Open-Source Visualization of Reusable Rockets Motion:
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This paper shows how to approach effective visualization of the motion of reusable rockets
by combining Simulink / Matlab modeling with the capabilities of FlightGear, a state-of-the-art
open-source tool typically used for aircraft simulation in the gaming community. We describe
the entire open-source toolchain and the steps needed for the coupling of the involved software,
with detailed code provided as Appendices. Finally, We propose a concrete example, associated
with the application to the motion of reusable rockets.

I. Introduction

During the last years the rapid progress of computers’ Central Process Units (CPU) and the corresponding reduction
of costs has brought a big development in terms of realistic simulators. The easiness of access to both machines and
software has sparked the inventiveness of researchers, able to find new ways to test algorithms and numerical methods.
A remarkable example was the use of the worldwide famous Rockstar’s game GTA made by the machine learning
research community. They could exploit what was an excellent reproduction of a urban environment containing people
and other cars such that the driving agent could learn how to interact with them[1]]. Other well-known commercial
simulators, like Flight Simulator give the chance to experience what aircraft piloting means in detail [2], while for what
regards the space environment well-known software packages were largely adopted by space enthusiasts to build their
own space program [3]] for both leisure and space-popularization purposes [4].

Although companies created high-end products the open-source community did not stand and stare, but big collective
groups of passionate programmers joined their efforts to create several alternatives that were available to further make
experiments and test new ways of using software initially born for home video-gaming. Among these tools a remarkable
example is provided by FlightGear [3]], a completely open-source project aiming at providing an accurate simulating
environment to fly different aircrafts, described at different levels of accuracy, which can fly with or without aided
guidance and control. The software does not only provide a high-quality 3-D environment, but can be coupled with
physical flight dynamics engines to provide a ultra-realistic experience. An example of such model library is JSBSim
[6]], which provides the possibility to interact with FlightGear via XML interface. In recent years Mathworks understood
the possibilities provided by FlightGear and introduced a demo simulating the landing of the HL-20 [7] to show how to
use the recent visualization block implementing the interface between Simulink and Flightgear.

The aircraft GNC community soon realized that FlightGear was a powerful tool to test and visualize their algorithms
for traditional aircraft [8} [9], unmanned air vehicles visualization and control [[10], new urban air mobility concepts
[L1], and helicopters’ motion visualization [[12]. Moreover, given the high degree of detail that can be achieved the
software was also used for cockpit-related research and development activities [[13]], and the implementation of control
and identification algorithms [[14].

In this paper we focus on the use of FlightGear in combination with Matlab and Simulink for co-simulation and
visualization of flight of reusable rockets. We will not rely on any Mathworks predefined toolbox, but rather build the
overall environment for co-simulation from scratch, which implies that no further commercial software rather than
plain Matlab / Simulink are needed, hoping to further boost the usage of this technology in the guidance and control
and flight dynamics communities. All the steps will be illustrated, together with the corresponding open-source tools
needed, including Blender for the 3-D modeling of the rocket, and the C-code for establishing the communication
between Simulink and FlightGear. The paper is organized as follows: in Sec. [[I|a reference scenario for a reusable
rocket is described, while Sec. [III] will illustrate the preparation steps to be able to perform the co-simulation, including
the CAD modeling and the involved software. A concrete example of co-simulation is proposed in Sec. [V] while
some concluding remarks will be outlined in Sec. [V} Finally, the code required to rebuild the proposed co-simulation
environment is embedded in the Appendices.
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I1. Mission and Vehicle

To show how Simulink-Flightgear co-simulation can be performed we consider a CALLISTO-class rocket [[15} [16],
able to generate a thrust force up to 40 kN. The engine, that uses liquid propellant, is throttleable, and is mounted on
a gimballed system, to be able to generate thrust-vector-control (TVC), and therefore provide pitch and yaw control
during the powered phases of the mission. A set of RCS thrusters completes the attitude control system. During the
aerodynamic phase the engine is shut down, and the attitude control capability is provided by a set of four steerable fins
mounted on top the rocket. The defined set of actuators is therefore able to control the attitude and the position of the
rocket during every phase of flight. An illustration of the vehicle used as example, that is, the CALLISTO rocket, is
depicted in Fig.

