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Abstract

Deep Learning and especially convolutions have been a massive success in computer vision
tasks such as Segmentation, Object Detection, and others. However, all of these are limited
to 2D images, whereas the progress in the 3D domain has been limited. Extending these
priors works to the 3D domain is sadly not straightforward. The biggest challenge here is the
unstructured representation of 3D data such as meshes or point clouds. While other works
use voxel grids, which have structured representation, they usually struggle with computation
time and memory.
In this thesis, the task of extending a convolution operation to unstructured data and its

problems along with potential solutions is explored. In this thesis, two new methods to the
task of Mesh Segmentation are proposed. Both these methods are based on Transformer
networks and their components. In the first method, a first of its kind application of
transformers to the task of Mesh Segmentation is proposed. In the second method, a
permutation invariant Graph Convolution layer named Transformer Convolution (TransConv)
is proposed which acts similar to a convolution operation on images and can be used in any
model architecture. In addition to these methods, two extensions are proposed that improve
the performance of both our methods. The first extension is to use depth encoding to add
more information about the geodesic distance to the model. The second extension is to
extend the concept of atrous convolutions in images to meshes.

All of our methods and extensions are evaluated on two datasets and compared with other
related works. The first dataset is a collection of high-resolution meshes called the Shape
COSEG (COSEG) dataset. The second dataset is a collection of point clouds of 3D objects
called ShapeNet part annotation.

Our proposed graph convolution layer TransConv outperforms other related works in both
the datasets. However, our method to use transformers for mesh segmentation produced
comparable results.
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Abstract - German

Deep Learning und insbesondere Convolutions hatten große Erfolg bei typischen Computer
Vision Aufgaben wie z. B. Segmentierung, Objekterkennung und anderen. Allerdings
sind alle diese Ansätze auf 2D-Bilder beschränkt, während hingegen die Fortschritte im
3D-Bereich begrenzt sind. Das Erweitern dieser Arbeiten auf die 3D-Domäne, ist leider
nicht ohne Probleme möglich. Die größte Herausforderung dabei ist die unstrukturierte
Darstellung von 3D-Daten, wie z. B. in Mesh oder Punktwolken. Während andere Arbeiten
Voxel verwenden, welche eine strukturierte Repräsentation haben, haben sie jedoch in der
Regel Probleme mit der Rechenzeit und Speicherplatznutzung.
In dieser Arbeit werden Convolutions auf unstrukturierte Daten erweitern und deren

möglichen Probleme und darauffolgenden Lösungen erforscht. Hierbei werden zwei neue
Methoden für die Aufgabe der Mesh-Segmentierung vorgeschlagen. Beiden Methoden
basieren dabei auf Transformer Netzwerken und deren Komponenten. In der ersten Methode
wird zum ersten Mal eine Anwendung von Transformatoren für die Aufgabe der Mesh-
Segmentierung vorgestellt. In der zweiten Methode wird eine permutationsinvariante Graphen-
faltungsschicht namens Transformer Convolution vorgeschlagen, die sich ähnlich wie eine
Convolution auf Bildern verhält und in jeder Modellarchitektur verwendet werden kann.
Zusätzlich zu diesen Methoden werden zwei Erweiterungen vorgeschlagen, die die Leis-
tung unserer beiden Methoden verbessern. Die erste Erweiterung ist die Verwendung von
einer Tiefenkodierung, um mehr Informationen über die geodätische Distanz zum Modell
hinzuzufügen. Die zweite Erweiterung ist die Erweiterung einer Atrous Convolution von
Bildern auf Graphen. Alle unsere Methoden und Erweiterungen werden mit zwei Daten-
sätzen evaluiert und mit anderen verwandten Arbeiten verglichen. Der erste Datensatz ist
eine Sammlung von hochauflösenden Meshes, der Shape COSEG-Datensatz. Der zweite
Datensatz ist eine Sammlung von Punktwolken von 3D-Objekten genannt ShapeNet.
Die von uns vorgeschlagene Graphen Convolution Schicht TransConv übertrifft andere

verwandte Arbeiten in beiden Datensätzen. Unsere Methode zur Verwendung von Transfor-
matoren für die Meshsegmentierung lieferte zudem vergleichbare Ergebnisse.
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1 Introduction

In the past few years, there has been a rising interest and demand for 3D data modeling.
One clear instance of the rise is in the construction field where people are moving away
from paper plans to Builing Information Modeling (BIM) to generate construction plans. The
UK government mandated BIM in April 2016 in every construction project which requires
that all projects funded by the central government be delivered with ‘fully collaborative 3D
BIM’. As the mandate has come into force, there has been a rise in levels of BIM adoption.
According to the National BIM Report 2018, 20% of the industry has adopted BIM since
2016 mandate. Also, many mechanical parts used in the industrial equipment are now being
designed using various 3D modeling software instead of 2D sketches.

Autonomous systems such as autonomous driving, autonomous robots moved from being
science fiction to a very real possibility during the past twenty years. Any such autonomous
system that interacts with the real world need a 3D model of the environment to make
decisions and perform tasks. There are many other fields where more and more 3D modeling
is being adapted.
With the increase in usage of 3D data, there has also been an increase in the need for

understanding of the 3D data. A simple example could be that you have a 3D model
of a mechanical part and want a system to automatically segment the part into multiple
components as shown in figure 1.1. Another instance where interpreting 3D data is required
is in autonomous driving where the system should have a semantic understanding (as shown
in figure 1.2) of its environment to make decisions.
How a 3D model is represented plays an important role in developing techniques that

can understand the model. There are many different representations in which a 3D model
can be represented. Following are the three most used formats in which 3D information is
represented.

• Voxel grids : Voxel grids is a geometry type defined on a regular 3D grid similar
to images in 2D. A voxel can be thought of as the 3D counterpart to a pixel in 2D.

1



1 Introduction

Figure 1.1: Shown an example of segmentation of a mechanical part. The image is from
[Buo+17].

Figure 1.2: Shown an example of 3D understanding of your environment during autonomous
driving. The image is from [Mit19].

Although they closely resemble images in structure, they are not widely used due to
the memory requirement to store the voxel grid. In most voxel grids the subject takes
only up to 50% of the grid and the rest of the grid is usually empty hence requiring

2



1 Introduction

more memory than necessary. Furthermore, the resolution is limited.
• Meshes : A mesh is a collection of vertices, edges and faces that defines the shape of

an object. Meshes can easily convey the distinct identities of a mesh through geodesic
separation, despite their proximity in euclidean space. Figure 1.4 shows one such
example on a camel mesh.

• Point Clouds : Point cloud is a set of data points in space. The points represent a
3D shape or object. Point clouds are the most popular and also the simplest of all the
representations for 3D. Nowadays, point clouds can be easily obtained using LiDAR
or Depth sensors or various other sensors. But unlike meshes point clouds do not
have any information about the shape structure of the subject due to no information
about how the points are connected.

Figure 1.3 shows examples for each of the three data structure types.

(a) Voxel Grid. (b) Point Cloud.

(c) Mesh.

Figure 1.3: Different data structures for 3D data. The images are from [WLX12], [Aga+11]
and [Pol10].
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1 Introduction

Figure 1.4: An example where meshes can easily convey the distinct identities of the camel
joints through geodesic separation, despite their proximity in euclidean space.
The image is from [Han+19].

While there are many works [CMZ19], [DT20] that use voxel grids for 3D understanding,
they usually struggle with computation time and memory. Due to the easy in obtaining and
simplicity in its representation most of the recent effort is focused on developing techniques
[Qi+17a], [Qi+17b], [Li+18] for point cloud shape analysis. Due to the advantages that
meshes have over other data structures, meshes are used as the data structure for 3D models
in our thesis.

1.1 Problem Statement

Over the past decade, there has been a massive success of deep learning in image un-
derstanding tasks such as Segmentation [Che+17], Object Detection [Ren+16], [TPL20],
Instance Segmentation [He+18] and others. However, all of the success has been limited to
2D images, whereas the progress in the 3D domain has been limited. Most of the algorithms
in images rely on the Convolutional Neural Networks (CNNs) and extending these works to
3D data is not straightforward. The biggest challenge here is the unstructured representation
of 3D data such as meshes or point clouds.

Hence in this thesis, the task of extending convolution operations to unstructured data and
their application to the task of Mesh segmentation are explored. Mesh segmentation can be

4



1 Introduction

formally defined as for any given Mesh or Graph G ∶ (X,E), where X ∶ {x1,… , xN}, xi ∈
RF are the features of the vertices and E ∈ [0,… , N]2 are the edges between the vertices,
assign each vertex i a label yi from a predefined set of categories of length C .

1.2 Thesis Structure

This thesis is structured as follows. In chapter 1, an introduction to 3D data modeling and
different 3D representations is provided along with the problem statement of this thesis
and the thesis structure. In chapter 2 an overview of existing approaches to the problem
statement is given, highlighting the differences to our approach. Next in chapter 3 existing
works that are very closely related to our approaches are discussed in detail. Afterwards, in
chapter 4, transformer networks [Vas+17] and its various components are explained. Also at
the end of the chapter, an example of applying a transformer network to Machine Translation
is explained. In chapter 5, our approaches to the task of Mesh Segmentation are discussed
in detail. Afterwards, in chapter 6, the experimental setup for the thesis which includes
the datasets used, model architectures used, training and evaluation procedures, and a few
implementation details are discussed. In chapter 7, results of our approaches and extension
works are listed and interpreted. Later in chapter 8, future steps and ideas that are out of
scope for this thesis but are related to our work are discussed. At the end in chapter 9, our
work in this thesis is summarized.

5



2 Related Work

This chapter provides an overview of existing 3D mesh segmentation techniques. First a
brief overview of traditional 3D segmentation techniques that calculate handcrafted features
and use classical Machine Learning models to form clusters is provided. Followed by some
of the image-based 3D mesh techniques where images of the 3D object at interest are used
to segment the object in 3D. At the end techniques that directly operate on the 3D data of
the model using Deep Learning to generate segmentation and the categorization of such
techniques are discussed. Our approach falls into the last category of these techniques as
meshes are directly used in our approach to generate segmentations.
Most of the techniques that operate directly on the 3D mesh use some form of Graph

Neural Networks. Such techniques use the graph nature of the meshes to transfer information
among the vertices/edges of the mesh, then use this information to segment the vertices/edges.
A more detailed discussion on Convolutional Graph Neural Network (ConvGNN) in presented
in section 3.

2.1 Classical Computer Vision Methods

Classical Computer Vision techniques involve creating hand crafted features and training
classifiers using these features that can segment a 3D mesh. In [KHS10] a CRF (Conditional
Random Field) model is designed for the task of mesh segmentation. The objective function
then consists of two energies, the unary energy and the geometric pair wise energy. The
first energy corresponds to the probability of assigning a label to a face given the input
features which include descriptors of local surface geometry and context, such as curvatures,
shape diameter, and shape context. The second energy term corresponds to whether adjacent
faces should have the same label given the input features which include pairwise features
such as dihedral angles, which helps improve the accuracy at the boundaries.

Techniques like [KHS10] that use CRF assumes that the labeling of a node depends only
on its neighbors and with no message propagation steps between the neighbors the receptive

6
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field is constant. Such assumptions do not work when the mesh resolution is increased.
Also, the geometric pairwise energy term assumes that near the boundaries where the labels
change there is a significant change in the geometric features, which again might not be the
case with every mesh. In our work depending on the depth of the network the receptive
field increases exponentially thus allowing the network to gather more information before
assigning the labels.
In [SC08] Shape Diameter Function (SDF) is used to generate segmentations. Given a

mesh, the SDF provides an estimate of the local object diameter for each facet of the mesh
(the SDF values). SDF for a given point is calculate by projecting several rays from inside
a cone centered around its inward-normal direction and calculating the weighted average of
the lengths of rays that intersect with the other side of the mesh.

The segmentation algorithm first applies a soft clustering on the facets using the associated
SDF values. The final segmentation is then obtained via a graph-cut algorithm that considers
surface-based features (dihedral-angle and concavity) together with the result of the soft
clustering.
In this work, an assumption that meshes are closed is made, because in an open mesh

for a few points the rays projected to calculate the SDF values do not intersect. Also, this
method fails in the boundary regions as the SDF values do not vary much around the label
boundaries. In our approach, no such assumptions about meshes are made.

2.2 Projective analysis

Image-based techniques involve either directly using the 2D images of the 3D model from
various datasets or projecting 3D model into 2D images from different viewing angles. These
images can be various renderings/captures of the 3D object for the corresponding viewing
angle such as the color or depth. These images are passed through Neural Networks to
generate features that are then projected to 3D using the camera parameters (intrinsic and
extrinsic). These projected features are then passed through some classifiers (Deep Learning
or Classical) to calculate the final segmentation.

ShapePFCN (3D Shape Segmentation with Projective Convolutional Networks) [Kal+17]
combines image-based Fully Convolutional Network (FCN) and surface-based Conditional
Random Field (CRF) to yield segmentations of 3D shapes. It first applies FCN’s on color
and depth images of the 3D model from different viewpoints to calculate the per-label

7
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confidence maps for all the viewpoints. It then uses an Image2SurfaceProjection layer to
project the label maps from different viewpoints onto the 3D model. Finally, it uses a CRF
layer to generate 3D labels.

