.7)

where 𝑉𝑖 is the total volume and 𝑆𝑖 the total surface area of a cell. Different schemes
can be used to discretize and solve the parts of this equation. The following sections
will present the schemes available in OpenFOAM. A more detailed discussion of
the schemes can be found in [26].

24

3.4. Numerical Schemes

3.4.1. Temporal Discretization

For a transient simulation, the governing equations have to be discretized in time.
To achieve this, a time coordinate is set up along which the integral of the transient
term is evaluated.

In general the temporal derivative of a variable 𝜑 is a function of the time and the
variable itself.

𝜕𝜑

𝜕𝑡
= 𝑓(𝑡,𝜑) (3.8)

This can be discretized in a number of ways.

3.4.1.1. Forward Euler Scheme

The Forward Euler scheme approximates the time derivative based on the current
cell values. Therefore, the time derivative and the cell value at the next time step
can be computed explicitly:

𝜑𝑛+1
𝑖 − 𝜑𝑛

𝑖

∆𝑡
= 𝑓𝑛(𝑡,𝜑) (3.9)

The Forward Euler scheme is a first order scheme as the truncation error scales
linearly with the time step. For the Forward Euler scheme to be stable, the Courant
number (Eq. 3.3) has to be ≤ 1.

3.4.1.2. Backward Euler Scheme

With the Backward Euler Scheme, the time derivative is computed from the cell
values of the next time step. Thus, the method is implicit and a coupled solution
algorithm is required.

𝜑𝑛+1
𝑖 − 𝜑𝑛

𝑖

∆𝑡
= 𝑓𝑛+1(𝑡,𝜑) (3.10)

As with the Forward Euler scheme, the truncation error scales linearly with the
time step making the Backward Euler scheme a first order scheme as well. But

25

3. Computational Fluid Dynamics

unlike the Forward Euler scheme, the Backward Euler scheme is unconditionally
stable.

3.4.1.3. Crank-Nicolson Scheme

The Crank-Nicolson scheme can be seen as a combination of the Forward and
Backward Euler scheme. It is an implicit method.

𝜑𝑛+1
𝑖 − 𝜑𝑛

𝑖

∆𝑡
=

1

2
(𝑓𝑛+1(𝑡,𝜑) + 𝑓𝑛(𝑡,𝜑)) (3.11)

Because the truncation error scales quadratically with the time step, the Crank-
Nicolson scheme is a second order scheme. Unfortunately, the pure Crank-Nicolson
method is conditionally unstable and therefore rarely used. Instead, an off-centering
coefficient Ψ is introduced. This shifts the scheme towards a Backward Euler
scheme, making it more stable.

Ψ =

{︃
1 pure Crank-Nicolson

0 Backward Euler
(3.12)

A typical value for the coefficient is Ψ = 0.9.[46]

3.4.2. Convection Discretization

Using the Gauss theorem (Eq. 3.6), the convection terms can be computed with a
surface integral over the total cell surface. Thus, the discretization schemes for the
convection terms specify the method by which the face fluxes are computed.

For clarity, the schemes are presented using a one dimensional grid. But an exten-
sion to a multi dimensional grid follows the same principles. The cell, for which the
fluxes shall be determined, will be referred to with the index 𝐶. The neighboring
cells will be referred to by the index 𝑊 for the left and 𝐸 for the right neighbor.
The respective faces with be referred to by lowercase letters (𝑤, 𝑒). The cell values
are represented by 𝜙 with the height of the line representing the magnitude of the
value. The values of 𝜙 at the faces 𝑤 and 𝑒 shall be determined.

26

3.4. Numerical Schemes

3.4.2.1. Upwind scheme

The Upwind scheme is a simple, first order scheme. The value of cell is simply
assigned to the cell face depending on the fluid flow direction:

𝜙𝑤 =

{︃
𝜙𝑊 if 𝑢𝑤 > 0

𝜙𝐶 if 𝑢𝑤 < 0
and 𝜙𝑒 =

{︃
𝜙𝐶 if 𝑢𝑒 > 0

𝜙𝐸 if 𝑢𝑒 < 0
(3.13)

𝑊𝑊 𝑊 𝐶 𝐸 𝐸𝐸

𝑤𝑤 𝑤 𝑒 𝑒𝑒

𝜙𝑊𝑊
𝜙𝑊 𝜙𝑤

𝜙𝐶 𝜙𝑒

𝜙𝐸

𝜙𝐸𝐸

Figure 3.5.: 1D profile of the Upwind scheme

This scheme is very stable but due to to the smearing of the gradients, it only
achieves low accuracy.[16]

3.4.2.2. Central Difference scheme

In the Central Differences scheme (called Linear scheme in OpenFOAM), the face
value is interpolated from the two neighboring cell values:

𝜙𝑤 = 𝜙𝐶 +
𝜙𝑊 − 𝜙𝐶

𝑥𝑊 − 𝑥𝐶

· (𝑥𝑤 − 𝑥𝐶)

𝜙𝑒 = 𝜙𝐶 +
𝜙𝐸 − 𝜙𝐶

𝑥𝐸 − 𝑥𝐶

· (𝑥𝑒 − 𝑥𝐶)
(3.14)

For a uniformed grid, this can be simplified to

𝜙𝑤 =
𝜙𝐶 + 𝜙𝑊

2

𝜙𝑒 =
𝜙𝐶 + 𝜙𝐸

2

(3.15)

27

3. Computational Fluid Dynamics

The Central Differences scheme is a second order scheme, but the directionality
of the flow is not considered. Therefore, the scheme only yields physical results
if diffusion is the dominant transfer mechanism over convection. Otherwise, the
scheme becomes unbound and unstable.[3]

𝑊𝑊 𝑊 𝐶 𝐸 𝐸𝐸

𝑤𝑤 𝑤 𝑒 𝑒𝑒

𝜙𝑊𝑊
𝜙𝑊

𝜙𝑤

𝜙𝐶

𝜙𝑒

𝜙𝐸

𝜙𝐸𝐸

Figure 3.6.: 1D profile of the Central Difference scheme

3.4.2.3. Second Order Upwind scheme

The Second Order Upwind scheme (called Linear-Upwind scheme in OpenFOAM)
can be seen as a combination of the two previous schemes. As in the case of the
Upwind scheme, the cell value is applied to the upstream face. But instead of using
just the closest cell value, the face value is extrapolated from the two cell values
downstream:

𝜙𝑒 =

{︃
𝜙𝐶 + 𝜙𝐶−𝜙𝑊

𝑥𝐶−𝑥𝑊
(𝑥𝑒 − 𝑥𝐶) if 𝑢𝑒 > 0

𝜙𝐸 + 𝜙𝐸−𝜙𝐸𝐸

𝑥𝐸−𝑥𝐸𝐸
(𝑥𝑒 − 𝑥𝐸) if 𝑢𝑒 < 0

(3.16)

The equivalent equation can be defined for 𝜙𝑤.

For a uniformed grid, this can be simplified to

𝜙𝑒 =

{︃
3
2
𝜙𝑐 − 1

2
𝜙𝑤 if 𝑢𝑒 > 0

3
2
𝜙𝑒 − 1

2
𝜙𝑒𝑒 if 𝑢𝑒 < 0

(3.17)

nd the equivalent for 𝜙𝑤.

As the name implies, this scheme is a second order scheme. It is less diffusive
than the First Order Upwind scheme, while being more stable than the Central
Differences scheme.[33]

28

3.5. Turbulence Modeling

𝑊𝑊 𝑊 𝐶 𝐸 𝐸𝐸

𝑤𝑤 𝑤 𝑒 𝑒𝑒

𝜙𝑊𝑊
𝜙𝑊

𝜙𝐶

𝜙𝑒

𝜙𝐸

𝜙𝐸𝐸

Figure 3.7.: 1D profile of the Second Order Upwind scheme

3.5. Turbulence Modeling

Turbulent flows are defined by local fluctuations of the pressure and velocity in
the form of eddies on the macroscopic scale. For technical applications, their main
effect is an increased diffusivity resulting in an increased heat transfer. Kolmogorov
[21] describes the turbulence of a fluid as an energy cascade, with eddies of different
dimensions each containing an amount of energy proportional to its size. The large
eddies break up into smaller ones and transfer their energy to them in the process.
This break up process continues until an eddy size is reached at which the molecular
viscosity causes an effective dissipation of the energy as heat. Kolmogorov specifies
this smallest size as the micro length 𝜂

𝜂 =

(︃
𝜈3

𝜀

)︃1/4

(3.18)

with 𝜈 as the molecular kinematic velocity and 𝜀 as the rate of dissipation of the
kinetic energy.

The most precise method to simulate the fluid turbulences is a Direct Numerical
Simulation (DNS) where the Navier-Stokes equations are solved without simplific-
ations. This however requires a very fine mesh with spacial steps ∆𝑥 smaller than
the micro length 𝜂 and small time steps ∆𝑡 to achieve a Courant number (Eq.
3.3) 𝐶 ≤ 1. Thus, DNS is very computationally expensive and not suitable for
industrial application. Instead, turbulence models are used. One of those models is
the Large Eddy Simulation (LES). Here, the larger eddies are simulated directly in
the same way as with DNS, but smaller eddies are approximated by a turbulence
model. To achieve this, a spacial filter is applied to the Navier-Stokes equations
which filtrates out everything smaller than a given filter width. The LES method

29

3. Computational Fluid Dynamics

achieves high accuracies because the small eddies can be considered isotropic and
can therefore be modeled very accurately.[26] To reduce the computational cost
even further, the Reynolds Averaged Navier-Stokes (RANS) method can be used.
Here, the flow variables are split into a mean and a fluctuating value

𝜙(𝑥,𝑡) = 𝜙(𝑥,𝑡) + 𝜙′(𝑥,𝑡) (3.19)

where the mean value 𝜙 calculated with

𝜙(𝑥,𝑡) = lim
𝑇→∞

1

𝑇

𝑡+𝑇∫︁
𝑡

𝜙(𝑥,𝑡)dt (3.20)

To model the turbulences, a multitude of models have been developed over the
years with the two-equation models 𝑘 − 𝜀 by Jones and Launder and 𝑘 − 𝜔 by
Wilcox being the most widely used ones.[26] The OpenFOAM implementation of
the 𝑘 − 𝜀 model has been shown to be more accurate than the 𝑘 − 𝜔 model [44],
therefore, it was used for this work and is described in more detail below.