For what regards the mission profile we apply co-simulation to a Return-to-Launch-Site (RTLS) profile, visible in
Fig. [I(b)] For this type of scenario the rocket performs the boostback maneuver to invert the direction of its velocity to
fly back towards the landing pad, typically very close to the launch-pad, and in this case considered to be exactly in
the same spot. After the boostback maneuver the Main Engine Cut-Off (MECO) command is issued, and the vehicle
performs an aerodynamic descent, where the motion is controlled through the aerodynamic forces generated by the
rocket itself. When a prescribed altitude is reached the Main Engine Re-Ignition (MEIG) command is issued, and the
rocket performs what is known as pinpoint landing [[17], where attitude, position, velocity and thrust are coordinated
to ensure safe conditions for the legs deployment and the subsequent touchdown, when the mission is considered
completed.

A

(a) CALLISTO experimental vehicle (b) Return-to-Launch-Site mission profile

Fig.1 Mission and Vehicle overview: (a) CALLISTO rocket, (b) Reference Mission Profile.

This type of mission is one of the motivations for the work proposed here. In fact, it is extremely useful to visualize
the entire motion of the rocket to verify that the behavior is consistent with the expectations in each phase of the scenario,
beyond the traditional use of graphical tools, like plots and telemetry messages. Moreover, we can use it to visualize
the correctness of mechanisms more inherently associated with the use of reusable rocket, like fins unfolding and legs
deployment.

II1. Co-simulation preparation
In this section the steps needed to connect Simulink and Flightgear are explained. First we describe the properties of
the CAD model and the software required. Then, we will illustrate how to prepare its use in FlightGear.

A. CAD modeling
First, a set of CAD models is required. Very common formats for modeling the rocket include .stl, .stp, and .wrl
among the others, However, FlightGear requires a specific format, with extension .ac, associated with the proprietary



software AC3D. To provide an open-source alternative we prefer to use Blender [18], and specifically the version 2.81.
Blender does not inherently support .ac files. To overcome this problem the very flexible structure of Blender and its
capability to add new functionalities comes in handy. In fact it is possible to prepare python scripts able to extend
its native interface. Among these extra scripts the FlightGear community developed a utility able to provide the .ac
interface needed between AC3D model and Blender [19]. Although the description of the add-on refers to Blender 2.80,
it has been successfully tested and used with Blender 2.81. Figure[2]shows the rocket modeling in Blender based on
studies performed for CALLISTO [20].

42 Blender

o e q P

Fig.2 Rocket modeling in Blender.

Some important points in the modeling are the moving parts, that clearly need to be defined as different objects. The
relative motion can then be specified in the FlightGear internal descriptors of the model through the specification of
their animation, e.g., relative rotation and translation together with the variables that control the motion. Note while
using the 3-D modeling environment it is important to accurately determining the relative motion key parameters, such
as the center of rotation or the axis of rotation. This type of information will be used in the next phase, when the model
will be imported in FlightGear. The model, with all the related moving parts can be therefore specified according to the
prescribed .ac format, and we can consider the CAD modeling phase complete.
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B. Preparation of model in FlightGear

When the CAD model is ready and has been exported in .ac format we can prepare the properties of the model
according to the Flightgear specifications. Following the structure indicated in Flightgear to import new aircraft [21]] we
create a folder (e.g., rocket) to be placed within the . /data folder of the FlightGear installation path. The minimal
configuration of this folder has at least the following contents:

e Models

* Nasal

* rocket-set.xml

e rocket-splash.png

e thumbnail.png

The folder Models contains the prepared .ac file (e.g., rocket.ac), together with an .xml file (typcailly having the
same name, e.g., rocket.xml) defining the animations and which variables control them. For instance the motion of a
leg can be modeled as the following snippet taken from rocket.xml.

