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Abstract

The presented thesis deals with the augmented visualization from a two- to three-dimensional scene of
visualised backscattered signals, captured by a two-dimensional multi-beam BlueView P900-130 Sound
Navigation And Ranging (SONAR), as well as its georefencing, against the background of harbour risk
management and sheet pile wall examination.
Alongside the data acquisition and preparation a simple methodology for combining depth values, motion
parameters, underwater positioning data and two-dimensional SONAR images is presented, in order to
provide an economically priced alternative to high-quality, but also upscale three-dimensional multi-beam
SONAR. By means of the provided sensors systems by the German Aerospace Center DLR, Institute for
the Protection of Maritime Infrastructures, a measurement trial in the Fischereihafen 1 (Bremerhaven,
Germany), was realised using concrete reference objects in the accuracy range of the SONAR.
The resulting program structure of data acquisition, preprocessing and final visualization is concerted to
the utilized systems and can be handled by instructed person with a minimum of programming knowledge.
Regarding the outcome of the measurement trial a lack of precision in the three-dimensional representation
along the depth, due to the large vertical coverage of the SONAR, can be observed. Also a floating of the
sensor carriers acoustic position occurred throughout the trial, on account of interferences between the
acoustic sensors.
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1. Introduction

At the beginning of this thesis the underlying motives, the task as well as the rough course of the work
will be outlined. The topic itself was developed in cooperation with the German Aerospace Center (DLR)
Institute for the Protection of Maritime Infrastructures (MI), department 2, group Technology Testing,
which is specialized in the application, development and supervision of remote controlled and autonomous
vehicles, as a sensor carrier for the acquisition of environmental parameters above and below water. Due
to the safety and security background, especially the aspect of harbour sheet pile wall inspection in the
German Bight can be seen as the background of this work. Throughout the course of the thesis it was
possible to draw on the institute’s resources, material and premises.

1.1. Motivation

Harbour sheet pile walls are designed for a lifetime between 50 and 80 years [20, p.39], but may not reach
this, due to corrosion and ship collisions. Especially in the low-water zone of tidal ports, pitting and
shallow pit corrosion occur, which reduce the sheet pile walls thickness over the course of time and lead in
the worst case to a perforation. Same applies to seabed-mounted offshore structures, for example energy
parks or oil platforms. Therefore regular inspection and maintenance is necessary to ensure a continuous
and uninterrupted course of port business or system operation. Underwater imaging, using optical systems,
is a widely spread method for inspection and maintenance in waters, with a good visibility range and
minimal sediment content. For low-visibility, which is often found in estuaries and seas with high sediment
content, due to tidal movement, a possibility of object detection by means of haptic inspection by divers
is rather used instead of optical sensors. This bears the disadvantage of dangerous working conditions and
long operations on the divers side. On the offshore business side, a cost-intensive deployment through the
use of ships as a base station, transport and, if necessary, accommodation of the operational forces, needs
to be expected. Furthermore, the location of the diver and therefore the damaged area is solely based on
plumb line measurements, which is dependent on a fixed reference point and detailed documentation by
the operation supervisor. Ultimately the inspection depends on the experience and skills of the divers.
The additional use of acoustic systems, such as a multi-beam imaging Sound Navigation And Ranging
(SONAR) , may facilitate inspection by locating the damaged area before the actual dive. With these
systems it is further possible to cover large areas and gain precise information about surface elevation.
Three-dimensional capable SONAR systems in the six-figure range form the upper end of the price
category are therefore often not affordable for small educational facilities or commercial enterprises. A
simplified methodology and measurement setup to acquire spatial, structural information below surface
with reasonable priced equipment, using for example a two-dimensional capable SONAR, would provide
an increase in knowledge and learning in the educational sector and serve as an additional assistance for
divers in port and offshore inspection.

Even though the DLR MI already operates an automated sensor carrier Autonomous Underwater Vehicle
(AUV), a versatile manoeuvrable sensor carrier with mobility in six degrees of freedom, such as a Remotely
Operated Vehicle (ROV), expands the range of application in small and narrow areas of investigation and
further reduces the amount of operating personal, due to its compact size and lightweight frame. Thus
the integration of acoustic sensors and further development and improvement of the ROV is expedited by
the institute.
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1.2. Task Description

The given task comprises the data acquisition of two-dimensional forward-looking multi-beam SONAR
imagery data, the depth captured by a pressure sensor, motion parameters of an ROV, functioning
as the sensor carrier, and global positioning data of an underwater acoustic positioning system. All
captured data should then be merged, respectively to the SONAR images and visualized using a point
cloud representation. For the latter filtering methods regarding the reduction of noise, as well as image
smoothing should be applied. Further a correct spatial alignment of the point cloud should be enhanced
by a movement compensation as well as correct positioning using additional offsetting from the local and
global coordinates of the sensor carrier.

1.3. Thesis Outline

The thesis is divided into three parts: the first part deals with the presentation of principles and technical
background regarding underwater acoustics. The second part includes an introduction to the hardware
and software being used. Following, in the third part, the implementation, measurement execution and
the results are presented. The evaluation of the measurement outcome and recommendations for further
work will conclude the thesis.

At the outset the main principles of underwater acoustics (s. sec. 2) are explained and an overview of the
functionality and image formation of multi-beam SONAR systems will be given. In the following section
the impact of noise and reverberation in water will be explained and possible solutions for its reduction,
by means of filter algorithms, will be mentioned. From there on an introduction to georeferencing by
short baseline positioning system will be given, followed by the coordinate system being used for data
acquisition and the application of a geometric median, in order to evaluate the positioning data quality.
The second part is split into a hardware and a software part, spanning over two sections (s. sec. 3
and sec. 4). In the former all to be used systems will be presented, which includes the sensor carrier
BlueROV2 (BlueRobotics)[6], the Underwater GPS (UGPS) (Water Linked)[49] and the multi-beam
SONAR BlueView P900-130 (BlueView Technologies) [11]. In the latter an in depth overview will be given
to the software and corresponding self-written programs, being used in the implementation (s. sec 5).
Therefore the data flow between the single programs will be explained in section 4.1. The data acquisition
of each system will be intensively described in section 4.3, followed by image processing tools in section
4.4. Finally the section is closed with the topic of data fusion and the three-dimensional representation
(sec. 4.5). The third part (s. sec. 5) deals with the data acquisition process with self-constructed test
objects in a harbour environment. Measurement results of the individuals systems, as well as the fusion
of the data are presented and evaluated. The conclusion and proposes to future work will close the thesis
in section 6.
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2. Principles and Application of Underwater
Acoustics

Visual data acquisition in water causes many challenges towards science. With increasing depth not only
the over all light penetration diminishes, but also the wavelength distribution lessens. Figure 2.1 shows
the light penetration in fresh- or brackish water with a small amount of Dissolved Organic Matter (DOM)
and sediment (a) and freshwater with a large proportion of DOM, sediment and plankton (b). There
are significant differences between both waters. In the topmost layers of 2.1 (a) all wavelength between
400 nm and 680 nm can penetrate and decreases almost linearly toward the spectrum between 400 nm
and 550 nm. The red light with wavelength between 650 nm and 680 nm penetrates the water up to 7 m
and then decreases continuously. With increasing depth the water will therefore appear to look more
greenish, as this wavelength dominates in depth of 25 m and below. The depth in 2.1 (b) is compared
to 2.1 (a), with 3 m is significantly smaller. The light penetration from all wavelength between 400 nm
and 600 nm ends at around 1 m. A higher penetration amount of the wavelength between 600 nm and
680 nm can be noticed. Combined with the information of high amount of DOM and sediment can be
concluded that the water will appear reddish and darker. The visual range in water itself also depends on

(a) Fresh− /Brackish water with limited DOM content

0
5

10
15

20
25

(b) DOM rich freshwater

0
3

400 450 500 550 600 650 700

D
ep
th

[m
]

Wavelength [nm]

Figure 2.1.: Light penetration in water, adapted from [28]

the sea floor characteristics and suspended matter in the water column, which is caused by biological
and anthropogenic effects, such as algae bloom, high population of fish, fertilizer entry (all summarized
under the term DOM) and suspension by high boat traffic, but also natural effects such as sedimentary
transport by rivers into estuaries as well as tidal movement. Especially in coastal regions, where a high
amount of suspended matter is to be expected, optical data acquisition is most likely not applicable,
due to limited underwater visibility up to a maximum of 1 m (s. annex A). The application of acoustic
waves is an alternative to optical methods and was studied extensively during the first and second world
wars research in the investigation of acoustic methods, which are applied and further developed today in
oceanography, maritime engineering, naval navigation and geophysical exploration [32].
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The starting point for generating valid data from acoustical measurements is the examination of acoustic
waves, which are specified as the energy propagation through water [23, p. 1ff.]. By knowing the frequency
and wave length, the speed of sound, which is dependant upon temperature, salinity and depth, can be
derived. The salinity is usually given in Practical Salinity Unit (PSU), which corresponds to parts per
thousand. It can be roughly differentiated between marine ocean water ranging from 30 PSU to 35 PSU,
brackish water ranging from 0.5 PSU to 29 PSU and fresh water usually around 0.5 PSU. The temperature
is dependent on location, season and time of day, the water depth is in the most cases only roughly
differentiated in open ocean and coastal waters. However, in order to guarantee the quality of acoustic
signals, it is necessary to determine the sound speed in the water, id est the transmission of the acoustic
impulse, according to the environmental parameters.

The speed of sound can be estimated to lay in the range of 1446 m
s to 1540 m

s , depending on the type of
water [14, p. 13f.]. In estuaries and adjacent ports a low-salinity, shallow waters and moderate temperature
are to be expected. Equation 2.1 shows the calculation of sound speed according to Del Grosso and
Mackenzie [18]. It is valid for −2 °C≤T≤ 30 °C, 25 PSU ≤S≤ 40 PSU and 0 m≤z≤ 8000 m.

c = 1448.96 + 4.591T − 0.05304T 2 + 0.0002374T 3 + 1.34(S − 35) + 0.0163z+

1.675 · 10−7z2 − 0.01025T (S − 35)− 7.139 · 10−13Tz3
(2.1)

From eq. 2.1 it can be concluded that the temperature influences the sound velocity the most, followed
by the salinity and finally the depth. A precise knowledge of the water temperature should be targeted
through an appropriately accurate sensor. For the salinity impact the equation 2.1 includes two terms.
The first terms, 1.34(S − 35), impact on the sound speed ranges between −13.4 m

s to 0 m
s , when assuming

salinities of 25 PSU to 35 PSU. The other term of salinity and temperature, −0.01025T (S − 35), results
in a factor between 0.0205 to −0.3075 (for temperatures in the range of −2 °C to 30 °C) to which the
impact of the salinity is then multiplied. This leads to a maximal impact of −0.2747 m

s to 4.1205 m
s for

the second term on the sound speed.
Following the impacts of differing salinity levels will be presented. In figure 2.2 the speed of sound, defined
by eq. 2.1, is shown according to temperature, depth and varying salinity levels. With rising salinity, here
ranging from 20 PSU to 34 PSU, the speed of sound increases by approximately 1.24 m

s .

Figure 2.2.: Sound speed Profile in shallow water, according to temperature, salinity and depth
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For sending and receiving acoustical waves the sound velocity plays and important role in calibrating
acoustic sensors, as deviations in the speed of sound lead to incorrect data or uninterpretable images.
Knowledge of the environmental parameters, temperature, salinity and depth, is therefore mandatory.

To acquire image data by using hydro acoustics, specialised active or passive sensors are required, the
most commonly category is the Sound Navigation And Ranging (SONAR). SONAR describes a technique
in detecting and localizing objects underwater. The systems used can be roughly categorized in active and
passive SONARs. The active SONAR transforms electric signals to acoustic waves, which is in principle a
pressure difference, and listen for the backscattered signal. From the time delay between emitting and
receiving, the distance to the object can then be derived. The emitting of an acoustic impulse and the
received intensity values are described in the literature as a ping. Active SONAR systems are used for
various application such as inspection and maintenance, navigation/obstacle avoidance, in the fishing
industry and for geophysical exploration. The active SONAR can be differentiated in echo sounder, which
are mainly used vertically and ”forward-looking” SONAR systems, which operate horizontally. Regarding
the latter especially multi-beam SONAR are used for inspection of underwater structures. These emit
sound waves in a fan shape and allow therefore a large swath area to be surveyed. Section 4.3.3 deals
intensively with the image formation of such SONAR system. Passive SONARs are only listening for echo
transported through the water and used in order to detect for example underwater earth quakes/tsunamis
or to observe aquatic mammals (whales/dolphins). The received signal of a SONAR is often distorted
by noise and reverberation, caused by acoustic signals from ships or reflection of noise from suspended
matter, which will be discussed in section 2.2.

LBL
SBL

USBL

GPS

Figure 2.3.: Acoustic navigation systems using Long Baseline (LBL), Short Baseline (SBL) and Ultra Short Baseline
(USBL), according to [39]

As already mentioned, acoustic waves are also used for naval navigation. A new area of research and
application is the usage for underwater vehicles, which includes scientific used AUV and ROV. Whereas
autonomous vehicles allow through their hydrodynamical shape an even data acquisition along large
distances, the ROVs advantage lies in their hovering capabilities, achieved through multiple lateral
oriented thruster, which can be used to inspect areas from different angles but constant height. An
accurate positioning of theses systems is necessary to ensure a consistent and accurate representation of
the generated data, by the installed sensors, of underwater surrounding.
Navigation of these vehicles is mostly dependent on a combination of systems. At subsea no reception
of Global Positioning System (GPS) is possible, due to the absorption of electromagnetic waves from
the water. Hence there are different methods to estimate the vehicles position by complex algorithms.
An Inertial Navigation System (INS) calculates the position from the last known position at the surface,
using the vehicles speed and flow parameters. Due to changing currents and drifts this method alone
is prone to errors. Therefore further acoustic methods can correct the calculated position and help to
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achieve an accurate position over long distances. Acoustic baseline positioning systems work as follows: a
transmitter on e.g. an ROV sends a signal which is received by hydrophones submerged in the water,
spatially distant from each other. The local position to the receiver can then be calculated through the
time difference between sending and receiving. Through measuring the time delays or phase shift of the
received signal by the different hydrophones the orientation of the transmitter can be derived. Therefore
a relative position of the ROV to the hydrophones is achieved. [45, p. 6f.]
In order to derive the global position, the distance between the hydrophone and a GPS antenna needs to
be known and added to the derived local position. Underwater positioning systems can be differentiated
in three main categories according to their distance capability as can be seen in fig. 2.3. LBL systems use
a transponder network on the sea floor and is used for applications where an accuracy of 1 m or less is
necessary. Due to difficult placement of the transponder on the sea floor it is rather inconvenient. An SBL
systems consist of three or more connected receivers submerged from a ship or platform, s. fig. 2.3 ship
in the centre. The accuracy is dependent from the receiver spacing, but is also used for high accuracy
dependent applications. An USBL system consists of a transducer array submerged on a pole and towed
behind a ship, s. fig. 2.3 left. The accuracy for this system is rather moderate and therefore used for in a
close-ship operation.
For the determination of depth on most underwater vehicles an external depth sensor is used just to
access the depth information, due to higher accuracy. In section 2.3 the principle of a short baseline
system will be explained in depth.

2.1. Multi-beam SONAR Image Formation

A multi-beam SONAR captures through a hydrophone array multiple narrow beams of ±1° across
a horizontal fan shaped area, specified as the field-of-view. This allows a large area to be surveyed.
Hereinafter the multi-beam SONAR, will be referred to by the abbreviation SONAR, if not otherwise
stated. The emitter generates a beam pulse from an electric signal and the receiver records the local
pressure variation and transforms this back into an electric value. The distance of the reflected object to
the SONAR can be calculated using the time delay and the speed of the signal.
A point Ps in a SONAR image with the intensity Is can either be described in spherical or Cartesian
coordinates, as shown in fig. 2.4. The transformation between both coordinate systems follows eq. (2.2a)
and respectively (2.2b).

Ys

Zs

Xs

Ps

φs
θs

r

Figure 2.4.: SONAR coordinate system

Ps =

Xs

Ys
Zs

 = r

cos(φs) sin(θs)
cos(φs) cos(θs)

sin(φs)

 (2.2a)

Ps =

 rθs
φs

 =


√
X2
s + Y 2

s + Z2
s

arctan(Xs

Ys
)

arctan( Zs

(Xs
2+Ys

2)
)

 (2.2b)

The range r is dependant upon the sound velocity c as a function of time for the signal to return form the
reflective object with r = ct

2 . In fig. 2.5 the sonar image formation is schematically shown, according to
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[19]. A shown in 2.5 (a) all received intensity values Is(r, θs) are saved in vector format for each transducer
array element. Is(r, θs) is itself dependant upon the range r and the angle between the received intensity
value Is, the direction vector ~υ and the angle φs. The angle φs describes the vertical beam width of the
SONAR, which usually lies around 20°. With the implementation of the third dimension, the intensity
value can be described as the integral of the reflective intensities in the range between φs1 and φs2, with
β as the beam pattern (angular energy distribution) of the SONAR and the reflectors albedo Vs in eq.
2.3 by [19]. In the example in fig. 2.5 only the blue marked area holds a value other than zero, which is
saved at the transducer number, which corresponds to the angle θs, and corresponding row in an intensity
vector. From these intensity vectors an image can be formed, with the width n of the sensor array and
the height of the range r (see fig. 2.5 (b)).

~υ

θs

Is(r, θs)

ran
ge
r

0

0

Is(r, θs)

0

0

0

0




(a) Two-dimensional top view of SONAR image aquisition, according
to [19]

y

x

Is(x, y)

(b) Resulting two-dimensional image

Figure 2.5.: Two-dimensional SONAR image formation

Is(r, θ) =

φs1∫
φs2

β(φs)Vs(r, θs, φs)
~υ · ~nrθsφs

‖ ~υ ‖‖ ~nrθsφs
‖

(2.3)

In fig. 2.6 (a) the SONAR image formation regarding the depth is presented. The SONAR will record
acoustic intensity values from its position on the z-axis. In the range from φs1 to φs2 the volume intensity
values Is(r, θs, φs, z) are detected and then saved as already shown in fig. 2.5 (a). With ∆zr ≈ r tan
(φs2−φs1

2 ) eq. 2.3, Vs as a binary function (1 for surface and 0 for none) and the assumption that the
reflection ρ at point P has a surface normal ~nrθP can be rewritten as a function of depth as shown in eq.
2.4 [19].

Is(z, r, θ) =

z−∆zr∫
z+∆zr

β(φs)Vs(r, θs, P )ρ(z, P, ~nrθsP ) (2.4)

These vectors can then be arranged in a three-dimensional vector space shown in fig. 2.6 (b) with n of
the sampled depth measurements.

7



y

z

zn

z2

z1

φs φs1

φs2

β

ρ

~nrθsP

(a) Data acquisition concerning the depth
z, according to [19]

z

x

y
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Figure 2.6.: Three-dimensional SONAR image formation

Overlapping beams, such as z1 and z2, shown in fig. 2.6 (a), result in a doubled detection of the area in
between, which leads to a blurred image along the z-axis in the received three-dimensional representation.
Further quality decreasing influences on the backscattered signal can be caused by surrounding noise and
reverberation, as presented in the following section 2.2.

2.2. Noise and Reverberation

The cause of underwater noise can be differentiated between three main categories: the ”self-noise”,
anomalous local noise and ambient noise. The ”self-noise” is generated by the measurement setup itself,
for example sensor platform motion, cable strumming, boat noise etcetera. It is not a constant noise
and varies in amplitude and phase, which makes it difficult to reduce in later signal processing. Same
applies to the anomalous local noise, which is produced by animals and ships close to the measurement
setup. Ambient noise describes background noise of sources far from the detector. Natural phenomena as
wave movement, rain and oceanic turbulences, passing fish swarms and mammal pods, but also naval
construction and maritime shipping make up a large amount of this noise. Tides, which play a vital role
in data acquisition in the North Sea, as a part of the ambient noise, can be disregarded due to their
relative small impact of a noise level below 1 Hz [23, p. 125].
In contrast to noise, which is generated by external sources, the reverberation describes the inadvertent
reception of echoes from the transmitted signal by the SONAR itself. These are caused by inhomogeneities
in the water column, including biological activity, such as marine organisms, but also natural sources,
such as locked air bubbles under the sea surface. Therefore it can be roughly differentiated between either
the volume and/or surface and bottom reverberation, depending on the prevailing conditions on site.
The former can be divided in Rayleigh scattering by particles much smaller than the wavelength of
the transmitted SONAR signal and the geometric reflection by objects larger than the wavelength [23,
p. 113]. The Rayleigh scattering describes the scattering of energy in many different directions, which
depends on the squared frequency, whereas the shape of the dissolved sediment is irrelevant [23, p.113].
Especially in estuaries and adjacent harbours near the Wadden Sea a high amount of dissolved fine sands
(approximately between 125µm and 250µm) is to be expected, due to the sediment transport from rivers
and through the incoming tides [25, p. 236], which could lead to disturbances. The geometric reflection
on the other hand is dependant of the surface reflective properties of the object and independent of the
frequency. Usually volume reverberation can be observed in deep ocean environment, resulting from a
relative small amount of biological organisms, such as (≈ 0.05 m−3), but stratification has been observed
in shallow water, too [23, p. 121]. The kind of organisms ranges, according to Caruthers, from larger
ones, such as squids, to much small crustaceans like krill. In port areas, no high organism density or
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stratification is expected, due to the high ship traffic and the limited access of organisms to the port
basin through sluices. In the area of offshore energy plants, however, a higher level of biological activity
can be expected, since the foundations and the relatively untravelled area around the plants provide a
favourable habitat for many marine animals.
The surface reverberation results from the backscattering of the sea surface and the sea floor. The sea
surface backscattering strength varies with angle of incidence, frequency and roughness of the surface,
which is related to the wind speed. The bottom reverberation on the other hand depends on the structure
and material of the sea floor. [23, p. 121f.]

The reduction of noise is an important task in the acoustical image generation and processing, but
also in the application of acoustic positioning, as noise sources are unavoidable in inhabited, trafficked
and economically utilised measurement areas. In general noise is represented by means of the Gauss
distribution and is visible as ”white noise” with a flat spectrum, meaning an equal intensity at every
frequency, in the respective SONAR images [23, p. 132]. Noise threshold application and a filtering
technique, will be explained and applied in section 4.4, specified for use in a closed port area with minimal
marine traffic and low biological activity.

2.3. Georeferencing by Short Baseline Systems

Georeferencing in the context of underwater data acquisition is a fundamental requirement for taking into
account the exact location of the data and the environmental influences prevailing there. Furthermore the
navigation of autonomous and remote-controlled underwater vehicles such as AUV and ROV is greatly
facilitated by positioning systems. Also financial and time aspects, which are important for measurements
on ships in the high seas, can be reduced by simplified navigation and measurement target execution in
the area under investigation. But also in coastal areas with particle-rich water, where navigation by sight
is not possible, an underwater positioning system is a good extension of the measurement setup.