3.5.1. Standard 𝑘 − 𝜀 Model

The Standard 𝑘 − 𝜀 model is based on the Boussinesq approximation with the
turbulence viscosity 𝜇𝑡 and the thermal diffusivity 𝑘𝑡 defined by

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀

𝑘𝑡 =
𝑐𝑃𝜇𝑡

𝑃𝑟𝑡

(3.21)

where 𝜀 is the turbulence energy dissipation rate and 𝑘 is the turbulence kinetic
energy.[26]

Using said model, 𝑘 and 𝜀 can then be computed with

𝜕

𝜕𝑡
(𝜌𝑘) + ∇ · (𝜌𝑢⃗𝑘) = ∇ · (𝜇𝑒𝑓𝑓,𝑘∇𝑘) + 𝑃𝑘 − 𝜌𝜀 (3.22)

𝜕

𝜕𝑡
(𝜌𝜀) + ∇ · (𝜌𝑢⃗𝜀) = ∇ · (𝜇𝑒𝑓𝑓,𝜀∇𝜀) + 𝐶𝜀1

𝜀

𝑘
𝑃𝑘 − 𝐶𝜀2𝜌

𝜀2

𝑘
(3.23)

30

3.5. Turbulence Modeling

where

𝜇𝑒𝑓𝑓,𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘

(3.24)

𝜇𝑒𝑓𝑓,𝜀 = 𝜇 +
𝜇𝑡

𝜎𝜀

(3.25)

𝑃𝑘 = 𝜌𝑢′
𝑖𝑢

′
𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

(3.26)

and the following values are commonly assigned to the other model constants:

Model Constant Value

𝐶𝜇 0.09

𝐶𝜀1 1.44

𝐶𝜀2 1.92

𝜎𝑘 1.00

𝜎𝜀 1.30

𝑃𝑟𝑡 0.90

Table 3.1.: Typical values for the 𝑘 − 𝜀 model constants[9]

To set up a simulation, an initial value for 𝑘 and 𝜀 has to be calculated. The
turbulent kinetic energy can be estimated using

𝑘 =
3

2
(𝐼 · |𝑢𝑟𝑒𝑓 |)2 (3.27)

where 𝐼 = 𝑢′/𝑢 is the turbulence intensity. The turbulence dissipation rate can be
calculated with

𝜀 =
𝐶

3
4
𝜇 𝑘

3
2

𝐿
(3.28)

where 𝐿 is the turbulent length scale.[46]

31

4. Tank model

In this chapter, an OpenFOAM model in general and the created tank model in
particular is described including the chosen mesh topology, thermophysical proper-
ties, and initial and boundary conditions. Additionally, two alternative modeling
approaches are presented.

4.1. General Structure

The general structure of an OpenFOAM case is prescribed by the framework. [46]
A case setup consists of three directories: system, constant and 0. The system

directory contains the files specifying the solver and the mesh setup. The constant
folder contains information about the thermophysical and turbulence modeling
properties as well as tables containing the fluid property values from NIST (see
chapter 3.2). In the 0 directory, the boundary and initial condition for each flow
variable at time 0 are defined.

During the simulation, an additional directory for each time step in the specified
write interval is created which contains a file for each flow variable with the resulting
value for each cell at this time step.

The simulation can be distributed to multiple process cores in order to speed up
the calculation. In this case, each core writes its results into directory called
processorN, where N is the number of this core (i.e. processor0, processor1,
processor2, . . .). After the simulation is completed, the results of all processors
are combined and written into the time step directories described above using Open-
FOAM’s build-in tool reconstructPar.

32

4.2. Mesh and Solver Setup

OpenFOAM case

system constant 0 time step

controlDict

blockMeshDict

decomposeParDict

meshGen.ini

fvSolution

fvSchemes

g

thermophysical
Properties

turbulence
Properties

cpTablet

densityTablet

hTable

kappaTable

muTable

TTable

polyMesh

alphat

epsilon

k

nut

p

T

U

fluid variable

Figure 4.1.: Overview of the OpenFOAM case structure

4.2. Mesh and Solver Setup

4.2.1. Mesh

OpenFOAM always requires a three dimensional mesh, even if the model is sup-
posed to be two dimensional. In order to create a 2D model for OpenFOAM, the
third dimension is reduced to one cell.[46] Additionally, because the tank is rota-
tionally symmetric, a wedge shape mesh can be used. This means, the two corners
of the cell in the third dimension are collapsed onto each other as the symmetry
axis. This results in a shape with a triangular base area (see Fig. 4.2). As previ-
ously mentioned, the dimensions of the mesh are based on Northrop Grumman’s
80458-1 Xenon Propellant Tank.[34] It has a total height of 1110 mm, consisting
of a cylindrical part with a height of 830 mm and a radius of 210 mm, as well as a
curved dome at the top and bottom with a height of 140 mm each. The inlet/outlet

33

4. Tank model

port at the bottom center of the tank has a radius of 10 mm. This is more than the
tube diameter mentioned previously, but the inlet widens before reaching the inner
tank walls and the diameter at this intersection point was selected. The angle of
the wedge shape is defined as 0.1°. All of these physical properties are set in a file
called meshGen.ini inside the system directory. This is used by a custom Python
script to generate the blockMeshDict, which in turn is used by a standard Open-
FOAM utility called blockMesh that creates the actual mesh and stores it inside
the polyMesh subdirectory of constant.

x

y
z

Figure 4.2.: Example of wedge shape

Additionally the decomposeParDict file is used for parallel calculations on mul-
tiple processor cores. It specifies the number of sections the mesh should be split
into and the strategy used for the splitting process. Each section is then handed
to a processor core (or thread on CPUs with multithreaded cores). Thus, the
decomposeParDict controls the number of cores used in a parallel computation
run. For this model, the simple stategy was used, where the domain is simply
split into the specified number of equally long parts along each dimension. This is
defined with

34

4.2. Mesh and Solver Setup

numberOfSubdomains 16;

method simple;

simpleCoeffs

{

n (4 1 4);

delta 0.001;

}

Here, n (4 1 4) states that the domain should be split into four pieces along the
x axis, stay as one piece along the y axis and again be split into four pieces along
the z axis. The delta value defines the acceptable cell skew factor. The amount
specified under numberOfSubdomains has to match the number of sections created
by the splitting scheme defined with n.

4.2.2. Schemes and Solution Algorithm Control

Inside the system directory, there are two files called fvSchemes and fvSolution

respectively. The fvSolution contains the linear equation solver selections and
settings as well as the PIMPLE settings (see 3.3.4). The linear equation solvers
can be selected and configured for each variable independently.

For this model, the Geometric agglomerated algebraic multigrid (short GAMG)
solver is used for the pressure equation with the Simplified Diagonal-based Incom-
plete Cholesky (short DIC) smoother. The idea behind the GAMG solver is to use
a coarser grid to generate a starting solution for the finer grid. To achieve this, grid
cells are combined until the specified number of cells for the coarsest level or the
maximum number of combination steps is reached. The equations are then solved
for the coarsest level first and the results are mapped onto the finer grids to be
used as the initial solution to solve the equation for the finer grid.[4]

For all other flow variables (e.g. velocity, specific energy, etc.), the smoothSolver
with the Symmetric Gauss-Seidel smoother is used. smoothSolver is an iterat-
ive solver which uses a run-time selected smoother for symmetric or asymmetric
matrices. The symGaussSeidel smoother is a Gauss Seidel smoother that per-
forms an equal number of forward and backwards smoothing sweeps, hence sym-
metric.[46]

The PIMPLE setup used consists of three inner correction loops and up to 150
outer correction loops, though the outer corrections are aborted once a residual of
5 × 10−3 for the velocity is reached. Additionally to allow for no under-relaxation,

35

4. Tank model

the SIMPLEC mode (see chapter 3.3.2) is used by setting consistent true in the
PIMPLE configuration.

The fvSchemes file specifies the numerical schemes to use for solving the given prob-
lem. For the time discretization, the Crank-Nicolson Scheme (see chapter 3.4.1.3)
with an off-centering coefficient of 0.5 is used. For the convection discretization,
the second order upwind scheme (see chapter 3.4.2.3), here called linear upwind
scheme, is used.