[Wan+13] treats an input 3D shape as a collection of 2D projections. It first labels each
projection by transferring knowledge from existing labeled images, and then back-projects
and fuses the labelings on the 3D shape. For a given 3D shape they produce a set of multi-
view projections as binary images. Each projection is used to retrieve multiple images from
semantically labeled images (from ImageNET dataset) based on a novel bi-class Hausdorff
distance, label projection by performing label transfer and an associated confidence map.
All labeled projections and confidence maps are back-projected onto the input 3D model to
compute the labeling probability map. Finally, graph cut segmentation is applied based on
the labeling probabilities to produce the final segmentation and labeling.
[Law+17] uses a similar approach of projecting 3D input into 2D images, applying a

Neural Network to segment the 2D images which are then fused and back-projected to 3D
to form the final segmentation. They demonstrate the application on a scene point cloud.
Projective analysis simplifies the processing task by working in a lower-dimensional

space, circumvents the requirement of having complete and well-modeled 3D shapes, and
in few cases addresses the data challenge for 3D shape analysis by leveraging the massive
available image data. Such techniques are more memory efficient as they operate on lower-
dimensional data and usually share the weights of the FCN’s applied on the images. But
one major problem with image-based techniques is that they need to select viewpoints
such that when combined they cover 100% of the 3D model. Not doing so will produce
results that are not accurate in the parts which were not visible from any of the viewpoints.
Selecting such viewpoints is a problem of its own. One solution is to select a huge number
of viewpoints and hope that they cover 100% of the 3D model. But then this increases
inference times as there are as many images as the number of viewpoints to process and
generate segmentations. Another problem with image-based techniques is the difficulty to
perform real-time 3D segmentation as they need images from multiple viewpoints that cover
the entire 3D model. In our approach, the algorithm is directly applied on the 3D model
hence with sufficient optimizations can be run in real-time.

8
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2.3 Graph analysis

The next category of techniques make use of the underlying graph representation of 3D
meshes to extract neighborhood information and perform Deep Learning operations on them.
As per the survey on Graph Neural Networks in [Wu+20] this category of techniques are
mainly divided into three sub-categories

• Recurrent Graph Neural Networks (RecGNNs)
• Convolutional Graph Neural Networks (ConvGNNs)
• Graph autoencoders (GAEs)

2.3.1 Recurrent Graph Neural Networks (RecGNNs)

Recurrent Graph Neural Networks (RecGNNs) [Dai+18] [GM10] [Li+17] [Sca+09] aim to
learn node representations with recurrent neural architectures. They assume a node in a graph
constantly exchanges information/message with its neighbors until a stable equilibrium is
reached. They apply the same set of parameters recurrently over nodes in a graph to extract
high-level node representation. RecGNNs updates nodes’ states by exchanging neighborhood
information recurrently until a stable equilibrium is reached.
In Graph Neural Network (GNN) [Sca+09], for a node v at time t the state ℎ(t)v is

calculated as follows
ℎ(t)v =

∑

u∈v

f (xv, xe(v,u), xu, ℎ
(t−1)
u ) (2.1)

where xe(v,u) is the edge feature for the edge (v, u), xv, xu are the input features of the nodes
v and u, ℎ(t−1)u is the previous state of the node u, f (.) is a parametric function (eg. a
neural network) and v is the neighborhood of v.

Graph echo state Network (GraphESN) [GM10] consists of an encoder and an output layer.
The encoder is randomly initialized and requires no training. It implements a contractive
state transition function to recurrently update node states until the global graph state reaches
convergence. Afterward, the output layer is trained by taking the fixed node states as inputs
Gated Graph Neural Network (GGNN) [Li+17] uses a Gated Recurrent Unit (GRU)

[Cho+14] as a recurrent function, and fixing the number of recurrence steps. In GNNN
equation 2.1 is transformed as shown below

ℎ(t)v = GRU (ℎ(t−1)v ,
∑

u∈v

W ℎu(t− 1))) (2.2)

9



2 Related Work

where W is a linear transformation applied on previous state of the neighbor u.
The difference between RecGNN and our approach is that, in RecGNN the node states

are updated until an equilibrium is reached, whereas in our approach the network consists
of a fixed number of layers with different weights and does not wait for any equilibrium, it
instead learns the weights by back-propagating the objective loss.

2.3.2 Convolutional Graph Neural Networks (ConvGNNs)

A significant part of Graph Neural Networks are Convolutional Graph Neural Networks
(ConvGNNs) which generalize the operation of convolution from grid data to graph data.
ConvGNNs are closely related to Recurrent Graph Neural Networks. Instead of iterating
node states (using the same weights) until an equilibrium is reached, ConvGNNs uses a
fixed number of layers with different weights to address the cyclic mutual dependencies
architecturally. Due to the efficiency and the convenience of ConvGNNs to composite with
other neural networks, the popularity of ConvGNNs has been rapidly growing in recent
years.

According t the survey on Graph Neural Network (GNN) [Wu+20] ConvGNNs fall into
two categories spectral-based and spatial-based. Spectral-based approaches define graph
convolutions by introducing filters from the perspective of graph signal processing where the
graph convolutional operation is interpreted as removing noises from graph signals. Spatial-
based approaches [VBV18] [Han+19] [Mic09] [AT16] [NAK16] [Gil+17] inherit ideas from
RecGNNs to define graph convolutions by information propagation. Since GCN [KW17]
bridged the gap between spectral-based approaches and spatial-based approaches, spatial-
based methods have developed rapidly recently due to its attractive efficiency, flexibility, and
generality. Our approach falls into the spatial-based convolutions category, as the spatial
representation of 3D meshes are used to compute segmentation.

For the interest of this thesis, only spatial-based convolutions are discussed. In this section,
a few examples of spatial-based convolutions are discussed and in chapter 3 spatial-based
convolutions are discussed in detail.

Neural Networks for Graphs (NN4Gs)

Neural Networks for Graphs (NN4Gs) is one of the first works towards spatial-based graph
convolutions. In NN4G a graph convolution is performed by summing up the neighboring
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nodes’ information directly. NN4G derives its next layer (k) node states ℎkv by

ℎkv = f (W
T
k xv +

k−1
∑

i=1

∑

u∈v

ΘTkℎ
k−1
u ) (2.3)

where Wk,ΘK are linear transformations, f (.) is an activation function and v is the
neighborhood of v.
In NN4G all the transformed neighboring features are given equal weights in the sum-

mation, in our approaches the weights to the neighboring features are calculated using the
attention mechanism (discussed in detail in the following chapters).

Message Passing Neural Networkss (MPNNs)

Message Passing Neural Networkss (MPNNs) [Gil+17] outlines a general framework of
spatial-based ConvGNNs. It treats graph convolutions as a message passing process in which
information can be passed from one node to another along edges directly. MPNN runs
K-step message passing iterations to let information propagate further. The message passing
function (namely the spatial graph convolution) is defined as

ℎkv = Uk(ℎ
k−1
v ,

∑

u∈v

Mk(ℎk−1v , ℎk−1u , xevu)) (2.4)

where ℎ0v = xv (xv is the input features for v), Uk(.) and Mk(.) are learnable parameters for
step k.

Graph Sage

As the number of neighbors of a node can vary from one to a thousand or even more, it
is inefficient to take the full size of a node’s neighborhood. GraphSage [HYL18] adopts
sampling to obtain a fixed number of neighbors for each node. It performs graph convolutions
similar to a MPNN but only on the sampled neighborhood as shown in equation 2.5

ℎkv = �(W
kfk(ℎk−1v , {ℎk−1u ,∀u ∈ Sv

})) (2.5)
where ℎ0v = xv (xv is the input features for v), fk(.) is an aggregation function and Sv

. is
sample of fixed number of neighbors for node v.
Graph convolutions such as Graph Sage or MPNN assume identical contributions of

neighboring nodes to the central node. In our approaches, the contributions are calculated
using the attention mechanism.

11
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2.3.3 Graph Autoencoders (GAEs)

Like auto encoders Graph Autoencoders are unsupervised learning techniques which en-
code nodes/vertices into latent vector space and reconstruct graph data from the encoded
information. Such techniques are used to learn network embeddings and graph generative
distributions. These network embeddings can be used to train a classifier to label the nodes
thus segmenting the 3D model.

[ZWC19], [WCZ16] [KW16], [Pan+19], [Tu+18] are few of such techniques that propose
various types of algorithms to generate Network Embeddings.

In these techniques, the network embeddings are not specially trained for a specific task
such as segmentation. Such embeddings store generalized information about the graphs. In
our approaches, the node embeddings are trained for a specific task using the loss for that
task, which in our case is the mesh segmentation. Such embeddings store more task-specific
information and help produce better results for the task.

12



3 Spatial-based Graph Convolutions

Spatial-based graph convolutions are analogous to convolution operation of a Convolutional
Neural Network (CNN) in an image (2D data). Like in images where the convolutions
are based on pixels spatial representation, graph convolutions are based on nodes spatial
relation. As shown in 3.1a convolution in images can be considered a special case of a
graph convolution where each pixel(node) is connected to its nearby pixels. In 3.1a a filter
is applied on a 3x3 patch on the pixel values of the neighboring nodes and the root node.
In 3.1b a new root node representation is generated by convolving the existing root node
representation with the neighboring node representations.

(a) 3x3 Convolution in 2D. (b) Graph convolution.

Figure 3.1: Convolution operations on images-2D (left) vs graph-3D (right). Red node is
the root node for which convolution is being calculated. Black edges indicate
which nodes are being used in the convolution operation. In images when a 3
X 3 filter is applied all the pixel values in the 3 x 3 patch are used to calculate
the final value for the root node. In a graph typically all the neighbors of the
root node are used to calculate the value for the root node.
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3 Spatial-based Graph Convolutions

3.1 Ordered to Unordered Data

For images, the computation of a convolution operation is as simple as weighted average
of the pixel values. The simplicity comes from the structured/ordered data in the images
where there is a clear one to one mapping between the weights and the neighbors at relative
positions w.r.t the root/center pixel of the convolution (eg. top left to the root node). This
is not the same for graphs, as most graphs come without any order i.e. the input to the
convolution is not always in the same order like in images and also the number of input
nodes vary for each root node. Which makes it difficult to learn weights associated with
the nodes.

3.1.1 Permutation Invariance

To overcome this issue most of the graph convolutions are designed to be permutation
invariant. Permutation invariance means that for any permutation of an input vector ([A, B,
C, D]) like [A, B, D, C], [B, C, A, D] etc. the output of the network should always be the
same. In the case of graphs no matter the order of the neighboring nodes the network or
the convolutional layer should always return the same output.
To be permutation invariant most of the graph convolutions incorporate at least one of

the following into their architecture.
• Permutation invariant operations such as Sum, Max, Min, Mean, etc. where the order

of the input does not affect the output
• Decide the order of the input before passing it to the convolution such that the same

order is passed in every forward pass
• Train a network on all possible permutations. This is computationally quite expensive

and the least preferred option
In our approaches, a series of permutation invariant operations are used to acheive permuta-
tion invariance, more details about this is dicussed in chapter 5. In the following sections,
some of the spatial graph convolution algorithms that are very closely related to our work
are discussed in detail and how they manage to be permutation invariant is shown.
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3.2 Feature-Steered Graph Convolutions (FeaStNet)

Feature-Steered Graph Convolutions [VBV18] introduces Graph Convolutions using dynamic
filters. Instead of assigning a single weight for a pair (i, j) they propose a soft weight
assignment qm(xi, xj) as a result the final value of the root node after convolution is defined
by

x′i = b+
M
∑

m=1

1
|i|

∑

j∈i

qm(xi, xj)Wmxj (3.1)

where xi, xj are input features of the nodes i and j respectively, b ∈ R is bias, M is the
number of weight matrices and qm(xi, xj) is the assignment of xj to the m-th weight matrix
Wm and is calculate as follows

qm(xi, xj) ∝ exp(uTmxi + v
T
mxj + cm) (3.2)

with ∑M
m=1 qm(xi, xj) = 1. Here Wm, um, vm, cm are all learnable parameters.

From the equations 3.1 and 3.2 it is clear that the weights are calculated dynamically
using the root node and the neighbor representation. Here the permutation invariance is
achieved using the summation ( ∑ ) operator. Figure 3.2 shows graphical representation
of Feature-Steered Graph Convolution operation where each node in the input patch is
associated in a soft manner to each of the M weight matrices based on its features using
the weight qm(xi, xj).

Similar to FeaStNet, in our approaches, the weights are calculated dynamically which helps
the model to learn the weights associated to their neighbors. However, in our approaches,
the weights are calculated not only between the root node and the neighboring nodes, but
also among the neighboring nodes themselves. Also, our approaches use a different weight
calculation function which is discussed more in detail in chapters 4 and 5.

3.3 MeshCNN

MeshCNN by Hanocka et al. [Han+19] is a convolutional neural network designed specifi-
cally for triangular meshes. They use edges as nodes instead of vertices to calculate the 3D
mesh segmentation. Convolutions are applied on edges (root) and the four edges of their
indicent triangles.