<animation>
<type>rotate</type>
<object-name>legl</object-name>
<property>/legs-states/legl-rot</property>
<factor>1</factor>
<center>
<x-m>0</x-m>
<y-m>0.5</y-m>
<z-m>0</z-m>
</center>
<axis>
<x>0</x>
<y>0</y>
<z>1</z>
</axis>
</animation>

In this example we are imposing that the object 1eg1, controlled by the variable legl-rot, which is defined under
the legs-states group of objects will perform a rotation around the body Z-axis, and the Center of Rotation (CoR) is
specified to be in the point having the following coordinates expressed in the native reference frame of Blender at the
moment of exporting the .ac file.

CoRz[O 0.5 o] (1)

We will see that these properties (in this case legl-rot) can be controlled through the dedicated communication
protocol directly from Simulink.

In the Nasal folder we store the * .nas files, which are used to model more complex behaviors, based on the the
homonym Nasal programming language. In this frame we use it to initialize the properties of the rocket, through the
nasal function init_rocket.nas, and to place the launch platform at the launch-site location, through the built-in
function geo.put_model.

The rocket-set.xml file is a high-level descriptor, in which the developer can specify the status of the
model, the views to be adopted in FlightGear as well as the Nasal files and user-defined Nasal scripts. Finally,
the rocket-splash.png and thumbnail. jpg are pictures associated with the rocket under development used by
FlightGear during the load process and the model selection. The Nasal files coded for the rocket example are listed as
Appendix IV.

IV. Co-Simulation
With the model prepared and its specifications included in the FlightGear we are ready to perform the co-simulation.
Simulink will send the 6-DOF states of the rocket to FlightGear through the model Simulink2FG.slx, visible in Fig.
[] The states are longitude, latitude, and altitude for what regards the position of the center of mass of the rocket, and
roll, pitch and yaw angles representing its attitude. Since the model in Simulink works with International System Units



while FlightGear adopts some more intuitive but less formal conventions (e.g., latitude and longitude in degrees) some
conversions are needed, and performed in the Conversion_Block subsystem. Finally, note that the speed of execution of
the animation would be linked to the execution of the Simulink model, and therefore it might be needed to artificially
decrease its speed. For this reason a real-time pacer block [22]] has been included in the model, as visible in the bottom
part of the Simulink scheme.
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Fig. 3 Simulink-FlightGear co-simulation model.

Despite the capabilities of FlightGear to support physical dynamics engine like JBSim, the purpose here is mainly to
verify the behavior of the dynamics and the guidance and control subsystems modeled in Simulink. Therefore the states
representing the solutions of the differential equations underlying the motion of the rocket (embedded in the 6dof_model
block) are sent to FlightGear after the conversion performed in the Conversion_Block subsystem. When the states and
the actuators information opportunely transformed they are sent through UDP communication protocol to FlightGear,
through the Simulink2FlightGear block, exploded in Fig. 4]

In this subsystem we can see two UDP Send blocks. The first transmits information to FlightGear, while the second
sends the same information to a UDP receiver coded in C language for visual representation of the send data. The
preparation of the messages transmitted through UDP interface is performed in the S-function state2xml_wrapper.c,
provided in Appendix I. The IP addresses for the communication are set to 127.0.0. 1 for both UDP blocks. The ports
are 5001 and 5003, but any other choice would be valid.

The co-simulation is shown in Fig. [5] where we can see the rocket motion controlled by Simulink.

Note that on the bottom-right corner the UDP receiver is open to receive positions back from FlightGear, confirming
that the communication protocol works in both directions. On the top-left the telemetry in Simulink is observed. In this
specific case we look at altitude, speed, dynamic pressure, Mach number as well as at the roll, pitch, and yaw angles and
at the fin deflections (in this case equal to 0 as we are in the initial ascent part). For this specific setup the real-time
pacer was set to 2, meaning that the animation time accelerated by a factor 2 with respect to the physical mission time.
This choice is a trade-off required to avoid too long animations, while at the same time still allowing to observe the
details of interest, and can be easily adjusted according to the needs of any specific mission. For a concrete example the
full animation can be seen in Youtube by scanning the QR code depicted in Fig. [6]
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Simulink-FlightGear Co-simulation.