4.3. Thermophysical and Turbulence Properties

4.3.1. Thermophysical Properties

The thermophysicalProperties file in the constant directory defines the fluid
constants (e.g. molecular mass) as well as the fluid models to use for the calcula-
tions. As described in chapter 3.2, no simplified fluid model can be used for the
given problem because of the different phases the fluid will be in during the simu-
lation. Instead, the fluid properties are interpolated from tables extracted from the
NIST Chemistry WebBook.[23] The tabulatedThermophysicalProperties exten-
sion [48] is used to pass the values from the table to the OpenFOAM solvers. The
tables, called cpTable, densityTable, hTable, kappaTable, muTable, and TTable

are stored inside the constant directory as well and tabulate the specific heat ca-
pacity 𝑐𝑃 , the density 𝜌, the specific enthalpy ℎ, the thermal conductivity 𝜅, the
dynamic viscosity 𝜇 and the temperature 𝑇 respectively as a function of the pres-
sure 𝑝 and the temperature 𝑇 (in the case of TTable as a function of 𝑝 and the
specific enthalpy ℎ). The values are extracted from the isothermal and isobaric
CSV files [40] provided by NIST using a custom Python script. An extract of one
of these tables, in this case densityTable, can be found below:

(

(165 ((0 0) (31666.67 3.05989) (63333.33 6.18092) . . .))
(168 ((0 0) (31666.67 3.00364) (63333.33 6.06383) . . .))
(171 ((0 0) (31666.67 2.94859) (63333.33 5.95139) . . .))
(174 ((0 0) (31666.67 2.89733) (63333.33 5.84330) . . .))
...

)

36

4.4. Initial and Boundary Conditions

4.3.2. Turbulence Properties

The turbulence model is selected and configured in the turbulenceProperties

file. In this case, the Reynolds Averaged Navier-Stokes method (see chapter 3.5) is
used and the 𝑘− 𝜖 model is applied to model the turbulences (see chapter 3.5.1).

4.4. Initial and Boundary Conditions

As described above, the 0 directory contains a file for each flow variable which
contains the initial and boundary conditions.

4.4.1. Initial conditions

The initial flow variable values are defined using the internalField keyword. For
the given problem, the fluid inside the tank is assumed to be at a uniform pressure
and temperature, and at rest. The values for both the client and the servicer case
can be found in Tab. 4.1.

parameter unit client servicer

𝑇 K 323.15 323.15

𝑈 m
s

(0 0 0)ᵀ (0 0 0)ᵀ

𝑝 Pa 1 × 106 1.86 × 107

Table 4.1.: Initial conditions inside the tank for the client and servicer case

4.4.2. Boundary conditions

The boundary conditions are split into the port, the tank walls and the wedge
sides. For the sides, the same boundary condition is used for all variables: wedge.
This boundary condition instructs OpenFOAM to treat the sides as non-existing
in a physical sense and uses the rotational symmetry to calculate fluxes across the
faces.

37

4. Tank model

4.4.2.1. Inlet/Outlet port

4.4.2.1.1. Pressure A simulated flow can either be pressure or velocity driven.
When creating a pressure driven flow, the inlet pressure is set to a fixed value
while the inlet velocity is calculated. For a velocity driven flow, it is the other
way around. Through trial and error, it was found that a velocity driven flow
simulation is more stable for the given problem. Therefore the pressure is not set
to a fixed value (e.g. the feeding tank pressure minus a pressure drop through the
pipes). Instead, a Neumann boundary condition [1] with a gradient value of 0 is
used (called zeroGradient in OpenFOAM)

𝜕𝑝

𝜕𝑛
= 0 (4.1)

This boundary condition is physically equivalent to having a pressure regulator
connected to the inlet/outlet port that regulates the pressure at the port to always
be equal to the tank pressure. The regulator itself is not modeled.

4.4.2.1.2. Temperature The temperature at the inlet is not known. Therefore,
a Neumann boundary condition with a gradient value of 0 is used again.

𝜕𝑇

𝜕𝑛
= 0 (4.2)

4.4.2.1.3. Velocity For a velocity driven flow, the inlet velocity has to be given.
Unfortunately, the design inputs given for the problem did not specify a velocity,
but a mass flow rate instead. Therefore, OpenFOAM’s flowRateInletVelocity

boundary condition is used. It calculates the flow velocity based on a given mass
flow and the density at the inlet assuming that the flow is normal to the port’s
plane.[39] The mass flow was specified to be 3 g

s
for both the client and the servicer

case. Because the simulated wedge only represents 1
3600

of the entire tank, the mass

flow rate is set to 8.3 × 10−7 kg
s

. For the servicer case, a negative sign is used to
specify an outgoing flow.

In order to simulate a valve opening at the inlet/outlet port, the mass flow is
increased linearly from 0 kilogram/s at 0 s to the final 8.3 × 10−7 kg

s
at 1 s.

38

4.4. Initial and Boundary Conditions

4.4.2.2. Wall

4.4.2.2.1. Pressure Just like for the inlet/outlet port, a Neumann boundary con-
dition with a gradient value of 0 is used as a pressure boundary condition at the
wall.

4.4.2.2.2. Temperature As part of the satellite, the temperature of the tank is
controlled by the thermal system. The thermal control system is typically modeled
using specialized software (e.g. ESATAN [20]) and is out of the scope of this work.
Instead, a fixed wall temperature is assumed. This will then be used as an input
requirement for a thermal analysis model. In our case, the wall temperature is set
to

𝑇𝑤𝑎𝑙𝑙 = 323.15 K (4.3)

This is achieved using OpenFOAM’s Dirichlet boundary condition [41] fixedValue.

The heat convection inside the fluid is modeled by the Navier-Stokes equations (Eq.
2.24). The heat convection and conduction between the fluid and the tank wall are
not considered, instead the fluid at the wall is assumed to be at fixed temperature
regardless of the heat transport required to achieve this.

4.4.2.2.3. Velocity The fluid cannot pass through the wall and the no-slip con-
dition [42] must be fulfilled, meaning that a fluid boundary layer exits with a fluid
velocity relative to the wall of zero at the boundary. To model this, the velocity at
the wall is set using OpenFOAM’s noSlip condition. This is a Dirichlet boundary
condition with a value of

𝑈𝑤𝑎𝑙𝑙 = (0 0 0)ᵀ (4.4)

4.4.2.2.4. Turbulence One has to take care when selecting the boundary con-
ditions for the turbulent kinetic energy 𝑘, the turbulent dissipation rate 𝜖, the
turbulent viscosity 𝜈𝑡, and the turbulent thermal diffusivity 𝛼𝑡. The 𝑘 − 𝜖 model
used for turbulence modeling is only valid for fully developed turbulences, which is
not the case in proximity to walls. Therefore, special boundary condition functions
were developed which enable the physically correct modeling of the turbulences at
a boundary wall.[24]

39

4. Tank model

For the inlet/outlet port, a Dirichlet boundary condition with a value calculated
using the approximation functions described in chapter 3.5.1 can be used for 𝑘 and
𝜖. The values for 𝛼𝑡 and 𝜈𝑡 can be calculated during the run by OpenFOAM based
on 𝑘 and 𝜖.

An overview of the OpenFOAM boundary conditions selected for the model’s in-
let/outlet port and wall can be found in table 4.2.

variable in/outlet wall

𝑘 fixedValue kqRWallFunction

𝜖 fixedValue epsilonWallFunction

𝜈𝑡 calculated nutkWallFunction

𝛼𝑡 calculated compressible::alphatWallFunction

Table 4.2.: Inlet/outlet port and wall boundary conditions used for turbulent flow
properties

4.5. Comparison models

As mentioned in chapter 1, two alternative methods to model the tank will be used
to compare the results. These are a 1D EcosimPro model and a 0D Excel tool.

4.5.1. Excel tool

As mentioned above, the Excel tool was created to estimate the tank shell tem-
perature during tank pressurization on ground. A 0D approach is used and the
calculations are performed solving basic equations of mass and heat transfer. The
ambient temperature is assumed to be constant and the tank’s heat capacity, the
Prandtl number on the outside, the viscosity on the outside, and the thermal con-
ductivity on the outside are given. The fluid pressure, specific internal energy,
the specific heat capacity at constant pressure, the specific enthalpy, the viscos-
ity, and the thermal conductivity are interpolated from 2D value tables over the
temperature and the density. The values are extracted from the NIST Chemistry
WebBook.[23]

The propellant mass inside the tank at time 𝑖 is defined as

𝑚𝑖 = 𝑚𝑖−1 + 𝑚̇ · ∆𝑡 (4.5)

40

4.5. Comparison models

and the density is derived uniformly as

𝜌𝑖 =
𝑉

𝑚𝑖

(4.6)

where 𝑉 is the total internal volume of the tank. Using the interpolated specific
internal energy ℎ𝑖, the heat flow from the propellant to the tank wall can be calcu-
lated as

𝑄𝑓𝑡,𝑖 = ℎ𝑖 · 𝐴(𝑇𝑓,𝑖 − 𝑇𝑡,𝑖) (4.7)

where 𝐴 is the surface area of the tank, 𝑇𝑓 is the temperature of the fluid and 𝑇𝑡 is
the tank shell’s temperature. Considering the mass flow 𝑚̇ into the tank and the
total heat flow 𝑄𝑖, the change in the internal energy of the fluid can be given as

𝑈̇𝑖 = 𝑚̇ · ℎ𝑖 −𝑄𝑖 (4.8)

and the internal energy can be calculated using the values from the last time step

𝑈𝑖 = 𝑈𝑖−1 + ∆𝑡 · 𝑈̇𝑖−1 (4.9)

Now, the fluid temperature 𝑇𝑓 can be interpolated from the inverted specific internal
energy value table. Using interpolated values for the specific heat capacity 𝑐𝑃 , the
thermal conductivity 𝑘, and the dynamic viscosity 𝜇, the Prandtl number 𝑃𝑟𝑖, the
Grashof number 𝐺𝑟𝑖, the Rayleigh number 𝑅𝑎𝑖, and the Nusselt number 𝑁𝑢𝑖 can
be computed (see chapter 2.4) for both the fluid-wall and the wall-environment
boundary. The coefficient of thermal expansion is assumed to be 𝛽 = 1/𝑇𝑓 .