The distance between acoustic baselines, which means the submerged sensing elements, is generally used
to define an acoustic positioning system. As already mentioned in section 2, it can be differentiated
between LBL, SBL and USBL. In contrast to the LBL and USBL, the SBL is used especially for its high
accuracy and ease of use, both at sea and in coastal waters. It consists of a main computer unit with
integrated Inertial Measurement Unit (IMU) and GPS-antenna, usually three or more hydro-acoustic
receivers and one locator. The system measures phase differences on arriving pings between the surface
mounted receivers. Respectively the bearing, defined by azimuth (orientation) and elevation, is derived
from the detection of the relative ”time of arrival” as an acoustic signal, transmitted by the locator,
passes each of the receivers [45, p. 6].
Its accuracy is specified as a percentage of slant range, which is the direct distance between two points on
different altitude, in this case the distance from the receiver to the locator. According to Vickery [45,
p. 12] it can be stated that the greater the depth, the greater the slant range and the less repeatable is
the position of the underwater vehicle. For SBL-systems the frequency band ranges from low frequency
to very high frequency, compare exemplary annex B table B.6. According to [45, p. 8], the selection of
the frequency band is in direct correlation to the requisite positioning accuracy for measurement target,
as well as the consideration of other used acoustic products, background and self-noise, which might
interfere the locator signals. The accuracy is also dependant on additional factors such as installation and
calibration, as well as environmental conditions.
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Influences on quality can be categorized along two dimension, presented below.

Systematic errors:

� Inaccurate or not precise speed of sound profile
� Inaccurate position determination by the GPS-antenna or false measurement/submission of the

distance between the receiver and the computer unit
� Insufficient submersion of the receivers
� Incorrect mounting of the locator on the vehicle
� No or insufficient movement compensation of the measurement platform

Cause of noise:

� Self noise movement of the vessel/measurement platform around the x- and y- axis, resulting in an
angular deviation (Roll- and Pitch angle)

� Misleading acoustic noise from bubbles created by waves
� Signal reflection, due to a restricted measurement area (harbour, tank, pool)
� Ambient/background noise from marine mammals, ships
� Unstable position through other acoustic systems, such as SONAR

An enhancement of unstable position data can be achieved by reducing the impact of outliers in the
measured data by usage of the geometric median, described in section 2.3.2).

Advantages and disadvantages of an SBL acoustic positioning system, that need to be considered in
regard of the measurement target, are compared below (see tab. 2.1).

Table 2.1.: Comparison of the advantages and disadvantages of a SBL underwater positioning system

Advantages Disadvantages

� Low system complexity and
therefore easy to use

� Small transducer an locator
size, often equipped with
self sufficient power supply
and additional pressure sen-
sor

� Good range accuracy with
time of flight (determina-
tion of the distance from
receiver by means of sound
velocity and time)

� Ship based system (no sea
floor transponder)

� Large baseline length for accuracy
in deep water

� Absolute position accuracy ends
on additional sensors (IMU and
GPS-antenna) and integration on
sensor platform (e.g. ROV or
AUV)

� Highly accurate dry and offshore
calibration required

As already noted, SBL positioning systems determine the relative position of the underwater vehicle
to the origin of the main computer. For a global specification, a GPS-antenna, in order to determine
the global position of the main computer, must be added to the measurement setup and added as an
offset to the local position. Knowledge of the global coordinate system, in which the local position is then
transformed is a key element for data accuracy.
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2.3.1. Coordinate System

A differentiation between a global and local coordinate system must be considered in order to determine
the correct position of a Point Of Interest (POI) or acquired data set.
Regarding the described positioning with a SBL system in section 2.3, the local coordinate systems spans
according to the position and range of the receivers, with the origin of the computational units position
on the measurement platform. Therefore the position of the underwater vehicle and the acquired data is
determined regarding the latter.

(a) Universal Transverse Mercator pro-
jection with superimposition of the cylin-
der projection [17]

(b) UTM zone 19, from 84 °N to 80 °S and 66 °W
to 72 °W, according to [27], with exaggerated
shape and applied scaling factor of 0.9996 to the
central median

Figure 2.7.: Schematic Universal Transverse Mercator projection

When transforming the local into a global position the distance from the computer unit to the GPS-
antenna, as well as the distance from the GPS reference point is needed. The transformation also includes
the motion data of the computer unit (e.g. if mounted on ship or other moving platform).
The projection of two-dimensional data points on a sphere (in this case the earth) requires the application
of a further global coordinate system. The UTM, fig. 2.7, in contrast to the Word Geodetic System 1984
(WGS 84) of latitudes and longitudes, selects the earth surface between 80° South and 84° North and
differentiates it in bands of 6° width from west to east. The bands are adjusted and levelled by means of
a transverse Mercator projection, which implies the projection onto a horizontal cylindrical surface, see
fig. 2.7 (a). This coordinate system allows the application of a Cartesian coordinate system, with the
x-axis aligned true-east and the y-axis aligned true-north regarding the zones central meridian. When
dealing with eastings (right-handed east coordinates) an off-set value must be defined in order to avoid
negative values when entering the left handed scope. This method is called false-easting and sets the
x-value of the central median to 500 000 m East. The same principle applies to the vertical values between
84° North and 80° South. Those that are below the equator would be negative, to avoid this the equator
is set to 10 000 000 m North on the southern hemisphere, decreasing southward as shown in fig. 2.7 (b)
to 1 100 000 m at 80° South. For values on the northern hemisphere the equator is set to 0 m North,
increasing northward up to a maximum value of 9 300 000 m at 84° North. Furthermore a scale factor of
0.9996 is applied to the central median, see fig 2.7 (b) in order to project the earth on a plane. When
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measuring distances form the map this scaling factor needs to be multiplied in order to obtain the true
distance. [27]
Based on the UTM-grid system in the Military Grid Reference System (Military Grid Reference System),
each zone is separated into 20 latitude bands in alphabetical order starting from ”C” at 80° South to
”X” ending at 84° North (omitting the letters ”I” and ”O”). A combination of the zone and letter marks
the defined grid zone, for instance the German Bight is situated in the grid zone 32U. In the coordinate
transformation presented in section 4.5.4 this grid system is applied to the global coordinates in latitudes
and longitudes.

2.3.2. Geometric Median

The conversion of local positions of an acoustic positioning system to global positions can contain errors
of different origin. Not only sensor deviations or disturbances of the transmitter/receiver behaviour, but
also measuring errors during manual distance measurements between receiver and computational unit
and between computational unit and the GPS antenna. Furthermore outliers of the position can occur,
due to a reflective measurement environment, ambient noise or anomalous local noise. When using a
positioning system without additional support by a Doppler Velocity Log (DVL) or INS, the positions
must be examined more closely and outliers must be removed from the data set to guarantee the correct
positioning of the measured data.
In order to reduce the outlier impact, especially when performing static measurements regarding the x-
and y-axis, the geometric median, also known as multivariate L1-median, can be applied and compared
to all positions in the data set.
Sources of different algorithms for the computation of the geometric median haven been proposed by
literature, which vary according to precision and algorithm runtime. The most commonly used are the
Weiszfeld, Vardi and Zhang or the Non-linear minimization algorithm [13], which calculate the minimal
distance between all points iteratively using derivatives and non-negative weights. Due to their complexity
the geometric median according to Nelder and Mead [13], also known as downhill simplex method, poses
a fast and easy alternative without derivatives.

Arithmetic Average: without outlier

with outlier

Geometric Median: without outlier

with outlier

Outlier:

Figure 2.8.: Comparison of Arithmetic average and geometric median in two datasets

At this point, the procedure of the algorithm shall only be briefly described, due to the rather subordinate
position in this thesis. Further information can be found in J. H. Mathews and K. D. Fink [30]. The
Nelder and Mead algorithm, like the algorithms mentioned above, searches for the local minimum of
a function with several variables. In the case of improving the position, two (x, y), respectively three
(x, y, z), variables are used. The simplex in Rn denotes a convex hull with n+ 1 vertices. In the case of
two variables this would correspond to a triangle. The method now consists of a pattern search, which
compares the vertices of the triangle to one another. The largest distance f(x, y) between two corner
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points is then discarded and replaced by a new vertex, forming a new triangle. This process is repeated
until the smallest point is found. Figure 2.8 shows a two-dimensional data plot of coordinates, on which
the arithmetic average and the geometric median, according to Nelder and Mead, are applied. Once to
the data set excluding and then including the outlier (red) on the far right hand side of the figure. It
can be observed that the arithmetic average with outlier moves slightly more towards the outlier, than
the respective geometric median, and therefore affects the mean position of the whole data set. The
deviation of the geometric median is further calculated by the Median Absolute Deviation (MAD), which
is respectively defined by the sum of the values minus the median and then divided by the amount of values.

Following the theoretical explanation of relevant factors regarding the ROV based acquisition of SONAR
images and underwater vehicle positioning in the presence of noise, now the mean for data acquisition is
addressed by a presentation of the the hardware being used.
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3. Hardware

For the data acquisition of georeferenced SONAR images, three system have been used affiliated by means
of carriage, data transfer and electronic merge. The sensor carrier BlueROV2 by Blue Robotics [6] itself
is used to navigate the sensor systems to a POI by using a computational unit and remote controller,
henceforth designated as Topside Computer (TC). The UGPS by the company Water Linked AS [49] is
an SBL acoustic positioning system for aided navigation. It facilitates the navigation of the BlueROV2 to
the POI and calculates its position underwater, which is necessary for the three-dimensional allocation of
the SONAR images. The last system consists of the SONAR itself, where a multi-beam SONAR model
P900-130 of the company BlueView Technologies [11] is used. In the following sections each system will
be introduced individually. The overall costs, all system specification as well as corresponding references
can be found in annex B table B.1 to table B.6.

3.1. Remotely Operated Vehicle BlueROV2

The BlueROV2 [6] by Blue Robotics is an inexpensive, for industry standards (s. table B.1), but high
quality ROV, which is characterized by its modular build frame setup, open source electronics and
software and high customizability. The configuration used in the measurement trial, presented in section
5.1, uses the ”Heavy Configuration Retrofit Kit” with additional ”Payload Skid”. This instrumentation
uses, instead of the regular BlueROV2, eight thrusters in order to allow controlled motion in all six
degree-of-freedom. It is therefore possible to manoeuvre more stabilized with varying roll- and pitch-angles
and additional payload in the predefined ”Stabilization Mode”.

Figure 3.1 shows the ROV BlueROV2 in the mentioned configuration and corresponding amount of

thrusters thruster, at fig. 3.1 j1 , for the sake of clarity, only marked on the front left hand side. The

electronic enclosure fig. 3.1 j2 contains an Pixhawk 1 flight controller from the PX4 open-hardware
project, which executes the ArduSub control software of the BlueROV2. It has two acceleration sensors,
two gyroscopes, a magnetometer and a barometer, as listed in table B.3. By comparing and validating
the gathered data of the first three sensors the roll- pitch and yaw-angle are determined accordingly. For

further sensor information, please consult section B table B.4. Below in the battery enclosure fig. 3.1 j3 ,

an 14.8 V Lithium-Ion battery supplies not only the ROV, but also the SONAR fig. 3.1 j4 . The locator

U1, j5 in fig. 3.1, which is part of the UGPS, is self energy sufficient and includes an own depth sensor.
Therefore the locator U1 is only attached to the sensor carrier, without the necessity of power supply or

data transfer integration. Through the tether cable fig. 3.1 j6 , using two of the four twisted two-pair
cables, the transfer of the ROVs flight parameter and SONAR data to the TC takes place.
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Figure 3.1.: Customized BlueROV2 using the ”Heavy Configuration Retrofit Kit” and ”Payload Skid” with additional
sensors, locator U1 and BlueView P900-130

In the section B table B.2 an overview of the integrated sensors, corresponding company, version and
reference can be found. The data acquisition of the movement parameters, roll- (φ) pitch- (θ) and
yaw-angle (ψ), as well as the depth data of the barometer is discussed in section 4.3.1.

3.2. Acoustic Positioning System - Underwater GPS

The UGPS by Water Linked AS is a SBL, as presented in 2.3. It is developed for small AUVs, ROVs
or divers and shows great performance results, especially in shallow waters and reflective environments
according to the manufacturer [49].

The measurement setup is installed on a floating pontoon, shown in j1 fig. 3.2. The positioning system

consists of four receivers ( j2 in fig. 3.2), an external GPS-antenna ( j3 in fig. 3.2), a main computational

unit located in the TC, hereinafter called Master D1, and an locator ( j4 fig. 3.2). The four receivers are

submerged into water, to a minimum of 1.5 m, and connected to the TC ( j5 in fig. 3.2). Inside the TC
they are connected to the Master D1, which is implemented in the TC as well, according to fig. 3.3 (a).

The locator j4 is mounted on the ROV j6 , both in fig. 3.2, so that the acoustic signal can spread in all
directions.
In order to calculate the correct local and global position, the distances d1 - d4 in x- and y-direction, as
well as the depths z1 - z4 from the receiver to the water surface need to be adjusted using the web-based
Graphical User Interface (GUI) provided by Water Linked AS. In this GUI further adjustments regarding
the measurement area, used GPS-antenna, IMU and locator and its frequency channel can be made. The
Internet Protocol (IP) address of the GUI can be used to access the position data determined by the
system. This process of data acquisition will be explained in section 4.3.2. Corresponding listings are
presented in the annex C.
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Figure 3.2.: Schematic of Water Linked underwater acoustic positioning system setup (with adapted ROV schematic from
[49] and schematically enlarged GPS-antenna); Legend as explained below:h1 Pontoon h2 Receiver h3 GPS-antenna h4 Locator U1 h5 Topside Computer h6 ROVh7 Water surface

3.2.1. Topside Computer Integration

The TC is a splash-proof case containing all necessary communication interface to receive data from the
ROV and SONAR, as well as from the UGPS Master D1 by using Fathom-X Tether Interface Boards [9]
(used for the long-distance Ethernet connection over a twisted single pair cable) by Blue Robotics. The
Master D1 is installed by a self-designed board holder (s. fig. 3.3 (b)) in such way, that the 15° angle of
inclination is compensated when the case is opened, which is necessary to correctly calculate the position
of the ROV in the water. Figure 3.3 (a) shows the inside of the TC.
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(a) Interior of TC, including a computer unit (top left
hand side), battery (black, middel top side), and serial
to Ethernet converter (Fathom-X Tether Interface Board
in metallic box center) and board holder with Master D1
(bottom)

(b) Slanted circuit board holder for Master D1

Figure 3.3.: Slanted integration of Water Linked UGPS Master D1 electronics into TC

3.2.2. GPS Antenna

Due to higher accuracy the GPS-antenna used in the original setup was replaced by a PmodGPS�antenna
by DIGILENT®[15] in combination with an Arduino Nano 3.0 [1], which were provided by the DLR

institute MI. The antenna module, shown in j3 in fig. 3.2 is symbolically represented by a large antenna
for the sake of clarity. The GPS-antenna in the measurement setup (s. sec. 5.1.1) is located exactly above
the Master D1.

3.2.3. Receiver

Four digital low-noise high-sensitivity hydro acoustic receiver D1 (WL-21005-B-010) [50] with the detection
range of 100 m are lowered into the water [49]. A minimal distance of 1.5 m below the water surface (j7 fig. 3.2) should be guaranteed to reduce disturbances through breaking waves at the water surface.
Corresponding technical specifications can be found in the annex B.

3.2.4. Locator

The U1 locator [48], shown in j2 fig. 3.2, is a digital hydro acoustic locator by the company Water
Linked AS with a self supplied power source which lasts up to 6 h operation time. The latter is especially
beneficial when using the ROV BlueROV2, due to limited cable penetrators to the onboard power supply.
There are seven different channels that can be chosen from (see annex B). The seventh channel with the
frequency range from 218 Hz to 250 Hz is chosen for the measurement trial presented in section 5, due to
reduced masking effects of the simultaneously used multi-beam SONAR frequency of 900 kHz.
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3.3. Forward-looking Multi-beam SONAR BlueView P900-130

The BlueView P900-130 by BlueVIEW Technologies (s. fig. 3.4 (a)) appertains to the category of two-
dimensional forward-looking multi-beam SONARs, this means establishing the field of view in the direction
of travel, as well as emitting multiple acoustic signals from a hydro-acoustic array within the SONAR.
The numbers in the designation can be traced back to the system specifications, so the SONAR has a
transmission frequency of 900 kHz and a field-of-view of 130°.
A forward-looking SONAR bears the advantage of a horizontal aligned installation, which is necessary in
order to inspect vertical aligned structures, and a corresponding large field of view beneficial for covering
large areas. Regarding the two-dimensionality of the image generation, please refer to chapter 2.1 figure 2.5.

For every emitted pulse (ping) an image of the backscattered values from objects in the water columns
is generated. It must be clarified that not an infinitesimal strip of the water column is detected by the
SONAR, but with increasing horizontal distance also a vertically larger area of the water column by the
beam angle of 20° (see chapter 2.1 figure 2.6 (a)). In figure 3.4 (b) a typical backscatter image with the
range of 20 m, produced by this type of SONAR can be seen. On the left hand side of the image, the outer
shape of a ship hull, as well as its keel, can be identified. From the middle to the upper right side of the
picture the acoustical reflection of the sheet pile wall of the harbour basin and (in form of the rectangles)
buoyancy bodies of a floating pontoon can be detected. The filling of the rectangle buoyancy bodies is
due to the large vertical aperture angle of the SONAR, which results in a detection of the buoyancy body
not only from the front, but also either from above or below (s. sec. 4.3.3 fig. 2.6 (a)). In the front middle
part image a strong cloud shaped noise is present, due to the movement of the sensor carrier itself. The
colour coding of the image is only due to better visibility of the objects. Further system specifications can
be found in annex B.

(a) BlueView P900-130 forward-
looking Multi-beam SONAR [40]

(b) Backscattered image from ship hull and sheet pile wall,
Fischereihafen 1, Bremerhaven 2020

Figure 3.4.: Multi-beam SONAR BlueView P900-130 and backscattered data image

The SONAR integration into the ROV itself was completed in the course of an internship at the DLR MI
from October 2019 to February 2020 and will only be explained here for the purpose of completeness and
for the later comprehension of data acquisition.

The BlueView P900-130 [10] is mounted on the BlueROV2 (s. fig. 3.5 j1 and fig. 3.1), and connected to

the onboard power supply of 14.8 V (s. fig. 3.5 j2 ). The data transport is realized via Fathom-X Tether

Interface Boards [9], produced by Blue Robotics, located in the electronic enclosure fig. 3.5 j3 . These

lead the signal by one pair of twisted cable in the tether cable (s. fig. 3.5 j4 ) to a second Fathom-X

Tether Interface Board to the TC fig. 3.5 j5 . There the signal is fed into the computer by an Ethernet
to Universal Serial Bus (USB) adapter and can be accessed by the IP-address 192.168.1.45. The data
acquisition using the customer friendly software ProViewer 3�[44] is comprehensively described in section
4.3.3. Data collection using the ProViewer 3� has the advantage that the current backscattered data is
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Figure 3.5.: Implementation schematic of P900-130 into system electronics of BlueROV2

displayed on screen of the TC so that it can be used as a navigation assistance additionally to navigation
on sight and the acoustic positioning system, presented in section 3.2. Range, intensity and threshold can
also be adjusted in real-time to simplify the target object recognition for the user. The recorded data
can only be saved in the BlueVIEW proprietary .son-format. Additionally snapshots and movies can be
generated by calling the previously recorded file in the ProViewer 3�.
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4. Software

This section describes the complete process of data acquisition, processing and presentation of the data
generated by the three systems BlueROV2, UGPS and P900-130 SONAR. Beginning with a graphical
overview of the data processing procedure, the relationships between the programs is presented. In the
following, the programming languages and visualization programs used are briefly described followed
by the main part of the section, which is divided into the Data Acquisition from Hardware (s. sec. 4.3),
Image Processing (s. sec. 4.4) and Sensor Data Fusion and Three-Dimensional Representation (s. sec. 4.5).
The first presents the data acquisition from the three systems and gives an overview of the expected data
formats by means of examples. Section 4.4 deals in particular with the image enhancement of SONAR
images. The application and effects of the filter algorithms used, median 7x7 filter , are presented and the
thresholding from a normally distributed noise pixel Z-test is discussed. The last section brings together
all the data acquired up to that point and shows the program flow, from timestamp allocation and
coordinate transformation to the graphic display of the acquired point cloud.

4.1. Program Overview and Visualization

For the three-dimensional visualization of the SONAR images, data from different systems must be
collected, pre-processed and integrated into a main program, which merges and further processes all
data. In contrast to software programs available on the market, this does not work automatically yet,
but must be carried out manually. A distinction is made between programs that run directly on the
topside computer, such as direct data collection from the systems via User Datagram Protocol (UDP)/IP
bridges (in the case of the motion parameters additionally via a proxy, the so-called MAVProxy by
Micro Air Vehicle Communication Protocoll (MAVLink) [2]), and the main program. The latter, the
BlueView Software Development Kit (SDK) SONAR file format conversion program, as well as the
threshold algorithm and the program to determine the exact pixel size of the recorded SONAR image
range r, are executed on an external computer.
Figure 4.1 shows a schematic of the whole program components and their interconnection. The fad-
ing light blue boxes, beginning with the hardware systems on the far left hand side, represent the
programs running on the TC. The green boxes represent files that need to be transferred to the exter-
nal computer, using a storage medium, and processed using programs in the blue boxes. The yellow
box Visualization represents the result of the program operation, which also runs on the external computer.
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Figure 4.1.: Schematic view of program data flow

4.2. Software Tools

With regard to the software used, a distinction can be made between internally developed and external
programs. The self-developed programs were mainly written in the programming language Python,
except for the SONAR processing from the proprietary format of the company BlueView to a more
common format, which was realized with the help of C++ and the software development kit of BlueView.
Application Programming Interface (API) or SDK are designed by the manufacturer to facilitate the
implementation of additional hardware or writing new applications for the specific system. In case of
the BlueROV2 using the MAVLink protocol and for the BlueView P900-130 using various predefined
functions facilitates the data acquisition. As external open source software programs Meshlab [26] and
NaviModel Free Viewer [16] are used, which both allow a display of point clouds and their analysis, in
contrast to the module open3D [33] used in Python for the generation of the point cloud, which only
allows a display but no analysis. Further an external program for the integration of external GPS-data
into the web-based Water Linked AS GUI is used.
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4.3. Data Acquisition from Hardware

In this section, the steps and programs for data collection from the systems mentioned in the Hardware
section 3 are presented and explained. The communication between the system and the TC and possible
intermediate operations are discussed. In addition, the scripts used are assigned and partly presented in
detail. The complete source code can be reviewed in annex C.

4.3.1. Motion Parameter of Sensor Carrier

ROV MAVProxy UDP Bridge Motion Data
To connect the BlueROV2 with the TC,
the latter requires a static IP address
of 192.168.2.1. The ROV itself sends its

data by the IP address 192.168.2.2 of the Raspberry Pi 3 B+ [8]. It is thus located in the same subnet
mask as the TC. By default, the data stream arrives at port 14450 and is retrieved when using the control
software QGroundControl (QGC)[38] (see figure 4.2). The image data of the optical camera is sent to the
TC via GStreamer, which acts as a distributor of the video data in a local network, which will not be
covered in this thesis.

Figure 4.2.: Network communication between BlueROV2 and TC

To acquire the sensor data of the BlueROV2, a transparent proxy must be inserted between the communi-
cation between the BlueROV2, more precisely the Pixhawk 1, and the TC defined in figure 4.2. A proxy is
a network communication interface between two computers. The address of the transparent proxy remains
invisible for both sides, so that not the proxy but the target computer itself is addressed. The proxy can
be used to define different interfaces (e.g. UDP or Transmission Control Protocol (TCP)) with input
and output IPs. The proxy used for the BlueROV2 is MAVProxy. It uses the MAVLink communication
protocol, which is used between Autonomous Underwater Vehicles (UAV) or Unmanned Underwater
Vehicle (UUV) and QGC, as well as internally as a communication basis between microcontrollers, such
as the Raspberry Pi, and the ArduSub software on the Pixhawk.

The installation and documentation of MAVProxy is available on the official ArduSub GitHub site [2]. In
the following the necessary steps are described to use the module in combination with the acquisition of
system parameters of the BlueROV2.