MeshCNN tackles the problem of permutation invariance by aggregating the 1-ring edges
into two pairs of edges which have un-ambiguity (e.g. a and c, b and d from 3.3a) and
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3 Spatial-based Graph Convolutions

Figure 3.2: Feature Steered graph convolutional network, where each node in the input patch
is associated in a soft manner to each of the M weight matrices based on its
features using the weight qm(xi, xj). The image is from [VBV18].

generate new features by applying simple symmetric functions on each pair (e.g. sum(a, c)).
The convolution is applied on the new symmetric features thereby eliminating any order
ambiguity.

The input edge feature for the very first layer is 5-dimensional vector for every edge: the
dihedral angle, two inner angles and two edge-length ratios for each face as shown in figure
3.3b. Each of the two face-based features (inner angles and edge-length ratios) are sorted,
thereby resolving the ordering ambiguity and guaranteeing invariance.

MeshCNN is an example where the problem of permutation invariance is solved by both
using a permutation invariant function and by deciding the order of the input before passing
to the convolution.
In MeshCNN edges are used as nodes and the assumption that all the shapes are repre-

sented as manifold meshes, possibly with boundary edges is made. Such assumptions are
not satisfied when applying the model to point clouds where the edges with the nearest
neighbors might not form a polygonal faces. In our work, vertices are used as nodes and no
such assumptions about the shapes are made hence making our approaches more extensible.

3.4 Graph Attention Network (GAT)

Graph Attention Network (GAT) by Velickoviˇc´ et al. [Vel+18] is one of the very first works
to use attention mechanism (attention is discussed in detail in 4.2) in a graph convolution
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(a) (b) Graph convolution

Figure 3.3: (a) The 1-ring neighbors of the edge e can be ordered as (a,b,c,d) or (c,d, a,b),
depending on which face defines the first neighbor. To avoid the ambiguity new
set of features are generated by applying simple symmetric functions on each
pair (e.g. {sum(a, c), sum(b, d)}). (b) The input edge feature is a 5- dimensional
vector for every edge: the dihedral angle, two inner angles and two edge-length
ratios for each face. The edge ratio is between the length of the edge and the
perpendicular (dotted) line for each adjacent face. In MeshCNN they sort each
of the two face-based features (inner angles and edge-length ratios), thereby
resolving the ordering ambiguity and guaranteeing invariance. The images are
from [Han+19].

algorithm. They introduce Graph Attention Layers, the building blocks of Graph Attention
Networks.
Graph Attention Layer calculates the weights assigned to the neighboring features by

calculating attention weights �ij between the root node and its neighbors. These attention
weights are calculated using attention coefficients which are calculated by

eij = a (W .ℎi,W .ℎj) (3.3)
where ℎi ∈ RF is the input features for node i, W ∈ RF ′×F is a linear transformation
applied on input nodes and a ∶ RF ′ ×RF ′ → R is a shared attention mechanism (F is the
number of features in each node and F ′ is the number of output features).

Attention coefficients eij indicate the importance of node j’s features to node i. Attention
coefficients are only calculated for nodes j ∈i where i is the neightborhood of node i
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in the graph. To calculate the attention weights are normalized by applying softmax function
on attention coefficients to make them easily comparable across different nodes as shown in
the equation 3.4

�ij = softmax j(eij) =
exp(eij)

∑

k∈i
exp(eik)

(3.4)

In GAT, the attention mechanism a is a single-layer feedforward neural network parametrized
by a weight vector ⃖⃗a ∈ R2F ′ , and applying the LeakyReLU nonlinearity. With this attention
mechanism the attention weights the equation 3.4 is transformed into

�ij =
exp

(

LeakyReLU
(

⃖⃗aT
[

W .ℎi ∥ W .ℎj
]))

∑

k∈i
exp

(

LeakyReLU
(

⃖⃗aT
[

W .ℎi ∥ W .ℎk
])) (3.5)

where ∥ is the concatenation operation.
Once the attention weights are calculated the final representation ℎ′i of the node i, is

calculated as follows
ℎ′i = �

(

∑

j∈i

�ijW ℎj

)

(3.6)

They also extend their algorithm to employ multi-head attention, like in [Vas+17]. Multi-
head attention uses a fixed number of independent attention mechanisms/heads and then at
the end the outputs are concatenated. Multi-Head attention is discussed in detail in 4.2.
To employ Mult-Head attention with K heads the equation 3.7 is transformed into

ℎ′i =∥
K
k=1 �

(

∑

j∈i

�kijW
k ⃖⃗ℎj

)

(3.7)

where ∥ represents concatenation, �kij are normalized attention coefficients computed by the
k-th attention head (ak), and W k is the corresponding input linear transformation’s weight
matrix. Figure 3.4 shows graphical representation for the calculation of the attention weights
and multi-head attention mechanism for graphs.

The approaches proposed in this thesis (discussed in detail in 5) uses attention mechanism
and mutli-head attentions similar to Graph Attention Network. The difference is that in
GAT the neighboring nodes are attended only by the root node which means that the
attention weights are calculated only between the root node and the neighboring nodes. In
our approach, every node attends to every other node which means attentions coefficients
are calculated between every pair of nodes from the neighboring nodes and the root node.
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3 Spatial-based Graph Convolutions

Figure 3.4: Left: The attention mechanism a (W .ℎi,W .ℎj) employed by GAT, parametrized
by a weight vector, applying a LeakyReLU activation. Right: An illustration
of multihead attention (with K = 3 heads) by node 1 on its neighborhood.
Different arrow styles and colors denote independent attention computations.
The aggregated features from each head are concatenated or averaged to obtain
ℎ′1.
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Transformer by Vaswani et al. [Vas+17] is a Deep Learning model introduced in 2017, used
mainly in the field of Natural Language Processing. Transformers are designed to operate
on sequential data to like other Recurrent Neural Networks (Long-short Term Memory
(LSTM) [HS97], Gated Recurrent Units (GRU) [Chu+14] etc.), but work quite differently
compared to the Recurrent Neural Network. Unlike in Recurrent Neural Network (RNN),
Transformers do not require that the sequential data be processed in a specified order. This
design paradigm allows for much more parallelization than other Recurrent Neural Network
(RNN)s and therefore reduce training times.

Attention and Transformer Networks are an integral part of our ConvGNN algorithm
which is discussed in detail in chapter 5. This section first covers what attention is and
its various forms and how it originated and then details about transformer networks and
various components involved in a transformer network such as Multi-Head Attention, Encoder,
Decoder and Positional Encoding are covered.

4.1 Seq2Seq

Sequence-to-Sequence (Seq2Seq) models first introduced by Google in [SVL14] [Cho+14]
are deep learning models that have achieved a lot of success in the tasks like machine trans-
lation, text summarization, speech recognition video/image captioning and are a backbone
to numerous applications like Google Translate, voice-enabled devices, and online chatbots.
Seq2Seq models are models that take a sequence of items and outputs another sequence of
items. For tasks such as machine translation, the input is a sequence of words and output is
the translated sequence of words.

A simple Seq2Seq model consists of an encoder and a decoder, where the encoder stores
the information about the input sequence {x1, x2,… , xn} in the form of a hidden state
vectors {ℎ1, ℎ2,… , ℎn} in order to help decoder make accurate predictions {y1, y2,… , ym}.
Then the decoder uses this hidden state vector to generate an output sequence. A typical
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Seq2Seq models include some form of Recurrent Neural Networks in their encoders and
decoders.
Figure 4.1 shows an example of a Seq2Seq model where the encoder and the decoder

is a sequence of RNNs. The encoder consisting of a stack of RNNs takes the sequence as
an input and generates a final hidden state vector which is then sent to the decoder which
again consists of a stack of RNNs to predict an output sequence.

Figure 4.1: Sequence-to-sequence encoder decoder architecture, where the encoder and the
decoder is a sequence of RNNs. The encoder consisting of stack of RNNs takes
the sequence as an input and generates a final hidden state vector which is then
sent to the decoder which again consists of stack of RNNs to predict an output
sequence. The image is from [Kos19].

4.2 Attention

While simple Seq2Seq models have achieved a lot of success they have their drawbacks. As
discussed above the job of an encoder is to generate a hidden state vector that stores all the
context about the input sequence to help decoder predict an accurate output sequence. Hence
the output sequence heavily relies on the hidden state generated by the encoder, making it
very difficult for the model to deal with long sequences, where there is a high chance that
information about the first few inputs have been lost by the end of the sequence.
Seq2Seq models in [LPM15] and [BCB16] solve the issue of loss of information by

passing all the hidden input states generated by the encoder to the decoder and letting the

21



4 Transformers

decoder decide at every step, which hidden states are most important. This is done by
creating a context vector ci which is a weighted average of all the hidden states provided
by the encoder which can be calculated by the equation 4.1

ci =
N
∑

j=1
�ijℎj (4.1)

Where, N is the length of the input sequence, ℎj are the hidden state vectors generated by
the encoder and �ij are the weights assigned to the hidden state vectors at step i. Once the
context vector is calculated, it is combined with the hidden state vector of the decoder by
concatenation, thus forming a new attention hidden vector which is used by the decoder for
predicting the output at that time instance. The weights �ij are the amount of attention the
i-th output should pay to the j-th input hidden state vector. Then the weights are computed
by taking softmax over the attention scores, denoted by e, of the inputs with respect to the
i-th output. The equation to calculate the weights �ij is

�ij = softmax (eij) =
exp(eij)

∑N
k=1 exp(eik)

(4.2)

where
eij = a (si−1, ℎj) (4.3)

Here a is an alignment model which decides the impact each input hidden state vector has
on the final context vector, si−1 is the hidden state from the previous step. In [BCB16],
the alignment model is approximated by a small neural network, thus allowing both the
models (Seq2Seq and the alignment model) to be optimized together. Attention weights for
an english to frensh translation example from [BCB16] can be seen in figure 4.2.

4.2.1 Generalized Attention

Given a query q and a set of key-value pairs (K, V ), attention can be generalized as
computation of the weighted sum of values, where the weights are dependent on the query
and the corresponding keys. Here, since the query decides the impact of each value in the
output; it can be said that the query attends to the values. Generalized attention can be
written as

A(q,K, V ) =
∑

i

exp
(

eqki
)

∑

j exp
(

eqkj
)vi (4.4)
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Figure 4.2: From [BCB16]. The x-axis and y-axis of each plot correspond to the words in
the source sentence (English) and the generated translation (French), respectively.
Each pixel shows the weight �ti of the annotation of the j-th source word for
the i-th target word in grayscale.

where q ∈ Rdq , ki ∈ Rdk and vi ∈ Rdv (dq, dk, dv ∈ N) are i-th key and value respectively
and ej = a(q, kj) ∈ R For the Seq2Seq discussed above the query q is the previous hidden
states si−1 and the input hidden state vectors {ℎ0,… , ℎn} represent both the keys and values.

4.2.2 Alignment Model

The alignment model (a ) comes in various forms. Section 4.1 showed an example where
the alignment model a is approximated by a neural network that can be trained along with
the Seq2Seq model. Below are a few more examples of alignment models that are quite
frequently used in the research field.
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Dot-Product Attention

Dot-Product attention as the name suggests is a simple dot product of the query and the
key defined by

ei = qTki (4.5)
where dk = dq.

Multiplicative Attention

Multiplicative attention is a special case of a dot product attention, where a linear transfor-
mation is applied to the key before the attention computation

ei = qTW ki (4.6)
where W ∈ Rdq×dk is the linear transformation

Additive Attention

Additive attention introduced in [BCB16] is defined as
ei = vT tanh(W1ki +W2q) (4.7)

where W1 ∈ Rd3×dk ,W2 ∈ Rd3×dq (d3 ∈ N) are linear transformations applied to the key and
the query respectively and v ∈ Rd3 is a weight vector.

Concat Attention

Concat attention introduced in [LPM15] is similar to additive attention where instead of
addition concatenation is used.

ei = vT tanh(W (ki ∥ q)) (4.8)
where ∥ is a concatenation operation, W ∈ R(dq+dk) is a linear transformation applied to
the concatenated value and v ∈ Rdk+dq is the weight vector.

4.3 Transformer Network

Transformer Network like other Seq2Seq models have an encoder-decoder structure. Here, the
encoder maps a sequence of input representations x = (x1,… , xn) ∈ Rn×dmodel to a sequences
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of latent representations z = (z1,… , zn) ∈ Rn×dmodel . Given the latent representation z
and the masked output sequence ymask ∈ Rm×dmodel of the actual output sequence y =
(y1,… , ym) ∈ Rm×dmodel (in detail in section 4.3.2) the decoder predicts the probability y′
of the next output. At each step the model is auto-regressive, consuming the previously
generated symbols as additional input when generating the next. A high level architecture
of the transformer network is shown in the figure figure 4.3

Figure 4.3: High level architecture of the transformer network.