This enables the calculation of the heat flow from the fluid to the tank wall 𝑄𝑓𝑡,𝑖

and from the tank wall to the environment 𝑄𝑡𝑒,𝑖

𝑄𝑓𝑡,𝑖 = ℎ𝑓𝑡,𝑖 · 𝐴(𝑇𝑓,𝑖 − 𝑇𝑡,𝑖) (4.10)

𝑄𝑡𝑒,𝑖 = ℎ𝑡𝑒,𝑖 · 𝐴(𝑇𝑡,𝑖 − 𝑇𝑎) (4.11)

Here ℎ𝑓𝑡,𝑖 is the heat transfer coefficient between the fluid and the tank wall, ℎ𝑡𝑒,𝑖

is the heat transfer coefficient between the tank wall and the environment, and 𝑇𝑎

is the ambient temperature.

41

4. Tank model

With the total heat flow

𝑄𝑖 = 𝑄𝑓𝑡,𝑖 −𝑄𝑡𝑒,𝑖 (4.12)

the rate of change of the wall temperature can be written as

𝑇̇𝑡,𝑖 =
𝑄𝑖

𝐶𝑇

(4.13)

where 𝐶𝑇 is the heat capacity of the tank. This finally allows for the computation
of the tank wall temperature using the values from the previous time step

𝑇𝑡,𝑖 = 𝑇𝑡,𝑖−1 + ∆𝑡 · 𝑇̇𝑡,𝑖 (4.14)

Applying this method, the heating of propellant as well as the tank wall during
ground fueling can be estimated. Unfortunately, the results will not be directly
comparable to the results produced using the 2D OpenFOAM model because the
tank shell and the environment is modeled as well.

4.5.2. EcosimPro Model

As mentioned in chapter 1, EcosimPro is a 0D/1D simulation environment that can
be used to model fluid flows. To simplify the model creation, libraries with prebuilt
components are used, for this model in particular the ESPSS library.

In the beginning, a pressure and a temperature are set using a VolPT TMD compon-
ent. This component creates a time dependent boundary condition for the pressure
and the temperature. The working fluid is specified as Xenon via a WorkingFluid

component, using real fluid properties. The fluid is then directed through a Jun TMD

component, which acts as a valve and regulates the mass flow. The mass flow is
set to the same 3 g

s
that is used in the 2D simulation. The mass flow is connected

to a Cavity component used to model the tank. A cavity was used instead of one
of the tank models included in ESPSS because it allows for a fixed temperature
at the inner wall. The tank components all include the tank shell in their models
in similar ways as the Excel tool described above. The thermal port of the cavity
is connected to an external temperature component that is used to set the inner
wall temperature to the same 323.15 K as in the 2D model. The sensing port is
connected to a SensorVol component measuring the internal pressure of the tank

42

4.5. Comparison models

(cavity), which is used to update the prescribed pressure of the VolPT TMD compon-
ent. The second mass flow port of the cavity is connected to a dead end, effectively
closing it.

Figure 4.3.: Schematics of the EcosimPro model

43

5. Results

In this section, first the performed parameter study is presented and discussed.
Afterwards, 2D simulation results for both the in-orbit loading (client case) and in-
orbit unloading (servicer case) are presented. Finally, these results are compared
to results obtained using the two previously described alternative models and the
discrepancies discussed.

5.1. Parameter study

In order to find optimal values for a number of solver inputs, a parameter study has
been conducted. As a baseline, the model with the boundary and initial conditions
described above was used. In order to save computational effort for these studies,
the calculations are performed for the first 100 seconds of the loading process and
the results are then linearly extrapolated to one hour of simulated time. As a figure
of merit, the time step continuity error, a measure of convergence, was used. The
values are normalized with the respective median value.

5.1.1. Cell size

The cell size has a major influence on the computational effort required to calculate
each time step. Assuming an equal cell size in x and z direction, the cell number
quadruples when cutting the cell size in half. In this study, the cell length was
varied from 20 mm to 1.25 mm in both x and z direction simultaneously.

As visible in Fig. 5.1 the calculation time increases significantly with the reduction
of the cell length as expected. Meanwhile, the continuity error decreases with a
smaller cell size. The normalized time 𝑡 over the mesh length can be approximated
with

𝑡 = 29.025𝑥−1.5396 (5.1)

44

5.1. Parameter study

where 𝑥 is the cell size in millimeters. The R-squared value of the approximation
is 𝑅2 = 94.61%. The normalized error 𝑒 can be approximated with a polynomial

𝑒 = 2.782 × 10−4𝑥2 + 3.488 × 10−3𝑥 + 9.5 × 10−1 (5.2)

where 𝑥 is the cell size again. The R-squared value of the approximation is
𝑅2 = 98.27%. Using these two functions, we find that the optimal value is some-
where around a cell length of 5 mm as the error increases almost linearly while the
calculation time increases exponentially. For this reason, a cell length of 5 mm was
selected for the computation.

cell size [mm] hexahedronal cells prismatic cells total cells

20 542 74 616

15 927 97 1024

10 2182 149 2331

5 9026 298 9324

2.5 36700 596 37296

1.25 147992 1192 149184

Table 5.1.: Number of mesh cells for different cell sizes

45

5. Results

90

95

100

105

110

115

20 15 10 5 2.5 1.25
0

300

600

900

1200

1500

1800

2100

2400

2700

3000

3300

E
rr

or
[%

]

T
im

e
[%

]

Mesh length [mm]

Error

Computation time

Figure 5.1.: Calculation time and continuity error for different mesh cell lengths

5.1.2. Time step

Commonly, the usable time step and cell size are liked by the Courant number
(Eq. 3.3). But, since the selected solver rhoPimpleFoam is able to handle Courant
numbers >> 1 (see chapter 3.3.4), the time step and the cell size can be varied
independently of each other.

Time steps between 5 × 10−4 s and 5 × 10−2 s were evaluated. The continuity error
and the calculation time for the different time steps are plotted in Fig. 5.2.

The normalized computation time 𝑡 over the time step can be approximated with

𝑡 = 4.209 × 10−3𝑥−1.022 (5.3)

where 𝑥 is the length of the time step in seconds. The R-squared value of the
approximation is 𝑅2 = 98.91%. The normalized error 𝑒 can be approximated
roughly using a linear function

𝑒 = 9.202𝑥 + 0.9958 (5.4)

46

5.1. Parameter study

95

100

105

110

115

120

125

130

135

140

145

150

5E-04 1E-03 5E-03 1E-02 5E-02
0

200

400

600

800

1000

E
rr

or
[%

]

T
im

e
[%

]

Time step [s]

Error

Computation time

Figure 5.2.: Calculation time and continuity error for different time steps

with a R-squared value of 𝑅2 = 92.62%. 𝑥 is the time step in seconds again. Using
these two approximations, the optimal time step length can be found between
5 × 10−3 s and 1 × 10−2 s because the error increases roughly linearly with the time
step while the calculation time increases exponentially for smaller time steps. To
reduce the computation time, a time step length of 1 × 10−2 s was chosen.

5.1.3. Processor cores

The number of cores usable for the simulation and their effects on the calculation
time are highly specific to the hardware used to solve the problem. In general,
increasing the number of cores used for a simulation reduces the calculation time.
But this relation is not linear, meaning doubling the number of cores will not
halve the calculation time. This is due to the communication required between the
cores after each time step. Therefore, if multiple calculations are necessary, it is
advantageous to use fewer cores per simulation and run them in parallel instead of
using all available cores for each simulation consecutively.

The machine used for the calculations at OHB is a server with two Intel®Xeon®Silver
4114 CPUs, each made up of 10 cores running at 2.20 GHz and having two threads
per core.[18] This results in a total of 40 threads. The calculation time is evaluated

47

5. Results

for between 1 and 24 parallel calculation threads. Both the simulation time and the
total time is measured. The simulation time is the time required by OpenFOAM
to complete the calculation. The total time is the sum of the simulation time and
the time for pre and post processing operations that are required in order to get
usable results. The data is plotted in Fig. 5.3.

0

50

100

150

200

250

300

350

400

1 2 4 8 16 20 24

T
im

e
[%

]

Processor cores

Total

Computation

Figure 5.3.: Calculation time for different number of computing threads

For the range between 1 and 20 threads, the normalized total calculation time 𝑡
can be approximated by

𝑡 = 3.483𝑥−0.544 (5.5)

where 𝑥 is the number of threads. The R-squared value of this approximation is
𝑅2 = 98.37%. As visible in Fig. 5.3, the time increases again for a thread number
larger than 20. This is due to the fact that the processors in the used machine have
only 20 physical cores, as described above. Traditionally, a processor core had one
thread of execution. However, this meant that the core was idle when it was waiting
for a high-latency operation, such as reading from memory or worse from the hard
drive. To reduce the idle time, a second execution thread was introduced and the
processor core switches to it when the first one is waiting for a high-latency event.
Unfortunately when running an OpenFOAM calculation, the parallel processing
threads have to wait for each other after every time step and exchange information

48

5.2. Client case

about the boundaries between their respective domains. When using more parallel
threads than the number of processor cores present in the machine, two threads
have to be handled by the same core. Since one of these threads will finish before the
other, all remaining threads have to wait for the last one to finish. This additional
wait results in an increased calculation time. Therefore, a parallel OpenFOAM
calculation should never use more threads than the number of cores in the used
machine, in our case 20.