In the source code 4.1 the setup.py is executed first. This must be repeated each time the module is
changed, since only then all modules in the modules folder can be loaded by MAVProxy and thus be
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executed. In normal operation the execution is sufficient from the definition of inputs and outputs. In the
last line a module is loaded which sends certain system parameters from the data stream to a defined
UDP interface. In this case it is module alldata.py which is described in the following.

python setup . py bu i ld i n s t a l l
2 mavproxy . py ==master=udpin : 0 . 0 . 0 . 0 : 1 4 5 5 0 ==out=udpout : 0 . 0 . 0 . 0 : 1 4 5 5 1

module load a l l d a t a

Listing 4.1: MAVProxy setup and loading modules

Server-side Communication

The module alldata.py, as already used in lst. 4.1, is an adaptation of the modules DepthOutput.py and
example.py published on the official GitHub site of Blue Robotics under MAVProxy [7]. The former taps
depth, temperature data, and the orientation of the ROV. The second serves as a general guideline for
the integration of new modules and can be used as a starting point. A list of the control and system
parameters can be found in the MAVLink documentation [31].

The module alldata.py accesses the following data:

� Depth [m]
� Water temperature [°C]
� Orientation [°]
� Roll-, Pitch- and Yaw-angle [°]

The complete source code can be found in the appendix C lst. C.1. For the sake of clarity, the module is
only viewed using two source code excerpts.

In source code 4.2, the IP address and the interface, to which the data is to be sent, are specified first. In
the following, the socket function is used to send data. A socket is a kind of communication point that is
used to exchange data between two programs. AF Inet describes the type of socket family that the socket
can communicate with, in this case Internet Protocol v4 addresses with the host 127.0.0.1 and the port
25102. SOCK DGRAM, the second argument of the socket function, refers to the use of an UDP interface.
In setsockopt, SOL SOCKET is used as the so-called level argument to change the socket properties.
By setting the value 1, which stands for the Boolean TRUE, the socket address is reused even if the
status of the socket is in TIME WAIT state and the timeout has not expired. If the program is executed
too frequently and with too little delay, it may cause the system state to remain in TIME WAIT. The
procedure described above eliminates the error that the address is already in use and therefore cannot be
used. Overall, the Socket function acts as a server for the Client, which is described in lst. 4.5. [37]

50 s e l f . ip=” 1 2 7 . 0 . 0 . 1 ”
s e l f . portnum = 25102

52 s e l f . port = socket . socke t ( socke t . AF INET , socke t .SOCK DGRAM)
s e l f . port . s e t sockopt ( socke t .SOL SOCKET, socke t .SO REUSEADDR, 1)

54 mavuti l . s e t c l o s e o n e x e c ( s e l f . port . f i l e n o ( ) )
p r i n t ” Outputting data on UDP://% s :%s ” % ( s e l f . ip , s e l f . portnum )

Listing 4.2: Creating the communication interface using socket

In the lst. 4.4 the MAVLink packets are tapped from the data stream. The data is stored in JavaScript
Object Notation (JSON) format. A simple access to a value is done by calling the declaration, also called
key-value pair. In a JSON object, multiple key-value pairs are separated by a comma. The JSON format
allows Boolean values, numbers, strings, null values, and arrays (indicated by square brackets), which
allow a kind of sub-grouping in the JSON object. In the fictitious example listing 4.3, the values stored in
it can be retrieved by querying the key, for example model no. [36]
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{
2 ”ROV type” : ”BlueROV2” ,

”model no” : 4356 ,
4 ” c o n f i g ” : [

{”mode” : ”heavy duty”
6 ” t h r u s t e r ” : 8} ,

{”mode” : ”normal”
8 ” t h r u s t e r ” : 6}

]
10 }

Listing 4.3: JSON Object

The depth and temperature data are displayed by the bar30 and sp2, so the first if-loop is run to store
the values in ’temp’ and ’depth’. sp3 serves as input if a separate temperature sensor is connected. As
described in chapter, only the Bar30 sensor is used for this purpose. In the following one will be asked
whether values are available in the keys VFR HUD, RAW IMU and ATTITUDE. The corresponding
values for the associated subkeys, such as roll-, pitch- and yaw-angle, are stored in variables in self.data.
Later in the program, self.data is sent to the defined UDP interface.

’ Handle mavlink packets , get data ’
70 de f mavl ink packet ( s e l f , m) :

’ ’ ’ handle mavlink packets ’ ’ ’
72

i f m. ge t type ( ) == ’SCALED PRESSURE2 ’ :
74 i f s e l f . temp source == ’ sp2 ’ :

s e l f . data [ ’ temp ’ ] = m. temperature / 100 .0 # m.temperature is centi-C
76 i f s e l f . depth source == ’ bar30 ’ :

s e l f . data [ ’ depth ’ ] = s e l f . get depth (m. p r e s s d i f f * 100) # m.press diff is hPa
78 e l i f m. ge t type ( ) == ’SCALED PRESSURE3 ’ :

i f s e l f . temp source == ’ sp3 ’ :
80 s e l f . data [ ’ temp ’ ] = m. temperature / 100 .0 # m.temperature is centi-C

e l i f m. ge t type ( ) == ’GLOBAL POSITION INT ’ :
82 i f s e l f . depth source == ’ f i l t e r e d ’ :

s e l f . data [ ’ depth ’ ] = =m. r e l a t i v e a l t / 1000 .0 # m.relative alt is mm
84 e l i f m. ge t type ( ) == ’VFR HUD ’ :

s e l f . data [ ’ o r i e n t a t i o n ’ ] = m. heading
86

# added *
88 e l i f m. ge t type ( ) == ’ATTITUDE ’ :

s e l f . data [ ’ r o l l ’ ] = m. r o l l
90 s e l f . data [ ’ p i t ch ’ ] = m. p i t ch

s e l f . data [ ’yaw ’ ] = m. yaw

Listing 4.4: Receiving data packets from the MAVLink protocol

Client-side Communication

In the following the program of the client is described, which receives the data of self.data from the
defined IP address 127.0.0.1 and UDP interface 25102 (chapter 4.3.1 source code 4.4), adds a time stamp
and saves it to a file.
First, the client-side socket connection is established by binding the socket to the defined IP and the
UDP interface (see source code 4.5).

8 UDP IP = ” 1 2 7 . 0 . 0 . 1 ”
UDP PORT = 25102

10

sock = socket . socke t ( socket . AF INET ,
12 socke t .SOCK DGRAM)

sock . bind ( ( UDP IP , UDP PORT) )

Listing 4.5: IP address and port definition and Socket for UDP interfaces readout
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Afterwards, in listing 4.6, a function is set up that allows the document to be given a unique name. In
the command prompt where the program is executed, a file name can be entered directly after calling
the program. Otherwise the file is named workfile. With f = open(filename, ’w’) a document is opened
for writing. As long as the program is running, data received via the UDP interface is written to this
document. The command seperator makes small formatting changes to the JSON object in order to
append the timestamp with the Unix time time.time() in the next step. Finally, the JSON object is
written to the document with f.write.

i f l en ( sys . argv ) > 1 :
22 pr in t f i l ename

f i l ename = sys . argv [ 1 ]
24 e l s e :

f i l ename= ’ w o r k f i l e ’
26

28 f = open ( f i l ename , ’w ’ )
whi l e True :

30 data , addr = sock . recvfrom (1024) #buffer size 1024 bytes
p r i n t ” r e c e i v e d message : ” , data

32 pr in t time . time ( )
dataJson = json . dumps( data , s e p a r a t o r s =( ’ , ’ , ’ : ’ ) )

34 dataJson = json . l oads ( data )
dataJson [ ” time ” ] = time . time ( )

36 f . wr i t e ( s t r ( dataJson ) )
f . wr i t e ( ”\n” )

Listing 4.6: Readout of UDP interface

4.3.2. Local and Global Position of Sensor Carrier

Master D1 IP Bridge Position Data
In this section the data acquisition process from
the acoustic positioning system UGPS by Water
Linked AS is presented. Before the parameter

access can be started, the following network adjustments need to be made in order to access the data on
a specific IP address. On the Master D1 main board the Dual In-line Package (DIP)-switch settings must
be adjusted to the position as shown in fig. 4.3 and the computers static IP is, as already mentioned in
section 4.3.1, set to 192.168.2.1. This IP address can then be accessed from the computer and shows

Figure 4.3.: DIP switch settings for static IP address on 192.168.2.94

the interactive Water Linked AS UGPS GUI, where parameters such as used locator, distance between
receivers and Master D1 can be adjusted and also accessed by a self-written python script.
Following requirements apply to the data acquisition that need to be taken into account to gather data
which can be processed further.

� continuous real-time acquisition from GUI
� local position in x-, y- z-coordinates and global position in latitude and longitude
� timestamp in Unix time format for each data

Based on the python scripts published on the official Water Linked AS git website [46], an own script,
which meets the above mentioned requirements, has been developed. In the following, parts of the data
acquisition program will be explained. The full listing can be found in annex C C.3.
In listing 4.7 all external functions that are called upon in the main program (see listing 4.8) are defined.
The first function get data tries to access the Uniform Resource Locator (URL) address given in the main
program and prints out error messages if the website is not reachable or connection difficulties occurred.
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The second function (line 26) then accesses the local (acoustic) and the third function (line 30) the global
position of the locator. The last function enables the user to enter a specific filename for the received
data in order to distinguish the measurements properly.

12 de f ge t data ( u r l ) :
t ry :

14 r = r e q u e s t s . get ( u r l )
except r e q u e s t s . excep t i ons . RequestException as exc :

16 pr in t ( ” Exception occured {}” . format ( exc ) )
re turn None

18

i f r . s t a t u s c o d e != r e q u e s t s . codes . ok :
20 pr in t ( ”Got e r r o r {} : {}” . format ( r . s ta tus code , r . t ex t ) )

re turn None
22

r e turn r . j son ( )
24

26 de f g e t a c o u s t i c p o s i t i o n ( b a s e u r l ) :
r e turn get data ( ”{}/ api /v1/ p o s i t i o n / a c o u s t i c / f i l t e r e d ” . format ( b a s e u r l ) )

28

30 de f g e t g l o b a l p o s i t i o n ( b a s e u r l ) :
r e turn get data ( ”{}/ api /v1/ p o s i t i o n / g l o b a l ” . format ( b a s e u r l ) )

32

#check correct filename input for string, float, and file format
34 de f s e t f i l e n a m e ( ) :

u se r input = input ( ” 1 . P lease ente r f i l e name f o r p o s i t i o n data : ” )
36 r e turn use r input

Listing 4.7: External functions for main programm

In listing 4.8 the main program is shown. The functions previously defined in listing 4.7 are called and
their return value is taken. Thus, in the example of user input, this is set as the file name (see line 41). In
line 44f. the URL address is passed to the parser and the received data is accessed. In the following a
file with the given filename, in which the received data is written, indicated by ’w’, is created. Further
a timestamp is added before adding the position data to the data string. Finally the data string is
transformed into JSON format and written into the file (s. line 60).

de f main ( ) :
40 pr in t ( ”Underwater GPS Data Acqu i s i t i on ” )

f i l ename = s e t f i l e n a m e ( )
42 r e c e i v e d d a t a = True

44 par s e r = argparse . ArgumentParser ( d e s c r i p t i o n= d o c )
par s e r . add argument ( ’=u ’ , ’==u r l ’ , he lp=’ Base URL to use ’ , type=str , d e f a u l t=’ http
: / / 1 9 2 . 1 6 8 . 2 . 9 4 ’ ) # getting real
data

46 args = par s e r . p a r s e a r g s ( )

48 b a s e u r l = args . u r l
p r i n t ( ”Using b a s e u r l : %s ” % args . u r l )

50

#data aquisistion and saving data in json file
52 f = open ( f i l ename , ’w ’ )

data = {} #creating dictionary
54 t ry :

whi l e r e c e i v e d d a t a == True :
56 data . update ({ ’ time ’ : time . time ( ) })

data . update ( g e t a c o u s t i c p o s i t i o n ( b a s e u r l ) )
58 data . update ( g e t g l o b a l p o s i t i o n ( b a s e u r l ) )

dataJson = json . dumps( data , s e p a r a t o r s =( ’ , ’ , ’ : ’ ) )
60 f . wr i t e ( s t r ( dataJson ) )

f . wr i t e ( ”\n” )

Listing 4.8: Main programm of acoustic positioning data acquisition from IP address
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In the following listing 4.9 example data in JSON format can be seen.

{” time ” :1581086055 .0588472 , ” std ” :0 .6361597587537569 , ”temp” : 0 , ”x” :13 .61597587537568 , ”y”
:30 .966764198635598 , ”z” :12 .723195175075137 , ” cog ” : 0 , ” f i x q u a l i t y ” : 1 , ”hdop” : 1 . 9 , ” l a t ”
:63 .44299179016037 , ” lon ” :10 .423280187793308 , ”numsats” : 2 , ” o r i e n t a t i o n ” : 5 9 , ” sog ” :0}

Listing 4.9: Example data acquired by program

The time is in Unix time format, local coordinates such as x-, y- and z-coordinates are in meters, global
coordinates such as latitude (lat) and longitude (lon) are in decimal degrees. Values for the orientation are
gathered from the ROV itself. The values Course Over Ground (COG) and Speed Over Ground (SOG),
are zero as no second GPS-antenna, needed for a referenciation, is implemented for evaluating them.
Further, they will not be used in the progressing data fusion.

GPS-Antenna
The source code for sending National Marine Electronics Association (NMEA) data by a serial interface,
which is executed on the Arduino Nano 3.0 [1], was provided for this thesis and will therefore not be
described in depth. Shortly described, the GPS-antenna sends NMEA-0183-strings to the Arduino Nano
3.0, which then transfers the timestamp and GPS coordinates by an Universal Asynchronous Receiver
(UART)-USB bridge to the TC. Please refer to the annex section C listing C.4, where the code is listed.
By an UDP connection, using the NMEA Underwater GPS bridge [47], the data is then transferred to
the web-based GUI of the underwater acoustic positioning system. The used NMEA Underwater GPS
bridge, for accessing the GPS data and transfer to the IP 192.168.2.94, was also not a part of this thesis.
The executable program code, which was downloaded and connected to both systems by the command
line interface, can be found on the official Water Linked git page [47].

4.3.3. SONAR Image Acquisition and Preprocessing

BlueView P900-130 ProViewer 3
SON
File

BlueView
SDK Prog.

PGM
Images

The acquisition
of the SONAR
images, gathered

by the BlueView P900-130, can be divided into the pure data acquisition and the preparation for further
processing of the single images. First, the manufacturer’s software ProViewer 3�, is used to enable real-
time data acquisition with simultaneous display. In the following the SDK is used for further processing
and preparation of the data. The latter is described in more detail in section 4.4. The single steps of the
preprocessing will be presented hereinafter.
Once the SONAR is lowered into the water, the ProViewer 3�, software is connected to it by its IP
address. Once connected the acoustic backscatter is displayed on screen of the TC. Intensity and threshold
can be changed manually in order to facilitate object identification for the user. Furthermore the range
and field of view can be altered according to the target under investigation. The incoming data can be
then recoded and saved into the BlueView proprietary file format with file ending .SON. The .SON file
contains every ping from the multi-beam SONAR saved in binary format and can only be processed by
using the BlueView SDK or other programs from the manufacturer. In the following the requirements
and program sequence will be presented.

Requirements regarding the transformation of the BlueView proprietary .SON -format:

� Timestamp for each ping (same length/unit)
� Transformation of each ping in processable image format (.Portable Grey Map (PGM) format is

provided by BlueView SDK)
� Unique filename by using the timestamp necessary for the comparison with the data records of

motion parameters and positioning data
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The BlueView SDK, even though using the programming languages C or C++, uses eight classes (Sonar,
Head, Ping, MagImage, ColorMapper, ColorImage, Logger, and Error) in the form of member functions.
From these only the Sonar, Head and Ping classes with the prefix BVT are used in order to minimize
name space pollution. Hereinafter the main used classes and their sub functions are presented in table 4.1.
These classes and corresponding sub functions were used in the full .SON file to .PGM image transfer

Table 4.1.: BlueView SDK variables used in listing 4.10 to 4.14 and its functions [12]

BlueView SDK variable Function

BVTSonar Top level object, represents the commu-
nication to a SONAR or SONAR file
and the creation of new .SON file

BVTSonar Create Creation of SONAR object
BVTSonar Open Open .SON file by filename or open

connection to SONAR
BVTSonar GetHead Retrieve head object

BVTHead GetPing Retrieve Ping from Head object
BVTHead GetPingCount Count the amount of Pings stored in file

BVTPing GetImageXY Retrieve XY-format image, according to
parameters set in Head

BVTPing GetTimestamp Get a timestamp for the recorded ping

BVTMagImage (MagnitudeImage) Gives access to two-dimensional 16-bit
greyscale image

BVTMagImageSavePGM Saves image in .PGM -format

program, which can be found in annex C listing C.5. In the following, only some extracts and the rough
program sequence will be explained.
Listing 4.10 describes a short program section on image storage in a specific folder. For this purpose, the
extension .SON is subtracted (line 27) from the entered file name and a corresponding folder is created
(line 28). This sequence was implemented because of the large amount of data, to be more precise the
large number of pings of the recorded sequences, in order to ensure easy access to the data by the main
two- to three-dimensional conversion program.

22 i f ( argc >= 2) {
s t r cpy ( DataFile , argv [ 1 ] ) ;

24 }
i n t f i l ename l eng th = s t r l e n ( DataFi le ) ;

26 char fo ldername [ 2 5 6 ] ;
s t rncpy ( foldername , DataFile , f i l ename l eng th = 4) ;

Listing 4.10: Storage location of the sonar images derived from the .SON file

In the following a SONAR object will be created and the given .SON file will be loaded (see lst. 4.11 line
34 and 44). The filename of the .SON file is accessed through the char Datafile, which is linked to the
input .SON file. BlueView also holds the option to access one of multiple heads, in this case only one
head is used, therefore the first head on line will be accessed in line 48. In line 52 the total amount of
pings stored in the .SON file is counted starting from 0 (line 51). The returned integer will be later used
in a conversion progress indicator bar to estimate the total conversion time of the file.
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// Create a new BVTSonar Object
36 BVTSonar son = BVTSonar Create ( ) ;

i f ( son == NULL )
38 {

p r i n t f ( ”BVTSonar Create : f a i l e d \n” ) ;
40 r e turn 1 ;

}
42

// Open the sonar file
44 BVTSonar Open( son , ”FILE” , DataFi le ) ;

46 // Get the first head
BVTHead head = NULL;

48 BVTSonar GetHead ( son , 0 , &head ) ;

50 // Check the ping count
i n t p ings = =1;

52 pings = BVTHead GetPingCount ( head ) ;

Listing 4.11: Creation of Sonar object and following head and ping count

In listing 4.12 the main loop for each ping in the file starts (see line 55). A Ping object is created (line 57)
and accessed by BVTHead GetPing from the head (line 58).

54 // Begin loop to create image for each ping
f o r ( i n t i = 0 ; i< pings ; i++){

56

// Now, get a ping!
58 BVTPing ping = NULL;

BVTHead GetPing ( head , i , &ping ) ;

Listing 4.12: Beginning of for-loop for each Ping in .SON file

In listing 4.13 a method is shown to implement the timestamp for each ping image to its corresponding
filename. At first the timestamp itself is accessed by the function BVTPing GetTimestamp from the ping
(line 61). The timestamps created automatically by the SONAR differ occasionally from each other by
means of digits. Which results in an incorrect transformation into milliseconds. Therefore an if-loop is
started in order to even out the resulting missing zero inbetween seconds and milliseconds, so that the
timeformat is standardized and can be used as a reference in the further allocation of depth, motion
paramteres and location coordinates in section 4.5.

60 //Get Time stamp for ping
double time = BVTPing GetTimestamp ( ping ) ;

62 double s ;
i n t n ;

64 s = time ;
s = f l o o r ( s ) ;

66 double ms = time = s ;
char buf3 [ 1 0 0 ] ;

68 n = s p r i n t f ( buf3 , ”%d%d” , ( i n t ) s , ( i n t ) (ms * 1000) ) ;
i f (n < 13)

70 {
i f (n = 12)

72 {
s p r i n t f ( buf3 , ”%d0%d” , ( i n t ) s , ( i n t ) (ms * 1000) ) ;

74 }
e l s e

76 s p r i n t f ( buf3 , ”%d00%d” , ( i n t ) s , ( i n t ) (ms * 1000) ) ;
}

78

const char * timestampchar = buf3 ;

Listing 4.13: Timestamp implementation into filename of each image
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Finally the image is created by the function BVT GetImageXY and saved into a .PGM image by using
the function BVTMagImageSavePGM with the filename as a combination of img (standing for image)
and the timestamp as well as the ending .PGM (see lst. 4.14). Beginning from line 90, the combination
of img, timestamp and file format is presented. Therefore the folder name is copied by strcpy in result1, a
character with 256 positions, which is then extended by a doubled backslash. This first part declares the
path where the image will be stored to. Following, the filename1 and the timestamp (as a char) will be
appended, finishing with the specific file format ending .PGM. The process bar in line 102 prints the
current to be converted ping of all pings in order to show the approximated duration of the program. At
the end the of each ping to image conversion BVTMagImage, BVTPing are destroyed and when the full
for-loop is finished also the BVTSonar objects is cleaned up in order to prevent memory leaks [12].

// Generate an image from the ping
84 BVTMagImage img ;

BVTPing GetImageXY( ping , &img ) ;
86

//Save it to a PGM (PortableGreyMap)
88 char r e s u l t 1 [ 2 5 6 ] ;

const char * f i l ename1 = ”img” ;
90 const char * format1 = ” . pgm” ;

92 s t r cpy ( r e su l t 1 , fo ldername ) ;
s t r c a t ( r e su l t 1 , ”\\” ) ;

94 s t r c a t ( r e su l t 1 , f i l ename1 ) ; // copy string filename1 into the result.
s t r c a t ( r e su l t 1 , timestampchar ) ;

96 s t r c a t ( r e su l t 1 , format1 ) ; // append string format1 to the result.
BVTMagImageSavePGM( img , r e s u l t 1 ) ;

98

//progress indicator
100 std : : cout << ”\ rProgre s s : ” << i << ” out o f ” << pings << ” images converted ! ” ;

102 //Clean up
BVTMagImage Destroy ( img ) ;

104 BVTPing Destroy ( ping ) ;
}

106

BVTSonar Destroy ( son ) ;
108 }

Listing 4.14: .PGM image creation

In the following section, the preprocessing of the recorded and transformed SONAR images will be
presented, by means of a threshold application, in order to filter out all pixels with the strongest
intensities, and a median 7x7 filter.

30



4.4. Image Processing

In order to spatially represent the reflection values of each sonar image pixel, different algorithms must be
applied to create a detailed image. To reduce the impact of background noise, which results from particle
backscatter in the water column and a reflective measurement environment such as harbour areas, a
Gaussian Z-Test is applied to the sampled data in order to estimate a threshold for the spatial data plot,
according to recommendations presented in [19]. In subsection 4.4.1 the main principle of this test will
be presented. Hereinafter the SONAR images will be filtered to reduce uneven edges and outlined pixel.
Therefore a median-7x7 filter will be elucidated in subsection 4.4.2.