In this section details about the components of transformer networks namely the encoder,
the decoder, scaled dot-product attention, multi-head attention, self-attention, position-wise
feed-forward networks and positional encoding are discussed. All these components and
their underlying concepts play an important role in our methods. In chapter 5, how these
components and concepts are used to build up our work is discussed.
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4.3.1 Encoder

Encoder is a stack of N identical encoder layers (ENC). Each encoder layer consists of two
sub-layers. The first layer the multi-head self-attention layer, and the second is a position-
wise fully-connected feed-forward network. Each of the two sub-layers also consists of a
residual connection [He+15], followed by layer normalization [BKH16].
The output of an encoder z for the sequence of input representations x = (x1,… , xn) is

computed by

z = ENC(x) = ENCN (ENCN−1(… (ENC1(x+ PE))…)) (4.9)

where

ENCi(x) = LayerNorm(SubLayer1i (x) + FFN
i(SubLayer1i (x))) (4.10a)

SubLayer1i (x) = LayerNorm(x+MHi(x, x, x)) (4.10b)

where, LayerNorm is the layer normalization operation, FFN is a position-wise fully
connected feed-forward network, MH is a multi-head attention layer (section 4.3.5) and PE
is the positional encoding (section 4.3.3)

4.3.2 Decoder

Decoder is also a stack of N identical decoder layers (DEC). Each decoder layer consists
of three sub-layers. The first and the last sub-layers are identical to the first and the second
sub-layers from the encoder layer. The middle sub-layer is a multi-head attention layer
over the output of the encoder and the output of the first sub-layer in the decoder layer.
Similar to encoder layers, decoder layers consist of residual connections for each of the
three sub-layers, followed by layer normalization. The first multi-head self-attention layer in
the decoder stack is modified to prevent positions from attending to subsequent positions.
This masking ymask ∈ Rn×dmodel , combined with the fact that the output representations y are
offset by one position, ensures that the predictions for position i can depend only on the
known outputs at positions less than i.
The output of an decoder y′ ∈ Rm×C (where C is the number of output classes) for the

latent sequence z = (z1,… , zn) and the masked output sequence ymask is computed by

y′ = DEC(z, ymask) = DECN (DECN−1(… (DEC1(z, ymask+ PE))…)) (4.11)
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Figure 4.4: Architecture of the encoder in the transformer network.

where

DECi(z, y) = LayerNorm(SubLayer2i (z, y) + FFNi(SubLayer2i (z, y))) (4.12a)
SubLayer2i (z, y) = LayerNorm(SubLayer

1
i (y) +MHi(SubLayer1i (y), z, z)) (4.12b)

SubLayer1i (y) = LayerNorm(y+MHi(y, y, y)) (4.12c)

Where LayerNorm is the Layer normalization operation, FFN is a position-wise fully
connected feed-forward network, MH is a multi-head attention layer (section 4.3.5) and PE
is the positional encoding (section 4.3.3)

Figure 4.4 and figure 4.5 shows the architecture of the encoder and decoder components
of the transformer network. Figure 4.6 shows the entire architecture of the transformer
network.
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Figure 4.5: Architecture of the decoder in the transformer network.

4.3.3 Positional Encoding

As discussed earlier unlike RNN transformers by design do not need sequential data as there
is no recurrence. In order for the model to make use of the order of the sequence, [Vas+17]
add extra information about the relative or absolute position of the tokens in the sequence.
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Figure 4.6: Low level architecture of the complete transformer network.

To do this the authors propose positional encodings which is a function of the position pos
of the token and depth i in the feature dimension. These positional encodings have the same
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dimension as the input representations and are summed to the input representations at the
bottoms of the encoder and decoder stacks. Transformers use sine and cosine functions of
different frequencies to generate positional encodings as shown below

PE(pos, i) =

⎧

⎪

⎨

⎪

⎩

sin(pos∕100002i∕dmodel ) if i is even
cos(pos∕100002i∕dmodel ) if i is odd

(4.13)

where dmodel is the number of features in the input. Each dimension of the postional
encoding correspond to a sinusoid. Authors claim that this would allow the model to easily
learn to attend by relative positions, since for any fixed offset k, PEpos+k can be represented
as a linear function of PEpos.
Postional encodings are also used in our transformer based convolution layer (discussed

in section 5.3) and while applying atrous convolution (discussed in section 5.5).

4.3.4 Scaled Dot Product Attention

Additive attention (equation 4.7) and dot-product attention (equation 4.5) are similar in
theoretical complexity, but dot-product attention is much faster and more space-efficient in
practice, since it can be implemented using highly optimized matrix multiplication code.
Authors in [Vas+17] claims that with an increasing number of features (dq, dk) in the query
q and keys k, additive attention outperforms dot-product attention.

Scaled dot product attention is an attention mechanism introduced by Google in [Vas+17]
designed to have the same computation efficiency as a dot product attention but also have
the peformance of an additive attention. For a given query q ∈ Rdqk and a key k ∈ Rdqk

scaled dot-product attention computes the attention scores by:

ei =
qTk
√

dqk
(4.14)

Scaled dot-product attention is identical to the dot-product attention discussed above except
for the scaling factor √dqk. An intuitive explanation is that for large values of dqk, the dot
product grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients. The scaling factor should help the softmax values stay close to
zero and thus have good gradients to be back propagated.
Hence for a given set of queries Q ∈ RN×dqk and key-value pairs K ∈ RM×dqk , V ∈
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RM×dv the attention (Figure 4.7) A(Q,K, V ) ∈ RN×dv is computed as
A(Q,K, V ) = softmax

(

QKT
√

dqk

)

V (4.15)

Figure 4.7: Scaled Dot-Product Attention over Q ∈ RN×dqk and key-value pairs K ∈
RM×dqk , V ∈ RM×dv .

4.3.5 Mult-Head Attention

Multi-Head attention also introduced in [Vas+17] unlike scaled dot-product attention, instead
of performing a single attention function with dq, dk, dv dimensional query, key and values
respectively, computes ℎ attentions in parallel (called heads) over ℎ linearly projected queries,
keys and values with different, learned linear projections to d′q, d

′
k, and d′v dimensions

respectively. The outputs from these ℎ attentions are then concatenated and once again
projected, resulting in the final values.
For dq = d′q ∗ ℎ, while the computation cost remains the same, author in [Vas+17]

claims that having multiple attention heads allows the model to learn relevant information
in different child spaces and thus yielding better performance than having a single attention
mechanism.
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Hence for a given set of queries Q ∈ RN×dqk and key-value pairs K ∈ RM×dqk , V ∈
RM×dv the mutli-head attention (Figure 4.8) MH(Q,K, V ) ∈ RN×dv is computed as

MH(Q,K, V ) = (ℎead1 ∥ … ∥ ℎeadℎ)W0 (4.16)

where ℎeadi = A(QW Q
i , KW

K
i , V W

V
i ) and the matrices W Q

i ∈ R
dq×d′q ,W K

i ∈ Rdk×d′k ,W V
i ∈

Rdv×d′v are projection parameters.

Figure 4.8: Multi-head attention layer from the transformer network over Q ∈ RN×dqk and
key-value pairs K ∈ RM×dqk , V ∈ RM×dv .

4.3.6 Self Attention

Self Attention is a special form of Attention introduced in [Vas+17] where all the queries,
keys, and values are the same (Q = K = V ). The goal of the self-attention is to learn the
dependencies among inputs and use that information to capture the internal structure of the
inputs.

Self Attention was introduced as an alternative to recurrent and convolutional layers which
are commonly used for mapping one variable-length sequence of representations to another
sequence of equal length, to reduce the computational complexity per layer, increase the
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amount of computation that can be parallelized while having a similar performance.
SA(X) = A(X,X,X) = softmax

(

XXT
√

dx

)

X (4.17)

where X ∈ RN×dx

As discussed in the sections 4.3.1 and 4.3.2 the encoder and decoder components of the
transformers uses multi-head attention in three different ways

• Encoder-decoder attention in the decoder layers. In this the queries come from the
previous layer in the decoder stack and the keys and values come from the output
of the encoder stack. This allows every position in the decoder to attend over all
positions in the input sequence. This attention is similar to encoder-decoder attention
mechanism in Seq2Seq models discussed in section 4.1.

• Encoder self-attention in the encoder layers. In this all of the queries, keys and values
come from the output of the previous layer in the encoder stack. Each position in the
encoder can attend to all positions in the previous layer of the encoder.

• Decoder self-attention in the decoder layers. Similar to self-attention layers in the
encoder all of the queries, keys, and values come from the output of the previous
layer in the decoder stack. These attention layers allow each position to attend to
all positions in the decode up to and including that position. This is implemented
inside of the scaled dot-product attention by masking out all values in the input of
the softmax which correspond to illegal connections.

4.3.7 Position-wise Feed-Forward Networks

A Position-wise Feed-Forward network consists of two linear transformations with a ReLU
activation in between as is referred to as Feed Forward in the following sections. For
x ∈ RN×dx

FFN(x) = max(0, xW1 + b1)W2 + b2 (4.18)
where W1 ∈ Rdx×df ,W2 ∈ Rdf×dx , b1 ∈ Rdf and b2 ∈ Rdx

4.4 Examples

In this section an example of an application of transformers for Machine Translation task
and application of attentions in Convolutional Graph Neural Network is discussed.
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4.4.1 Machine Translation

As discussed in the beginning of chapter 4 and in section 4.1 Sequence-to-Sequence models,
in particular Seq2Seq models with attention such as transformer network became very famous
for its success in Natural Language Processing tasks especially Machine Translation Task.

At a high-level Machine Translation is the task of converting a sequence of words from one
language to a sequence of words in another language (figure 4.9). For example, converting
the sentence (sequence of words) "How are you?" in English to "¿Cómo estás?" sentence in
Spanish.

Figure 4.9: Machine translation task at high level.

Most of the Sequence-to-Sequence models are auto-regressive i.e. at each step it consumes
information about the previously generated output of the model (acts as a conditioning on
the output of the model) additional to the regular input to the model. For example for
the task of translating the sentence "How are you?" to "¿Cómo estás?" a Seq2Seq with
self-attention model takes three steps to generate the translated sentence. Following are the
details of each step

• In the first step the input to the model is a sequence of words ["How", "are", "you",
"?"] and "<s>", where "<s>" points to the start of the sentence and acts as a dummy
for the "previous output" discussed earlier (in practice these words are split into tokens
and these tokens have embeddings, for the scope of this thesis is it assumed that
the sequence of words is the input) and the model is expected to predict the word
"¿Cómo" as the next word.

p(wi|["How", "are", "you", "?"], ["<s>"])
= DEC(ENC(["How", "are", "you", "?"]), "<s>")[i]

(4.19)

Where, wi is a word from the spanish vocabulary.
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• In the second step the input is now the sequence of words ["How", "are", "you", "?"]
and the sequence of previously generated outputs ["<s>", "¿Cómo"], and the model
is expected to predict the word "estás?" as the next word.

p(wi|["How", "are", "you", "?"], ["<s>", "¿Cómo"])
= DEC(ENC(["How", "are", "you", "?"]), ["<s>", "¿Cómo"])[i]

(4.20)

Where, wi is a word from the spanish vocabulary.
• Similar to the second step the input is the sequence of words ["How", "are", "you",

"?"] and the sequence of previously generated outputs ["<s>", "¿Cómo", "estás?"]
and the model is expected to predict the word "</s>" which refers to the end of the
sentence.

Figure 4.10 shows the details of each of the steps discussed above using the transformer
network.
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(a) Step one of the translation using transformer . (b) Second step of the translation using transformer
.

(c) Final step of the translation using transformer .

Figure 4.10: Shows inputs to each of the step involved in translating the sentence "How are
you?" to spanish. Demonstrates the auto-regressive design of the model.
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Transformer networks and their components form the core to our work in this thesis. In this
section, two approaches to the task of 3D Mesh Segmentation that are based on transformer
network and its components are discussed. Our first approach shows how a Mesh Segmenta-
tion task can be treated as a Machine Translation Task, thus how transformer networks can
be modified to be used for Mesh Segmentation. Our second approach is to design a Graph
Convolution layer called Transformer Convolution based on the various components of the
transformer discussed in chapter 4 that can be used in any Convolutional Graph Neural
Network.

Following these, two extensions to the approaches are discussed. First how, where and why
is the positional encoding (discussed in section 4.3.3) useful for Transformer Convolution
(TransConv) is discussed. Then the second extension, the application of atrous convolution
to a graph and how positional encoding can be incorporated into atrous convolution is
discussed.

5.1 Problem Statement Recap

To recall the problem statement as discussed in chapter 1, for any given Mesh or Graph
G ∶ (X,E), where X ∶ {x1,… , xN}, xi ∈ RF , F ∈ N are the features of the vertices and
E ∶ {… , eij ,…}, eij ∈ R2 are the edges between the vertices, to assign each of the vertices
a label Y ∶ {y1,… , yN}, yi ∈ {0,… , C} from a predefined set of labels of length C .

5.2 Transformer for Mesh Segmentation (MeshTrans)

Previously in section 4.4.1 an example of transformer network being used for the task of
Machine Translation was shown. In this section, our first approach on how transformers can
similarly be used for the task of mesh segmentation is discussed.
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Figure 5.1: Shows the graphical representation of the problem statement for this thesis,
which is semantic segmentation if 3D meshes. The input on the left hand side
is a 3D mesh and the expected output is the semantic segmentation of the 3D
mesh.