Fig. 6 QR code to see an example of the proposed co-simulation framework applied to the motion of reusable
rockets on Youtube.

Although here we limit the number of variables to be transmitted and received to the minimum number required
to have a satisfactory visualization of the motion it is possible to extend it in straightforward manner to any desired
set of variables. The reader can refer to the appendices provided to see concrete examples of how the variables to be
exchanged in both directions during the co-simulation can be defined.

V. Conclusions

This paper proposes a novel use of FlightGear, an open-source software typically adopted to simulate and visualize
aircraft motion, for the visualization and the co-simulation of the motion of reusable rockets together with Simulink.
This approach enhances the capabilities of Matlab and Simulink themselves, while providing a straightforward
visualization tool to verify the correctness of the complex behaviors required to perform demanding missions such as
the return-to-launch-site profile.

The steps required to perform the proposed co-simulation have been illustrated, and emphasis has been given to
the use of a complete end-to-end open-source toolchain, to maximize its usage within the Guidance, Navigation, and
Control research community. The toolchain includes flexible and popular solutions, including the aforementioned
FlightGear, Blender, and C code.

The proposed co-simulation approach is especially valuable for the rising research area of reusable rockets, but is
completely generic, and can be therefore applied to other applications, such as multi-stage expendable launch vehicles,
unmanned aircraft vehicles, and commercial drones.
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Appendix I - C code
The C-code used for the communication between Simulink and FlightGear is based on a simple C function embedded
within an S-function. Here below the source code, including the header file, and the associated S-function are provided.

A - state2xml.c

#include "state2xml.h"
#include <string.h>
/¥
* state2xml sends to FG the data we want to use to control the rocket through generic protocol
*/
void state2xml( real_T* state, /* input */
uint8_T* xmlString, uint32_T* stringlLength ) /* output */
{
/* put state parameters into XML string */
*stringlength = sprintf( xmlString, XML_TEMPLATE ,
state[®], state[l], state[2],
state[3], state[4], state[5],
state[6], state[7], state[8],
state[9], state[10], state[l1l],
state[12], state[13], state[14],
state[15], state[1l6], state[17],
state[18], state[19], state[20],"\n");
}

B - state2xml.h

#ifndef _STATE2XML_H_
#define _STATE2XML_H_

#include "simstruc.h"

/* #define DEBUG */
#ifdef DEBUG
#include "mex.h"
#endif

* number of input ports
* - state

7‘:/

#define INPUT_PORT_NUM 1

Yok
* number of output ports

* - XML string data in UINT32 array format
* - string length in bytes

*/

#define OUTPUT_PORT_NUM 2

#define STATE_PARAM_NUM 21
#define MAX_OUT_DATA_SIZE 2048

// only for visualization on the paper - place lines 29 and 30 on the same line
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#define XML_TEMPLATE "\n%6.3f\t%6.3£\t%6.3£\1%6.3£\t%6.3£\1%6.3£\1t%6.3£\t%6.3£\1t%6.3£\t%6.3£\1%6.3£f
\1%6.3£\1%6. 3£\ 1t%6.3£\1%6.3£\1%6.3f\1%6.3£\t%6.3£\1%6.3f\1%6.3£\t%6.3£\t"

void state2xml( real_T* state, /* input */

uint8_T* xmlString, uint32_T* stringlLength ); /* output */

#endif /*_STATE2XML_H_*/

C - state2xml_wrapper.c

// S-Function name is state2xml_wrapper
#define S_FUNCTION_NAME state2xml_wrapper
#define S_FUNCTION_LEVEL 2

/%

%

Need to include simstruc.h for the definition of the SimStruct and
* its associated macro definitions.