4.4.1. Threshold Estimation

Threshold
Estimation

As shown in chapter 2.2, a high number of underwater structures with high reflectivity
(e.g. ships, metal piles etc.), narrow, angled test areas and also the reflection of acoustic
waves from suspended matter in the water column lead to a background noise, which

distorts the backscattered signal from the investigated area. A threshold represents the value from which
the received signal is processed further. In this case, it refers to the pixel value of an 8-bit greyscale
image, therefore a value from 0 (black) to 255 (white) as shown in fig. 4.4. To evaluate the noise pixel

Figure 4.4.: Schematic of 8 bit binary pixel distribution from 0 to 255

distribution, sample data of the test area is collected and transformed from the BlueView P900-130
proprietary format to a 16-bit greyscale image in PGM-format. A further downsampling to 8-bit is
necessary for the visual display on a regular computer. For the noise evaluation the same settings (range,
threshold and intensity regarding the ProViewer 3�software settings) were used as for the recording of
the actual data. In contrast, however, only those images were used on which no underwater objects are
visible, that means an open-water scene (such as displayed in fig. 4.5 (a)). (In order not to anticipate
the results of the thesis at this point, images, shown in fig. 4.5, from another measurement will be used
to explain the procedure) In addition, data from different depths were included in order to eliminate
stratification of particles in the water column as well. Comparing the two backscattered images in fig. 4.5,
it can be noticed that the open-water image (a) comprises significantly more values in the range of 128
to 256 than the object-oriented image (b). Furthermore it contains strong ray-shaped noise additive to
the general noise distribution across the whole image. In order to eliminate most of the noise, the Z-test
(Gauss test) is applied. This will be explained in the following.

(a) Backscatteres signal from open-water scene (b) Backscattered signal of the hull of the ”Hansa” (Fis-
chereihafen 1, Bremerhaven, Germany)

Figure 4.5.: Comparison of SONAR 8-bit greyscale images
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The Z-Test (Gauss Test)
The Z-Test is a statistical hypothesis test, which uses the mean values of the sample and the population
to make a statement about the expected value. It is assumed that the population, in this case the noise
pixel allocation, is normal distributed. Reference for the procedure of the Z-Test, for equation 4.1, eq.
4.4, eq. 4.5 and eq. 4.6 is made to Kähler [24], where further information regarding hypothesis testing by
means of the Z-Test can be derived.

Figure 4.6.: Comparison of open-water and scene image from fig. 4.5 by means of pixel distribution

Figure 4.6 shows the pixel distribution of the noise image 4.5 (a) (black) and the scene image 4.5 (b)
(blue). The vertical axis shows the total pixel amount for each pixel value, the horizontal the pixel value in
the range from 0 to 255. All pixel values that did not occur were omitted to avoid a massive accumulation
of zero values and to preserve the overall impression of the image. Furthermore, the zero value was
neglected for both datasets, since only the values other than zero can be used to make a statement about
image noise. For the application of the Z-Test, certain assumptions must be made in order to be able to
formulate hypotheses about the pixel distribution.
Even though the noise image pixel allocation resembles the normal distribution only on the right hand side
of the maximum value, it is nevertheless assumed as normal distributed. It is further assumed that the
mean value µ of the sample will be larger than the mean value µ0 of the population. Hence a right-hand
test is applied. The Null hypothesis H0 in eq. (4.1a) is rejected when the Alternative hypothesis H1 in eq.
(4.1b) is true.

H0 : µ ≤ µ0 (4.1a)

H1 : µ > µ0 (4.1b)

The arithmetic average µ0 of n populations with the normally distributed variables xi are first formed
and then averaged following eq. 4.2. The arithmetic average µ for the sample is also calculated by eq. 4.2
and for the standard deviation eq. 4.3 is used.

µ =
1

n

n∑
i=1

xi (4.2)
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s =

√√√√ 1

n− 1
·
n∑
i=1

(xi − µ)2 (4.3)

Following, the standard error of the arithmetic average of all samples is calculated by dividing the
corresponding standard deviation s by the number of different pixel values n, see eq. 4.4.

SE =
s√
n

(4.4)

The Z-value is defined as the difference between the arithmetic average of the sample and the population
divided by the standard error, see eq. 4.5.

Z =
µ− µ0

SE
(4.5)

For evaluating the one-tailed positive hypothesis H1 a critical value (or α level) of 0.05 is selected. The

-4 -3 -2 -1 0 1 2 3 4

α = 0.05

1.645

Reject H0Accept H0

Figure 4.7.: Gaussian normal distribution with of α 0.05, respectively z=1.645

critical value indicates the probability of making a mistake type-I error, which means falsely rejecting the
null hypothesis when it is actually true. For example this could be true when using sample images with
small objects in a low reflective environment, resulting a small amount of large pixel values and a high
amount of zero values. With the use of a Z-table the Z-value can be used to determine the corresponding
probability factor p. p is the empirical quantile (as ranging from 0.1 to 0.99 it counts to the percentile) and
stands for the value for which p · 100% of the values are below or (1− p) · 100% above the Z-value. By us-
ing the predefined critical value of 0.05, p must be larger than 0.95 in order to reject the Null hypothesis H0.

p > (1− α) (4.6)

In this example the Z-value of 1.741 leads to a p value of 0.959. Hence the one-tailed positive hypothesis
H1 is true. The threshold value now results from the product of the probability value p and the pixel
percentage ratio as shown in eq. 4.7.

t ≈ 255 · p (4.7)

The respective source code can be found in annex C listing C.6.
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4.4.2. Filter Algorithms

According to Petillot et al.[34] a simple median 7x7 filter applied on SONAR images, maintains the
accuracy of the image while filtering out outliers (noise). In contrast to the mean filter, which distorts
edges, the median filter has a better edge sharpness. In figure 4.8, the filter principle is described using a
minimized version of a 3x3 median filter. The pixel values in a defined area around the origin pixel, s. fig.
4.8 (a), here marked blue, are sorted by size fig. 4.8 (b). The middle value of this array is then chosen
and replaces the origin value, as can be seen in fig. 4.8 (c).
Figure 4.9 compares the original SONAR image of the ship hull of the ”Hansa” in (a), the same image

11 4 17

21 6 5

25 0 19

(a) 3x3 image ma-
trix, origin pixel
marked blue)

Median

0 4 5 6 11 17 19 21 25

(b) Pixel values sorted by size, median marked blue

11 4 17

21 11 5

25 0 19

(c) New 3x3 im-
age matrix with
changed origin
value

Figure 4.8.: Median 3x3 filter

processed with an median 7x7 filter (b) and in (c) additionally filtered with a threshold of t=110. It can
be noticed, that the ship hull in fig. 4.9 (b) appears smoother with continuous edges. When applying
the threshold the ship hull and keel become more visible, by the strong contrast of zero and one values,
which is needed later in the spatial representation as a point cloud. SONAR images require practice in
interpreting, so it can be said at this point that the upper edge describes the keel, the lower edge the
outer wall of the ship. A coloured representation can make interpretation easier. However, this does not
play a role in later data processing.

(a) Original image (b) 7x7 median filter (c) 7x7 median filter and threshold t =
110

Figure 4.9.: Comparison of the processed, backscattered SONAR image of the hull of the ”Hansa”

The advantages of blind deconvolution filter, as recommended according to Guerneve et al. [19], could not
produce a significant gain in information, using the in sec. 4.5 described method of spatial representation,
and were discarded due to the time-consuming programming run-time.
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4.5. Sensor Data Fusion and Three-Dimensional Representation

Main
Program

In this section the combination of all three data sets will be presented as well as the
algorithms for the two- to three-dimensional representation of the SONAR images.
Extracts from the program are given in this section, all fully coherent listings can be
found in annex C listing C.6 to C.8.

Figure 4.10 shows the program flow schematically. In the following, the topics presented in the arrows will
be dealt with in an anti-clockwise direction, beginning at the top, according to the program sequence.
Before execution of the program, it has to be ensured that all to be considered .PGM images, as well as
the motion and position data files are located in the same program folder. The images are called by a
for-loop for every file ending with .PGM, whereas the motion and position data filenames need to be
called directly. Careful handling of the correct images of the objects under investigation is required.

Load files
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Figure 4.10.: Schematic of the program flow

In the interests of clarity, the main aspects of the program are set out below.

j1 Loading .PGM files into programj2 Filter Algorithms (Threshold, Median 7x7)j3 Range setting and pixel to meter conversionj4 Timestamp allocation of all three data setsj5 Implementation of the roll-, pitch- and yaw-angle through coordinate transformation of backscattered
intensity valuesj6 Utilization of open3d python package for three-dimensional point-cloud visualization of intensity
values; preliminary appending of all points until no .PGM -files are left and only then display of the
point cloud

As the thresholding and filter algorithms, see fig. 4.10 j2 , haven been presented in section 4.4 this topic
will be skipped here.
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4.5.1. Loading of Images

As already mentioned above, the loading of the SONAR images is wrapped by a for-loop, which applies
to all files that end with the file format .PGM in the respective folder of the program. Each .PGM file
consists of a header and image data, the former data consist of a magic number, which stands for the
file format, the image width and image height all separated by blanks. An example of first row of an
converted .SON to .PGM file can be found in fig. 4.11. The gray-shaded one indicates the first line of the

Figure 4.11.: Exemplary .PGM files first row

.PGM file, see fig. 4.11. The magic number P5 stands for portable graymap binary, which is then followed
by the width, height and value range from 0 to 65535 (16 bit), which are coded in decimal American
Standard Code for Information Interchange (ASCII).
To gather image meta data the image is read in binary and then split up to the fourth element of the
image see 4.15. The resulting array can be see in lst. 4.15 line 2.

f i l e . read ( ) . s p l i t ( ) [ : 4 ]
2 >>[b ’P5 ’ , b ’ 1591 ’ , b ’ 843 ’ , b ’ 65535 ’ ]

Listing 4.15: Binary array of meta data

From this array the width and height are accessed by the array index number, see lst. 4.16 line 195f., and
transformed into an integer. In the following the logarithm of the value range on base 256 is ”ceiled”,
which means returning the smallest integer not less than the return value of the logarithm. This returns
the bytes per value which are then multiplied with the image width, which results in this case in a image
width of 3182.

194 #access with and height, adjust image width
width = i n t ( f i e l d s [ 1 ] )

196 he ight = i n t ( f i e l d s [ 2 ] )
bytesPerValue = i n t ( c e i l ( l og ( i n t ( f i e l d s [ 3 ] ) , 256) ) )

198 n s l i c e s = width * bytesPerValue

Listing 4.16: Meta data access of .PGM file

The actual binary image data is then read, from the position after the header data (position 18 in this
example) onwards, into an unsigned 8-bit array b. This array is then reshaped into an array with the
height and adjusted width (nsclices) according to the image dimensions, lst. 4.16 line 5.

#get image data
202 imageData = [ ]

f o r i in range (0 , l en (b) ) :
204 x , maxi = parseL ine (b [ i ] )

i f globalMax < maxi :
206 globalMax = maxi

imageData . append ( x )
208

globalMax = i n t ( globalMax * g loba lMaxMult ip l i ca tor )

Listing 4.17: Global maximum compare

For each value in each row of the byte array b it is now checked whether it is the maximum value of the
whole image (s. lst. 4.17). If the global maximum (globalMax) is smaller than the value (maxi), maxi is
written into the variable of the global maximum. Furthermore the function parseLine gives back an array
with the length of the original width of 1591 pixel, which is appended to the array imageData.
Then the globalmax is multiplied by 0.25 (globalMaxMultiplicator), which estimated by scaling the
highest intensity value in the 16-bit to a maximum value of 255. This value needs to be adjusted for each
data set manually.
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In the following a for loop from 0 to the length of the array imageData (also with the value of 843) and
a second for loop from 0 to len(imageData[1] which is 1591), runs through every element of the image
and divides it through he quotient of globalMax and 256, see lst. 4.18. Finally the image is created by
the image module Pillow [29]. The rotation (line 216) needs to take place in order to adjust the differing
image origins of the array image (bottom left corner) and Pillow-images (top left image corner). Therefore
the images is saved in x-y-coordinate system, such as presented in section 4.3.3.

212 data = np . z e r o s ( ( height , width , 3) , dtype=np . u int8 )
f o r i in range (0 , l en ( imageData ) ) :

214 f o r j in range (0 , l en ( imageData [ i ] ) ) :
data [ i , j ]=( imageData [ i ] [ j ] / ( globalMax / 256) , imageData [ i ] [ j ] / ( globalMax /

256) , imageData [ i ] [ j ] / ( globalMax / 256) )
216 img1 = Image . fromarray (np . rot90 ( data , 3 ) , ’RGB’ )

Listing 4.18: Save in RGB image format

Both, the ROV motion data as well as the UGPS position data are simply opened and read as JSON files
and then read line by line into an array according to their JSON key (s. lst. C.8 line 38ff. and 64ff.).

4.5.2. Range Setting

In contrast to the, in section 2.1 presented, method for obtaining backscattered intensity values from the
SONAR in polar coordinates, the main program utilizes rows and columns for obtaining pixel values. In
order to match pixel and the set detection range a scaling factor needs to be applied. The method used
shall now be explained by means of figure 4.12.
The shown image displays a high noise environment or simply an enhanced backscattered intensity,

ran
ge r

offset

Figure 4.12.: Range Test Image

ranging from 0 to approximately 150 pixel values, which is required to detect the full field of view of the
SONAR, here marked in red. In order to enhance the contrast for visualization, the originally grey-scaled
image was pseudo-coloured. The pixel count starts at the top left corner of the image (Pillow-image),
which can be recognized by the legend direction. To scale the image, the farthest valid pixel value counting
from the centre of the image in vertical direction has to be determined. In this example, the farthest pixel
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is located in row 19, which can also be defined as the pixel offset. By subtracting the pixel offset from the
total image height, the pixel number for the range r is derived. This value can then be entered into the
main program. The corresponding script, which reads in multiple images and calculates a mean value
to enhance the accuracy, can be found in annex C listing C.7. This step cannot be generalized for all
SONAR images, as they differ in dimensions according to their range, therefore the script needs to be
executed for all taken measurements, when changing the range settings.
Listing 4.19 line 230ff. shows the implementation of this pixel range into the main program. The range
(in meter) itself is entered in line 231, according to the settings during data recording. In line 233 to 234
the origin is moved to the bottom centre of the image. For this purpose, half of the width of the image is
subtracted (np.add) and stored in the variable img x. The height of the image is kept and only assigned
to a new variable (img y). im xy contains indices of the image pixels that are non-zero (also known as a
tuple) and above a threshold, using numpy.nonzero() and the Pillow function Image.point(). The tuple
arrays containing the x- (horizontal/width) and y- (vertical/height) coordinates can then be accessed by
calling img [0] and img [1]. In order to scale each axis according to the scaling factor, derived in line 231,
it is multiplied to each tuple array as can be seen in line 240f..

230 #pixel amount for range
real sonwindow = 165 #enter correct value for each measurement

232

#move zero to bottom centre of image
234 img y = img xy [ 1 ]

img x = np . add ( img xy [ 0 ] , = img . s i z e [ 0 ] )
236

#transform pixel to meter
238 max range = 10 #get value data recording (ProViewer)!

s c a l i n g = max range / real sonwindow
240 img x = np . mult ip ly ( img x , s c a l i n g )

img y = np . mult ip ly ( img y , s c a l i n g )

Listing 4.19: Range Setting of SONAR image

The complete listing can be found in annex C listing C.7.

4.5.3. Timestamp Allocation

The timestamp of each SONAR image functions as the starting point for allocating additional data with
the closest timestamp. As explained in section 4.3.3 the timestamp of each image is stored in the image
name, in the motion and positioning files the timestamp is stored as a JSON object. The command line
in source code 4.20 is applied to both the motion and the position data sets and returns the JSON object
whose timestamp is closest to the image timestamp. Therefore all values in the data set at position 0
(data[:, 0]) will be subtracted by the timestamp of the SONAR image. From each array element the
amount is taken (np.abs) and the smallest element (np.argmin) is stored in the variable index. As in this
case the JSON object consists just of one single row without any array elements, it can also be defined as
an index return function. Listing 4.20 shows the procedure examplary for the ROV motion and depth
data, which also applies to the position data from the UGPS.

index = np . argmin (np . abs (np . add ( data [ : , 0 ] , =timestamp ) ) )
56 ROV return = data [ index , : ]

Listing 4.20: Acquisition of closest timestamp to SONAR image timestamp and return of motion (or position) data
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4.5.4. Coordinate Transformation

Since a movable sensor platform is used for data acquisition, it cannot be assumed that the data is
recorded exactly horizontally. Movements of the sensor carrier ROV are described by the roll- (φ), pitch-
(θ) and yaw-angle (ψ) and applied to the acquired data by a coordinate transformation. Following the
mathematical rules for matrix multiplication in coordinate transformation, the rotation matrix R in eq.
4.8 is derived.

R =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


︸ ︷︷ ︸

Yaw-Matrix

·

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)


︸ ︷︷ ︸

Pitch-Matrix

·

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)


︸ ︷︷ ︸

Roll-Matrix

(4.8)

An implementation of the global position of the ROV leads to the transformation matrix T shown in eq.
4.9. Distances respectively from the Bar30 or locator U1 are adapted manually. For the source code see
annex C lst. C.8 line 127ff..

T =


R11 R12 R13 UGPSx + 0.15
R21 R22 R23 UGPSy + 0.27
R31 R32 R33 depth+ 0.25
0 0 0 1

 (4.9)

The Rotation matrix R is here defined by its values in rows/columns from R11 to R33. The variables
UGPSx and UGPSy are transformed values from the latitude and longitude to the UTM projection and
function as translation values. The translation in z-direction is described through the variable depth. It
can be chosen from either the depth measurement taken by the UGPS or the Bar30 on te ROV. The
values behind UGPSx, UGPSy and depth describe the distance from the SONAR to the respective sensor.
To be precise, the SONAR is mounted 0.27 m ahead and 0.15 m left of the U1 locator. Respectively it is
mounted 0.25 m below the pressure sensor Bar30, which will be used in the measurement trial in section
5.1. Further it has to be noted that in section 5.1 the position will be presented relative to the Master
D1 and globally. An adaption of the UGPSx/y is therefore necessary, when changing the coordinate system.

4.5.5. Three-Dimensional Visualization

For the three-dimensional visualization the python package open3d geometry [33] with the PointCloud
class is used. For each backscatter value that is above the threshold value, the x-, y- and z-coordinates
are stored in a vector, which is then loaded as a variable into the function plot pc (see line 14 listing
4.21). First the open3d geometry PointCloud object is loaded into the variable pcd in line 15, then the
points and finally the vectors. Thereby a transfer of the array takes place (see line 16). In line 17 the
points are written into the point cloud pointcloud.ply. In the following this point cloud will be accessed
as soon as all point are written into it and then visualized.

14 de f p l o t p c ( pcvector ) :
pcd = o3d . geometry . PointCloud ( )

16 pcd . po in t s = o3d . u t i l i t y . Vector3dVector (np . t ranspose ( pcvector ) )
o3d . i o . w r i t e p o i n t c l o u d ( ” po intc loud . ply ” , pcd )

18 pcd load = o3d . i o . r e a d p o i n t c l o u d ( ” po intc loud . ply ” )
v i shand l e = o3d . v i s u a l i z a t i o n . draw geometr ies ( [ pcd load ] )

Listing 4.21: Function for visualization with open3d
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In the following step the MeshLab software is used to convert the point cloud from Polygon File Format
(PLY) format to the commonly used .xyz format. The final display and analysis is performed using the
NaviModel Free Viewer. A further representation in a two-dimensional coordinate is created, in order to
access the exact positioning of the point cloud in the spatial representation, as in the NaviModel Free
Viewer no presentation on an underlying coordinate grid is possible.

Understanding for the data acquisition of the motion and depth values, acquired by sensors on the
Pixhawk 1, transfer by the MAVProxy, access by an UDP-bridge and saving into a common JSON file
was presented. Further the acquisition of the positioning parameters, determined by the UGPS, by means
of IP-address access and also storage in JSON-format followed. Finally the access and transformation of
the SONAR images was discussed. The image enhancement by means of thresholding and the application
of a median 7x7 filter demonstrated the image preparation before moving on to the final merging of all
gathered data. This last step not only motion compensated, but also allocated the SONAR at the correct
spatial position in a local and global coordinate system. Now moving on to how this complete software
procedure is translated to the data, acquired in a measurement trial, executed in the Fischereihafen 1,
Bremerhaven, Germany.
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5. Implementation

In this section, the previously described hardware and software are tested within a measurement campaign.
First of all, the measurement setup and the measurement target are presented. In addition, the test
objects are presented, which are to be used for the following three-dimensional construction. The results
of the individual sensor systems can be found in section 5.2. Finally, the three-dimensional representation
of the test objects is presented by the combination of all sensor data.

5.1. Methodology

The aim of the measurement is to replicate the spatial sonar image formation presented in section 2.1.
Therefore reference objects are mounted on a board and lowered into the harbour water. In order to
specify the quality of the three-dimensional capabilities of the presented program in section 4.5, four
different measurements on reference objects will be carried out:

� Cuboid
� Prism 10°
� Prism 20°
� Rectangle

The color coding of the individual reference objects is taken up in the course of the measurement results
in order to facilitate the clear assignment in data plots.

5.1.1. Outdoor Measurement Setup

In fig. 5.1 (a) and (b) the measurement setup on a pontoon at the Fischereihafen 1 in Bremerhaven,
Germany is shown. In the following description the reference point for all coordinate information of the
test setup is the TC.
The TC in connected via the tether spool to the ROV. Furthermore the ROV is equipped with the in
section 3 described SONAR and U1 locator, mounted on the left side in the direction of movement. The
receiver of the underwater positioning system are lowered into the harbour water to a depth of 2 m,
2.5 m, 1.5 m and 2.2 m (from receiver one to four in that order) with a distance to the Master D1 board
(located in the TCP) with respectively 4 m to the sides and 0.75 m to the front and 1.65 m to the back.
The GPS-antenna is located close to the Master D1 in the TC and can therefore not be seen. On fig. 5.1
(b) the distance holder, which enables the reference objects to be recorded with the field of view in the
direction of the open port basin can be seen looming over the edge of the pontoon. If the objects were
lowered directly on the outer wall of the pontoon (resulting in the field of view facing in the direction
of the harbour wall/pontoon), the high ambient reflectivity would lead to high noise on the SONAR
images. The board with the reference object is lowered at 2.83 m, 1.55 m to a depth of approximately
0.35 m (top edge of board) facing with the characteristic side towards the pontoon, in order to execute
the measurement as mentioned above. In fig 5.1 (b) the field of view of the SONAR would therefore take
measurements from bottom (near) to top (far), the ROV would be manoeuvred under the pontoon, facing
the reference object.
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(a) Measurement setup from side view, ROV in this image not at the measurement position

(b) Measurement setup from top view, ROV in this image not at the measurement position

Figure 5.1.: Outdoor measurement setup at the Fischereihafen 1
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The measurement is carried out as follows: the four receivers of the acoustic positioning system are
lowered into the harbour basin at certain distances from the TC and fixed to the pontoon to prevent the
cable from slipping. Then the cables are connected to the TC and the power supply of the master D1 is
ensured. The locator U1 is also switched on to establish a GPS lock. The TC will be switched on and
the control software QGroundControl will be started as soon as the ROV is connected with a battery
and to the TC by the tether cable. The Water Linked UGPS GUI is opened and all relevant distances
from the receivers to the Master D1 will be inserted, as well as information about the measurement
area (reflective environment) and the chosen locator and frequency channel. Furthermore the external
GPS-antenna needs to be connected by the NMEA Underwater GPS bridge application and the GUI
settings need to be changed to external GPS-antenna and onboard IMU. Care must be taken to ensure
that the external GPS-antenna is connected only after the internal GPS-antenna of the Master D1 has
received a GPS lock. This is required for time synchronization as a software prerequisite. After the
calibration of the Bar30 depth sensor and a functional check of all thrusters, the ROV can be lowered
into the water. Thereafter the corresponding programs for SONAR data acquisition, acoustic position
and movement/depth parameters of the ROV can be started. The ROV is then manoeuvred towards the
reference object using the GUI or by visual contact using the ProViewer 3�.
The actual test drive consists of recording the test object as frontally as possible at a constant distance
at approximately x: 2.83 m, y: −0.45 m with a deviation of ±0.25 m in both directions. Then the ROV is
lowered until the reference object is no longer recorded by the SONAR. This is repeated for all remaining
objects.