At a high-level, mesh segmentation can also be thought of as a Machine Translation
task where the source vocabulary is the set of all vertices in the mesh G and the target
vocabulary is the set of all labels for the mesh. Then the task of segmenting a single vertex
is equivalent to translating a single sentence with the input sentence now being a set of
features of neighboring vertices {{xj ∶ j ∈i} ∪ xi} instead of ["How", "are", "you", "?"].
The conditioning on the decoder is now the features of the root vertex xi instead of "<s>".
The output here is the probability yi of the label from the target category associated to the
root vertex i instead of the probability of the next word in the Spanish vocabulary.
In a Machine Translation task, the encoder has the responsibility to store information

about the words in the source language that helps decoder to accurately predict the next
word in the target language, similarly in our approach the encoder has the responsibility
to store information about the neighborhood of the root vertex that can help the decode to
make accurate predictions about the label of the root vertex.
Also, transformers by design are invariant to permutation, which is also the reason why

positional encoding is added for the tasks that have order in input as shown in section
4.3.3. This permutation invariance makes them much more suitable for processing graph
data structures like meshes. Hence in our first approach, a transformer architecture is used
as our baseline and modify it for the task of Mesh Segmentation.
In our MeshTrans, for a mesh G ∶ (X,E) to calculate the label for a vertex i using a

transformer network, the input Xi to the encoder will be the union of the set of features
of the neighboring vertices xi = {xj ∶ j ∈i} ∈ Rn×F , (where i = {j ∶ eij ∈ E} is the
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neighborhood) and the features of the root vertex {xi}, and the input to the decoder is the
features of the output of the encoder Zi and the input features of the root vertex xi. The
final output of the transformer network is the vector of probabilities of the label associated
to the root vertex. The probability that the root vertex is assigned the label ci is calculated
as

p(cj|Xi, {xi}) = DEC(ENC(Xi), {xi})[j] (5.1)
where Xi = {xi ∪ {xi}}, cj is the jth label from the predefined set of labels C .

Figure 5.2 shows the final architecture of our first approach Transformer for Mesh Seg-
mentation (MeshTrans). For a given graph G ∶ X,E and vertex i, a neighborhood matrix
Xi is created, which is passed through a feed-forward neural network to increase the feature
dimensions dmodel before passing them to the encoder stack. Similarly, the input to the
decoder is also upscaled using a feed-forward neural network as shown in the figure. Table
5.1 shows a list of hyper parameters for the MeshTrans network.
Table 5.1: Shows the list of hyper parameters and their descriptions in a MeshTrans network.

Hyper parameter Description

num_layers Number of channels in the input
heads Number of heads to be used in the multi-head

attention layer
dmodel

Number of channels to which the input should
be upscaled to before passing to the encoder

df

Number of output channels in the first feed-
forward network of the position-wise feed-
forward neural networks (discussed in section
4.3.7)

5.3 Transformer Convolution (TransConv)

In our first approach, the inputs to the transformer architecture are modified in such a way
that a Mesh Segmentation task is treated as a Machine Translation Task. Such an approach
is very closely linked to the model architecture and thus can not be treated as a convolutional
layer that can fit into any model architecture.
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Our second approach is to design a Graph Convolution layer called Transformer Convo-

Figure 5.2: Architecture of Transformer for Mesh Segmentation, consisting of L encoder
layers and L decoder layers. For any vertex i, a neighborhood matrix Xi is
created, which is passed through a feed-forward neural network before passing
them to the encoder stack. The encoder output along with the root node features
are passed through the decoder stack to generate output category probabilities.
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lution (TransConv) using the components of the transformer network that can be treated
similar to any convolution operation in images. The advantage of such an operation is that it
can be fit into any model architecture. A Graph Convolution operation like any convolution
operation on images (with stride one) can be defined as follows
In general, for any mesh G ∶ (X,E) and vertex/node features ℎi, i ∈ [1,… , N], ℎi ∈

RF , F ∈ N at any point in the network, the output of the Graph Convolution(GC) ℎ′i, i ∈
[1,… , N], ℎ′i ∈ RF ′ , F ′ ∈ N

ℎ′i = GC(ℎi, E) (5.2)
As discussed in chapter 3, the goal of any graph convolution operation is to gather infor-

mation from the neighborhood and store important information in the output representations.
In many attention based graph convolution operations such as Graph Attention Network
[Vel+18], FeaStNet [VBV18], Dynamic Graph CNN [Wan+19], etc. the attention weights
are calculated only between the root vertex and the neighboring vertices (i.e. root attends the
neighbors). In our graph convolution layer Transformer Convolution (TransConv), along with
the attention weights between the root vertex and the neighboring vertices, new attention
weights between every possible pair of vertices from the set of neighboring vertices are also
calculated (i.e. every neighbor attends every other neighbor).
To do this, our TransConv is split into two operations
• First operation is where each vertex in the neighborhood attends every other vertex in

the neighborhood.
• Second operation is the attention based aggregation operation which aggregates all the

information learnt by the neighboring vertices after the first operation.
The first operation is equivalent to the encoder layer (figure 5.3) operation in the encoder of
a transformer followed by a simple feed-forward neural network. The input in this case is
the union of the set of neighboring vertex features ℎi = {ℎj ∶ i ∈i} ∈ Rn×F , n = |i|

and the features of the root vertex ℎi and the output Zi ∈ R(n+1)×F is a set of encoded
representations which is of the same length as the input. The message passing MP operation
is defined as

Zi =MP (Hi) = FFN1(ENC0(Hi)) (5.3a)
whereENC0(Hi) = LN(SubLayer(Hi) + FFN2(LN(Hi))), (5.3b)
SubLayer(Hi) = LN(x+MH(Hi,Hi,Hi)), (5.3c)
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Hi = {ℎi ∪ {ℎi}} ∈ R(n+1)×F , LN is a Layer Normalization operation, FFNis are a
point-wise feed forward neural networks and MH is a multi-head attention layer.

Figure 5.3: Encoder layer operation from the encoder part of the transformer network.

The second operation of our TransConv is a learning-based aggregation inspired by the
Pooling by Multihead Attention block from Set Transformers [Lee+19] which is discussed
in detail in the following section.

5.3.1 Set Transformer

Set Transformers [Lee+19] are an attenion-based neural network that is designed to process
data in the form of sets. In this section, details about the building blocks of the Set
Transformers and how these blocks are used for our second step (aggregation) of our graph
convolution TransConv are discussed.
Similar to the transformer architecture, the set transformer consists of an encoder and a
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decoder. The encoder and decoder are made up of three blocks
• Multihead Attention Block (MAB)
• Set Attention Block (SAB)
• Pooling by Multihead Attention (PMA)

The Set Attention Block (SAB) is the same as an encoder layer in the encoder of a trans-
former network with a different name, hence not discussed in this section.

Multihead Attention Block (MAB)

In Set Transformers, MAB is very similar to an encoder layer in the encoder of the trans-
former network. The only difference is that MAB takes two sets of inputs S1, S2 instead
of a single input and outputs a single set S′. The remaining components of the blocks are
exactly like an encoder layer as shown in figure 5.4a. The first input acts as the query and
the second acts as both the keys and values. Given two sets S1, S2 ∈ Rn×d , MAB is defined
as

S′ =MAB(S1, S2) = LayerNorm(H + FFN(H)) (5.4)
where H = LayerNorm(S1 +MH(S1, S2, S2)), FFN is a feed-forward network, LayerNorm
is a Layer Normalization operation and MH is a multihead attention.

Pooling by Multihead Attention (PMA)

In Set Transformers PMA blocks as the name suggests is used to pool a set, i.e. to reduce
the size of the set with some form of aggregation. Instead of using aggregation schemes such
as dimension wise average or maximum, PMA aggregates features by applying multihead
attention on a learnable set of k seed vectors U ∈ Rk×d . For a given input set of features
S ∈ Rn×d , PMA with k seed vectors is defined as

PMAk(S) =MAB(U, FFN(S)) (5.5)

where MAB is the Multihead Attention Block from equation 5.4 and FFN is a feed-forward
neural network. The output set length is determined by the number of seed vectors used.
Here, aggregation by attention is beneficial because the influence of each item in the set on
aggregation is not necessarily equal.
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Graphical representation of both Multihead Attention Block and Pooling by Multihead
Attention are shown in the figure 5.4

As said earlier, the Pooling by Multihead Attentions block is used for the second step
of our graph convolution operation TransConv which aggregates the information learned by
the root node and its neighbors after the first step of the convolution operation. Since after
the graph convolution operation, a one to one mapping of the input features to the output

(a) Multihead Attention Block (MAB). (b) Pooling by Multihead Attention (PMA).

Figure 5.4: Two components of Set Transformers that are used in our TransConv operation.
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features is needed, a single seed vector u ∈ R1×F ′ is used in our second step. Hence for a
set of input features zi ∈ R(n+1)×F ′ the aggregation operation can be defined as

ℎ′i = PMA(Zi) =MAB(u, FFN(Zi)) (5.6)

5.3.2 Final Architecture

In our second approach (TransConv), for any mesh G ∶ (X,E) and vertex/node features
ℎi ∈ RF , i ∈ [1,… , N] at any point in the network, the output of a Transformer Convolution
ℎ′i ∈ RF ′ , i ∈ [1,… , N] is a combination of the first and the second operations and is defined
as

ℎ′i = T ransConv(ℎi) = PMA(MP (Hi)) (5.7)
where PMA and MP operations are from equations 5.6 and 5.3 respectively and Hi =
{ℎi ∪ {ℎi}} ∈ R(n+1)×F , n = |i|.
Figure 5.5 shows the final architecture of our graph convolution layer Transformer Con-

volution layer. First, for any given vertex all the neighboring vertex features (found using
the edges) are stacked to form a matrix Hi ∈ R(n+1)×F . This matrix is passed through a
feed-forward neural network to increase the feature dimensions to dmodel. The output is then
passed through the encoder layer followed by a simple feed-forward neural network to match
the output channels F ′. The output is passed on to the Pooling by Multihead Attention
layer to generate the final output of the Convolution layer. Table 5.2 shows details about
the hyper paramters in a single Transformer Convolution layer.

5.3.3 Suppport for Batching

It is quite common for vertices in graphs to have different degrees, to support batch opera-
tions through our graph convolution operation TransConv, the highest degree (n′) among all
the vertices in the batch is calculated and zero features are appended to the vertices with
degree less than the maximum degree to form a tensor ∈ RN×n′×F where, N is the number
of vertices and F is the number of features for each vertex.

5.4 Depth Encoding

In section 4.3.3 it was shown how Positional encoding is beneficial in transformer network
and how it is calculated. This section covers details about how and why can Positional
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Encoding be useful for the task of Mesh Segmentation.
Having looked at the architecture of Transformer Convolution layer, one can observe that

there is no way for the model in both the operations (message passing and learning-based
aggregation) to know which vertex is the root vertex for which the segmentation needs to be
calculated. To help the model learn which vertex is the root vertex depth encoding is added
similar to positional encoding in transformer network to the input to differentiate neighboring

Figure 5.5: Final architecture of the Transformer Convolution layer. For any given vertex
all the neighboring vertex features (found using the edges) are stacked to form
a matrix Hi ∈ R(n+1)×F . This matrix is first passed through a feed-forward
neural network and then passed through the encoder layer followed by another
simple feed-forward neural network. The output is passed on to the Pooling by
Multihead Attention layer to generate the final output of the Convolution layer.
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Table 5.2: Shows for each of the hyper parameters in a single Transformer Convolution
layer, the names and descriptions.

Hyper parameter Description

F ′
Number of channels/features to be present in the
output

heads Number of heads to be used in the multi-head
attention layer

dmodel

Number of channels to which the input should be
upscaled to before passing to the encoder (also
called the depth of the layer)

df

Number of output channels in the first feed-
forward network of the position-wise feed-
forward neural networks (discussed in section
4.3.7)

vertices from the root vertex. Depth encoding is similar to positional encoding in transformer
networks where the positions of each vertex is the depth (shortest path distance) from the
root vertex. That is the root vertex is assigned a position of 0 and the neighboring vertices
are assigned a value 1.

In our a scaled version of positional encoding function from transformer network is used
as shown below

DE(deptℎ, i) =

⎧

⎪

⎨

⎪

⎩

� ∗ sin(deptℎ∕100002i∕dmodel ) if i is even
� ∗ cos(deptℎ∕100002i∕dmodel ) if i is odd

(5.8)

where � is the scaling factor decided according the distribution of the input feature values,
deptℎ is the depth of the neighbor vertex from the root vertex and i ∈ [0,… , F ] is the
depth along the feature dimension. Like in transformer network the depth encoding is added
to the input only once at the very beginning of the model before calling the TransConv
layers.
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5.5 Atrous Convolution

Atrous Convolution also known as dilated convolution is a type of convolution operations
first introduced in [YK16] and became famous with the introduction of DeepLab [Che+17]
model which produced state of the art results for the task of Semantic Segmentation of
images.
The output y[i, j] of an atrous convolution operation on a two dimensional input x[i, j]

with a filter w[k, l] is defined as

y[i, j] =
K
∑

k=1

L
∑

l=1
x[i+ r.k, j + r.l]w[k, l] (5.9)

where r is the rate parameter, which corresponds to the stride with which the input signal
is sampled. Figure 5.8 shows graphical interpretation of the Atrous Convolution operation.

Figure 5.6: Atrous convolution on 2D input using a kernel of width size 3 with rate r = 2.
The image is from [Prö18].

The main idea behind atrous convolution is to increase the receptive field without increas-
ing the memory consumption and without any decrease in the spatial resolution. Figure 5.7
shows an example of exponentially increasing receptive field using atrous convolutions.