*/

#include "simstruc.h"
#include "state2xml.h"

* S-function methods *

*/

// Function: mdlInitializeSizes

static void mdlInitializeSizes(SimStruct *S)

{

int i;
/% See sfuntmpl_doc.c for more details on the macros below */

ssSetNumSFcnParams(S, 0); /* Number of expected parameters
1= ssGetSFcnParamsCount (S)) {
/% Return if number of expected != number of actual parameters *

if (ssGetNumSFcnParams(S)

}

return;

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, INPUT_PORT_NUM)) return;
/%

state parameter */

ssSetInputPortWidth(S, 0, STATE_PARAM_NUM);
ssSetInputPortDataType(S, ®, SS_DOUBLE);

/7‘:

all port use the same setting */

for( i=0; i<INPUT_PORT_NUM; ++i )

{

}

if (!ssSetNumOutputPorts(S, OUTPUT_PORT_NUM)) return;
/:‘:

ssSetInputPortRequiredContiguous(S, i, true); /*direct input signal access®/

ssSetInputPortDirectFeedThrough(S, i,

xml string in UINT8 array */

ssSetOutputPortDataType(S, ®, SS_UINTS);

ssSetOutputPortWidth(S, ®, MAX_OUT_DATA_SIZE );

/7‘:

string length */

1;

:':/



50 ssSetOutputPortDataType(S, 1, SS_UINT32);

51 ssSetOutputPortWidth(S, 1, 1);

52

53 ssSetNumSampleTimes(S, 1);

54 ssSetNumRWork (S, 0);

55 ssSetNumIWork(S, 0);

56 ssSetNumPWork(S, 0);

57 ssSetNumModes (S, 0);

58 ssSetNumNonsampledZCs(S, 0);

59

60 ssSetOptions(S, 0);

61 }

62

63 // Function: mdlInitializeSampleTimes

64 static void mdlInitializeSampleTimes(SimStruct *S)
65 {

66 ssSetSampleTime(S, ®, CONTINUOUS_SAMPLE_TIME);
67 ssSetOffsetTime(S, 0, 0.0);

68 }

69

70 #undef MDL_INITIALIZE_CONDITIONS

71 #if defined(MDL_INITIALIZE_CONDITIONS)

72 // Function: mdlInitializeConditions

73 static void mdlInitializeConditions(SimStruct *S)

74 {

75 %

76 #endif
77

78 #undef MDL_START /* Change to #undef to remove function */
79 #if defined (MDL_START)

80 // Function: mdlStart

81 static void mdlStart(SimStruct *S)

82 {

83 %

84 #endif
85

86 // Function: mdlOutputs
87 static void mdlOutputs(SimStruct *S, int_T tid)

88 {

89 real_T *state = (real_T*) ssGetInputPortSignal(S,0);

90 uint8_T *xmlString = (uint8_T*)ssGetOutputPortSignal(s,0);

91 uint32_T *stringlength = (uint32_T*)ssGetOutputPortSignal(S,1);
92 state2xml (state, xmlString, stringLength);

93 }

94

95 #undef MDL_UPDATE
96 #if defined(MDL_UPDATE)
97 // Function: mdlUpdate

98

99 static void mdlUpdate(SimStruct *S, int_T tid)
100 {

101}

102 #endif /* MDL_UPDATE */

103

104 #undef MDL_DERIVATIVES //

105 #if defined (MDL_DERIVATIVES)

106 // Function: mdlDerivatives

107 static void mdlDerivatives(SimStruct *S)
108 {

10
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125
126

}
#endif /* MDL_DERIVATIVES */

// Function: mdlTerminate

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

/%

* Required S-function trailer *

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file?
#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

*/

11
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Appendix II - Communication Protocol

The xml protocol used to send variables to FlightGear is listed here below. Note that since the equations of motion
are modeled in Simulink no inverse communication would be needed. Nevertheless, the protocol below also allows
bi-directional communication. The data sent to FlightGear is specified from line 4 to 154, while lines from 155 to 176
specify the data received by FlightGear. The extension to other variables of interest is straightforward, and the full list of
variables that can be manipulated is observable from the html FlightGear ® Interface, that can be open as web-page, and
set in this case to http://localhost:5400/#Simulator/Properties. In the example coded here we receive back
altitude, longitude, and latitude, that can be listened to by a UDP receiver set at port 5002, and IP address 127.0.0. 1.
These settings are all visible in Appendix III, where the call to FlightGear is listed.