5.1.2. Reference Objects

The reference objects as shown in fig. 5.2 (a) to (d) are constructions out of concrete using self-constructed
wooden moulds for the Prism 10°and 20°and plastic moulds for the Rectangle and Cuboid. The material
was chosen in such way to resemble the materials used underwater constructions in order to mimic
a similar backscattering behaviour. Threaded rods were cast into the moulds with a form stabilising
perforated tape to fix them during testing to a plastic board with nuts and locknuts. The board is lowered
0.35 m (top edge of board) into the water. For the virtual comparison also three-dimensional models were
constructed as shown in fig. 5.2 (e) to (h). The dimensions of each reference object can be taken from

(a) Cuboid (b) Prism 10° (c) Prism 20° (d) Rectangle

(e) Cuboid Simu-
lation

(f) Prism 10° Simula-
tion

(g) Prism 20° Simula-
tion

(h) Rectangle Simula-
tion

Figure 5.2.: Reference Objects and corresponding simulation

annex D table D.1. Due to the shape distortion of the plastic mould of the rectangular test object, the
figures 5.2 (a) and (e) show rather a polyhedron. It is assumed that the minimal angular deviation has no
significant influence on the image formation of the SONAR, thus this test object is still referred to as a
rectangle.
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Figure 5.3 (a) shows a close up view of the distance holder of the reference object, which is facing towards

(a) Distance holder of the reference objects from the pon-
toon

(b) Plastic board with reference
object Cuboid

Figure 5.3.: Reference object suspension and mounting on plastic board

the pontoon. In fig. 5.3 (b) the plastic board, on which the reference object Prism 20°is mounted, is
presented. The same alignment is also used for the Prism 10°. The Rectangle reference object is mounted
also vertically (long side parallel to the board). The exact location of the reference objects can be taken
from the annex D table D.2. The differences in depth are due to the different attachment to the plastic
board.
In the following sections, the reference objects are continued as proper names in the continuous text in
order to guarantee a clear identification of these.

5.1.3. Measurement Expectation

In this section the measurement expectation regarding the horizontal alignment of the backscattered
SONAR images is presented.
Figure 5.4 shows the measurement setup from the perspective of the ROV and the expected SONAR
image, with the origin located at the position of the Master D1 in the TC. For the global position the
same origin applies, only in UTM-coordinates at 472 415.51 m, 5 930 441.29 m. It is expected that the
resulting point cloud scene from the data sets of the individual reference objects will lie in the range from
ca. −0.10 m to 6 m in x-direction and from ca. 0.15 m to 3 m in y-direction, depending on the intensity of
backscatter from particles in the water column (s. fig. 5.4). The coloured axis markings are intended for
later comparison with spatial representations of the NaviModel Free Viewer. Regarding the orientation of
the point cloud in a coordinate system it is assumed that the representation along the x-y-axis will show
the top view, along the x-z-axis a front view and along the y-z-axis a side view of the scene. Due to the
close proximity of the SONAR to the receivers of the acoustic positioning system UGPS, the disturbance
of the position data might be increased. Moreover, a deviation of the GPS position is estimated, in
addition to the local position, within the range of the sensor accuracy.
Furthermore, it is anticipated that the descent of the ROV without the support of the thrusters and
only the use of the stabilisation mode will have a sufficiently slow rate of descent so that the point cloud
generated by the sonar at a frame rate of about 15 Hz, will have a corresponding number of horizontal
image planes. It is assumed that the vertical length of the reference object will not match the recorded
depth sequence of the sonar, as described in the theoretical background section 2.1, due to the large
vertical beam width. Additionally the buoyancy chamber of the pontoon is also expected to be located in
the field of view of the SONAR, due to the angled measurement area.

44



Buoyancy
chamber

origin
(0,0)

x

y

1 2 3 4 5 6

1

2

3

4

1

2

3

4

Figure 5.4.: Two-dimensional representation of whole scene expectation in top view along x-,y-axis; image of BlueROV2
from [6], reference object Cuboid enlarged, receiver numbered from 0 to 4

5.2. Measurement Results

In this section the results from the measurement trial in the Fischereihafen 1 described in section 5.1
will be presented. In section 5.2.2, sec. 5.2.3, sec. 5.2.1 and sec. 5.2.4 all four data sets will be compared
graphically to each other by colour coding the individual measurements. Tables concerning the mean
values and standard deviations of the movement parameters, number of points in each point cloud and
point cloud dimensions are given in annex E table E.1 to tab.E.4.

5.2.1. Depth Measurements

In this section the measurement results from the pressure sensor Bar30 in the Pixhawk 1 on the BlueROV2
and from the acoustic positioning system UGPS are graphically displayed and described.
Fig. 5.5 shows the pressure depth profile and fig. 5.6 the acoustically determined and calculated depth,
both on the (y-axis) according to the time (x-axis), colour coded in relation to the measured object.
The data excerpt for the Cuboid, Prism 20°and Rectangle dataset shows a descent from ca. 0.18 m to
0.22 m to a depth of 1.45 m. In the Prism 10°dataset the depth progresses parabolically from −1.2 m at 0 s
over a maximum of 0.05 m at 8.5 s to −1.1 m towards the end of the measurement. It can be also noted
that the descent in the Cuboid and the Prism 20°dataset are faster then the descent of the Rectangle
dataset. The course of depth of the four datasets has been recorded almost without gaps, except for
single outliers in the positive area of the graph. The curse of depth in fig. 5.5 is aligned to the curse of
the pressure depth, but with significant steps of approximately 0.2 m every 1 s to 3 s, depending on the
dataset.
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Figure 5.5.: Depth measured by pressure sensor Bar30

Figure 5.6.: Depth calculated by acoustic positioning system UGPS
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5.2.2. Motion Parameters

In this chapter the motion parameters of the ROV during the recorded SONAR sequences of the four
reference objects are presented.
As shown in fig. 5.7 the roll-angle indicates the deviation from the x-, the pitch-angle from the y- and the
yaw-angle from the z-axis, all in degrees. Movements in the direction of rotation are considered positive,
those against the direction of rotation are considered negative.

x

y

z

yaw ψ

pitch θ

roll φ

Figure 5.7.: Roll-, pitch- and yaw-angle in relation to the sensor carrier BlueROV2, according to [35] (adapted ROV schematic
from [49])

All three angles in fig. 5.8, fig. 5.9 and fig. 5.10 are relative to the BlueROV2 (s. fig. 5.7) and gathered by
the corresponding sensors on the Pixhawk1 Flight Controller (s. annex B tab. B.3). In all three angle plots
the y-axis shows the the corresponding angle in degrees, the x-axis shows the timespan of the recorded
dataset in seconds. In each plot, the four data sets are compared with each other, which is facilitated
through the colour coding mentioned in sec. 5.1.
In the roll-angle plot in fig. 5.8 the angle of the Cuboid dataset is constant for the first ten seconds
of the data set. For the last three seconds it comes to a short roll in the direction of rotation on 5.8°,
which adjusts itself again to zero towards the end of the measurement. The Prism 20°and the Rectangle
datasets roll-angles show a similar behaviour, as the former reaches a parabolic maximum of 2.3° at
5.5 s and the latter of 4° at 11 s. Especially in the datasets of the Rectangle and the Prism 10°a roll
movement in negative direction can be observed when the measurement is started. In the case of the
Prism 10°measurement this is much stronger with −5.6° in contrast to the Rectangular measurement with
a minimum of −1.7°. Furthermore, fluctuations of the roll-angle from 0 to 10 seconds can be detected in
the Prism 10°dataset.
The pitch-angle in fig. 5.9 follows mainly the same time pattern, but with higher deviations. For the
Cuboid dataset this results in an angle of 8.8° at 12 s, for the Prism 20°dataset an maximum of 5.4°
at 11 s and for the Rectangle dataset a deviation of 3.2° at 5 s. Also the absolute minima of the Prism
20°is increased by −7.2° and shows the course of an increasing negative exponential from 0 s to 8.5 s.
The fluctuation of the Prism 10°dataset is also extended to second 13 s with a maximum of 1.7° and a
minimum of −5.5°.
Figure 5.10 shows the yaw-angle, also commonly described as the orientation of movement towards
magnetic north. It is noticeable that all angles of the four measurements are negative in the range
from −10° to −22°. Further, each measurement does not end at the same degree where it has started.
For example the Prism 10°dataset starts at 0 s with −10°, fluctuates around the mean value −15° with
a standard deviation of −1.6° and ends at ca. 19.7 s with −15.4°. For further averages and standard
deviations see annex E table E.1.
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Figure 5.8.: Roll-angle comparison of the four datasets

Figure 5.9.: Pitch-angle comparison of the four datasets
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Figure 5.10.: Yaw-angle comparison of the four datasets

5.2.3. Short Baseline Positioning Data

In this section the gathered local and global positioning data of the acoustic positioning system UGPS
will be presented by group plots of all four data sets. The three plots shown in this section (s. fig. 5.11
and fig. 5.12) present the data in a two-dimensional coordinate system, where the x- and y-axis represents
the distance in meter, for the local position (s. fig. 5.11) this means the distance to the Master D1
in the TC, for the global position (s. fig. 5.16 and fig.5.12) it referrers to the global position of the
external GPS-antenna on the TC additionally to the local calculated position. It has to be mentioned
that the global position is presented in UTM-format and therefore deviates from the commonly know
WGS 84-format of latitudes and longitudes.

In fig. 5.11 the local acoustic position and corresponding geometric median of the locator U1 on the
ROV is presented in four different measurement sets distinguishable by colour coding. Furthermore, the
temporal recording can be taken schematically from the colour gradient of the individual plots. From
light to dark/intensive, the time increases over the course of the measurement. It can be stated that
the positions are mainly distributed in the approximate range between 2.2 m and 3.7 m horizontally and
0.7 m and 1.4 m vertically, with the exception of one outlier at (0.8 m, 1.6 m), which was extracted at this
point for the sake of clarity. Regarding the amount of outliers it can be noticed in Cuboid dataset it is
the smallest with 1, followed by 2 outliers in the data sets of Prism 20°and the Rectangle (s. annex E
tab. E.2.). The accumulation of outlier in the Prism 10°dataset is highest with 8. In the datasets of the
Cuboid, Prism 20°and Rectangle, a horizontally shift of the local position occurs from larger to smaller
x-coordinates, in contrast to the Prism 10°dataset, whose is opposite.

The global position in UTM 32 x- and y-coordinates, shown in fig. 5.12 presents an enlarged excerpt
of the data set, with the identical colour coding, as in the local coordinate representation. An outlier
at approximately x = −505 645 m, y = 1.6 m was removed, in order to show the course of the position
data. In particular, the large spatial distance between the four data sets and their floating, irregular
displacement from the origin (lighter line) of each measurement can be seen. In the lower left corner a
black rectangle indicates the true position of the global position of the Master D1.
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Figure 5.11.: Local acoustic position two-dimensional, with removed outlier at 1.55 m,1.6 m; true position of ROV estimated
at 2.83 m,−0.45 m

Figure 5.12.: Global acoustic position fitted; true position at 472 418.17 m, 5 930 440.84 m; excluding outlier at −505 645 m,
1.6 m

50



5.2.4. Sonar Images

In fig. 5.13 (a) the image of the Cuboid is shown as it is supplied by the BlueView P900-130 SONAR,
representative for all other measurements. It must be noted that the figure only present parts of the
Cuboid, in this case approximately the middle section. As can be seen in fig. 5.13 (b) the image noise

(a) Original SONAR image of the Cuboid (b) Noise of open water scene taken before actual measure-
ment for the threshold estimation

(c) Application of median 7x7 filter (d) SONAR image after thresholding with t = 120

Figure 5.13.: SONAR image results of cuboid reference object

is respectively low compared to the example shown in section 4.4, but nevertheless produces constant
background noise that distorts the backscattered signal, which can be noticed in the lower centre of fig.
5.13 (d) close to the source of the sound emission. The probability factor p, as well as the derived noise
reduction thresholds are listed in table 5.1. It can be seen that the thresholds are fairly close with a mean

Table 5.1.: Thresholds applied to the four data sets

Reference object Probability value p Threshold t

Cuboid 0.472 120
Prism 10° 0.448 114
Prism 20° 0.476 121
Rectangle 0.436 111

value of 116.5 and a standard deviation of ±4.2.
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5.2.5. Data Fusion and Spatial Representation

In this section the resulting point cloud representations of all four reference objects will be presented
according to the two representation methods local and global, further divided into a depth representation
at the expected depth of the test object. Furthermore all global outlier were disregarded for the latter.
First of all, the position of the point cloud is shown in a simple two-dimensional plot, once from above
(view on x-y) and then from the x-z- and the y-z-perspective. The point clouds are then presented in
detail in the spatial representation by the NaviModel Free Viewer.
Figure 5.14 shows the individual local point clouds from the four measurements Cuboid, Prism 10°, Prism
20°and Rectangle, colour coded in x-y view (a), x-z view (b) and y-z view (c) in order to estimate the
position and dimension of the point clouds presented in fig. 5.15. In fig. 5.14 (a) the Prism 10°, Prism
20°and Rectangle datasets show a large accumulation of points in the middle section of the pot between
x:1 m to 4.4 m and y: 1.7 m to 3.7 m. In the Cuboid dataset a triangular shape can be identified in the
lower left area and an oval shape in the top, middle section at (3.4 m, 2.8 m). In fig. 5.14 (b) a lateral
deviation, as well as a doubled depth course is detected in the case of all datasets from 3.4 m to ca. 4.4 m.
Further a triangular objects is detected in fig. 5.14 in the Prism 20°and Rectangle dataset. Figure 5.14 (c)
also clearly shows a large object on the left hand side of all plots and a smaller one on the left hand side,
over the full depth of 3.3 m. In fig. 5.15 an overview of the entire local scene is given in a three-dimensional

(a) View along x-, y-axis (b) View along x-, z-axis

(c) View along y-, z-axis

Figure 5.14.: Local two-dimensional representation of whole scene

representation using the software NaviModel Free Viewer. In the further representations fig. E.2 and fig.
E.3 specific shots from the viewing direction in x-y- and y-z-direction are given. As these only provide a
different way of presenting the data, already shown in fig. 5.14, they are listed under sec. E in the annex.
The given coordinate system specifies the alignment towards y (green), x (red) and the z/depth (blue).
Distances can be estimated using the specified length of the specific coordinate axis or can be compared

52



to the distances in figure 5.14
In fig. 5.15 the displayed scene shows a narrow oval shape ranging from top to bottom of the representation
but also a outer edge of a rectangle/triangle (left in fig. 5.15 (a), (c) and (d)) and a radial point cloud (top
right corner in fig. 5.15 (b) and at approx. −4 m to −5 m in fig. 5.15 (b), (c) and (d)). Furthermore small
point cloud segments can be found in fig. 5.15 (a), (c) and (d) on the right side of the reference object.

(a) Cuboid (b) Prism 10°

(c) Prism 20° (d) Rectangle

Figure 5.15.: Local three-dimensional representation of whole scene; length of coordinate axes 2 m
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Figure 5.16 displays the same datasets in global UTM-coordinates, colour coded in x-y-view (a) and two
plots along the z-axis (b) and (c). These plots also only allow an overview of the coordinate system, in
which they are plotted, as well as their dimensions. An accumulation of points can be observed in 5.16 (a)
in the range between x: 472 416.0 m to 472 428.5 m and y: 5 930 454.5 m to 5 930 474.5 m. Along the x-z-
and y-z-axis the point cloud spans in respect of the depth from 0.5 m to 3.3 m. For a more detailed view,

(a) View along x-, y-axis (b) View along x-, z-axis

(c) View along y-, z-axis

Figure 5.16.: Global two-dimensional representation of whole scene

images were also created with the NaviModel Free Viewer, see fig. 5.17 and also annex fig. E.4 and fig.
E.5. Noticeable is the strong distortion and low point density of each point cloud in contrast to the local
representation. Point segments are aligned horizontally, with a distance of ca. 0.5 m, vertically only a few
centimeter. A slight suggestion of the objects from the local representation can be observed nevertheless.
In fig. 5.17 especially the radial backscatter in (b) to (c) can be recognized (blue points at the bottom of
all images as well as red points in (b) in the topmost layers). It has to mentioned that the other objects
are plotted distorted along the y-axis. The horizontal distance between the almost slice shaped point
accumulation is particularly clearly visible in fig. 5.17 (c) at the bottom of the image.

In figure 5.18 the point clouds, presented in fig. 5.15 and fig. 5.17, are only represented in the specific depth
of the reference objects, which can be taken from table 2.1 or in the description below each individual
image. The left figure column shows the local (s. fig. 5.18 (a),(c),(e) and (g)) the right column the global
representation (fig. 5.18 (b),(d),(f) and (h)). Its has to be mentioned that the colour code has been
adapted to fit the maximum depth in this presentation and therefore does not match with the depths
assigned to a specific colour in the earlier presentations. All data sets, except the Prism 10°with a duration
of 19.731 s, lie within the range 12.826 s to 13.987 s. The amount of points in each point cloud does not
differ between the total global and local representation in all cases. Regarding the largest number of
points (global/local) the Rectangle point cloud shows 1 327 977 global and 1 327 977 local data points with
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(a) Cuboid (b) Prism 10°

(c) Prism 20° (d) Rectangle

Figure 5.17.: Global three-dimensional representation of whole scene; length of coordinate axes 2 m
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(a) Cuboid local, depth corrected on z between 0.555 m
and 0.71 m

(b) Cuboid global, depth corrected on z between 0.555 m
and 0.710 m

(c) Prism 10°local, depth corrected on z between 0.586 m
and 0.820 m

(d) Prism 10°global, depth corrected on z between 0.586 m
and 0.820 m

(e) Prism 20°local, depth corrected on z between 0.599 m
and 0.710 m

(f) Prism 20°global, depth corrected on z between 0.599 m
and 0.830 m

(g) Rectangle local, depth corrected on z between 0.695 m
and 0.900 m

(h) Rectangle global, depth corrected on z between 0.695 m
and 0.900 m

Figure 5.18.: Global three-dimensional representation of the point cloud
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a recording time of 12.928 s, the smallest number of points is in the Cuboid representation (56 076 global
and 56 076 local) with a recording time of 12.826 s. For the data set of the Prism 20°no pixel amount of
the possible reference in the depth restricted representation could be determined, due to a high number
unidentifiable pixel accumulation.

5.3. Evaluation of Measurement Results

In this section, individual aspects from the areas of software implementation, measurement setup and
execution are now analysed with regard to their quality on the basis of the resulting measurement results.
The measuring accuracy of the individual sensors and their interdependencies with each other as well as
the interaction with environmental influences are discussed. First of all, it must be stated that the entire
measurement setup is complex and the individual sensors and systems are highly dependent on each
other. This results in a large accumulation of continuing errors, which can have a strong influence on the
measurement results. It is beyond the scope of this study to examine which influence is the most dominant
one and how this is to be reduced. Nevertheless, suggestions for further improvement are given in section 6.

5.3.1. Evaluation of Depth Measurement

A similar course of the calculated, acoustic depth and the depth from the pressure measurement can be
observed, but the accuracy differences are clearly visible in the two data plots, compare fig. 5.5 and fig. 5.6.
In view of this, the number of different depth values from the depth segmented representation (s. fig. 5.18)
of the reference objects were compared for both depth measurements in table 5.2. It shows that in the case
of the acoustic positioning system only one depth value was recorded for the span of the reference objects
in the specific depth range (see annex D table D.2). In contrast, the pressure sensor Bar30 recorded an
average of 7.5 different values in the same depth range. Although the frequency with which the UGPS
generates depth data seems to be about 1.4 times the recording frequency of the pressure sensor, however,
this cannot compensate its low accuracy. The specified measuring accuracy of 1 % per range form receiver
to locator therefore cannot be confirmed in the case of the depth measurement regarding the UGPS. With
the expectation of a depth value every 2 cm for the pressure sensor, the measuring accuracy, based on the
average of the four measurements, can be confirmed. This supports the presumption that an external
depth sensor should be used for depth measurement if the data is depth-dependent in order to achieve a
higher accuracy. In the deep segmented representation (s. fig. 5.18), as in annex E table E.4, partly less
depth layers are identified, which is due to the reduction only to the reference object. Thus the possibility
is given that the missing depth layers are to be found in the overall representation, or that depths lying
close together at a distance of a few millimetres have been combined into one layer by the representation
software NaviModel Free Viewer. In the case of the Cuboid, the number of horizontal planes in table E.4
is smaller than the number of different depth measurements in table 5.2. In this case, it is assumed that a
not sufficiently deducted pitch angle may have led to another plane in the point cloud representation.
Based on the depth progressions in the case of Rectangle, it can be seen in fig. 5.8 to 5.10 that a slow
descent and a gentle stop, leads to smaller deviations of roll-, pitch- and yaw-angle in comparison to those
of Cuboid and Prism 20°with a fast descent and an abrupt deceleration at zmax, resulting in a strong
angular change towards the end of the measurement.

5.3.2. Evaluation of Motion Parameters

In three out of four cases the datasets are a descent (s. fig. 5.5), therefore the thrusters are not ac-
tively used for the sinking of the ROV, but only for a slight stabilization by using the stabilization
mode. During these measurements only the yaw-angle is manually adjusted, in order to capture the
reference object from the front. In an ascent, such as the Prism 10°dataset, the thrusters are actively
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Table 5.2.: Depth values in depth segmented point cloud

Reference
object

Amount of
depth values

Amount of
differing values

UGPS Bar30 UGPS Bar30

Cuboid 30 24 1 4
Prism 10° 57 47 1 12
Prism 20° 36 40 1 6
Rectangle 57 47 1 8

used to elevate the ROV. In the course of all four measurements, the ROV drifts from its original
orientation/yaw-angle. Due to the minimal readjustment of the orientation, the roll- and yaw-angle
(lateral tilting to the right and forward) change in all four data sets. For example in the data set of
the Rectangle there is a change of direction from 0 s to 5 s by about 4° (s. fig. 5.10), at the same time
the roll-angle changes by 2° (s. fig. 5.8) and the pitch-angle by about 3° (s. fig. 5.9). In the case of
the Prism 20°, even during a descent, there is a negative change in direction from approximately 0 s
to 9 s by −3°, followed by a positive change in direction by 2° and then again negative to −12° (s. fig.
5.10). In the Prism 10°data set, the drift of the ROV from its original orientation shows a very irregular
course in roll- and pitch-angle (s. fig. 5.8 and fig. 5.9) during the ascend. When sinking the roll- and
pitch-angle remain almost unaffected by the relatively slow change of the yaw-angle of 4° in 7 s. It can
be deduced that a descent allows a more stable positioning of the ROV, and that ascents should be avoided.

Roll- and pitch-angle react to changes in direction of the yaw-angle simultaneously with similar strength.
This means that the ROV will roll- to the right and tilt forward at the same time, which indicates an
uneven taring of the ROV. The weight of the SONAR is not compensated by additional buoyancy bodies
in the rear of the ROV, nor is the lateral weight of the locator U1. This is not noticeable when the ROV
is held in a static position, but as soon as it is in motion a movement around the two axes mentioned
above can be detected. This can also be derived from annex E table E.1, where the highest standard
deviation from the pitch-angles arithmetic average amounts 2.8° in the Cuboid and even 3.5° in the Prism
20°measurement. It can be concluded that as long as the yaw-angle varies only about 1.1°, it has no effect
on the roll- and pitch-angle. For example, compare data set Cuboid, where both angles remain almost
constant for 11 s until shortly before the end of the measurement. A significant change in angle from 0° to
5.8° only occurs with a yaw deviation of 4° within 0.5 s.