In our work, the concept of atrous convolutions is extended to Convolutional Graph Neural
Network. Atrous convolution is applied to graphs by updating edge matrix E of a graph
with new edges. These new edges correspond to the vertex pairs whose geodesic distance
(distance along the initial graph edges) is less than a predefined depth. The new edges are
found by performing a Breadth-First Search (BFS) for each of the vertices on the graph
with a limit on the depth of traversal. Once all the new edges with depth less than the
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(a) X1. (b) X2.

(c) X3.

Figure 5.7: Atrous convolution supports exponential expansion of the receptive field without
loss of resolution or coverage. (a) x1 is produced from input by a 1-dilated
convolution; each element in X1 has a receptive field of 3×3. (b) X2 is produced
from X1 by a 2-dilated convolution; each element in X2 has a receptive field of
7×7. (c) X3 is produced from X2 by a 4-dilated convolution; each element in
X3 has a receptive field of 15×15. The number of parameters associated with
each layer is identical. The receptive field grows exponentially while the number
of parameters grows linearly. The images are from [YK16].
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pre-defined depth are calculated, the rate parameter is used to filter out edges. For any rate
r only the edges with depths of the form 1 + r ∗ i, i ∈ W are added to the edge matrix E.
Figure 5.8 shows an example of atrous convolution for graph with rate r = 2 and max depth
of three.

Figure 5.8: An example of atrous convolution on graph input. For the root vertex (in red)
new edges with the vertices at depth one (in yellow) and depth three (in orange)
are added to existing edges are added before applying any Graph Convolution.

Similar to atrous convolutions in images, atrous convolutions in graphs helps increase the
receptive field of the model and helps the model to converge faster.

5.5.1 Depth Encoding

In atrous convolution for images due to the structured representation of images, the convolu-
tion operator has the information of mapping between input value and pixel position, but
it is not the same in atrous convolution for graphs. Due to the permutation invariance in
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the graph convolution operations, the model does not have any information about the depth
of the neighbor. Hence in our work, to include the depth information, the Depth Encoding
discussed in section 5.4 is extended to atrous convolutions.

The depth encoding function (equation 5.8) uses the calculated depths of the newly added
edges to calculate their corresponding depth encodings. These depth encodings are added
to the input features only once at the very begining of the model. Adding depth encoding
to atrous convolution helps the model to differentiate vertices based on both geodesic
distance (distance along the graph) and on euclidean distance (distance in space). Using this
information the model can decide the influence of a certain vertex on the final convolution.
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6.1 Environment

For our work, the GPU cluster provided by the Institute for Robotics and Mechatronics of
the DLR (German Aerospace Center), is used. The cluster consists of Titan V 12GB, Titan
RTX 24GB, 2080 RTX Ti 11GB and Quadro GV100 32GB GPU’s. Most of our training
and testing is carried out on a single Titan V 12GB GPU.

Our code for the work is implemented using Python 3.8 and PyTorch 1.7 [Pas+19] is used
for all Deep Learning related GPU operations. PyTorch-geometric [FL19] is a geometric
deep learning extension library built for PyTorch. It provides data structures and functions
to support graph data on a GPU. It also provides out of the box support for benchmark
datasets and other Convolutional Graph Neural Network. In our work PyTorch-geometric is
used for all graph-related operations. PyTorch lightning [Fal19] is a lightweight PyTorch
wrapper for high-performance Machine Learning research. In our code PyTorch-Lightning is
used to wrap training methods and for distributed training on multiple GPU’s.

6.2 Datasets

Datasets are important in any learning-based methods. With the rise in the application of
Deep Learning in almost every field, there has been quite a steep increase in the number of
public datasets. There has also been a rise in the number of datasets targeting 3D scenes
and objects, but most of these datasets are intended for the purpose of the classification
rather than segmentation. Also due to the ease of obtaining point clouds over meshes, most
of the datasets provide point clouds and not meshes.

Table 6.1 shows a few of the publicly available datasets for 3D segmentation, the format
of data (point clouds or meshes) that is provided by the datasets, and the category (objects
for 3D objects or scenes for 3D scenes). For our work, the datasets Coseg [Wan+12]
consisting of high-resolution 3D meshes and ShapeNet [Cha+15] consisting of point clouds
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are used for the training and evaluation. The datasets are chosen to show the performance of
our work in this thesis on both point clouds and on meshes. Both the datasets are discussed
in detail in the following sections.
Table 6.1: Shows few of the publicly available datasets for the task of 3D segmentation.

The first column is the name of the dataset, followed by the data format provided
by the dataset, followed by the high level category of the 3D data provided by
the dataset, followed by references to each of the datasets.

Dataset Format Category Reference

COSEG Meshes Objects [Wan+12]
LabeledPSB Meshes Objects [KHS10] [CGF09]
PartNet Meshes & Point Clouds Objects [Cha+15] [Mo+19]
ScanNet Meshes & Point Clouds Scenes [Dai+17]
S3DIS Point Clouds Scenes [Arm+16]
ShapeNet Point Clouds Objects [Cha+15] [Yi+16]

6.2.1 COSEG

The Shape COSEG dataset [Wan+12] is a dataset consisting of high-resolution meshes
of 3D objects and their part annotations. The dataset was introduced to provide data for
quantitative analysis of how people consistently segment a set of shapes.
The labeling of the 3D models in the COSEG dataset is generated by using a semi-

supervised learning method where the user actively assists in the co-analysis (simultaneous
segmentation of the shapes in a set in a consistent matter) by iteratively providing inputs
that progressively constraint the system. The method uses a novel constrained clustering
technique which embeds elements to better respect their inter-distances in feature space
together with the user-given set of constraints. Also an active learning method is introduced
that suggests to the user where his input is likely to be the most effective in refining the
results. Figure 6.1 shows an overview of the proposed method to obtain consistent labeling
of the meshes.
The Shape COSEG dataset is a collection of eleven sets of shapes with a consistent

ground-truth segmentation and labeling. Each set has a number of labels (or parts) ranging
from three to five. The number of models in the first seven sets is quite small ranging
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(a) (b)

(c)

Figure 6.1: Overview of a single step in the active co-analysis from [Wan+12]: (a) Start
with an initial unsupervised co-segmentation of the input set. (b) During active
learning, the system automatically suggests constraints which would refine results
and the user interactively adds constraints as appropriate. In this example, the
user adds a cannot-link constraint (in red) and a must-link constraint (in blue)
between segments. (c) The constraints are propagated to the set and the co-
segmentation is refined. The process from (b) to (c) is repeated until the desired
result is obtained.

from 12 44. For the last three sets (Tele-Aliens, Vases Large and Chairs Large) the number
of models are slightly higher with 200, 300 and 400 each respectively. Figure 6.2 shows
sample data from the COSEG dataset.

Table 6.2 shows the list of categories provided by the Shape COSEG along with the total
number of 3D models in categories and the number of models used for training and during
testing. Table 6.3 shows the number of labels in each of the categories in the COSEG
dataset.
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(a) Candelabra. (b) Fourlegs.

(c) Goblets.

(d) Tele Aliens.

(e) Vases Large.

Figure 6.2: Sample meshes and their labelling from the Shape COSEG (COSEG) dataset.
The images are from [Wan+12].
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Table 6.2: COSEG: Starting from the first column shows the name of the categories, number
of 3D models for that category, number of 3D models used for training and for
testing.

The Shape COSEG dataset categories
Category # of models Test Train

Candelabra 28 12 16
Chairs 20 12 8
Fourleg 20 12 8
Goblets 12 6 8
Guitars 44 12 32
Lamps 20 12 8
Vases 28 12 16
Irons 18 12 6
Tele-aliens 200 12 188
Vases Large 300 12 288
Chairs Large 400 12 388

6.2.2 ShapeNet

ShapeNet part-annotation [Yi+16] is a dataset consisting of point clouds of various types
of 3D objects collected from the 3D objects in ShapetNetCore [Cha+15] and their part
annotations. ShapeNet is an ongoing effort to establish a richly-annotated, large-scale dataset
of 3D shapes. It provides researchers around the world with this data to enable research
in computer graphics, computer vision, robotics, and other related disciplines. ShapeNet
is a collaborative effort between researchers at Princeton, Stanford, and TTIC. ShapeNet
is organized according to the WordNet hierarchy. ShapeNetCore is a subset of the full
ShapeNet dataset with single clean 3D models and manually verified category and alignment
annotations. It covers 55 common object categories with about 51,300 unique 3D models.
ShapeNet part-annotation dataset provides part annotations (annotation for each of differen-
tiable parts of an object eg. legs, hands, face, etc. in a human) for a subset of models from
ShapeNetCore.

The data for the ShapeNet part-annotation dataset is generated using a novel active learning
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Table 6.3: COSEG: Shows for each category in Shape COSEG dataset, the number of labels.

Shape COSEG dataset labels
Category # of labels

Candelabra 4
Chairs 3
Fourleg 5
Goblets 3
Guitars 3
Lamps 3
Vases 4
Irons 3
Tele-aliens 4
Vases Large 4
Chairs Large 3
Total 39

method that is capable of enriching massive geometric datasets with accurate semantic region
annotations. Similar to COSEG dataset, the proposed method involves cycling between
manually annotating the regions, automatically propagating these annotations across the
rest of the shapes, manually verifying both human and automatic regions and learning
from the verification results to improve the automatic propagation algorithms. The automatic
propagation of the human labels across a dynamic shape network is done using a Conditional
Random Field (CRF) framework, that takes advantage of global shape-to-shape similarities,
local feature similarities, and point-to-point correspondences. They also include a utility
function that explicitly models the time cost of human input across all steps of the method
to jointly optimize for the set of models to annotate and for the set of models to verify
based on the predicted impact of these actions on human efficiency.

The ShapeNet part-annotation dataset consists of over 16000 point clouds of objects in 16
categories with the number of models in each category varying from around 50 to around
3000. An example point cloud for each category can be seen in figure 6.4. Table 6.4 shows
the names of the categories and number of models provided by the dataset in each category
and the number of 3D models used for training, validation, and testing the algorithms. Each
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Figure 6.3: Overview of the ShapeNet part-annotation pipeline used to generate the labeling
of 3D models from [Yi+16]. Given the input dataset, an annotation set is
selected and UI is used to obtain human labels. The method automatically
propagate these labels to the rest of the shapes and then query the users to
verify the most confident propagations. Then these verifications are used to
improve our propagation technique.

category is split into multiple meaningful part labels, with the number of parts ranging from
two to six. In total there are 50 labels over 16 categories. Table 6.5 shows the number of
labels for each of the category and their names for a better understanding of the labels/parts.
Since point clouds have no connectivity information to form a graph, edges are created

for a vertex with its nearest neighbors (in euclidean space) in the point cloud. To do this a
KNN algorithm with k = 8 is applied on the point cloud data to transform it into a graph
where the edges for a vertex are its k nearest neighbors.

6.3 Models

For any Deep Learning task model architecture has a huge impact on the performance. There
is a lot of research happening in finding new model architectures or modifying existing
architectures to try increasing the model performance. In our work, the focus is not on
improving a model architecture, but on using existing model architectures and incorporate
our work and other related works into these. This is to ensure a consistent comparison of
the performance of our work with other related Graph Convolutions. In our work, a total of
three different model architectures are used for the task of 3D segmentation. The first model
is the transformer model discussed in section 4.3, the second model architecture is inspired
by FeaStNet architecture [VBV18] and the last is a U-Net model with Graph Convolutions.
Each of the models are discussed in detail in the following sections.

58



6 Experimental Setup

Figure 6.4: Shows an example of one point cloud for each category from the ShapeNet
part-annotation dataset and their labels. The image is from [Yi+16].

6.3.1 Transformer

The first model used for the task of Mesh segmentation is the transformer network for
meshes discussed in section 4.3. The model used in our work consists of three encoder
layers and three decoder layers. Following are the sequence of steps involved in a single
forward pass

• The input to the model is the concatenation of the positions of the vertices and the
normals associated, thus forming a six-dimensional feature vector for each vertex
xi ∈ R6.

• This batched input X = {x1,… , xN} is first passed into two feed-forward neural
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Table 6.4: ShapeNet: Starting from the first column shows the name of the categories,
number of 3D models for that category, number of 3D models used for training,
used for validation and used for testing.

ShapeNet Part-annotation categories
Category # of models Train Validation Test

Airplane 2690 1958 391 341
Bag 76 54 8 14
Cap 55 39 5 11
Car 898 659 81 158
Chair 3758 2658 396 704
Earphone 69 49 6 14
Guitar 787 550 78 159
Knife 392 277 35 80
Lamp 1547 1118 143 286
Laptop 451 324 44 83
Motorbike 202 125 26 51
Mug 184 130 16 38
Pistol 283 209 30 44
Rocket 66 46 8 12
Skateboard 152 106 15 31
Table 5271 3835 588 848
Total 16881 12137 1870 2874

networks to increase the feature dimensions to 64 and then to 256 (also referred to
depth of the model dmodel) to generate a 256 dimensional vectors ℎi ∈ R256 for each
vertex.