rocket_protocol.xml

<?xml version="1.0"7>
<PropertyList>
<generic>
<input>
<line_separator>\n</line_separator>
<var_separator>\t</var_separator>
<chunk>
<name>sent altitude </name>
<node>/position/altitude-ft</node>
<type>float</type>
<format>alt: %6.3f ft</format>
</chunk>
<chunk>

<name>sent latitude </name>
<node>/position/latitude-deg</node>
<type>float</type>
<format>lat: %6.3f deg</format>
</chunk>
<chunk>

<name>sent longitude </name>

<node>/position/longitude-deg</node>
<type>float</type>
<format>lon: %6.3f deg</format>
</chunk>
<chunk>
<name>sent roll </name>
<node>/orientation/roll-deg</node>
<type>float</type>
<format>roll: %6.3f deg</format>
</chunk>
<chunk>

<name>sent pitch </name>

<node>/orientation/pitch-deg</node>

<type>float</type>

<format>pitch: %6.3f deg</format>
</chunk>

<chunk>
<name>sent yaw </name>
<node>/orientation/heading-deg</node>
<type>float</type>

12
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<format>yaw: %6.3f deg</format>
</chunk>

<chunk>
<name>sent finl deployment cmd </name>
<node>/fins-states/finl-rot</node>
<type>float</type>
<format>fin #1 deployment: %6.3f</format>
</chunk>

<chunk>
<name>sent fin2 deployment cmd </name>
<node>/fins-states/fin2-rot</node>
<type>float</type>
<format>fin #2 deployment: %6.3f</format>
</chunk>

<chunk>
<name>sent fin3 deployment cmd </name>
<node>/fins-states/fin3-rot</node>
<type>float</type>
<format>fin #3 deployment: %6.3f</format>
</chunk>

<chunk>
<name>sent fin4 deployment cmd </name>
<node>/fins-states/fin4-rot</node>
<type>float</type>
<format>fin #4 deployment: %6.3f</format>
</chunk>

<chunk>
<name>sent finl control cmd </name>
<node>/hinge-rotations/hingel-rot</node>
<type>float</type>
<format>fin #1 angle: %6.3f</format>
</chunk>

<chunk>
<name>sent fin2 control cmd </name>
<node>/hinge-rotations/hinge2-rot</node>
<type>float</type>
<format>fin #2 angle: %6.3f</format>
</chunk>

<chunk>
<name>sent fin3 control cmd </name>
<node>/hinge-rotations/hinge3-rot</node>
<type>float</type>
<format>fin #3 angle: %6.3f</format>
</chunk>

<chunk>
<name>sent fin4 control cmd </name>
<node>/hinge-rotations/hinge4-rot</node>
<type>float</type>
<format>fin #4 angle: %6.3f</format>
</chunk>

13
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<chunk>
<name>sent legl state </name>
<node>/legs-states/legl-rot</node>
<type>float</type>
<format>leg #1 deployment: %6.3f</format>
</chunk>

<chunk>
<name>sent leg2 state </name>
<node>/legs-states/leg2-rot</node>
<type>float</type>
<format>leg #2 deployment: %6.3f</format>
</chunk>

<chunk>
<name>sent leg3 state </name>
<node>/legs-states/leg3-rot</node>
<type>float</type>
<format>leg #3 deployment: %6.3f</format>
</chunk>

<chunk>
<name>sent leg4 state </name>
<node>/legs-states/leg4-rot</node>
<type>float</type>
<format>leg #4 deployment: %6.3f</format>
</chunk>

<chunk>
<name>sent TVC state betal </name>
<node>/TVC/betal</node>
<type>float</type>
<format>tvc angle #1: %6.3f deg</format>
</chunk>

<chunk>
<name>sent TVC state beta2 </name>
<node>/TVC/beta2</node>
<type>float</type>
<format>tvc angle #2: %6.3f deg</format>
</chunk>

<chunk>
<name>sent TVC state Thrust </name>
<node>/TVC/thrust</node>
<type>float</type>
<format>thrust %6.3f </format>
</chunk>
</input>
<output>
<line_separator>\n</line_separator>
<var_separator>, </var_separator>
<chunk>
<name>received altitude</name>
<node>/position/altitude-ft</node>