Even though the position parameters are deducted in the visualization program (s. sec. 4.5 eq. 4.8), the
data set of the Prism 10°(s. fig. E.2) still shows very inclined horizontal point cloud segments (se. fig.
E.2 (b)) in the top layers (equal to the beginning f the measurement). All other point clouds in fig. E.2
appear to align horizontally. This is considered as evidence that the correction of the sensor data by the
rotation matrix is successful, even though the distance measurement from Pixhawk 1 to the SONAR was
executed by hand and includes a deviation of ±1 cm.

5.3.3. Evaluation of Short Baseline Positioning Data

In the case of the acoustic positioning system various sources of error can be mentioned, for example, the
manual measurement of the distances from the TC to the individual receivers. The measurement itself is
done manually using a simple measuring stick, where the measurement accuracy per receiver is about
5 cm. Also the attachment of the receivers to bollards does not allow an absolutely correct positioning
with regard to the x- and y- axis, due to cable bending. The receivers themselves were weighted down
with lead weights, in order to allow a straight cable while being submerged into the water, but also here
a slight cable bend could still be detected, so that the depth can also be estimated at 3 cm to 5 cm less,
depending on the current strength and cable bend, which is influenced by the rolled up storage. However,
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the factors just mentioned are considered to have a relatively small effect on the position in the context
of using the positioning system together with another acoustic system.

Although the highest frequency channel was already used for the locator U1 during the measurement, a
clear drift of up to 1.2 m in the x-direction can be seen in the position results in fig. 5.11, which is evident
in all four measurements, albeit at different heights in the y-direction. In the case of the datasets Cuboid,
Prism 20°and Rectangle, i.e. the sinking movements, a drift of the position from more positive to more
negative x values can be detected. In the case of the Prism 10°measurement (first ascent, then descent) it
can be speculated that the ascent leads to a drift from more negative to more positive values. In case of
the descent the drift develops the other way round. In the y-axis of the Cuboid, Prism 20°and Rectangle
datasets the ROV geometric medians are relatively close, with a deviation below 1.10, s. annex E table E.2..

Furthermore, the calculated, acoustic position deviates strongly from the true (but also only estimated)
position. However, it can be seen that there is a clear difference between the estimated position of
2.83 m,−0.45 m with a generous deviation of 0.5 m meters in both directions, and the calculated geometric
median of the measurements. The position estimation and the high deviation is due to the fact that the
ROV was positioned under the pontoon without direct visual contact. It was only positioned on sight
according to the backscattered SONAR image, which results in a relative position to the reference object.
Furthermore, no accumulation of measuring points can be found in all four data sets, which would be
an indicator for a static measurement. This is in contradiction to the measurement procedure where
only small changes in movement in x- and y-direction were made by the ROV. Consequently, a correct
calculation of the position of the ROV, and therefore consequently the SONAR image, is not provided.
The specified measurement accuracy of 1 % per range from the receiver to locator is not given with
the SONAR and the environmental conditions prevailing on site, such as strong reflectivity due to an
angled and enclosed measurement area (harbour basin). With regard to the global positioning, it can be
assumed that the outliers at 1.55 m,−505 645 m in figure 5.12 are probably due to an interrupted reception
from the locator, as the same outlier appears in the local data set at x: 1.55 m. As the the number
of points is only limited, but consistent in all four datasets (see annex E table E.2.) this abnormality
will be neglected for the time being, as they are not considered in the final three-dimensional representation.

5.3.4. Evaluation of Image Processing

The SONAR data is collected using a standard value for the speed of sound of 1500 m
s , as no Conductivity

Temperature Depth - Logger (CTD), in order to determine the salinity level, was available. As the theory in
section 2 shows, lower sound velocities are expected in brackish water (including harbour water in fishing
port 1) due to lower salinity than salt water and temperature stratification with depth. Consequently, it
cannot be entirely ruled out that the objects were presented differently than with a correct sound velocity
value.

The results of the threshold determination show that the mean value of the sonar images with object is
only slightly larger than the mean value of the noise images. Consequently, this results in a low threshold
(see table 5.1) and a rejection of the H0 hypothesis. The expectation that the hypothesis will be rejected
is therefore confirmed when using images with small reflective objects. Despite this fact, the threshold
was applied to the images and shows a relatively good representation of the objects in consideration of
the deviating positioning. The previous processing of the images with the 7x7 median filter leads to an
amplification of the edge, as in the example of the Cuboid in fig. 5.13. However, it can also be stated that
with an object width of 7.9 cm to 15.5 cm and a vertical beam angle of 20° the median filter leads to a
”filling” of the objects. Due to the inaccurate position determination of the ROV, the SONAR images are
plotted inaccurately with respect to the x-axis, which leads to a smearing of the object (oval shape) in
the three-dimensional representation.
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5.3.5. Evaluation of Spatial SONAR Representation

In the locale whole representations (see fig. 5.15) the edge of the described buoyancy body of the pontoon
can be clearly identified. It is located in the figures 5.14 (a) on the left hand side, (b) top left and (c)
top left, as well as in figure 5.15 (a), (c) and (d) on the left hand side of the picture. The object on the
right (s. fig. 5.15) must be the reference object, which is already detected by the SONAR’s 20° vertical
beam angle at depths above and below the actual installation depth. In addition, noise can be identified
directly in front of the SONAR, which indicates a high particle density in fig. 5.15 (b) and (d) bottom. In
the example of fig. 5.15 (b) however, the noise at a lower depth is more likely to be due to the air bubble
turbulence caused by the thrusters of the ROV as being too close to the surface. In the side view of the
whole scene in E.2 it is again clear that the vertical length of the reference objects is not identical to the
actual object size (compare table D.1 to the maximum depth of the point cloud in 5.14 (b)). The reason
for this is again the vertical beam angle of the SONAR.

The measurement expectation of the alignment and position of the reference object is partially fulfilled
(s. fig 5.14 (a)). Deviations of 0.5 m in x- and 1 m in y-direction from the to be expected position can
be assessed as good preliminary result, given the error propagation due to multiple subsystems in the
measurement setup. The lateral profile of the reference objects is distorted over the depth and cannot be
clearly attributed to the geometry of the objects. Further the representation shows a detection up to
a depth of 3.3 m, even though the depth of the Bar30 measurement (s. fig. 5.5) does not exceed below
1.4 m, no precise clue of the error can be stated at this point, but it is rather likely to be found in the
coordinate transformation algorithm. This can be proved as all depths inserted in the calculation, and
additionally saved in an external JSON-file, are above −1.4 m.
Although in the example of the two Prisms (s. fig. E.2 (b) and (c)) the elongated slope in the deeper part of
the point cloud can be clearly seen, the similar course of the Rectangle in fig. E.2 (d) puts it into question.
Even in the close-up of the depth-related representation (s. fig 5.18), no laterally clearly identifiable shape
can be determined. Also in the top view the representations does not show any characteristic similarity with
the reference objects see table E.4, as all objects seem to have a round to oval shape. Therefore no digital
comparison of simulated and three-dimensional constructed objects (in fig. 5.2 (e) to (h)) can be made. In
order to be able to determine the effect of the acoustic positioning on the three-dimensional representation,
there are no corresponding comparative measurements at this point, where the ROV is fixed to a rod by
means of a rope and moves up and down, so that it remains at the same position. Thus, the influence of
the SONAR itself on the acoustic positioning and therefore the position of the point cloud, cannot be
determined. It is not possible to say whether the lateral offsets in the frontal view (fig. 5.14 (b)) are due
to the geometry of the object or whether they are additionally distorted by the acoustic positioning system.

With regard to the global display representation, similar outlines as in the local display can be seen (s. fig.
5.17). Otherwise, the data is clearly distorted with respect to the x-,y-axis representation. This is mainly
due to the insufficient accuracy of the GPS-antenna, which, with an accuracy of ±3 m in addition to the
local data, significantly reduces the clarity. It can be seen, however, that both the local and the global
point cloud contain the same number of points. This is true for both the total and the depth-segmentation
for the entire point cloud, as well as for a section of the reference object in the depth-segmented point
cloud, compare table E.3. The only difference is that they are plotted in the global variant as vertical
lines along the y-axis (s. fig. 5.16 and fig. E.5), which is due to insufficient accuracy.
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6. Conclusion and Further Work

In the presented thesis a methodology for the spatial representation and georeferencing of two-dimensional
SONAR images taken from a underwater sensor platform with six degrees of freedom was proposed.
Three subsystems, the ROV sensor platform, as the navigational unit underwater, the acoustic positioning
system UGPS, to calculate the position of the sensor carrier and the SONAR itself for image generation,
were operated simultaneously in compound. The data acquisition of the individual sensors and their
conversion into a standardized and common data format and further processing were carried out. A
scaling of the image size to the adjusted beam range as well as threshold filtering of background noise
and edge enhancement by a median 7x7 filter was performed. According to the recording time of each
SONAR image, corresponding data sets of the movement parameters of the ROV and acoustic position
system were assigned and a corresponding movement compensation of the Euler angles, as well as an
allocation of the global and the local position were carried out. Each referenced point was then graphically
represented in a point cloud. The evaluation of the validity of the data fusion was carried out by means
of a test setup consisting of four different reference objects, with a size greater than the measurement
accuracy of the SONAR, attached to a plastic board and submerged in a harbour basin.
The resulting program network is designed to enable instructed persons to collect, process and display
two-dimensional sonar data with minimal additional programming effort, such as value adjustment. Fur-
ther, it is assumed that programs can be called up via the command line and in appropriate development
environments by the user.

The measurement trial with the reference objects has shown that in particular the simultaneous use of
SONAR and acoustic positioning system in an angled and enclosed measurement area can lead to partly
strong deviations of the calculated position with a relative positioning to the reference point. With the
integration of an external GPS-antenna, the general measurement deviation is added to the local position,
which is further distorted by this. Corresponding investigations must be carried out in the future to
improve the alignment of the point cloud according to the expected position. Furthermore, the aperture
angle of the SONAR and an programming error in the depth allocation posed a problem for the detection
of the correct length of the object in z-direction. Further, intensifying noise, when measuring too close to
the water surface or at depths below 3 m, occurred possibly due to the depth hold and therefore intensive
use of the thrusters by the ROV. Nevertheless, the reference object, even if distorted over the depth,
and its immediate surroundings could be visualized three-dimensionally from only two-dimensional images.

For future measurements regarding inspection and maintenance of sheet pile walls, both the object
distortion in z-direction and the positional deviation in x- and y-direction should be considered. At
the current state of the measurement setup, it can be assumed that it has a similar accuracy as the
regular plumb line measurement once a damage has been found. However, the system can help to
analyse a large area in advance and minimize the inspection area. For diving inspection teams working
with the presented system setup, the deviation in the x- and y-direction results in a larger area that
needs to be surveyed, especially along the depth, and consequently a longer operation, than with an
accurate positioning and smaller vertical beam angle of the SONAR. With regard to the inexpensive
nature of the measurement setup, it can be said that an already used, but as good as new, SONAR
was used. It is still possible that a corresponding new alternative or other model can change the total
price. However, the overall setup is considerably less expensive than a three-dimensional SONAR. As a
possible alternative to the ROV based sensor transport it can be considered whether the SONAR can be
carried by a diver to further reduce the price. Accordingly, the SONAR should be equipped with a wa-
terproof gyroscope, for motion compensation, a pressure sensor and the locator U1, as well as a data logger.
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In continuing work it will be necessary to make improvements to the software and the measurement setup
in order to increase the user-friendliness of hardware and software, the accuracy of the acquired data and
the final point cloud display. Beginning with the software improvement it is recommend to create two
intuitive GUI or batch files (containing all programs to be executed), in order to reduce the manually
call up sequence for the data acquisition on the TC, as well as the processing and fusion of the data on
the external computer. Further, in the context of risk management in port areas, an improvement of the
vertical resolution of the point cloud needs to be examined. This could be either achieved by creating a
machine learning algorithm for reducing the influence of the vertical beam angle by change-detection
over time or as a mechanical alternative an implementation of a rotating SONAR mounting on the ROV.
The SONAR could also be replaced by one with a smaller vertical aperture angle. Also the additional
integration of a CTD logger, would be recommended in order to customize the sound velocity, needed
for a correct data acquisition of the SONAR. Regarding the interferences between the SONAR and the
acoustic positioning system, measurement trials in an absolute predictable environment, without any
objects, need to be carried out, in order to examine if the floating position can be adjusted by a partial
regression line or through a moving geometric median. A more advanced proposal would be a further
integration of a DVL or INS in the sensor carrier. To enhance the global position it might be necessary
to invest in a higher accuracy GPS-antenna, such as those commonly used in drone navigation. The
final recommendations will have to be examined for profitability and affordability, depending on the ap-
plication and desired accuracy, in order to stay in the economically priced range for the measurement setup.

Regarding the measurement setup and execution it is recommended to operate the system for the time
being in low-flow areas until a sufficient positioning with a position hold mode for the ROV operation
is possible. Further a more an expanded layout of the UGPS receivers with higher distance to harbour
walls, as well as a further lowering of the latter should be tested in regard of enhancing the acoustic
positioning.
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A. Laws and Principles regarding Light

Range of vision in port water with optical systems
For the determination of the visual range in turbid, sediment/DOM rich waters, a Secchi-disk, which is
a round, white coated disc, to which a rope is attached in the middle for easy lowering into the water,
is often used in practice. The depth from which the disk cannot be seen any more is defined as the
Secchi-depth zSecchi. For calculating the attenuation length, that means the distance at which the light
should be attenuated to the value 1

e , which typically corresponds to the definition of ”visibility”, the
reciprocal of the attenuation coefficient needs to be determined.
The attenuation coefficient from the Secchi-Depth zSecchi is defined by A.1.[21]

c =
1.7

zSecchi
(A.1)

In general, Lambert-Beer’s law applies to the ratio of emitted intensity I0 to transmitted intensity I1 at
distance d with the attenuation coefficient c.

I1
I0

= e−c·d (A.2)

The definition of the visual range, with 1
e = ln(1), then is valid for c · d = 1. This then results in eq. A.3.

d

(
I1
I0

=
1

e

)
=

1

c
(A.3)

During a measurement trial at the DLR Institute for the Protection of Maritime Infrastructure from
the 15th of October 2019 to the 17th January 2020 performed by the sensor technology group in the
Fischereihafen 1, an average value of 0.92 m for the visibility and 2.05 for the attenuation coefficient were
determined. It can be concluded that optical measurements will probably be of low quality and rather
have to be recorded for distances of less than 0.92 m to show the necessary detail. It should also be noted
that the measurements were strongly dependent on the weather and the activities in the harbour basin.

B. Technical Specifications

Table B.1 lists the costs of the individual system, as described in section 3, for the measurement setup,
presented in section 5.1.

Table B.1.: Costs of the measurement setup individual systems in euro (dollar to euro exchange rate on 06/28/20)

System Specification Price Resource

ROV BlueROV2, Blue
Robotics

Heavy Configura-
tion Retrofit Kit
with Payload Skid,
4 Lights, Water
Linked UGPS /
BlueROV2 Integra-
tion Kit, additional
2 Fathom-X boards,
100 m tether cable

9588.12¿ [9], [6], [4], [5]

BlueView P-Series
SONAR, Teledyne Marine

P900-130 24 000¿ reconditioned
loan by exter-
nal company

UGPS, Water Linked AS U1 Locator, 4 Re-
ceiver each 10 m

4902.81¿ [48] [49]

Total 38 739.64¿
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Table B.2 lists the specific sensors integrated on the sensor carrier as shown in sec. 3.1 fig. 3.1 and their
corresponding company, version and reference.

Table B.2.: Sensors on the BlueROV2 sensor carrier

Sensor Company Version Resource

Depth sensor BlueRobotics Bar30 [3]
Temperature sensor BlueRobotics Bar30 [3]
Flight Controller Unit Holybro Pixhawk 1 [35]
Multi-beam SONAR Teledyne Marine BlueView P900-130 [11]
Acoustic locator U1 Water Linked AS U1 [48]

Table B.3 lists the integrated sensors on the Pixhawk 1 Flight Controller Unit, as implemented in the
BlueROV2, see sec. 3.1.

Table B.3.: Sensors on the Flight Controller Unit Pixhawk 1

Sensor Company Version Resource

Gyroscope ST Microelectronics L3GD20H [41]
Invensense MPU 6000 [22]

Accelerometer ST Microelectronics LSM303D [42]
Invensense MPU 6000 [22]

Magnetometer ST Microelectronics LSM303D [42]
Barometer TE Connectivity MEAS MS5611 [43]

Table B.4 gives an overview of the to be expected accuracy of the individual sensors integrated in the
measurement setup.

Table B.4.: Accuracy of BlueROV2 Sensors

Sensor Accuracy

Bar30 MS5037-30BA Pressure sensor ±0.2 cm
Bar30 Temperature sensor ±1 °C
L3GD20H Gyroscope ±2000 dps
LSM303D Accelerometer ±16 g
LSM303D Magnetometer ±2 gauss
MPU 6000 Accelerometerr ±16 g
MPU 6000 Gyroscope ±2000 dps
MEAS MS5611 Barometer ±1.5 mbar
PmosGPS� ±3 m
WaterLinked UGPS ±1 %*range receiver to lo-

cator

Table B.5 shows the explicit sensor specification of the BlueView P900-130 forward-looking Multibeam
SONAR used in the implementation of the thesis.
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Table B.5.: System Specifications of the BlueView P900-130

Specification Value

Field-of-View 130°
Max. Range 100 m
Beam Width 1° x 20°
Beam Spacing 0.18°
Number of Beams 768
Range Resolution 2.54 cm
Frequency 900 kHz

Table B.6 shows the frequency channels of the underwater acoustic positioning system UGPS of the
company WaterLinked. In the thesis implementation channel 7 was used.

Table B.6.: Frequency band and according channel from Water Linked acoustic products

Frequency band Channel

from to

31.25 kHz 65.25 kHz 1
62.25 kHz 93.75 kHz 2
93.75 kHz 125 kHz 3

125 kHz 156 kHz 4
156 kHz 187 kHz 5
187 kHz 218 kHz 6
218 kHz 250 kHz 7

C. Listings

In this section all listings used during the course of the thesis will be illustrated. Those with an other
source than the examinee will be marked. Moreover the corresponding files, sorted by occurrence in the
annex, can be found on the storage medium in the folder Listings, which is enclosed with the thesis.

’ ’ ’
2 Example Module by Peter Barker , September 2016

from https : // github . com/ ArduPilot /MAVProxy/ blob / master /MAVProxy/modules/
mavproxy example . py

4 AND
https : // github . com/ b l u e r o b o t i c s /MAVProxy/ blob / master /MAVProxy/modules/

mavproxy DepthOutput . py
6 adapted by Lea Meyer in order to a c c e s s :

= heading
8 = depth

= s c a l e d p r e s su r e o f Bar30
10 = Raw IMU ( not used )

= Euler ang l e s ( r o l l , p i t ch and yaw)
12

added l i n e s are marked with a s t a r * in the comment , main code was adopted from
sourc e s above

14 ’ ’ ’
import os

16 import os . path
import sys

18 from pymavlink import mavuti l
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import er rno
20 import time

import socke t
22 import j son

24 from MAVProxy . modules . l i b import mp module
from MAVProxy . modules . l i b import mp ut i l

26 from MAVProxy . modules . l i b import mp set t ings

28

c l a s s AllData ( mp module . MPModule) :
30

BUFFER SIZE = 65536
32

de f i n i t ( s e l f , mpstate ) :
34 ””” I n i t i a l i s e module”””

super ( AllData , s e l f ) . i n i t ( mpstate , ” AllData ” , ” Al l Data support ” )
36 #self.add command(’AllData.port’, self.cmd port, ’Port selection’, [’¡25102¿’])

#self.add command(’AllData.depthSource’, self.cmd depth source, ’Depth source selection’, [’¡bar30—filtered¿’])
38 #self.add command(’AllData.tempSource’, self.cmd temp source, ’Temperature source selection’, [’¡sp2—sp3¿’])

40 s e l f . l a s t u p d a t e = 0
s e l f . depth source = ’ bar30 ’

42 s e l f . temp source = ’ sp2 ’

44 s e l f . data = {
’ depth ’ : 0 , # Depth in meters

46 ’ temp ’ : 0 , # Water temperature in degrees Celsius
’ o r i e n t a t i o n ’ : 0

48 }

50 s e l f . ip=” 1 2 7 . 0 . 0 . 1 ”
s e l f . portnum = 25102

52 s e l f . port = socket . socke t ( socke t . AF INET , socke t .SOCK DGRAM)
s e l f . port . s e t sockopt ( socke t .SOL SOCKET, socke t .SO REUSEADDR, 1)

54 mavuti l . s e t c l o s e o n e x e c ( s e l f . port . f i l e n o ( ) )
p r i n t ” Outputting data on UDP://% s :%s ” % ( s e l f . ip , s e l f . portnum )

56

#self.status callcount = 0
58 #self.boredom interval = 10 seconds

#self.last bored = time.time()
60

#self.packets mytarget = 0
62 #self.packets othertarget = 0

64 #self.example settings = mp settings.MPSettings(
# [ (’verbose’, bool, False),

66 # ])
#self.add command(’example’, self.cmd example, ”example module”, [’status’,’set (LOGSETTING)’])

68

’ Handle mavlink packets , get data ’
70 de f mavl ink packet ( s e l f , m) :

’ ’ ’ handle mavlink packets ’ ’ ’
72 #print (str(type(m)) + ”: ” + m.get type())

74 i f m. ge t type ( ) == ’SCALED PRESSURE2 ’ :
i f s e l f . temp source == ’ sp2 ’ :

76 s e l f . data [ ’ temp ’ ] = m. temperature / 100 .0 # m.temperature is centi-C
i f s e l f . depth source == ’ bar30 ’ :

78 s e l f . data [ ’ depth ’ ] = s e l f . get depth (m. p r e s s d i f f * 100) # press diff is hPa
e l i f m. ge t type ( ) == ’SCALED PRESSURE3 ’ :

80 i f s e l f . temp source == ’ sp3 ’ :
s e l f . data [ ’ temp ’ ] = m. temperature / 100 .0 # m.temperature is centi-C

82 e l i f m. ge t type ( ) == ’GLOBAL POSITION INT ’ :
i f s e l f . depth source == ’ f i l t e r e d ’ :

84 s e l f . data [ ’ depth ’ ] = =m. r e l a t i v e a l t / 1000 .0 # m.relative alt is mm
e l i f m. ge t type ( ) == ’VFR HUD ’ :

86 s e l f . data [ ’ o r i e n t a t i o n ’ ] = m. heading
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88 # added *
e l i f m. ge t type ( ) == ’ATTITUDE ’ :

90 s e l f . data [ ’ r o l l ’ ] = m. r o l l
s e l f . data [ ’ p i t ch ’ ] = m. p i t ch

92 s e l f . data [ ’yaw ’ ] = m. yaw

94 de f send data ( s e l f ) :
i f time . time ( ) < s e l f . l a s t u p d a t e + 0 . 2 5 :

96 r e turn
s e l f . l a s t u p d a t e = time . time ( )

98 datagram = json . dumps( s e l f . data )
s e l f . port . sendto ( datagram , ( s e l f . ip , s e l f . portnum ) )