• Using the edges E of the graph, a neighbor tensor H ′ ∈ RN×m′×256 (m′ is the
maximum degree of all the vertices, N is the number of vertices) is generated where
each row i consists of the vertex i features ℎi and features of all the neighboring
vertices to the vertex ℎj . Not all the vertices have the same degree, hence to form
a dense matrix a padding of zero values is added to the rows of vertices for which
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Table 6.5: Shows the number of labels for each category and their names for better under-
standing. Unnamed label refers to a label that exists in the annotations but does
not have a name that can describe it.

ShapeNet Part-annotation categories and labels
Category # of Labels Label Names

Airplane 4 Wings, Body, Taill, Engine
Bag 2 Handle, Body
Cap 2 Peak, Panel
Car 4 Body, Wheels, Roof, Hood
Chair 4 Seat, Back, Arm, Leg
Earphone 3 Headband, Earphone, Connector
Guitar 3 Body, Head, Neck
Knife 2 Handle, Blade
Lamp 4 Shade, Base, Tube, Unnamed
Laptop 2 Screen, Keyboard
Motorbike 6 Body, Wheel, Light, Gas Tank, Seat, Handle
Mug 2 Mug, Handle
Pistol 3 Handle, Barrel, Trigger
Rocket 3 Fin, Body, Nose
Skateboard 3 Deck, Wheel, Axle
Table 3 Top, Leg, Unnamed
Total 50 -

the degree is less that the max degree m′.
• The neighbor matrix H ′ is passed through the encoder stacks. Each of the multi-head

attention in the encoder stacks consists of eight attention heads. Inside the point-wise
feed-forward neural network, the depth is increased to df = 1024 and then back to
256.

• The output tensor of the encoder stack Z ∈ Rn×m′×256 along with the input features
X is passed to the decoder stack.

• The output of the decoder stack is passed through a feed-forward neural network
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with the number of output features the same as the number of output classes (50 for
ShapeNet and 39 for COSEG).

6.3.2 FeaStNet

The second model architecture is inspired by the FeaStNet [VBV18] architecture which was
originally introduced to demonstrate the performance of Feature-Steered Graph Convolutions
for 3D part labelling.

The model consists of a sequence of feed-forward neural networks and graph convolutions
as shown in the figure 6.5. The network also consists of max pooling and global max-
pooling layers. Max-pooling refers to max-pooling of neighboring node features where the
output is the maximum value from the root vertex and its neighbors. Global max pooling
refers to max-pooling of all the vertices in the graph. It outputs the maximum value from
all the vertices of the graph. Each of the layers (linear, graph convolutions, pooling) are
followed by a LeakyRelu (slope=0.1) activation layers.

Figure 6.5: Model Architecture of the FeaStNet. LinP corresponds to a simple feed-forward
neural network with P output channels. ConvP corresponds to a graph con-
volution with P output channels. MaxPool is pooling operation over features
of each vertex. Global MaxPool is max pooling operation over features of all
the vertices. Each of the sublayers are followed by a LeakyRelu (slope=0.1)
activation layers.

Following are the sequence of steps involved in a single forward pass in FeaStnet model
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• Similar to the transformer network the input is a six-dimensional vector xi ∈ R6

which is a concatenation of the position and the normal of a vertex.
• The input is first passed through a single feed-forward neural network to increase the

feature dimensions to 16.
• The output is then passed through three graph convolution layers with layer doubling

the output feature dimensions, finally generating a 128 dimensional feature vectors for
each vertex in the graph.

• Then two feed-forward neural networks are applied to increase the feature dimensions
to 1024

• Then a MaxPool and global MaxPool operations are performed.
• All the outputs from the above layers are concatenated to form a 3056 dimensional
vector which is passed through two feed-forward networks and a softmax layer to
output the probabilities of each label.

6.3.3 U-Net

The third model used to test our approach is inspired by the U-Net architecture [RFB15]
which was first developed for biomedical image segmentation. U-Net generate fast and
precise segmentation of images. Since their introduction in 2015 U-Nets have been used for
various Image-to-Image translation tasks such as normal generation, depth map generation
and also in Image-to-Image adversarial networks such as Pix2Pix [Iso+18].
The architecture consists of two paths, a contracting path to capture context and a sym-

metric expanding path that enables precise localization. Figure 6.6 shows an example U-Net
architecture for an image from [RFB15]. In our work a similar version is used where 2D con-
volution operations are replaced with Graph Convolutions, max-pooling and up-convolutions
are replaced with edge-contraction pooling [Die19] and edge un-pooling operations discussed
in detail in section 6.3.3.
Following are the sequence of steps involved in a single forward pass in graph U-Net

model
• Similar to the other models the input is a six-dimensional vector xi ∈ R6 which is a

concatenation of the position and the normal of a vertex.

63



6 Experimental Setup

Figure 6.6: U-net architecture (example for 32x32 pixels in the lowest resolution). Each
blue box corresponds to a multi-channel feature map. The number of channels
is denoted on top of the box. The x-y-size is provided at the lower left edge
of the box. White boxes represent copied feature maps. The arrows denote the
different operations. The image is from [RFB15].

• The input is first passed through a single feed-forward neural network to increase the
feature dimensions to 16.

• The output is then passed through three steps (first path) of one graph convolution layer
and edge pooling layer each, with each step doubling the output feature dimensions
and halving the number of vertices in the graph.

• Then the output is passed through three steps (second path) of one graph convolution
layer and edge un-pooling layer each. After each step the output feature dimensions
are halved and the number of vertices in the graph are doubled. Also at each step a
skip connection from the output of the first path is added as shown in the figure 6.7.

• The output is then passed through two feed-forward networks and a softmax layer to
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output the probabilities of each label.

Figure 6.7: U-net architecture for graphs. LinP corresponds to a simple feed-forward neural
network with P output channels. ConvP corresponds to a graph convolution
with P output channels. Edge pooling and unpooling are pooling operations
explained in section 6.3.3.

Edge Pooling and Unpooling

Edge-Contraction Pooling [Die19] is a pooling operation for a graph, when applied results
in a coarse representation of the input graph. Edge contraction means merging of two nodes
e = {vi, vj} to create a new node ve and new edges such that the new node ve is adjacent
to all nodes vi or vj have been adjacent to. In the newly formed graph vi, vj and all their
edges are deleted. Such a contraction reduces the number of nodes in a graph by one.

Edge contraction pooling defines a methodology to choose which set of edges should be
contracted and the node features should be combined. Edge scoring functions are used to
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decide the set of edges to be contracted. First a raw edge score r is computed for each of
the edges using r(eij) = W T (xi ∥ xj) + b, where W ∈ RF , b ∈ R are learnable parameters,
xi, xj ∈ RF are node features and ∥ is a concatenation operation.

Using the raw edge scores the actual node scores are computed. Two construction methods
are proposed tanℎ: sij = tanℎ(rij) and softmax: sij = softmaxr∗j(rij) where the softmax
is applied over all edges which end in the same node. In our U-Net softmax-based edge
contraction is used. Once the edge scores are calculated all the edges are sorted by their
score and successively choose the edge with the highest score whose two nodes have not
yet been part of a contracted edge.

After contracting the new node features are formed by adding the features of the nodes of
the contracted edge and weighting them with the corresponding edge score x′ij = sij(xi + xj)
During the un-pooling, the pooling information is used to check which edges have been

contracted and the contraction is un-done. After un-doing the contraction the contracted
node features are copied to the now un-contracted nodes.

6.4 Training

During the training all the three models are trained for 1000 epochs with a batch size of 4.
Adam [KB17] optimizer with beta1 0.9 and beta2 0.99 is used with a learning rate of 6e-5,
1e-4, 1e-4 for the transformer network, FeaStNet and U-Net respectively.

6.4.1 Loss

The loss between the predicted label probabilities y and the target probabilities yt is a
cross-entropy loss defined by

loss = −
C
∑

i
yti log(yi) (6.1)

where C is the total number of target labels.

6.5 Evaluation

During the evaluation, the epoch with the best validation results is used to load the model
parameters and report the results. Mean Intersection-Over-Union (mIoU) metric is used to
measure the performance of the algorithms.
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Intersection-Over-Union (IoU) is an evaluation metric typically used to measure overlap
between two bounding boxes or masks. For images and bounding boxes/masks IoU is
calculated as follows

IoU =
Area of Overlap
Area of Union (6.2)

IoU for graph is calculated for each label (li) in a sample as follows

IoUli =
TPli

TPli + FPli + TNli
(6.3)

where TPli , FPli and TNli are the number of true positives, false positives and true negatives
for the label li respectively.

MIoU is calculated using the standard experimental protocol for graph segmentation from
[VBV18] [Qi+17a], involving the following steps

• First for each sample, predicted labels for each of the vertices are calculated using
the output probabilities. The predicted label for a vertex is the label associated with
the maximum probability among the probabilities of the labels from the category of
the sample. For example, for a sample from the car category only the probabilities
of the labels from the car category (Body, Wheels, Roof, Hood) are used to find the
predicted label.

• Then using the predicted labels and target labels IoU is calculated for each of the
labels in all the categories.

• Then mIoU for each category is the mean of the IoUs of all the labels in that category.

mIoUci =
∑Lci
i IoUli
Lci

(6.4)

where Lci is the number of labels in ci category.
• Average mIoU is the mean of the mIoUs of all categories in the dataset.

Average mIoU =
∑C
i mIoUci
C

(6.5)

• Average instance mIoU is the mean of the IoUs of all labels in the dataset.

Average Instance mIoU =
∑L
i IoUli
L

(6.6)
where L is the total number of labels across all the categories in the dataset.
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6.6 Implementation

6.6.1 Batching

Batching in graph data works very differently compared to batching in images. A batch
size of four in images implies four images with a resolution of H X W. The same can not
be said for a graph as not all the graphs have the same number of vertices and edges. In
graph data batching is done by combining multiple graphs into a single graph with updated
edge indices (updated with offsets) and vertices. Hence in graphs, a batch size of four is
internally transformed into a single graph Gbatcℎ ∶ (Vbatcℎ, Ebatcℎ) with number of vertices
|Vbatcℎ| =

∑4
i=1 |Vi| and number of edges |Ebatcℎ| =

∑4
i=1 |Ei|.

6.6.2 Breadth First Search

In section 5.5 atrous convolution for graphs was introduced. To apply atrous convolution
new edges with depth less than a fixed depth should be added to the existing edges. To
generate this data a Breadth First Search (BFS) is performed on the graph for each vertex.
Breadth First Search is an algorithm for traversing or searching tree or graph data structures
and is the most used method to find distances from a root vertex to all the vertices. For
each vertex, to produce its new edges one BFS traversal starting from the root vertex is
required. Hence for a graph to produce all the new edges N (number of vertices) BFS
traversals are required which is an expensive operation.

For model architectures such as MeshTrans, FeaStNet where the graph structure is retained
through the entire forward pass, the new edges can be pre-computed and can be stored as
part of training data. But for architectures such as U-Net where the graph structure is not
retained, these new edges should be calculated dynamically every time the graph structure
changes. To perform the BFS traversals on a CPU would take minutes for each batch hence
increasing the training time significantly. Hence a GPU implementation of the BFS traversal
that can be parallelized is required.
For our thesis, a BFS extension to PyTorch is implemented in CUDA. The algorithm is

inspired from the paper [MGG12] which presents a BFS parallelization that achieves an
asymptotically optimal O(|V |+ |E|) work complexity.
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In this chapter, the results of our work in this thesis are presented and are compared to
other related works. First, the results from the COSEG dataset are shown and then, the
results from the ShapeNet dataset are shown.

7.1 Model configurations

As discussed in section 6.3 a total of three model architectures namely
• FeaStNet [VBV18]
• U-Net [RFB15]
• Transformer for Mesh Segmentation (MeshTrans) (Ours)

are used in our experimental setup. Since the models FeaStNet and U-Net have an underlying
graph convolution layer that can be configured, these models are permuted with three different
Graph Convolution layers namely

• Transformer Convolution (TransConv) (Ours)
• Feature Steered Graph Convolution (FeaSt GraphConv) [VBV18]
• Graph Attention Network (GAT) [Vel+18]

as shown in the table 7.1, where for each of the model we compare our graph convolution
layer TransConv with the other two graph convolution layers. For our model MeshTrans,
since there is no underlying graph convolution layer that can be configured, it is considered
as a single model configuration.

Results for each of the seven configurations of model architectures as shown in the table
7.1 on the two datasets (The Shape COSEG and ShapeNet) are shown in this chapter.

69



7 Results

Table 7.1: Shows different configurations of models and graph convolution layers that are
tested in our thesis. The rows are the three different models discussed in section
6.3 and the columns are different graph convolution layers used inside the model
architecture. For MeshTrans, there are no graph convolution layers that can be
configured.

Model
Convolution TransConv (Ours) FeaSt GraphConv GAT

FeaStNet FeaStNet + TransConv FeaStNet + FeaSt FeaStNet + GAT
U-Net U-Net + TransConv U-Net + FeaSt U-Net + GAT
MeshTrans (Ours) - - -

7.2 The Shape COSEG

In this section, the mIoUs for each of the eleven categories along with the average mIoUs
for the Shape COSEG dataset is shown.