Additionally, an increase in the post processing time can be observed with a rising
number of computing threads. This is a result of the additional file reads required
to recombine the results of each section into the results directories for the entire
domain. The actual reconstruction time and time increase with additional threads
depends heavily on the speed of the used storage hardware and the utilization by
other users at the same time.

For our calculations, between 4 and 16 threads were used, depending on the number
of calculations performed at the same time and the utilization of the server by other
users. 20 threads were not used as the increased post processing time results in
very small time savings compared to 16 threads.

5.2. Client case

The first case that was examined is the client case for the ESPRIT project. In this
case, the xenon tank will be pressurized in orbit. As previously mentioned, the tank
is assumed to have an initial internal pressure of 𝑝0 = 1 × 106 Pa and a temperature
of 𝑇0 = 323.15 K. Because of the time intensive nature of the simulation, only the
first hour of the propellant loading process is simulated.

Fig. 5.4 shows a visualization of the pressure at multiple time steps. The pressure
inside the tank increases uniformly. As we have a subsonic flow and therefore no
shock waves, this is the expected behavior. A plot of the pressure inside the tank
over time can be seen in Fig. 5.5.

The temperature of the xenon inside the tank over time can be looked at as a
visualization at multiple time steps (Fig. 5.7) and as a graph of the average tem-
perature over time (Fig. 5.6) below. The average fluid temperature rises as first
because the energy transferred into the tank due to the pressurization is more
than the energy extracted through the walls. As the process continues, the fluid
temperature decreases until an equilibrium is reached. The wave pattern above
the inlet observable in the temperature visualizations, especially between 400 and
1500 s is a numerical artifact from the off-centering coefficient value chosen for the

49

5. Results

Crank-Nicolson Scheme (see chapter 3.4.1.3). A value of Ψ = 0.5 was selected,
which biases the scheme towards a Backward Euler Scheme. Using higher value
for Ψ, thereby shifting the scheme towards a pure Crank-Nicolson scheme, removes
the numerical artifacts but results in the simulation becoming unstable. Because
the waves are locally bound to the inflow close to the symmetry line, they have
a negligible effect on the average fluid temperature and the heat flow across the
wall boundary. Thus, the selected off-centering value of Ψ = 0.5 is acceptable and
should be used to increase stability.

Figure 5.4.: Fluid pressure [Pa] inside the tank at different times

50

5.2. Client case

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 600 1200 1800 2400 3000 3600

P
re

ss
u
re

𝑝
[M

P
a]

Time 𝑡 [s]

Pressure

Figure 5.5.: Pressure of the fluid inside the tank over time

320

325

330

335

340

345

350

355

360

365

370

375

0 600 1200 1800 2400 3000 3600

T
em

p
er

at
u
re

𝑇
[K

]

Time 𝑡 [s]

Avg. temperature

Med. temperature

Figure 5.6.: Average temperature of the fluid inside the tank over time

51

5. Results

Figure 5.7.: Fluid temperature [K] inside the tank at different times

A visualization of the velocity magnitude can be seen in Fig. 5.8 and a plot of
the average velocity over time is shown in Fig. 5.9. Overall, the fluid inside the
majority of the tank is almost stationary. The velocity at the inlet is relatively
small as well with a maximum value of 0.187 m

s
and is decreasing over time as the

density of the inflowing propellant increases.

52

5.2. Client case

Figure 5.8.: Fluid velocity [m
s
] inside the tank at different times

Using OpenFOAM’s wallHeatFlux utility, the heat flow over the tank wall required
to keep the fluid temperature at the wall to the given fixed value of 323.15 K can
be calculated. The heat flow over time is shown in Fig. 5.10. The heat flow rises
as the fluid temperature inside the tank increases until an equilibrium is found.

53

5. Results

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0 600 1200 1800 2400 3000 3600

V
el

o
ci

ty
𝑣

[m
s
]

Time 𝑡 [s]

Avg. velocity

Med. velocity

Figure 5.9.: Average velocity magnitude of the fluid inside the tank over time

0

10

20

30

40

50

60

70

0 600 1200 1800 2400 3000 3600

H
ea

t
fl
ow

𝑄
[W

]

Time 𝑡 [s]

Heat flow

Figure 5.10.: Heat flow out of fluid through the tank wall over time

54

5.2. Client case

5.2.1. EcosimPro comparison

The results of the OpenFOAM simulation are compared with the results produced
by the EcosimPro model described in Chapter 4.5.2. Fig. 5.11 shows the EcosimPro
and the OpenFOAM simulations agreeing closely with each other for the pressure
inside the tank. The average fluid temperature inside the tank, seen in Fig. 5.12,
is less consistent between the OpenFOAM and the EcosimPro simulation. Here,
EcosimPro underestimates the temperature increase compared to OpenFOAM. A
possible reasons for this discrepancy is that the EcosimPro assumes all fluid para-
meters to be uniform inside the tank. This assumption is physically correct for
the pressure, but as visible in Fig. 5.7, it is incorrect for the temperature. This
can result in a more efficient heat transfer through the tank wall, reducing the
temperature increase of the fluid. It is also possible that the OpenFOAM bound-
ary conditions are unable to be transferred to a 1D/0D simulation, as they require
the fluid temperature at the wall to be fixed without constraining the overall fluid
temperature directly.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 600 1200 1800 2400 3000 3600

P
re

ss
u
re

𝑝
[M

P
a]

Time 𝑡 [s]

OpenFOAM

EcosimPro

Figure 5.11.: Fluid pressure according to the OpenFOAM and the EcosimPro sim-
ulation over time

55

5. Results

320

325

330

335

340

345

350

355

360

365

370

375

0 600 1200 1800 2400 3000 3600

T
em

p
er

at
u
re

𝑇
[K

]

Time 𝑡 [s]

OpenFOAM

EcosimPro

Figure 5.12.: Average fluid temperature according to the OpenFOAM and the Eco-
simPro simulation over time

5.2.2. Excel tool comparison

The 0D model described in chapter 4.5.1 models the tank wall in addition to the
fluid itself. Additionally the temperature of the wall is not kept at a fixed value
and the tank shell is cooled convectively with a fixed ambient temperature.

For this reason, a direct comparison between the results of the OpenFOAM sim-
ulation and the Excel calculations is not possible. Instead, the Excel tool can be
used to compare the order of magnitude of the heat flow. By varying the ambient
temperature, a quasi-constant value for the wall temperature in the first hour of
the pressurization process can be found. When using this method to set the wall
temperature to ≈ 323.15 K, an average heat flow of 46.17 W within the first hour is
predicted. The corresponding calculations by OpenFOAM yield a value of 52.81 W.
The small discrepancy between the two values can be explained by the difference
in the boundary conditions. In the Excel tool, the tank wall temperature was con-
trolled to roughly 323.15 K whereas the OpenFOAM simulation uses a fixed fluid
temperature at the wall.

56

5.3. Servicer case

5.3. Servicer case

The second case of interest is the servicer case of the ESPRIT project. Here, the
tank will be used as a propellant source in orbit, effectively depressurizing it. As
previously mentioned, the tank is assumed to have an initial internal pressure of
𝑝0 = 18.6 × 106 Pa and a temperature of 𝑇0 = 323.15 K. Once again, the first hour
of the propellant unloading process is simulated.

Figure 5.13.: Fluid pressure [Pa] inside the tank at different times

57

5. Results

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

0 600 1200 1800 2400 3000 3600

P
re

ss
u
re

𝑝
[M

P
a]

Time 𝑡 [s]

Pressure

Figure 5.14.: Pressure of the fluid inside the tank over time

The pressure decrease inside the tank is visualized in Fig. 5.13 and plotted over
time in Fig. 5.14. Similar to the client case, the pressure distribution inside the
tank is uniform due to the subsonic nature of the flow.

58

5.3. Servicer case

Figure 5.15.: Fluid temperature [K] inside the tank at different times

The development of the fluid temperature inside the tank is shown in Fig. 5.15.
As the temperature decreases due to the gas expansion, the heating effect from the
fixed wall temperature becomes visible. With an increasing temperature difference,
local temperature variations at the wall boundary can be observed. These variations
are diffused over time due to the natural conduction and convection processes of
the fluid. The average and median temperature of the propellant is plotted over
time in Fig. 5.16.

A visualization of the fluid velocity magnitude is shown in Fig. 5.17. Overall, the
fluid inside the tank is very close to stationary, with the average velocity, plotted
in Fig. 5.18, between 1.5 and 2.5 × 10−5 m

s
. After an initial spike due to the valve

opening, the temperature rises as the pressure deceases due to the reduced density
of the outflowing propellant.

Using the OpenFOAM utility wallHeatFlux again, the heat flow into the propellant
through the tank wall required to hold the boundary temperature can be calculated.
The heat flow over time is shown in Fig. 5.19.