100

de f i d l e t a s k ( s e l f ) :
102 ’ ’ ’ c a l l e d in i d l e time ’ ’ ’

s e l f . send data ( )
104

de f cmd port ( s e l f , a rgs ) :
106 ’ handle port s e l e c t i o n ’

i f l en ( args ) != 1 :
108 pr in t ( ”Usage : port <number>” )

re turn
110 s e l f . port . c l o s e ( )

s e l f . portnum = i n t ( args [ 0 ] )
112 s e l f . port = socket . socke t ( socke t . AF INET , socke t .SOCK DGRAM)

s e l f . port . s e t sockopt ( socke t .SOL SOCKET, socke t .SO REUSEADDR, 1)
114

mavuti l . s e t c l o s e o n e x e c ( s e l f . port . f i l e n o ( ) )
116 pr in t ” Outputting depth on UDP://% s :%s ” % ( s e l f . ip , s e l f . portnum )

118 de f cmd temp source ( s e l f , a rgs ) :
’ handle temperature source s e l e c t i o n ’

120 i f l en ( args ) != 1 :
p r i n t ( ”Usage : tempSource <source>” )

122 r e turn
source = args [ 0 ]

124 i f source == ’ sp2 ’ :
s e l f . temp source = source

126 e l i f source == ’ sp3 ’ :
s e l f . temp source = source

128 e l s e :
p r i n t ( ’Unknown temperature source %s ’ % source )

130

de f cmd depth source ( s e l f , a rgs ) :
132 ’ handle depth source s e l e c t i o n ’

i f l en ( args ) != 1 :
134 pr in t ( ”Usage : depthSource <source>” )

re turn
136 source = args [ 0 ]

i f source == ’ bar30 ’ :
138 s e l f . depth source = source

e l i f source == ’ f i l t e r e d ’ :
140 s e l f . depth source = source

e l s e :
142 pr in t ( ’Unknown depth source %s ’ % source )

144 de f get depth ( s e l f , p r e s su r e pa ) :
s p e c i f i c g r a v i t y = s e l f . get mav param ( ”GND SPEC GRAV” , 1 . 0 )

146 r e turn pre s su r e pa / 9800 .0 / s p e c i f i c g r a v i t y

148 de f i n i t ( mpstate ) :
’ ’ ’ i n i t i a l i s e module ’ ’ ’

150 r e turn AllData ( mpstate )

Listing C.1: MAVProxy module required for data aquisition from sensors of the Pixhawk 1 on the ROV

import socke t
2 from time import gmtime , s t r f t i m e

import time
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4 import j son
import sys

6 import re #

8 UDP IP = ” 1 2 7 . 0 . 0 . 1 ”
UDP PORT = 25102

10

# socket from ROV
12 sock = socket . socke t ( socket . AF INET , # Internet

socke t .SOCK DGRAM) # UDP
14 sock . bind ( ( UDP IP , UDP PORT) )

16 # socket to Docker
rov sock = socket . socke t ( socke t . AF INET , # Internet

18 socke t .SOCK STREAM) # TCP
#sock.bind((UPD IP, 5001))

20

i f l en ( sys . argv ) > 1 :
22 f i l ename = sys . argv [ 1 ]

path = ”ROVMotion Data/”
24 pr in t f i l ename

f i l ename = path + sys . argv [ 1 ]
26 e l s e :

f i l ename= ’ w o r k f i l e ’
28

30 f = open ( f i l ename , ’w ’ )
whi l e True :

32 data , addr = sock . recvfrom (1024) # buffer size is 1024 bytes
p r i n t ” r e c e i v e d message : ” , data

34 pr in t time . time ( ) #time.localtime()
dataJson = json . dumps( data , s e p a r a t o r s =( ’ , ’ , ’ : ’ ) )

36 dataJson = dataJson [ : =2 ]
dataJson = dataJson [ 1 : ]

38 dataJson+=” , \” time \” : ” + s t r ( time . time ( ) ) + ”}\n”
dataJson1 = dataJson . r e p l a c e ( ’ \\ ’ , ’ ’ )

40 f . wr i t e ( dataJson1 )
e l s e :

42 pr in t ” e r r o r ”

Listing C.2: UDP access of motion parameters from IP address of ROV

”””
2 Programm f e t c h e s p o s i t i o n o f underwater v e h i c l e from u r l http : / / 1 9 2 . 1 6 8 . 2 . 9 4

and saves data in f i l e
4 ”””

#modules
6 from f u t u r e import p r i n t f u n c t i o n

import r e q u e s t s
8 import argparse

import time
10 import j son

12 de f ge t data ( u r l ) :
t ry :

14 r = r e q u e s t s . get ( u r l )
except r e q u e s t s . excep t i ons . RequestException as exc :

16 pr in t ( ” Exception occured {}” . format ( exc ) )
re turn None

18

i f r . s t a t u s c o d e != r e q u e s t s . codes . ok :
20 pr in t ( ”Got e r r o r {} : {}” . format ( r . s ta tus code , r . t ex t ) )

re turn None
22

r e turn r . j son ( )
24

de f g e t a c o u s t i c p o s i t i o n ( b a s e u r l ) :
26 r e turn get data ( ”{}/ api /v1/ p o s i t i o n / a c o u s t i c / f i l t e r e d ” . format ( b a s e u r l ) )
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28 de f g e t g l o b a l p o s i t i o n ( b a s e u r l ) :
r e turn get data ( ”{}/ api /v1/ p o s i t i o n / g l o b a l ” . format ( b a s e u r l ) )

30

#check corect filename input for string, float, and file format
32 de f s e t f i l e n a m e ( ) :

f i l e f o r m a t = ” . j son ” #desired file format
34 path = ”UGPS Data/”

use r input = input ( ” 1 . P lease ente r f i l e name f o r p o s i t i o n data ( without . j son ) : ” )
36 f i l ename = path + user input + f i l e f o r m a t

re turn f i l ename
38

de f main ( ) :
40 f i l ename = s e t f i l e n a m e ( )

r e c e i v e d d a t a = True
42

par s e r = argparse . ArgumentParser ( d e s c r i p t i o n= d o c )
44 par s e r . add argument ( ’=u ’ , ’==u r l ’ , he lp=’ Base URL to use ’ , type=str , d e f a u l t=’ http

: / / 1 9 2 . 1 6 8 . 2 . 9 4 ’ )
args = par s e r . p a r s e a r g s ( )

46

b a s e u r l = args . u r l
48 pr in t ( ”Using b a s e u r l : %s ” % args . u r l )

50 #data aquisistion and saving data in json file
f = open ( f i l ename , ’w ’ )

52 data = {} #creating dictionary
try :

54 whi le r e c e i v e d d a t a == True :
data . update ({ ’ time ’ : time . time ( ) })

56 data . update ( g e t a c o u s t i c p o s i t i o n ( b a s e u r l ) )
data . update ( g e t g l o b a l p o s i t i o n ( b a s e u r l ) )

58 dataJson = json . dumps( data , s e p a r a t o r s =( ’ , ’ , ’ : ’ ) )
f . wr i t e ( s t r ( dataJson ) )

60 f . wr i t e ( ”\n” )
except KeyboardInterrupt :

62 pr in t ( ” Recording ended ! ” )
pass

64 f . c l o s e ( )

66 i f name == ” main ” :
main ( )

Listing C.3: IP access of UGPS positioning data

’ ’ ’
2 Author : Malte Struck

I n s t i t u t e : DLR=MI
4 Program i s executed on Arduino Nano 3 .0 and prov ides t r a n s f e r

o f s e r i a l GPS NMEA s t r i n g by UART=USB=Bridge
6 ’ ’ ’

S o f t w a r e S e r i a l mySer ia l (2 , 3) ; // RX, TX
8

void setup ( ) {
10 S e r i a l . begin (9600) ;

whi l e ( ! S e r i a l ) {
12 }

14 mySer ia l . begin (9600) ;
}

16

void loop ( ) {
18 // put your main code here , to run repea t ed ly :

i f ( mySer ia l . a v a i l a b l e ( ) )
20 S e r i a l . wr i t e ( mySer ia l . read ( ) ) ;
}

Listing C.4: Executed skript on Arduino Nano for accessing GPS-antenna data

73



/*
2 * SONAR .SON to .PGM Conversion

* Opening .SON Fi l e s , r e t r i e v e ping and convert image
4 * Storage o f the f i l e under path with f i l ename c o n s i t i n g o f img

* timestamp and . pgm ending
6 */

#i f d e f WIN32
8 # d e f i n e CRT SECURE NO WARNINGS

#e n d i f
10 #inc lude <c s td io>

#inc lude <c s t r i n g>
12 #inc lude <cmath>

#inc lude <iostream>
14 #inc lude <bvt sdk . h>

#inc lude <i o . h>
16 #inc lude <s t r i n g . h>

18 char DataFi le [ ] =”” ;

20 i n t main ( i n t argc , char *argv [ ] )
{

22 i f ( argc >= 2) {
s t r cpy ( DataFile , argv [ 1 ] ) ;

24 }
i n t f i l ename l eng th = s t r l e n ( DataFi le ) ;

26 char fo ldername [ 9 0 0 ] ;
s t rncpy ( foldername , DataFile , f i l ename l eng th = 4) ;

28 p r i n t f ( ”%s \n” , fo ldername ) ;
i f ( mkdir ( fo ldername ) != 0)

30 {
p r i n t f ( ”New f o l d e r could not be c rea ted \n” ) ;

32 }

34 p r i n t f ( ” D a t a f i l e : %s \n” , DataFi le ) ;
// Create a new BVTSonar Object

36 BVTSonar son = BVTSonar Create ( ) ;
i f ( son == NULL )

38 {
p r i n t f ( ”BVTSonar Create : f a i l e d \n” ) ;

40 r e turn 1 ;
}

42

// Open the sonar file
44 BVTSonar Open( son , ”FILE” , DataFi le ) ;

46 // Get the first head
BVTHead head = NULL;

48 BVTSonar GetHead ( son , 0 , &head ) ;

50 // Check the ping count
i n t p ings = =1;

52 pings = BVTHead GetPingCount ( head ) ;

54 // Begin loop to create image for each ping
f o r ( i n t i = 0 ; i< pings ; i++){

56 // Now, get a ping!
BVTPing ping = NULL;

58 BVTHead GetPing ( head , i , &ping ) ;

60 //Get Time stamp for ping
double time = BVTPing GetTimestamp ( ping ) ;

62 double s ;
i n t n ;

64 s = time ;
s = f l o o r ( s ) ;

66 double ms = time = s ;
char buf3 [ 1 0 0 ] ;

68 n = s p r i n t f ( buf3 , ”%d%d” , ( i n t ) s , ( i n t ) (ms * 1000) ) ;
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i f (n < 13)
70 {

i f (n = 12)
72 {

s p r i n t f ( buf3 , ”%d0%d” , ( i n t ) s , ( i n t ) (ms * 1000) ) ;
74 }

e l s e
76 s p r i n t f ( buf3 , ”%d00%d” , ( i n t ) s , ( i n t ) (ms * 1000) ) ;

78 }

80 const char * timestampchar = buf3 ;

82

// Generate an image from the ping
84 BVTMagImage img ;

86 BVTPing GetImageXY( ping , &img ) ;

88 //Save it to a PGM (PortableGreyMap)

90 char r e s u l t 1 [ 2 5 6 ] ;
const char * f i l ename1 = ”img” ;

92 const char * format1 = ” . pgm” ;

94 s t r cpy ( r e su l t 1 , fo ldername ) ;
s t r c a t ( r e su l t 1 , ”\\” ) ;

96 s t r c a t ( r e su l t 1 , f i l ename1 ) ; // copy string filename1 into the result.
s t r c a t ( r e su l t 1 , timestampchar ) ;

98 s t r c a t ( r e su l t 1 , format1 ) ; // append string format1 to the result.
//printf(”result1:BVTMagImage SavePGM(img, result1);

100

// progress indicator
102 std : : cout << ”\ rProgre s s : ” << i << ” out o f ” << pings << ” images converted ! ” ;

104 //* Clean up
BVTMagImage Destroy ( img ) ;

106 BVTPing Destroy ( ping ) ;
}

108

BVTSonar Destroy ( son ) ;
110 }

Listing C.5: .SON to PGM program based on BlueVIEW SDK

#modules
2 import numpy as np

from PIL import Image
4 from math import log , c e i l

from sc ipy import s t a t s
6 from os import l i s t d i r

import pa th l i b
8 import matp lo t l i b . pyplot as p l t

10 de f constantsGlobVars ( ) :
#constants

12 g loba lMaxMult ip l i ca tor = 0 . 2 5 ;

14 #global vars
globalMaxN = 0

16 globalMaxS = 0
return globalMaxN , globalMaxS , g loba lMaxMult ip l i ca tor

18

de f parseL ine ( a ) : # todo: give nbytes as parameter!
20 l oca l max = 0

length = len ( a ) / 2
22 l ength = i n t ( l ength )

va lue = np . z e r o s ( l ength )
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24 f o r i in range (0 , l ength ) :
j = 2* i

26 value [ i ] = a [ j ]*256 + a [ j +1]
i f va lue [ i ] > l oca l max :

28 l oca l max = value [ i ]
r e turn value , loca l max

30

de f getNoisedata ( ) :
32 globalMax , notused , g loba lMaxMult ip l i ca tor = constantsGlobVars ( )

noiseMean = [ ]
34 noiseSD = [ ]

imgnum = 0 # initialize image number for creation of dummy data
36 # process all images in working directory

f o r f in l i s t d i r ( pa th l i b . Path ( ) . abso lu t e ( ) ) :
38 i f f . endswith ( ’ . pgm ’ ) and f . s t a r t s w i t h ( ’ no i s e ’ ) : # only process .pgm files

imgnum += 1 # assign image number for creation of dummy data
40 f i l e = open ( f , ’ rb ’ )

f i e l d s = f i l e . read ( ) . s p l i t ( ) [ : 4 ]
42 b = bytearray ( )

44 # find first binary data (after the 4th space)
startOfBinData = 0

46 maxStartOfBinData = 100
spacesBeforeBinData = 4

48 foundSpaces = 0

50 #fileContent = file.read()

52 f o r pos in range (0 , maxStartOfBinData=1) :
f i l e . seek ( pos )

54 byte = f i l e . read (1 )
i f ord ( byte ) == 0x20 and foundSpaces < spacesBeforeBinData :

56 foundSpaces = foundSpaces + 1
i f foundSpaces == spacesBeforeBinData :

58 startOfBinData = pos + 1

60 #print(”binary data starts at positon ” + str (startOfBinData))
# startOfBinData = 18

62

f i l e . seek ( startOfBinData ) #go to position 18 in file were image data information starts
64

# read the binary data into unsigned 8-bit array b
66 b = np . f r o m f i l e ( f i l e , dtype=’ u int8 ’ )

68

width = i n t ( f i e l d s [ 1 ] )
70 he ight = i n t ( f i e l d s [ 2 ] )

bytesPerValue = i n t ( c e i l ( l og ( i n t ( f i e l d s [ 3 ] ) , 256) ) )
72 n s l i c e s = width * bytesPerValue

74 b = np . array (b) . reshape ( height , n s l i c e s )

76 #find global maximum pixel value of image
imageData = [ ]

78 f o r i in range (0 , l en (b) ) :
x , maxi = parseL ine (b [ i ] )

80 i f globalMax < maxi :
globalMax = maxi

82 imageData . append ( x )

84 globalMax = i n t ( globalMax * g loba lMaxMult ip l i ca tor )

86 data = np . z e r o s ( ( height , width , 3) , dtype=np . u int8 )
f o r i in range (0 , l en ( imageData ) ) :

88 f o r j in range (0 , l en ( imageData [ i ] ) ) :
data [ i , j ]=( imageData [ i ] [ j ] / ( globalMax / 256) , imageData [ i ] [ j ] / ( globalMax /

256) , imageData [ i ] [ j ] / ( globalMax / 256) )
90 img = Image . fromarray ( data , ’RGB’ )
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92 #get single channel of nosie image
r , g , b = img . s p l i t ( )

94 noiseImagedata = b . histogram ( )
newNoiseImage = zeroE l im inat i on ( noiseImagedata )

96 NoiseMean = getMean ( newNoiseImage )
noiseMean . append ( NoiseMean )

98 NoiseSD = getNoiseSD ( newNoiseImage , NoiseMean )
noiseSD . append ( NoiseSD )

100 r e turn noiseMean , noiseSD , imgnum , newNoiseImage

102 de f getSampledata ( ) :
notused , globalMax , g loba lMaxMult ip l i ca tor = constantsGlobVars ( )

104 sampleMean = [ ]
sampleSD = [ ]

106 imgnum = 0 # initialize image number for creation of dummy data
# process all images in working directory

108 f o r f in l i s t d i r ( pa th l i b . Path ( ) . abso lu t e ( ) ) :
i f f . endswith ( ’ . pgm ’ ) and f . s t a r t s w i t h ( ’ img ’ ) : # only process .pgm files

110 imgnum += 1 # assign image number for creation of dummy data
f i l e = open ( f , ’ rb ’ )

112 f i e l d s = f i l e . read ( ) . s p l i t ( ) [ : 4 ]
b = bytearray ( )

114

# find first binary data (after the 4th space)
116 startOfBinData = 0

maxStartOfBinData = 100
118 spacesBeforeBinData = 4

foundSpaces = 0
120

f o r pos in range (0 , maxStartOfBinData=1) :
122 f i l e . seek ( pos )

byte = f i l e . read (1 )
124 i f ord ( byte ) == 0x20 and foundSpaces < spacesBeforeBinData :

foundSpaces = foundSpaces + 1
126 i f foundSpaces == spacesBeforeBinData :

startOfBinData = pos + 1
128

130 f i l e . seek ( startOfBinData ) #go to position 18 in file were image data information starts

132 # read the binary data into unsigned 8-bit array b
b = np . f r o m f i l e ( f i l e , dtype=’ u int8 ’ )

134

136 width = i n t ( f i e l d s [ 1 ] )
he ight = i n t ( f i e l d s [ 2 ] )

138 bytesPerValue = i n t ( c e i l ( l og ( i n t ( f i e l d s [ 3 ] ) , 256) ) )
n s l i c e s = width * bytesPerValue

140

b = np . array (b) . reshape ( height , n s l i c e s )
142

#find global maximum pixel value of image
144 imageData = [ ]

f o r i in range (0 , l en (b) ) :
146 x , maxi = parseL ine (b [ i ] )

i f globalMax < maxi :
148 globalMax = maxi

imageData . append ( x )
150

globalMax = i n t ( globalMax * g loba lMaxMult ip l i ca tor )
152

data = np . z e r o s ( ( height , width , 3) , dtype=np . u int8 )
154 f o r i in range (0 , l en ( imageData ) ) :

f o r j in range (0 , l en ( imageData [ i ] ) ) :
156 data [ i , j ]=( imageData [ i ] [ j ] / ( globalMax / 256) , imageData [ i ] [ j ] / ( globalMax

/ 256) , imageData [ i ] [ j ] / ( globalMax / 256) )
img = Image . fromarray ( data , ’RGB’ )

158 #get single channel of noise image
r , g , b = img . s p l i t ( )
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160 sampleImagedata = b . histogram ( )
newSampleImage = zeroE l im inat i on ( sampleImagedata )

162 SampleMean = getMean ( newSampleImage )
sampleMean . append ( SampleMean )

164 SampleSD = getNoiseSD ( newSampleImage , SampleMean )
sampleSD . append ( SampleSD )

166 r e turn sampleMean , sampleSD , imgnum , newSampleImage

168 de f z e roE l im inat i on ( sample ) :
count = 0

170 data = [ ]
f o r i in sample :

172 i f ( count > 0) :
data . append ( i )

174 count = count + 1
e l s e :

176 count = count + 1
return data

178

de f getMean ( sample ) :
180 sampleSize = len ( sample )

sumTotal = sum( sample )
182 mean = sumTotal/ sampleSize

re turn mean
184

de f getNoiseSD ( sample , mean) :
186 sampleSize = 255

mean = mean
188 sumOfSquares = 0

f o r element in sample :
190 dev i a t i onSco r e = element = mean

sumOfSquares = sumOfSquares + dev i a t i onSco r e **2
192 var iance = sumOfSquares/ sampleSize

SD = var iance **0 .5
194 r e turn SD

196 de f getSampleSD ( sample ) :
sampleSize = len ( sample )

198 mean = getMean ( sample )
sumOfSquares = 0

200 f o r element in sample :
d ev i a t i onSco r e = element = mean

202 sumOfSquares = sumOfSquares + dev i a t i onSco r e **2
var iance = sumOfSquares /( sampleSize =1)

204 SD = var iance **0 .5
re turn SD

206

de f getNoiseStandardError ( NoiseAverageSD ) :
208 sampleSize = 255

sampleSD = NoiseAverageSD
210 #Standard error of the mean for the pixel value

SEM = sampleSD /( sampleSize **0 .5 )
212 r e turn SEM

214 de f getSampleStandardError ( sample ) :
sampleSize = len ( sample )

216 noiseSD = getSampleSD ( sample )
#Standard error of the mean for the pixel value

218 SEM = noiseSD /( sampleSize **0 .5 )
re turn SEM

220

# Z = (sampleMean - noiseMean / StandardError)
222 de f getZScore ( sample , SampleAverageMean , NoiseAverageMean , NoiseAverageSD ) :

sampleMean = SampleAverageMean
224 noiseMean = NoiseAverageMean

SEM = getSampleStandardError ( sample )
226 Z = ( sampleMean = noiseMean ) / SEM

return Z
228
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de f getProbabi l i tyFromZ (Z) :
230 Z = round ( f l o a t (Z) , 2)

p r o b a b i l i t y = 0
232 i f Z < =4:

r e turn 0 .000
234 e l i f Z > 4 :

r e turn 1 .000
236 e l s e :

p r o b a b i l i t y = s t a t s . norm . cd f (Z)
238 r e turn p r o b a b i l i t y

240 de f t e s tHypothe s i s (p , alpha = 0 .05 , testType = ’ one=t a i l e d p o s i t i v e ’ ) :
i f testType == ’ two=t a i l e d ’ :

242 i f p < ( alpha /2) or p > (1=( alpha /2) ) :
r e turn True

244 e l s e :
r e turn Fa l se

246 i f testType == ’ one=t a i l e d negat ive ’ :
i f p < alpha :

248 r e turn True
e l s e :

250 r e turn Fa l se
i f testType == ’ one=t a i l e d p o s i t i v e ’ :

252 i f p > (1 = alpha ) :
r e turn True

254 e l s e :
r e turn Fa l se

256

de f getThreshold (p) :
258 p = p * 100

th r e sho ld = i n t ( round ((255/100) *p) )
260 r e turn th r e sho ld

262 de f main ( ) :
#get gloabl variables and constants

264 globalMaxN , globalMaxS , g loba lMaxMult ip l i ca tor = constantsGlobVars ( )

266 NoiseMean , NoiseSD , imgnum , newNoiseImage = getNoisedata ( )
SampleMean , SampleSD , imgnumsample , newSampleImage = getSampledata ( )

268

NoiseAverageMean = sum( NoiseMean ) /imgnum
270 NoiseAverageSD = sum( NoiseSD ) /imgnum

SampleAverageMean = sum( SampleMean ) /imgnumsample
272

# Now the actual Z-Test
274 zScore = getZScore ( newSampleImage , SampleAverageMean , NoiseAverageMean ,

NoiseAverageSD )
p = getProbabi l i tyFromZ ( zScore )

276 i f t e s tHypothe s i s ( zScore ) :
p r i n t ( ’Z=TEST ’ )

278 SampleMean = getMean ( newSampleImage )
p r i n t ( ’ NoiseAverageMean ’ , NoiseAverageMean )

280 pr in t ( ’ Sample Mean : ’ , SampleAverageMean )

282 pr in t ( ’Z : ’ , zScore )
p r i n t ( ’p : ’ , p )

284 th r e sho ld = getThreshold (p)
p r i n t ( ’ Threshold ’ , th r e sho ld )