Table 7.2 and figure 7.1 shows the per-category mIoUs for the models FeaStNet + FeaSt,
FeaStNet + GAT and our methods FeaStNet + TransConv and MeshTrans. It can be
seen that our graph convolution layer TransConv outperforms all the other models in most
of the categories. However, our approach to use the transformer networks directly for
mesh segmentation (MeshTrans) does not produce any state of the art results, but has a
performance comparable to the other methods. This performance could be attributed to the
lack of message propagation between neighbors in a MeshTrans. Unlike other Convolutional
Graph Neural Network (ConvGNN), due to the design of our MeshTrans the neighbor node
representations are never updated with the information from their neighboring nodes. Since
all the meshes are of high resolution, all the neighbors are close to each other thus without
message propagation, the model can not make accurate predictions.

Table 7.3 and shows the per-category mIoUs for all the eleven categories for the models U-
Net + FeaSt, U-Net + GAT and our work U-Net + TransConv. MeshTrans is not compared
in this table because the number of model parameters in MeshTrans is significantly higher
compared to U-Net models hence will not be a reasonable comparision.
It can seen that, similar to the results on FeaStNet base model, our graph convolution

layer TransConv using U-Net base model outperforms all the other models in most of the
categories and has a comparable performance in the rest of the categories. Similar to results
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Figure 7.1: Segmentation accuracy in mIoU on the COSEG dataset for FeaStNet + FeaSt,
FeaStNet + GAT, FeaStNet + TransConv, MeshTrans. mIoU values are shown
on the y-axis and the categories are on the x-axis. Each data point shape
represents a different model. The green and the pink bar represents our works
TransConv and MeshTrans respectively.

Table 7.2: Segmentation accuracy in mIoU on the COSEG dataset for FeaStNet + FeaSt,
FeaStNet + GAT, FeaStNet + TransConv, MeshTrans.
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FeaStNet + FeaSt 60.91 46.09 76.6 39.33 61.72 87.19 58.41 34.87 58.17 52.99 67.28 87.45
FeaStNet + GAT 60.87 56.72 74.16 40.66 62.46 85.76 56.24 38.75 53.25 49.45 62.88 89.30
FeaStNet + TransConv (Ours) 62.96 58.43 78.87 40.25 60.18 88.18 58.81 36.16 57.87 54.19 69.64 89.99
MeshTrans (Ours) 57.97 43.19 72.16 37.06 59.17 87.96 52.61 30.16 59.16 50.74 63.85 81.63

with FeaStNet models, our approach to use transformers directly for mesh segmentation
(MeshTrans) has a relatively poor performance.
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Table 7.3: Segmentation accuracy in mIoU on the COSEG dataset for U-Net + FeaSt, U-Net
+ GAT and U-Net + TransConv (ours) model configurations.
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U-Net + FeaSt 62.74 52.03 72.16 42.37 70.81 83.36 53.56 36.89 66.51 60.96 68.26 83.3
U-Net + GAT 62.13 50.9 70.96 42.98 65.84 83.89 55.2 38.82 66.33 62.19 62.97 83.44
U-Net + TransConv (Ours) 62.94 52.85 73.18 42.18 71.51 82.83 56.77 35.76 67.19 62.44 64.58 83.12

Figure 7.2: Segmentation accuracy in mIoU on the COSEG dataset for U-Net + FeaSt,
U-Net + GAT, U-Net + TransConv. mIoU values are shown on the y-axis and
the categories are on the x-axis. Each data point shape represents a different
model. Green bar shows results for our graph convolution layer TransConv.

7.3 ShapeNet

In this section, the mIoUs for each of the 16 categories along with the average mIoUs for
the ShapeNet part-annotation dataset is shown.
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For each combination of the Graph Convolution layer in FeaStNet model table 7.4 and
figure 7.3 shows the per-category mIoU results. It can be seen that our graph convolution
layer (TransConv) outperforms both Graph Attention Network and FeaSt Graph Convolutions
in most of the categories and has comparable performance in the rest. Also, although our
Transformer for Mesh Segmentation (MeshTrans) did not outperform the other approaches in
most of the categories, it has comparable performance to the others. The weaker performance
could be attributed to the low receptive field in MeshTrans compared to the FeaStNet model.
In Convolutional Graph Neural Network after each convolution, the nodes contain information
about their neighbors, thus increasing the receptive field exponentially, whereas in MeshTrans
the receptive field is constant (depending on the k in KNN algorithm) which is decided
when providing the input to the network. However, our MeshTrans has significantly high
performance in the Cap category compared to the other models, which shows the potential
of our MeshTrans.
Table 7.4: Segmentation accuracy in mIoU on the ShapeNet dataset for FeaStNet + FeaSt,

FeaStNet + GAT, FeaStNet + TransConv (Ours) and MeshTrans (Ours) model
configurations.
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FeaStNet + FeaSt 76.21 76.54 71.94 76.17 73.72 85.14 63.7 88.57 77.34 79.52 95.97 60.15 90.63 78.1 55.63 70.65 75.67
FeaStNet + GAT 76.74 77.01 70.82 80.28 71.48 83.47 61.39 88.93 77.48 78.24 95.73 62.88 91.39 77.83 62.27 73.49 75.12
FeaStNet +
TransConv (Ours)

77.2 78.1 72.69 80.98 72.19 86.28 62.65 89.01 77.54 79.77 96.04 61.76 92.7 80.41 57.49 71.54 76.13

MeshTrans (Ours) 76.08 75.16 71.8 84.06 71.53 84.82 62.14 88.5 77.49 78.11 95.77 58.89 91.21 79.88 53.25 72.68 73.79

Table 7.4 and figure 7.4 shows mIoU results for the model U-Net + FeaSt, U-Net +
GAT and our method U-Net + TransConv for each of the 16 categories in the ShapeNet
datasets. Again our MeshTrans is not compared with U-Net because of the significantly
different number of model parameters. As shown in the results, out graph convolution layer
TransConv outperforms other graph convolution layers in most of the categories and has a
comparable performance in the rest of the categories.

7.3.1 Depth Encoding

Table 7.6 and figures 7.5, 7.6, 7.7 shows results for our works with and without our depth
encodings discussed in section 5.4 that are added to the input. It can be seen that in model
architectures FeaStNet and U-Net the depth encoding helps improve the model performance.
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7 Results

Figure 7.3: Segmentation accuracy in mIoU on the ShapeNet dataset for FeaStNet + FeaSt,
FeaStNet + GAT, FeaStNet + TransConv, MeshTrans. mIoU values are shown
on the y-axis and the categories are on the x-axis. Each bar represents a different
model as shown in the plot legend. The green and the pink bar represents our
works TransConv and MeshTrans respectively.

Table 7.5: Segmentation accuracy in mIoU on the ShapeNet dataset for U-Net + FeaSt,
U-Net + GAT and U-Net + TransConv (ours) model configurations.
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U-Net + FeaSt 71.49 73.66 70.5 71.23 61.85 79.84 63.84 87.12 76.71 73.1 94.31 49.41 91.32 69.97 53.01 61.61 66.5
U-Net + GAT 70.24 70.18 69.1 72.74 61.16 78.65 64.12 86.6 75.17 73.73 94.85 53.6 86.91 67.57 42.18 62.16 65.19
U-Net + TransConv
(Ours)

71.31 71.67 76.45 69.76 63.19 80.19 64.27 87.17 77.05 72.8 94.32 48.91 85.71 70.01 43.01 62.56 68.91

However, in MeshTrans depth encoding does not improve the performance. The main
reason for this is that in MeshTrans due to the conditioning on the decoder, the network
already knows which vertex is the root vertex whereas in FeaStNet and U-Net without depth
encoding, the model does not know which vertex is the root vertex, hence depth encoding
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7 Results

Figure 7.4: Segmentation accuracy in mIoU on the COSEG dataset for U-Net + FeaSt,
U-Net + GAT and our work U-Net + TransConv. mIoU values are shown on
the y-axis and the categories are on the x-axis. Each bar represents a different
model as mentioned in the legend. Green bar represents our work.

has more impact in these models compared to MeshTrans
Table 7.6: Segmentation accuracy in mIoU on the ShapeNet dataset of our approaches with

and without Depth Encoding (DE).
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MeshTrans 76.19 75.16 71.8 84.06 71.53 84.82 62.14 88.5 77.49 78.11 95.77 58.89 91.21 79.88 53.25 72.68 73.79
MeshTrans + DE 75.78 75.1 70.21 82.92 72.75 82.19 61.81 88.9 77.1 77.91 95.8 57.19 91.16 79.5 55.63 72.17 72.18
FeaStNet +
TransConv

77.2 78.1 72.69 80.98 72.19 86.28 62.65 89.01 77.54 79.77 96.04 61.76 92.7 80.41 57.49 71.54 76.13

FeaStNet +
TransConv + DE

77.44 78.91 73.13 81.3 71.89 87.68 59.16 88.81 78.24 80.15 95.84 61.19 92.9 81.11 61.22 70.71 76.91

U-Net + TransConv 70.99 71.67 76.45 69.76 63.19 80.19 64.27 87.17 77.05 72.8 94.32 48.91 85.71 70.01 43.01 62.56 68.91
U-Net + TransConv +
DE

71.65 71.81 75.18 70.16 64.18 82.04 63.8 87.97 77.35 72.17 96.32 50.18 85.11 70.87 47.12 63.06 69.11
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7 Results

Figure 7.5: Segmentation accuracy in mIoU on the ShapeNet dataset for MeshTrans with
and without depth encoding (DE).
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7 Results

Figure 7.6: Segmentation accuracy in mIoU on the ShapeNet dataset for FeaStNet +
TransConv with and without depth encoding (DE).
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7 Results

Figure 7.7: Segmentation accuracy in mIoU on the ShapeNet dataset for U-Net + TransConv
with and without depth encoding (DE).
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8 Future Steps

In this thesis, multiple approaches for the Mesh Segmentation task and extensions to these
approaches are discussed. However, there are many other ideas that could be tested to
improve the performance of our approaches, but are beyond the scope of this thesis. Such
ideas are discussed in this chapter.

8.1 Depth Encoding strategies

Depth Encoding for Mesh Segmentation was discussed in section 5.4 which adds information
about the geodesic distance (distance along the graph) to the model input. Similar to
positional encoding in transformer network a sinusoid function was used to encode the depth
information. However, there can also be other alternatives functions to depth encoding that
could better encode depth information.
One idea is to use learning-based depth encodings that can be learned by the model

during the training. Right now the depth encoding is added to the input at the very start
of the model before the encoder is called, another idea can be to add depth encoding at
different stages in the transformer.

Unlike in sentences where the positional value can go up to a 100 in very long sentences,
in graphs, the max depth that is used even in atrous convolution is a depth of 3. The depth
encoding function can be modified to consider the maximum depth to better distinguish
different depths

8.2 Datasets

In this thesis, our approach is tested on two datasets namely COSEG and ShapeNet to show
the performance on both point clouds and on 3D meshes. However, both these datasets
consisted of 3D models of single objects. In the future, our approach could be tested on
more detailed datasets such as ScanNet which consists of 3D scanning of rooms that are
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8 Future Steps

more ricjer in structure and contain more disconnected components compared to single
objects.
Also, a combination of meshes and point clouds can be used to train the model to take

advantage of both the geodesic distance and the euclidean distance similar to [Sch+20]

8.3 Memory Consumption

One major issue with applying deep learning directly to real-world applications is the GPU
memory consumption of a model. Many strategies have been developed to reduce the mem-
ory footprint of a model. Although both our approaches (MeshTrans and TransConv) have
the model parameter count that is similar to other related works, the memory requirement
during an inference is much higher for MeshTrans and TransConv due to creation of the
neighbor matrix H =ℎi ∪{ℎi}. This neighbor matrix is then used to calculate the attention
weight matrix HTH where every neighboring vertex attends to every other vertex. Because
every neighbor attends to every other neighbor, in a batched input there is a high chance
of repetitive attention weight calculations. To reduce both the number of attention weight
calculations and the memory, attention weights between all possible neighbor pairs can be
pre-computed and then can be scattered to form the attention weight matrix which takes
much less memory compared to the neighbor matrix H .
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9 Conclusion

In this thesis, two new approaches to the task of Mesh Segmentation are presented. In the
first approach, it is shown how a mesh segmentation task can be thought of as a Machine
Translation task and a first of its kind application of transformer [Vas+17] networks to mesh
segmentation namely Transformer for Mesh Segmentation (MeshTrans) is introduced.
In our second approach, a novel transformer-based Graph Convolution layer named

TransConv is introduced where in a single convolution operation, not only the root vertex
but all the neighboring vertices pass information to all other neighboring vertices using the
attention mechanism.

Both our approaches are tested on two types of datasets, one a point cloud dataset where
the graph data is generated using KNN algorithm and the second a high resolution mesh
dataset where the neighbors are decided using the faces of the mesh.

It is shown that our approach to directly use the transformer network for mesh segmenta-
tion (Transformer for Mesh Segmentation (MeshTrans)) has a weaker performance in high
resolution meshes from the COSEG dataset due to the lack of message propagation and
low receptive field, but produces comparable results on point cloud data from the ShapeNet
dataset in all the categories. In some categories the MeshTrans performs significantly better
than other models, thus showing a lot of potential with further experiments. Our approach
to create a graph convolution layer named TransConv outperforms other related works in
most categories of both the datasets. In addition to the results from these approaches, the
effect of incorporating Depth Encoding into our graph convolution layer is also shown.
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