59

5. Results

300

305

310

315

320

325

0 600 1200 1800 2400 3000 3600

T
em

p
er

at
u
re

𝑇
[K

]

Time 𝑡 [s]

Avg. temperature

Med. temperature

Figure 5.16.: Average temperature of the fluid inside the tank over time

60

5.3. Servicer case

Figure 5.17.: Fluid velocity [m
s
] inside the tank at different times

0

5 × 10−6

1 × 10−5

1.5 × 10−5

2 × 10−5

2.5 × 10−5

3 × 10−5

0 600 1200 1800 2400 3000 3600

V
el

o
ci

ty
𝑣

[m
s
]

Time 𝑡 [s]

Avg. velocity

Med. velocity

Figure 5.18.: Average velocity magnitude of the fluid inside the tank over time

61

5. Results

0

10

20

30

40

50

60

70

0 600 1200 1800 2400 3000 3600

H
ea

t
fl
ow

𝑄
[W

]

Time 𝑡 [s]

Heat flow

Figure 5.19.: Average velocity magnitude of the fluid inside the tank over time

5.3.1. EcosimPro comparison

The EcosimPro model described in chapter 4.5.2 was slightly modified in order to
apply it to the servicer case. The results for the pressure and temperature decrease
of the EcosimPro model and the OpenFOAM model are compared in Fig. 5.20
and Fig. 5.21. The EcosimPro model predicts a slower pressure decrease compared
to OpenFOAM and a near-constant fluid temperature. This is not the expected
behavior, as the depressurization results in expansion work and thus energy is being
transferred out of the tank. This decreases the propellant temperature. A possible
reason for this modeling error is the zero dimensionality of the tank model used by
EcosimPro. This assumes a uniform distribution of all fluid properties inside the
tank volume and might result in an overestimation of the heat transfer over the tank
wall, resulting in a smaller temperature drop. As is the client case, the boundary
condition used in the OpenFOAM model might also be difficult to transfer to a
1D/0D simulation again.

62

5.3. Servicer case

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

0 600 1200 1800 2400 3000 3600

P
re

ss
u
re

𝑝
[M

P
a]

Time 𝑡 [s]

OpenFOAM

EcosimPro

Figure 5.20.: Fluid pressure according to the OpenFOAM and the EcosimPro sim-
ulation over time

300

305

310

315

320

325

330

0 600 1200 1800 2400 3000 3600

T
em

p
er

at
u
re

𝑇
[K

]

Time 𝑡 [s]

OpenFOAM

EcosimPro

Figure 5.21.: Average fluid temperature according to the OpenFOAM and the Eco-
simPro simulation over time

63

6. Conclusion

6.1. Summary

Within the scope if this thesis, a two-dimensional model of xenon inside a tank dur-
ing the loading and unloading process in a zero-g environment has been created.
First, the background to the problem in form of the ESPRIT has been explained
and two alternative modeling tools have been presented that were later used to
built comparison models. Subsequently, the relevant theoretical aspects of the fluid
flow description have been summarized, including the derivation of the conservation
equations for the momentum and the energy, as well as the introductions of the
relevant dimensionless quantities. Following this, the OpenFOAM solver selection
process has been detailed and the algorithm behind the chosen solver, rhoPimple-
Foam, has been presented. Additionally, some important fundamentals of CFD
modeling, namely the temporal and convection discretization schemes, and the
turbulence modeling, have been described.

The two-dimensional tank model created using OpenFOAM has been presented
in detail. Initially, a general OpenFOAM model setup has been described. The
chosen mesh topology of a wedge shape as well as the splitting procedure for a mul-
tithreaded simulation have been explained. Following this, the numerical schemes
and solution algorithms selected for the model have been presented and discussed.
The method used to obtain the fluid properties during the simulation from two-
dimensional value tables extracted from the NIST Chemistry WebBook as well as
the selected turbulence modeling settings have been described. Subsequently, the
chosen initial and boundary conditions have been discussed. A velocity driven flow
was chosen with the inlet/outlet velocity calculated from a fixed mass flow and the
density at each time step. The fluid temperature at the wall was fixed to a given
value using a Dirichlet boundary condition. Furthermore, the two comparison mod-
els have been presented: Firstly, an Excel tool using a 0D approach to calculate
the wall temperature of the tank, the temperature of the fluid inside the tank, and
the heat flow from the tank wall to the ambient air. Secondly, an EcosimPro model
created to mirror the boundary and initial conditions selected for the OpenFOAM
model as closely as possible.

64

6.1. Summary

Finally, the results of the OpenFOAM calculations have been discussed. Initially,
the results of a number of parameter studies that were used to find optimal val-
ues for the cell size, the time step and the number of processor cores have been
presented. Using these values, results for the client case were calculated and have
been described here. The chosen settings have been selected with a focus on the
numerical stability as a stable model was one of the prime requirements. The tem-
perature has been shown to rise during the pressurization as expected. A value for
the required heat flow out of the tank to generate the prescribed fluid temperature
at the wall has been shown to rise to roughly 70 W during the first hour of the
pressurization process. The results have been compared to the EcosimPro model
described previously. The EcosimPro predictions of the pressure increase have been
proven to match the 2D simulation closely, but the temperature increase is underes-
timated. Possible reasons for this have been discussed. The Excel tool could not be
used for a direct comparison, but a qualitative comparison of the calculated heat
flow has been performed. For the servicer case, the results have been discussed
as well. The heat flow into the tank has been calculated and presented as well.
As with the client, the results of the OpenFOAM servicer calculation have been
compared to an EcosimPro calculation as well. Here, a larger discrepancy between
the results has been observed, especially for the average fluid temperature. Again,
possible reasons for the discrepancy have been discussed.

As expected, the thermal loads on the tank during the loading and unloading
process are relatively large. To keep a constant fluid temperature at the tank wall,
roughly 70 W of heat is required to be extracted from or inserted into the fluid at
one hour of the pressurization or depressurization process with a flow rate of 3 g

s
.

If a higher flow rate is desired, e.g. to speed up the fueling process, the required
heat flow would increase even further. Thus, it is vital to consider the loading
and unloading procedures when designing the thermal control for the propulsion
system. The tank model created as part of this thesis is stable and can be used
to analyze the behavior of xenon inside the tank. The 2D simulation has been
shown to model behavior that is not modeled by EcosimPro, making it a valuable
addition to the tools available during the design of the thermal and propulsion
system of a spacecraft. A challenge for the usability of the 2D model is the relatively
long computation time, especially compared to the 0D/1D approaches presented
above. This makes repeated calculations, for example during a design parameter
study particularly cumbersome and presented a difficult hurdle during the model
creation.

65

6. Conclusion

6.2. Future Work

There are at least two other cases of interest in regards to the behavior of xenon
inside a tank. The first is the on-ground fueling case. Here, xenon is loaded into
the tank which is already mounted inside a spacecraft. To keep the tank inside its
specified temperature range, the tank wall has to be cooled. This happens passively
through thermal radiation and natural convection between the outside tank wall
and the surrounding air. Additionally, a forced convection can be created, for
example by blowing air around the tank during the loading process. This method
was evaluated for NASA’s Asteroid Redirect Robotic Mission and was found to
reduce the tank wall temperature significantly.[13] The second case of interest is
the thermal propellant gauging in orbit. Here, the goal is to determine the amount
of remaining propellant inside a tank. To achieve this, the tank wall is locally
heated and the reaction of the fluid is measured using temperature elements on
the outside of the tank. By analyzing the heating curves, conclusions about the
remaining propellant level can be drawn.

For both these cases, the tank has to be extended to include the tank wall as
well as the surrounding fluid for the on-ground fueling case. This can be achieved
by coupling a CFD simulation as performed by OpenFOAM with a finite element
simulation of the tank wall. Alternatively, the OpenFOAM solver chtMultiRegion-
Foam could be used. This solver is based on the PIMPLE algorithms, just like the
rhoPimpleFoam solver utilized in this thesis. Thus, it should be possible to reuse
major parts of the model presented in this thesis. The chtMultiRegionFoam solver
is able to model one or more compressible fluids as well as solid regions. Therefore,
a combined model can be created for the propellant fluid inside the tank, the fluid
surrounding the tank and the tank itself using OpenFOAM. For the gauging case,
there would be no surrounding fluid and the heating elements could be modeled
using a localized boundary condition on the outside of the tank wall.

Due to the increased complexity of this new model, it might be necessary to perform
these calculations on a more powerful machine, for example a computing cluster.
Alternatively, other methods to reduce the computational effort could be used, like
increasing the mesh coarseness or relaxing the allowed residuals. However, these
measures will have a negative effect on the model’s stability and precision.

66

List of Figures

1.1. Planned configuration of the Gateway with the ESPRIT module B
[31] . 3

1.2. Picture and schematics of the 80458-1 [34] 4

2.1. a Eulerian and b Lagrangian representation of the fluid flow 7
2.2. Flow regimes over a flat plate for different Reynolds number values

[26] . 13
2.3. Thermal and hydrodynamic boundary layer for a 𝑃𝑟 < 1 and b

𝑃𝑟 > 1 [26] . 14

3.1. Xenon enthalpy 𝐻 over the pressure 𝑝 for different temperatures 𝑇 .
Red line represents critical pressure [23] 17

3.2. Flow chart of the SIMPLE algorithm 20
3.3. Flow chart of the PISO algorithm for each time step 22
3.4. Simplified flow chart of the PIMPLE algorithm 23
3.5. 1D profile of the Upwind scheme . 27
3.6. 1D profile of the Central Difference scheme 28
3.7. 1D profile of the Second Order Upwind scheme 29

4.1. Overview of the OpenFOAM case structure 33
4.2. Example of wedge shape . 34
4.3. Schematics of the EcosimPro model 43

5.1. Calculation time and continuity error for different mesh cell lengths 46
5.2. Calculation time and continuity error for different time steps 47
5.3. Calculation time for different number of computing threads 48
5.4. Fluid pressure [Pa] inside the tank at different times 50
5.5. Pressure of the fluid inside the tank over time 51
5.6. Average temperature of the fluid inside the tank over time 51
5.7. Fluid temperature [K] inside the tank at different times 52
5.8. Fluid velocity [m

s
] inside the tank at different times 53

5.9. Average velocity magnitude of the fluid inside the tank over time . 54
5.10. Heat flow out of fluid through the tank wall over time 54