286 testhyp=te s tHypothe s i s (p)
p r i n t ( ”The hypothes i s i s : ” , tes thyp )

288 e l s e :
p r i n t ( ” e r r o r ” )

290 i f name == ’ ma in ’ :
main ( )

Listing C.6: Gaussian Z-Test applied to sample images by means of noise images
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import numpy as np
2 from matp lo t l i b import image as mpimg

import matp lo t l i b . pyplot as p l t
4 from os import l i s t d i r

import pa th l i b
6 from matp lo t l i b . pyplot import f i g u r e

f i g u r e (num=None , f i g s i z e =(8 , 6) , dpi =80, f a c e c o l o r=’w ’ , edgeco l o r=’ k ’ )
8

de f getMean ( sample ) :
10 sampleSize = len ( sample )

sumTotal = sum( sample )
12 mean = sumTotal/ sampleSize

re turn mean
14

de f main ( ) :
16 # process all images in working directory

window = [ ]
18 f o r f in l i s t d i r ( pa th l i b . Path ( ) . abso lu t e ( ) ) :

i f f . endswith ( ’ . pgm ’ ) : # only process .pgm files
20 pr in t ( ” f i l ename : ” , f )

# open image
22 img = np . array (mpimg . imread ( f ) )

img = img [ : , : , 0 ] #Pseudocolor
24 # create points from nonzero pixels

img xy = np . nonzero ( img ) # returns xy-vector of every nonzero pixel, not pixel value itself
26 real sonwindow = img . shape [ 0 ] = img xy [ 0 ] [ 0 ]

p r i n t ( ’ rea l sonwindow ’ , rea l sonwindow )
28 window . append ( real sonwindow )

30 mean = getMean ( window )
p r in t ( ”mean” , mean)

32

i f name == ’ ma in ’ :
34 main ( )

Listing C.7: Capture of the furthest pixel in the sonar image for the pixel to meter conversion in C.7

# imports
2 import numpy as np

import math
4 from PIL import Image

from PIL import ImageF i l t e r
6 from os import l i s t d i r

import pa th l i b
8 import open3d as o3d

import j son
10 from pyproj import Proj

from math import log , c e i l
12

# function definitions
14 de f p l o t p c ( pcvector ) :

pcd = o3d . geometry . PointCloud ( )
16 pcd . po in t s = o3d . u t i l i t y . Vector3dVector (np . t ranspose ( pcvector ) )

#pcd.colors = o3d.utility.Vector3dVector(intensity)
18 o3d . i o . w r i t e p o i n t c l o u d ( ” po intc loud . ply ” , pcd )

20 #comment when .ply cropped; point cloud visualization with o3d
pcd load = o3d . i o . r e a d p o i n t c l o u d ( ” po intc loud . ply ” )

22 v i shand l e = o3d . v i s u a l i z a t i o n . draw geometr ies ( [ pcd load ] )

24 #un-comment when ply cropped
# ===========================================

26 # vol = o3d.visualization.read selection polygon volume(”croppedpointcloud.json”)
# object = vol.crop point cloud(pcd)

28 # o3d.io.write point cloud(”pointcloudcropped.ply”, object)
# vishandle = o3d.visualization.draw geometries([object])

30 # ==========================================
#print(””)
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32

34 de f g e t r ov da ta ( timestamp ) : # rov data = [time, depth, orientation, roll, pitch, yaw]
t ry :

36 with open ( ’ motion08 06 20 . j son ’ ) as j s o n f i l e :
f o r l i n e in j s o n f i l e :

38

# read each line as json data
40 j s on data = json . l oads ( l i n e )

42 # create numpy array out of json data to allow faster processing //time in milli seconds
newrow = np . array ( [ [ ( j s on data [ ” time ” ]*1000) , j s on data [ ”depth” ] , j s on data [ ”

o r i e n t a t i o n ” ] , j s on data [ ” r o l l ” ] , j s on data [ ” p i t ch ” ] , j s on data [ ”yaw” ] ] , ] )
44

# if this is the first line, create array ’data’ and add first row
46 i f ’ data ’ not in l o c a l s ( ) :

data = newrow
48 # if data already exists add new row on bottom of array

e l s e :
50 data = np . append ( data , newrow , a x i s =0)

except FileNotFoundError :
52 pr in t ( ’ depth log . j son f i l e could not be read or does not e x i s t ’ )

r e turn 0
54 # find index of time closest to given timestamp

index = np . argmin (np . abs (np . add ( data [ : , 0 ] , =timestamp ) ) )
56 ROV return = data [ index , : ]

r e turn ROV return
58

60 de f read ugps data ( ) :
t ry :

62 with open ( ’ ugps08 06 20 . j son ’ ) as j s o n f i l e :
f o r l i n e in j s o n f i l e :

64 # read each line as json data
j s on data = json . l oads ( l i n e )

66

# create numpy array out of json data to allow faster processing
68 np . s e t p r i n t o p t i o n s ( suppres s=True , fo rmatte r={ ’ f l o a t k i n d ’ : ’ { : f } ’ . format })

newrow = np . array ( [ [ j s on data [ ” time ” ]*1000 , j s on data [ ”x” ] , j s on data [ ”y” ] ,
j s on data [ ”z” ] , j s on data [ ” lon ” ] , j s on data [ ” l a t ” ] ] , ] )

70 # if this is the first line, create array ’data’ and add first row
i f ’ data ’ not in l o c a l s ( ) :

72 data = newrow
# if data already exists add new row on bottom of array

74 e l s e :
data = np . append ( data , newrow , a x i s =0)

76 r e turn data
except FileNotFoundError :

78 pr in t ( ’ ugps data . j son f i l e could not be read or does not e x i s t ’ )
r e turn [ ]

80

82 de f g e t u g p s c o o r d i n a t e s ( ugps data , timestamp ) : # ugps data = [time, x, y, z, lon, lat]
# find index of time closest to given timestamp

84 index = np . argmin (np . abs (np . add ( ugps data [ : , 0 ] , =timestamp ) ) )
#local test

86 l o c a l x , l o c a l y , l o c a l z = ugps data [ index , 1 ] , ugps data [ index , 2 ] , ugps data [
index , 3 ]
# projection from lon/lat to xy (UTM)

88

# create projection object with settings for Bremerhaven
90 myProj = Proj ( pro j=’utm ’ , zone =32, e l l p s=’WGS84 ’ , p r e s e r v e u n i t s=Fal se ) # ”preserve units

= False” ensures units = meters

92 # apply projection global;
#utm x, utm y = myProj(ugps data[index, 4], ugps data[index, 5], inverse=False)

94

#projection local; note:comment global projection
96 utm x , utm y = ugps data [ index , 1 ] , ugps data [ index , 2 ]
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98 #without utm-projection
#utm x, utm y = ugps data[index, 4], ugps data[index, 5]

100

r e turn utm x , utm y , l o c a l x , l o c a l y , l o c a l z
102

104 de f coo rd ina t e t rans f o rm ( pc raw , r o l l , p itch , yaw , ugps x , ugps y , depth ) :
# transform coordinates

106 yawMatrix = np . array ( [
[ math . cos (yaw) , =math . s i n (yaw) , 0 ] ,

108 [ math . s i n (yaw) , math . cos (yaw) , 0 ] ,
[ 0 , 0 , 1 ]

110 ] )

112 pitchMatr ix = np . array ( [
[ math . cos ( p i t ch ) , 0 , math . s i n ( p i t ch ) ] ,

114 [ 0 , 1 , 0 ] ,
[=math . s i n ( p i t ch ) , 0 , math . cos ( p i t ch ) ]

116 ] )

118 r o l l M a t r i x = np . array ( [
[ 1 , 0 , 0 ] ,

120 [ 0 , math . cos ( r o l l ) , =math . s i n ( r o l l ) ] ,
[ 0 , math . s i n ( r o l l ) , math . cos ( r o l l ) ]

122 ] )

124 # rotation matrix
R = np . matmul (np . matmul ( yawMatrix , p i tchMatr ix ) , r o l l M a t r i x )

126

# measured impementation distance ugps to multibeam
128 ugps x = ugps x + 0.18

ugps y = ugps y + 0.27
130 depth = depth + 0.25 #1. distance ugps locator to multibeam :- 0.35 or 2.pixhawk to multibeam: -0.25

# transformation matrix
132 T = np . z e r o s ( ( 4 , 4) )

T[ : =1 , :=1] = R # rotation
134 T[: =1 , 3 ] = [ ugps x , ugps y , depth ]

T[=1 , =1] = 1 # for right shape
136

pc img = np . matmul (T, pc raw ) [ : =1 , : ]
138 r e turn pc img

140 de f parseL ine ( a ) :
loca l max = 0

142 l ength = len ( a ) / 2
l ength = i n t ( l ength )

144 value = np . z e r o s ( l ength )
f o r i in range (0 , l ength ) :

146 j = 2* i
va lue [ i ] = a [ j ]*256 + a [ j +1]

148 i f va lue [ i ] > l oca l max :
loca l max = value [ i ]

150 r e turn value , loca l max

152 de f main ( ) :
# try to read UGPS data

154 ugps data = read ugps data ( ) # returns array of array [time, x, y, z, lon, lat]
# assumption: xyz relative to gps receiver, lon & lat absolute

156 imgnum = 0 # initialize image number for creation of dummy data
# process all images in working directory

158 f o r f in l i s t d i r ( pa th l i b . Path ( ) . abso lu t e ( ) ) :
i f f . endswith ( ’ . pgm ’ ) : # only process .pgm files

160 imgnum += 1 # assign image number for creation of dummy data
timestamp = f l o a t ( f [ 3 : =4 ] ) # get timestamp from filename

162

#constants
164 g loba lMaxMult ip l i ca tor = 0 . 2 5 ;
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166 #global vars
globalMax = 0

168

f i l e = open ( f , ’ rb ’ )
170 f i e l d s = f i l e . read ( ) . s p l i t ( ) [ : 4 ]

b = bytearray ( )
172

# find first binary data (after the 4th space)
174 startOfBinData = 0

maxStartOfBinData = 100
176 spacesBeforeBinData = 4

foundSpaces = 0
178

f o r pos in range (0 , maxStartOfBinData=1) :
180 f i l e . seek ( pos )

byte = f i l e . read (1 )
182 i f ord ( byte ) == 0x20 and foundSpaces < spacesBeforeBinData :

foundSpaces = foundSpaces + 1
184 i f foundSpaces == spacesBeforeBinData :

startOfBinData = pos + 1
186

188 f i l e . seek ( startOfBinData ) #go to position in file were image data information starts

190

# read the binary data into unsigned 8-bit array b
192 b = np . f r o m f i l e ( f i l e , dtype=’ u int8 ’ )

194 #access with and height, adjust image width
width = i n t ( f i e l d s [ 1 ] )

196 he ight = i n t ( f i e l d s [ 2 ] )
bytesPerValue = i n t ( c e i l ( l og ( i n t ( f i e l d s [ 3 ] ) , 256) ) )

198 n s l i c e s = width * bytesPerValue

200 #reshape b into np array with adjusted height and width
b = np . array (b) . reshape ( height , n s l i c e s )

202

#get image data
204 imageData = [ ]

f o r i in range (0 , l en (b) ) :
206 x , maxi = parseL ine (b [ i ] )

i f globalMax < maxi :
208 globalMax = maxi

imageData . append ( x )
210

globalMax = i n t ( globalMax * g loba lMaxMult ip l i ca tor )
212 data = np . z e r o s ( ( height , width , 3) , dtype=np . u int8 )

214 f o r i in range (0 , l en ( imageData ) ) :
f o r j in range (0 , l en ( imageData [ i ] ) ) :

216 data [ i , j ]=( imageData [ i ] [ j ] / ( globalMax / 256) , imageData [ i ] [ j ] / ( globalMax
/ 256) , imageData [ i ] [ j ] / ( globalMax / 256) )

img1 = Image . fromarray (np . rot90 ( data , 3 ) , ’RGB’ )
218

#median 7x7
220 img = img1 . f i l t e r ( ImageF i l t e r . MedianFi l ter (7 ) )

222 #threshold
th r e sho ld = 119 #get value from gauss threshold estimation

224 im = img . po int ( lambda p : p > th r e sho ld and 255)
img xy = np . nonzero ( im)

226

#insert calculation for range
228 real sonwindow = 166 #see getrangepixelnumber.py: value generated by taking the min value of image rows

with non-zero value subtracted from total image rows

230 # move zero to bottom center of image
img y = img xy [ 1 ]

232 img x = np . add ( img xy [ 0 ] , = img . s i z e [ 0 ] )
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234 # transform pixel to meter
max range = 3 # get value from multibeam!

236 s c a l i n g = max range / real sonwindow
img x = np . mult ip ly ( img x , s c a l i n g )

238 img y = np . mult ip ly ( img y , s c a l i n g )

240 # add third dimension
ROV data = ge t rov da ta ( timestamp ) # function needs timestamp from filename

242

ROV z = ROV data [ 1 ]
244

img z = np . f u l l ( l en ( img x ) , ROV z) #create empty z-column of fitting length
246 ones = np . f u l l ( l en ( img x ) , 1) # create row of ones for transformation

pc raw = np . array ( [ img x , img y , img z , ones ] ) # ready to transform vector
248

r o l l = ROV data [ 3 ] # in radian
250 p i t ch = ROV data [ 4 ] # in radian

yaw = ROV data [ 5 ] # in radian
252

ugps x , ugps y , l o c a l x , l o c a l y , l o c a l z = g e t u g p s c o o r d i n a t e s ( ugps data ,
timestamp )

254

#Export .json files for all used timestamps
256 #motion data

export ugps = {}
258 export ugps [ ’ time ’ ] = timestamp

export ugps [ ’ x ’ ] = l o c a l x
260 export ugps [ ’ y ’ ] = l o c a l y

export ugps [ ’ z ’ ] = l o c a l z
262 export ugps [ ’ l a t ’ ] = ugps x

export ugps [ ’ lon ’ ] = ugps y
264 with open ( ’ ugpsminimized . j son ’ , ’ ab+’ ) as f :

f . seek (0 , 2 ) #Go to the end of file
266 i f f . t e l l ( ) == 0 : #Check if file is empty

f . wr i t e ( j son . dumps ( [ export ugps ] ) . encode ( ) ) #If empty, write an array
268 e l s e :

f . seek (=1 ,2)
270 f . t runcate ( ) #Remove the last character, open the array

f . wr i t e ( ’ , ’ . encode ( ) ) #Write the separator
272 f . wr i t e ( j son . dumps( export ugps ) . encode ( ) ) #Dump the dictionary

f . wr i t e ( ’ ] ’ . encode ( ) ) #Close the array
274 #UGPS data

expor t rov = {}
276 expor t rov [ ’ time ’ ] = timestamp

expor t rov [ ’ r o l l ’ ] = r o l l
278 expor t rov [ ’ p i t ch ’ ] = p i t ch

expor t rov [ ’yaw ’ ] = yaw
280 expor t rov [ ’ z ’ ] = ROV z

with open ( ’ motionminimized . j son ’ , ’ ab+’ ) as f :
282 f . seek (0 , 2 ) #Go to the end of file

i f f . t e l l ( ) == 0 : #Check if file is empty
284 f . wr i t e ( j son . dumps ( [ expor t rov ] ) . encode ( ) ) #If empty, write an array

e l s e :
286 f . seek (=1 ,2)

f . t runcate ( ) #Remove the last character, open the array
288 f . wr i t e ( ’ , ’ . encode ( ) ) #Write the separator

f . wr i t e ( j son . dumps( expor t rov ) . encode ( ) ) #Dump the dictionary
290 f . wr i t e ( ’ ] ’ . encode ( ) ) #Close the array

292 #local point cloud
pc img = coord ina t e t rans f o rm ( pc raw , r o l l , p itch , yaw , ugps x , ugps y , ROV z)

294 # for now we assume water surface == sea level and depth measured by pressure sensors

296 # if pcvector does not yet exist create it
i f ’ pcvector ’ not in vars ( ) :

298 pcvector = [ pc img [ 0 ] , pc img [ 1 ] , pc img [ 2 ] ]

300 # if pcvector already exists append values to it
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e l s e :
302 pcvector = np . append ( pcvector , pc img , a x i s =1)

304 # plot point cloud
pr in t ( s t r ( pcvector . shape [ 1 ] ) + ’ po in t s detec ted ’ )

306 p l o t p c ( pcvector )

308 i f name == ’ ma in ’ :
main ( )

Listing C.8: Main Programm for the data allocation accordind to each SONAR timestamp, coordinate transformation and
storage in .ply format

D. Reference Object Specification

In this section specification regarding the used reference objects during the measurement trial in the
Fischereihafen 1 will be listed. In table D.1 shows the exact dimensions of the poured concrete reference
objects, measured with a measuring scale with an accuracy of 0.3 cm.

Table D.1.: Characteristics of the concrete reference objects

Height Width Depth Slant angle
Reference ob-
ject

[mm] [mm] [mm] [◦]

Cuboid 155 - 155 155 -
Prism 10° 89 41 80 234 10
Prism 20° 121 41 79 231 20
Rectangle 61 - 205 10 -

Table D.2 shows the exact depth range to witch the reference objects were submerged during the
measurement trial.

Table D.2.: Depth range of reference objects

Reference object Depth
min.

[mm]
max.
[mm]

Cuboid 555 710
Prism 10° 586 820
Prism 20° 599 830
Rectangle 695 900

E. Measurement Results

Before continuing with the measurement results, it has to be mentioned that further representation of
the reference object datasets can be found on the storage medium, which is enclosed with the thesis. Also all
.xyz -files are attached and can be viewed following the instructions in (Note How to Open XYZ Files Using
NaviModel Free Viewer.txt in the folder ”Resulting Point Clouds”). Table E.1 shows the arithmetic average
(mean) and the standard deviation of the Euler angles from the four data sets Cuboid, Prism 10°, Prism
20°and Rectangle.
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Table E.1.: Arithmetic average and standard deviation of roll-, pitch- and yaw-angle

Roll-angle [°] Pitch-angle [°] Yaw-angle [°]

Reference object Mean Stdv. Mean Stdv. Mean Stdv.

Cuboid 0.612052 1.51403 0.985412 2.805061 -13.002563 0.753549
Prism 10° -0.494998 1.0269 -0.913342 1.309763 -15.046159 1.648642
Prism 20° 0.465079 1.465079 -0.516253 3.464943 -12.146470 0.758398
Rectangle 0.679259 0.679259 0.594466 1.160268 -20.712225 1.086034

Table E.2 shows the geometric median and the MAD of each dataset.

Table E.2.: MAD regarding the geometric median m of the local position in x-y-direction and global regarding UTM
x-y-direction

Reference
object

x [m] y [m]
Amount
of
outlier

Geo. med. m MAD Geo. med. m MAD

Cuboid 3.32 1.12 0.91 1.06 1
Prism 10° 2.55 1.14 1.17 1.10 8
Prism 20° 2.83 1.15 0.96 1.09 2
Rectangle 2.69 1.14 0.83 1.06 2

Mean 2.85 1.14 0.97 1.08

Reference
object

UTM x [m] UTM y [m]
Amount
of
outlier

Geo. med. m MAD Geo. med. m MAD

Cuboid 472418.19 1.00 5930469.19 2.52 1
Prism 10° 472426.76 1.00 5930466.49 1.60 8
Prism 20° 472419.69 1.00 5930453.27 3.49 2
Rectangle 472419.87 1.14 5930456.97 1.06 2

Mean 472421.13 1.04 5930461.48 2.03
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Figure E.1 shows a close up representation of the acoustic global position of the ROV, during the four
different measurement trials, additionally to the overview given in section 5.2 figure 5.12. The colour
fading indicates the passing time, light colours representing the beginning of the measurement and
darker/intensive colours indicating the end of the measurement. Additionally to the drift along the x-axis,
strong position jumping can be observed in the Prism 10°and 20°as well as in the Rectangle dataset. An
deviation around a static point cannot be observed.

(a) Cuboid (b) Prism 10°

(c) Prism 20° (d) Rectangle

Figure E.1.: Global close up representation of acoustic position
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Figure E.2 shows the local three-dimensional point cloud representation, created with the NaviModel Free
Viewer. In the x-z-visualization in fig. E.2 the backscattered points of the rectangle edge were removed, if
possible, in order to allow a clear view of the elongated oval projection. In fig. E.2 (b) and (c) a second
reflection of the object can be noticed on its left hand side. The course of the point cloud over the depth
in all figures describes a deformed, parabolic curve, with a maximum deviation at 1.8 m to 2.1 m facing in
the positive x-direction. Further the buoyancy body of the pontoon can be identified on left hand side of
each figure. It is most likely that the detection is also loaded by errors, as the shape is expected to be curved.

(a) Cuboid (b) Prism 10°

(c) Prism 20° (d) Rectangle

Figure E.2.: Local three-dimensional representation of detected reference object in x-z-direction; length of coordinate axes
2 m
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In E.3 shows the local spatial point cloud of all four reference object data sets along the y-z-axis. Noticeable
here is the lateral offset towards the positive y-axis relative up to the depth of ca. 1.7 m in the case of the
Prism 10°, Prism 20°and Rectangle.

(a) Cuboid (b) Prism 10°

(c) Prism 20° (d) Rectangle

Figure E.3.: Local three-dimensional representation of detected reference object in the y-z-direction; length of coordinate
axes (a), (c) and (d) 2 m, (b) 1 m
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Figure E.4 shows the global three-dimensional point cloud representation in x-z-direction, created also
with the NaviModel Free Viewer. Similarities with the local representation can be made. For example the
buoyancy body seems to show a similar shape in the global and local front view.

(a) Cuboid (b) Prism 10°

(c) Prism 20° (d) Rectangle

Figure E.4.: Global three-dimensional representation of detected reference object - Front view; length of coordinate axes 1 m
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Figure E.5 shows the global point cloud in a spatial representation along the y-z-axis, by means of the
NaviModel Free Viewer. It can clearly the stratification of point along the x-axis, which leads to a strong
distortion of the spatial view.

(a) Cuboid (b) Prism 10°

(c) Prism 20° (d) Rectangle

Figure E.5.: Global three-dimensional representation of detected reference object - Side view; length of coordinate axes 2 m,
except for (b) 1 m

Table E.3 shows the total number of points in each point cloud representation for each subdivision, as
well as the total time of recording.

Table E.3.: Determined number of points in the point cloud of each reference object dataset, subdivided into total number
of points, amount of points in the specified depth segment and points of the to be assumed reference object

Reference
object

Time [s] Points

Global Local

tot. depth sec.
depth sec.
obj. only

tot. depth sec.
depth sec.
obj. only

Cuboid 12.826 56076 13938 4890 56076 13938 4890
Prism 10° 19.731 666253 17688 - 666252 17688 -
Prism 20° 13.987 380241 28074 4731 380241 28074 4731
Rectangle 12.928 1327977 46953 1842 1327977 46953 1842
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Table E.4 shows the dimension of the to be expected reference objects, measured from the depth restricted
representation for each data set. It must be noted at this point, that these measurements were performed
manually. Therefore slight deviations may occur when repeating the measurement.

Table E.4.: Dimension of depth restricted representation, in the specified depth of the reference objects, of local and global
point clouds

Reference
object

Local Global

x [m] y [m] Planes x [m] y Planes
min. max. min max. min. max. [Pixel]

Cuboid 0.18 0.22 0.12 0.17 7 0.19 0.22 1 7
Prism 10° 0.09 0.15 0.15 0.20 5 0.16 0.25 1 5
Prism 20° 0.16 0.20 0.15 0.20 6 0.19 0.21 1 6
Rectangle 0.14 0.21 0.11 0.14 4 0.19 0.28 1 4
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