<type>float</type>
<format>alt: %6.1f</format>
</chunk>
<chunk>
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165
166
167
168
169
170
171
172
173
174
175
176
177
178

<name>received lon</name>
<node>/position/longitude-deg</node>

<type>float</type>
<format>lon: %6.1f</format>
</chunk>
<chunk>

<name>received lat</name>
<node>/position/latitude-deg</node>
<type>float</type>
<format>lat: %6.1f</format>
</chunk>
</output>
</generic>
</PropertyList>
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Appendix III - FlightGear Call

To perform the co-simulation FlightGear is invoked through the following call. In line 1 we call FlightGear through
fgfs and we specify the aircraft to be used (in this case rocket), while in line 2 we specify the time of the flight (noon
for better light conditions). We can observe that the rocket protocol for transmission and reception are specified in lines
3 and 4, together with the desired frame-rate (in this case 30 Hertz), and the corresponding IP address and relative ports
for the transmission and the reception of the specified variables (5001 and 5002, respectively). Note that we show here
a minimal setup (e.g., by disabling multiple features, as visible in lines 5-18) to minimize the hardware specifications
sufficient to perform a smooth co-simulation. Finally, in line 19 we can see the port specified for using the @ interface is
5400, in accordance to what described in Appendix II, whereas we specify the size of the FlightGear window in line 20.

fgfs --aircraft=rocket

--timeofday=noon
--generic=socket,in,30,127.0.0.1,5001,udp, rocket_protocol
--generic=socket,out,30,127.0.0.1,5002,udp, rocket_protocol
--disable-random-objects

--disable-ai-traffic

--disable-ai-models

--disable-specular-highlight

--disable-clouds

--disable-clouds3d

--fog-fastest

--visibility=5000

--disable-distance-attenuation
--disable-real-weather-fetch

--disable-random-vegetation

--disable-random-buildings

--disable-rembrandt

--disable-sound

--httpd=5400

--geometry=1600x900

16



0NN B W=

A A DA DA EAEPADPAD WL LWL LWL WLWWERNDNDDNDDNDNDNDDNDNDNDD = e s e e e e e
O NP WP, OOV NPE WD, OOV WD, OOVWINWUN A WD —=O\O

Appendix IV - Nasal files
The Nasal files used in this work are listed here below. They include rocket.nas for the initialization of the rocket
properties, and launchpad.nas to place the launchpad in the scenario.

A - rocket.nas

### rocket.nas ###

#startup-properties-———————— oo
#it#

init_rocket = func {

print ("setting rocket properties...");

#fins

setprop("/fins-states/finl-rot", 0);
setprop("/fins-states/fin2-rot", 0);
setprop("/fins-states/fin3-rot", 0);
setprop("/fins-states/fin4-rot", 0);

#hinges

setprop("/hinge-rotations/hingel-rot", 0);
setprop("/hinge-rotations/hinge2-rot", 0);
setprop("/hinge-rotations/hinge3-rot", 0);
setprop("/hinge-rotations/hinge4-rot", 0);

#legs

setprop("/legs-states/legl-rot", 0);
setprop("/legs-states/leg2-rot", 0);
setprop("/legs-states/leg3-rot", 0);
setprop("/legs-states/leg4-rot", 0);

#thrust
setprop("/TVC/thrust”, 1);
setprop("/TVC/betal™, 0);
setprop("/TVC/beta2", 0);
setprop("/TVC/spin", 1);

#orientation
setprop("/orientation/pitch-deg"”, 0);
setprop("/orientation/heading-deg", 0);
setprop("/orientation/roll-deg", 0);

#pos

setprop("/position/altitude-ft", 0);
setprop("/position/latitude-deg"”, 5.233868);
setprop("/position/longitude-deg", -52.752);
#vel

print ("rocket ready to lift-off!");

}

### end of rocket.nas ###
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B - launchpad.nas

1 print ("loading launch platform...");

2

3 geo.put_model ("Aircraft/rocket/Models/launchpad.xml", 5.233977, -52.7517, 0, 0);
4

5 print ("launch plaform loaded.");
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