67

List of Figures

5.11. Fluid pressure according to the OpenFOAM and the EcosimPro sim-
ulation over time . 55

5.12. Average fluid temperature according to the OpenFOAM and the
EcosimPro simulation over time . 56

5.13. Fluid pressure [Pa] inside the tank at different times 57
5.14. Pressure of the fluid inside the tank over time 58
5.15. Fluid temperature [K] inside the tank at different times 59
5.16. Average temperature of the fluid inside the tank over time 60
5.17. Fluid velocity [m

s
] inside the tank at different times 61

5.18. Average velocity magnitude of the fluid inside the tank over time . 61
5.19. Average velocity magnitude of the fluid inside the tank over time . 62
5.20. Fluid pressure according to the OpenFOAM and the EcosimPro sim-

ulation over time . 63
5.21. Average fluid temperature according to the OpenFOAM and the

EcosimPro simulation over time . 63

68

List of Tables

3.1. Typical values for the 𝑘 − 𝜀 model constants[9] 31

4.1. Initial conditions inside the tank for the client and servicer case . . 37
4.2. Inlet/outlet port and wall boundary conditions used for turbulent

flow properties . 40

5.1. Number of mesh cells for different cell sizes 45

69

Bibliography

[1] Abdallah, S. and Dreyer, J. “Dirichlet and Neumann boundary conditions
for the pressure poisson equation of incompressible flow”. In: International
Journal for Numerical Methods in Fluids 8.9 (1988), pp. 1029–1036. doi:
10.1002/fld.1650080905.

[2] Ambatipudi, Vaidehi. SIMPLE Solver for Driven Cavity Flow Problem. 2010.

[3] Anderson, John D. Computational Fluid Dynamics: The Basics with Applic-
ations. McGraw-Hill Inc., 1995. isbn: 9780070016859.

[4] Behrens, Tim. OpenFOAM’s basic solvers for linear systems of equations.
2009.

[5] Bergman, T.L. et al. Fundamentals of Heat and Mass Transfer. Wiley, 2017.
isbn: 9781119337676.

[6] Bondarev, Alexander E. and Kuvshinnikov, Artem E. “Analysis of the Ac-
curacy of OpenFOAM Solvers for the Problem of Supersonic Flow Around
a Cone”. In: Computational Science – ICCS 2018. Cham: Springer Interna-
tional Publishing, 2018, pp. 221–230. doi: 10.1007/978-3-319-93713-7_18.

[7] Bravais, Patrick and Grassin, T. Xenon Ground Support Equipment for Plas-
mic Propulsion System. 1999.

[8] EA Internacional. EcosimPro, System Modelling and Simulation Software.
url: https : / / www . ecosimpro . com / products / ecosimpro/ (visited on
20/11/2019).

[9] Ferziger, Joel H. and Perić, Milovan. Computational Methods for Fluid Dy-
namics. 2002. doi: 10.1007/978-3-642-56026-2.

[10] Forrester, Chris. Beyond Frontiers. Broadgate Publications, Sept. 2016.

[11] Ganapathi, Gani B and Engelbrecht, Carl S. “Performance of the xenon
feed system on Deep Space One”. In: Journal of Spacecraft and Rockets 37.3
(2000), pp. 392–398.

[12] Gilligan, Patrick and Tomsik, Thomas. Modeling ARRM Xenon Tank Pres-
surization Using 1D Thermodynamic and Heat Transfer Equations. Aug. 2016.
url: https://ntrs.nasa.gov/search.jsp?R=20170003928.

70

https://doi.org/10.1002/fld.1650080905
https://doi.org/10.1007/978-3-319-93713-7_18
https://www.ecosimpro.com/products/ecosimpro/
https://doi.org/10.1007/978-3-642-56026-2
https://ntrs.nasa.gov/search.jsp?R=20170003928

Bibliography

[13] Gilligan, Ryan P. and Tomsik, Thomas M. Modeling Xenon Tank Pressuriz-
ation using One-Dimensional Thermodynamic and Heat Transfer Equations.
Apr. 2017. url: https://ntrs.nasa.gov/search.jsp?R=20170004518.

[14] GNU Project. GNU General Public License v3.0. url: https://www.gnu.
org/licenses/gpl-3.0.en.html (visited on 15/10/2019).

[15] Hellingman, C. “Newton’s third law revisited”. In: Physics Education 27.2
(Mar. 1992), pp. 112–115. doi: 10.1088/0031-9120/27/2/011.

[16] Hirsch, C. Numerical Computation of Internal and External Flows: The Fun-
damentals of Computational Fluid Dynamics. 2nd ed. Butterworth-Heinemann,
2007. isbn: 9780750665940.

[17] Holzmann, Tobias. Mathematics, Numerics, Derivations and OpenFOAM®.
2018. doi: 10.13140/RG.2.2.27193.36960.

[18] Intel Corporation. Xeon® Silver 4114 Processor Data Sheet. url: https:
//ark.intel.com/content/www/us/en/ark/products/123550.html

(visited on 15/11/2019).

[19] Issa, R. I. “Solution of the implicitly discretised fluid flow equations by
operator-splitting”. In: Journal of Computational Physics 62 (Jan. 1986),
pp. 40–65. doi: 10.1016/0021-9991(86)90099-9.

[20] ITP Engines UK Ltd. ESATAN-TMS Products Overview. url: https://

www.esatan-tms.com/products/product.php (visited on 15/11/2019).

[21] Kolmogorov, Andrei Nikolaevich. “Dissipation of energy in the locally iso-
tropic turbulence”. In: Proceedings of the Royal Society of London. Series
A: Mathematical and Physical Sciences 434.1890 (1991), pp. 15–17. doi:
10.1098/rspa.1991.0076.

[22] Kugelberg, Joakim et al. “Accommodating electric propulsion on SMART-1”.
In: Acta Astronautica 55.2 (2004), pp. 121–130. doi: 10.1016/j.actaastro.
2004.04.003.

[23] Linstrom, P.J. and Mallard, W.G. NIST Chemistry WebBook, NIST Standard
Reference Database Number 69. doi: 10.18434/T4D303.

[24] Liu, Fangqing. “A Thorough Description Of How Wall Functions Are Imple-
mented In OpenFOAM”. In: Proceedings of CFD with OpenSource Software
(2016). url: http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016/
FangqingLiu/openfoamFinal.pdf.

[25] Moral, J et al. “ESPSS Simulation Platform”. In: May 2010.

[26] Moukalled, Fadl, Mangani, Luca and Darwish, Marwan. The Finite Volume
Method in Computational Fluid Dynamics: An Advanced Introduction with
OpenFOAM® and Matlab®. 2015. isbn: 978-3-319-16873-9. doi: 10.1007/
978-3-319-16874-6.

71

https://ntrs.nasa.gov/search.jsp?R=20170004518
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://doi.org/10.1088/0031-9120/27/2/011
https://doi.org/10.13140/RG.2.2.27193.36960
https://ark.intel.com/content/www/us/en/ark/products/123550.html
https://ark.intel.com/content/www/us/en/ark/products/123550.html
https://doi.org/10.1016/0021-9991(86)90099-9
https://www.esatan-tms.com/products/product.php
https://www.esatan-tms.com/products/product.php
https://doi.org/10.1098/rspa.1991.0076
https://doi.org/10.1016/j.actaastro.2004.04.003
https://doi.org/10.1016/j.actaastro.2004.04.003
https://doi.org/10.18434/T4D303
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016/FangqingLiu/openfoamFinal.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016/FangqingLiu/openfoamFinal.pdf
https://doi.org/10.1007/978-3-319-16874-6
https://doi.org/10.1007/978-3-319-16874-6

Bibliography

[27] Mukha, Timofey and Liefvendahl, Mattias. “Large-Eddy Simulation of Tur-
bulent Channel Flow”. In: 2015.

[28] Münzberg, H.G. Flugantriebe: Grundlagen, Systematik und Technik der Luft-
und Raumfahrtantriebe. Springer Berlin Heidelberg, 1972. isbn: 9783662117583.

[29] Murthy, Jayathi Y. Numerical Methods in Heat, Mass, and Momentum Trans-
fer. 2002.

[30] NASA. Humanity’s Return to the Moon. url: https://www.nasa.gov/

specials/artemis (visited on 15/11/2019).

[31] NASA. NASA’s New Spaceship. Nov. 2018. url: https://www.nasa.gov/
feature/questions-nasas-new-spaceship (visited on 15/11/2019).

[32] Nguyen, Hugo, Köhler, Johan and Stenmark, Lars. “The merits of cold gas
micropropulsion in state-of-the-art space missions”. In: IAF abstracts, 34th
COSPAR Scientific Assembly. American Institute of Aeronautics and Astro-
nautics, Jan. 2002, p. 785.

[33] Norris, Stuart Edward. A Parallel Navier Stokes Solver for Natural Convec-
tion and Free Surface Flow. University of Sydney. Engineering, 1980. url:
http://hdl.handle.net/2123/376.

[34] Northrop Grumman. 80458-1 Data Sheet. Tech. rep. June 2018. url: https:
//www.northropgrumman.com/Capabilities/PressurantTanks/Documents/

DS458.pdf.

[35] OHB SE. Press release: OHB participating in the ESPRIT module for future
lunar orbital Gateway. Sept. 2018. url: https://www.ohb.de/en/news/ohb-
participating-in-the-esprit-module-for-future-lunar-orbital-

gateway/ (visited on 15/11/2019).

[36] OHB System AG. SmallGEO - The multi-purpose geostationary satellite plat-
form. Apr. 2018. url: https://www.ohb.de/fileadmin/ohb/Downloads/
OHB-System_SmallGEO_platform_2018.pdf.

[37] OpenCFD Ltd. OpenFOAM launched 10th December 2004. url: https://
web.archive.org/web/20050208124617/http://www.opencfd.co.uk/

openfoam/launch.html (visited on 01/11/2019).

[38] Patankar, S.V and Spalding, D.B. “A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows”. In: International
Journal of Heat and Mass Transfer 15.10 (1972), pp. 1787–1806. issn: 0017-
9310. doi: 10.1016/0017-9310(72)90054-3.

[39] Schlichting, Hermann and Gersten, Klaus. Boundary-Layer Theory. 9th ed.
Springer Berlin Heidelberg, 2017. doi: 10.1007/978-3-662-52919-5.

72

https://www.nasa.gov/specials/artemis
https://www.nasa.gov/specials/artemis
https://www.nasa.gov/feature/questions-nasas-new-spaceship
https://www.nasa.gov/feature/questions-nasas-new-spaceship
http://hdl.handle.net/2123/376
https://www.northropgrumman.com/Capabilities/PressurantTanks/Documents/DS458.pdf
https://www.northropgrumman.com/Capabilities/PressurantTanks/Documents/DS458.pdf
https://www.northropgrumman.com/Capabilities/PressurantTanks/Documents/DS458.pdf
https://www.ohb.de/en/news/ohb-participating-in-the-esprit-module-for-future-lunar-orbital-gateway/
https://www.ohb.de/en/news/ohb-participating-in-the-esprit-module-for-future-lunar-orbital-gateway/
https://www.ohb.de/en/news/ohb-participating-in-the-esprit-module-for-future-lunar-orbital-gateway/
https://www.ohb.de/fileadmin/ohb/Downloads/OHB-System_SmallGEO_platform_2018.pdf
https://www.ohb.de/fileadmin/ohb/Downloads/OHB-System_SmallGEO_platform_2018.pdf
https://web.archive.org/web/20050208124617/http://www.opencfd.co.uk/openfoam/launch.html
https://web.archive.org/web/20050208124617/http://www.opencfd.co.uk/openfoam/launch.html
https://web.archive.org/web/20050208124617/http://www.opencfd.co.uk/openfoam/launch.html
https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1007/978-3-662-52919-5

Bibliography

[40] Shafranovich, Y. Common Format and MIME Type for Comma-Separated
Values (CSV) Files. RFC 4180. Network Working Group - IETF, Oct. 2005.
url: https://tools.ietf.org/html/rfc4180.

[41] Showalter, Ralph E. Hilbert Space Methods in Partial Differential Equations.
Pitman Publishing, 1979. isbn: 9780273084402.

[42] Shu, Jian-Jun, Bin Melvin Teo, Ji and Kong Chan, Weng. “Fluid Velocity Slip
and Temperature Jump at a Solid Surface”. In: Applied Mechanics Reviews
69.2 (Mar. 2017). doi: 10.1115/1.4036191.

[43] SimScale. CFD: PIMPLE Algorithm. url: https://www.simscale.com/
forum/t/cfd-pimple-algorithm/ (visited on 21/10/2019).

[44] SimScale. Turbulent Pipe Flow. url: https://www.simscale.com/docs/
content/validation/TurbulentPipeFlow/TurbulentPipeFlow.html (vis-
ited on 01/11/2019).

[45] SpaceX. Starlink Mission Press Kit. May 2019. url: https://www.spacex.
com/sites/spacex/files/starlink_press_kit.pdf.

[46] The OpenFOAM Foundation. OpenFOAM v6 User Guide. url: https://
cfd.direct/openfoam/user-guide-v6 (visited on 01/11/2019).

[47] White, F.M. Heat transfer. Addison-Wesley Longman, 1984. isbn: 9780201083248.

[48] Yuusha. tabulatedThermophysicalProperties. url: https://github.com/

Yuusha0/tabulatedThermophysicalProperties (visited on 15/10/2019).

73

https://tools.ietf.org/html/rfc4180
https://doi.org/10.1115/1.4036191
https://www.simscale.com/forum/t/cfd-pimple-algorithm/
https://www.simscale.com/forum/t/cfd-pimple-algorithm/
https://www.simscale.com/docs/content/validation/TurbulentPipeFlow/TurbulentPipeFlow.html
https://www.simscale.com/docs/content/validation/TurbulentPipeFlow/TurbulentPipeFlow.html
https://www.spacex.com/sites/spacex/files/starlink_press_kit.pdf
https://www.spacex.com/sites/spacex/files/starlink_press_kit.pdf
https://cfd.direct/openfoam/user-guide-v6
https://cfd.direct/openfoam/user-guide-v6
https://github.com/Yuusha0/tabulatedThermophysicalProperties
https://github.com/Yuusha0/tabulatedThermophysicalProperties

A. Usage guide for Python scripts

Two of the Python scripts written during the course of this work can be useful for
other, similar projects. Their usage will be explained here.

A.1. nistToOpenFoam.py

This script can be used to create the two dimensional lookup tables that are required
by the OpenFOAM extension tabulatedThermophysicalProperties. In addition
to converting the data from isothermal and isobaric CSV files into the 2D tables,
it can also obtain the files directly from the NIST Chemistry WebBook before
converting them.

To simply convert already downloaded files, sort the files in two subfolders called
isothermal and isobaric and run

$ nistToOpenFoam.py DIR

where DIR is the path to the directory containing the two subfolders and the location
where the newly created 2D tables will be stored.

To download the data from NIST directly, run

$ nistToOpenFoam.py -d ID TLOW THIGH TSTEP PLOW PHIGH PSTEP DIR

where DIR is the path to the directory in which to store the files again, TLOW and
THIGH define the temperature range for which to get the data with a temperature
step of TSTEP. All those values have to be given in Kelvin. PLOW, PHIGH, and PSTEP

have the same functionality for the pressure range, with the values given in MPa.
The ID is the fluid id used by NIST. This can be extracted from the URL of the
Fluid Properties page after searching for a fluid on the website. For xenon, the
id is C7440633. For the download functionality to work, the Python environment
must have access to the NIST website. This means that a proxy setting might be
necessary. To set a proxy on Windows run

74

A.2. meshGen.py

$ set http proxy=http://proxyurl:PORT

$ set https proxy=http://proxyurl:PORT

with the proxyurl replaces by the URL of the proxy and the PORT by the proxy’s
port number.

A.2. meshGen.py

The meshGen.py script is used to generate a blockMeshDict file, which is used
by OpenFOAM’s blockMesh utility to create the mesh in the format required by
OpenFOAM. The meshGen.py script in its current form is specific to a tank shape,
but it could easily be adapted to different geometries.

To specify the diameters of the tank as well as the mesh size steps, a file called
meshGen.ini has to be present in the system directory of an OpenFOAM model.
The meshGen.ini has to be of the form

[geometry]

Angle of the wedge [°]

wedgeAngle = 0.1

Radius of the cylindrical part [mm]

rCyl = 210

Heigt of cylindrical part [mm]

hCyl = 830

Height of curved dome [mm]

hDome = 140

Radius at which the dome curve begins [mm]

rDome = 20

Radius of port [mm]

rPort = 10

[mesh]

Size of the cells in x direction

deltaX = 5

Size of the cells in z direction

deltaZ = 5

75

A. Usage guide for Python scripts

with the values adapted to the specific case. Lines starting with a # are comment
lines and will be ignored by the script. The header blocks with the square brackets
(e.g [geometry]) are required however. With the meshGen.ini file in place, the
blockMeshDict can be generated simply by calling

$ meshGen.py

inside an OpenFOAM case.

76

	Contents
	Nomenclature
	Abbreviations
	Introduction
	Electric Propulsion
	ESPRIT
	Xenon tank
	EcosimPro
	Excel Tool
	Objective of this Thesis

	Theory of Fluid Flows
	Continuity Equation
	Momentum Equation
	Surface forces
	Body forces
	Stress tensor

	Energy Equation
	Dimensionless Quantities
	Reynolds number
	Prandtl number
	Grashof number
	Nusselt number
	Rayleigh number

	Computational Fluid Dynamics
	OpenFOAM
	Solver selection
	rhoPimpleFoam
	SIMPLE
	SIMPLEC
	PISO
	PIMPLE

	Numerical Schemes
	Temporal Discretization
	Forward Euler Scheme
	Backward Euler Scheme
	Crank-Nicolson Scheme

	Convection Discretization
	Upwind scheme
	Central Difference scheme
	Second Order Upwind scheme

	Turbulence Modeling
	Standard k- Model

	Tank model
	General Structure
	Mesh and Solver Setup
	Mesh
	Schemes and Solution Algorithm Control

	Thermophysical and Turbulence Properties
	Thermophysical Properties
	Turbulence Properties

	Initial and Boundary Conditions
	Initial conditions
	Boundary conditions
	Inlet/Outlet port
	Pressure
	Temperature
	Velocity

	Wall
	Pressure
	Temperature
	Velocity
	Turbulence

	Comparison models
	Excel tool
	EcosimPro Model

	Results
	Parameter study
	Cell size
	Time step
	Processor cores

	Client case
	EcosimPro comparison
	Excel tool comparison

	Servicer case
	EcosimPro comparison

	Conclusion
	Summary
	Future Work

	List of Figures
	List of Tables
	Bibliography
	Usage guide for Python scripts
	nistToOpenFoam.py
	meshGen.py

