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Abstract—Following the re-invention of the FFT algorithm by
Cooley and Tukey in 1965, a lot of effort has been invested into
optimization of this algorithm and all its variations.

In this paper, we discuss its use and optimization for current
and future radar applications, and give a brief survey on
implementations that have claimed relatively high advantages
in terms of performance over existing solutions.

Correspondingly, we present an in-depth analysis of state-of-
the-art solutions and our own implementation that will allow
the reader to evaluate the performance improvements on a
fair basis. Therefore, we discuss the development of a high-
performance Fast Fourier Transform (FFT) using an enhanced
Radix-4 decimation in frequency (DIF) algorithm, compare it
against the Fastest Fourier Transform in the West (FFTW) auto-
tuned library as well as other solutions and frameworks.

Index Terms—FFT, Radix-4 DIF, High Performance Algo-
rithms, Parallel Computing, Embedded Computing, SAR, Chirp
Compression

I. INTRODUCTION

Over the last decades the number of earth-observation
satellites in orbit has been constantly growing, as well
as the spacecraft payload complexity and computational
demand continuously have increased. Today, satellites provide
close to full earth coverage and produce a significant
amount of data that needs to be downlinked to Earth
for processing. Modern synthetic aperture radar (SAR)
systems are continuously developing towards higher spatial
resolution [1] . Hence, downlink constraints combined with
the constantly growing data throughput of missions require
faster data handling, processing, and transfer. Therefore, the
demand for onboard generation of final image products and/or
compression techniques keeps increasing. Similar facts are
valid for airborne systems, whereas those additionally might
have to store large data takes onboard. Present on-board
processing solutions show constraints regarding computational
performance, size, and transfer speeds.

Thus, we have investigated the acceleration of processing
routines for onboard processing systems for different algo-
rithms such as the (extended-) omega-k algorithm (EOK),
for which the FFT turned out to be one of the limiting

factors, since it is used multiple times on large amounts
of data. The extended-omega-k algorithm is used for radar
focusing with/without integrated motion compensation(moco).
More generally, the FFT is used in radar chirp compression
algorithms, where the compression kernel consists of three
subroutines: range FFT, multiplication by a reference function
(range focusing) and finally an inverse FFT.

Fig. 1. EOK Algorithm [1]

The FFT is well known as the fast/efficient way of
calculating the Discrete Fourier Transform (DFT), an
essential tool for spectrum analysis and for facilitating the
computation of discrete convolution and correlation. It is
widely employed e.g. in filtering algorithms, polynomial
multiplication, fast algorithms for discrete sine and cosine
transforms (used e.g. in JPEG or MPEG encoding), solving
difference equations, and other numeric applications.



Due to its widespread use, many derivative algorithms of
the FFT such as the Radix-N, Split-Radix, Mixed-Radix, and
prime factor FFTs have been developed ever since [2]–[7],
[15]. However, this paper focuses on the improvement of
the Radix-4 DIF algorithm for the reason of computational
efficiency in the presents of vector instructions, as it will
be described in Sections II and III. Existing frameworks
are described in Section IV and the performance of this
implementation is then compared in depth against existing
frameworks in Section V.

II. THE ENHANCED RADIX-4 ALGORITHM

Like all fast FFT algorithms, the Radix-4 reduces the
computational complexity of an N -point DFT by decomposing
the original data. Many papers have shown that depending
on the data size, the Radix-4 compared to other Radix-N or
Mixed-Radix implementations is more efficient. [9]- [11] [15].
The derivation of the Radix-4 algorithm can be found in [2].
Our optimizations include

• the separation of the input data into its real and imag-
inary parts to make vectorization easier and to reduce
unnecessary overhead,

• loop resolution in order to split the Radix-4 algorithm
into its stages and individual optimization of each stage,

• restructuring the butterfly in order to reduce the compu-
tational effort by reusing already calculated data,

• pre-calculation and pre-vectorization of the twiddle fac-
tors and providing them to the Radix kernel and finally,

• pre-identification of elements that must be swapped in the
reordering stage in order to eliminate unnecessary swaps.

We explore these optimizations in the following sections. The
matrix representation in (1a) illustrates the calculations of a
Radix-4 kernel.
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AF (k), BF (k), CF (k) and DF (k) are the N/4 point DFTs,
where the twiddle factors are given by W kn

N . x(n) is a
sampled sequence of the data (signal), and XF is the k-th
DFT coefficient.

A. Stages of the Radix-4

In an iterative process the initial data size N is quartered.
The number of stages is implicitly given by n, each with its
own range R where

RStage = NStage/4. (3)

The range defines the iteration limit of each stage as a result
of the decomposition of the data, which is shown in Table I
for a 4096-point Radix-4 FFT. The vector sizes are discussed
in detail in Section III. Since the Radix-4 output is in bit-
reversed order [2], a reordering step is required. The VEC-FFT
uses a scalar function that iterates through the data array and
calculates the bit-reversal in order to swap the corresponding
values. Section II-C describes optimization techniques for
increasing the reordering efficiency.

TABLE I
SIZE BREAKDOWN FOR N = 4096-POINT FFT

Stage Elements N Range R Vector Size (Single Precision)
1 4096 1024 8 ymm (AVX)
2 1024 256 8 ymm (AVX)
3 256 64 8 ymm (AVX)
4 64 16 8 ymm (AVX)
5 16 4 4 xmm (SSE)
6 4 1 (4) 4 xmm (special)

Reordering - 2016 scalar reorder

B. Optimizations of the Radix-4 Kernel

Setting k = 0 in 1a allows for a simple view of the
optimizations implemented in the proposed VEC-FFT. The
first optimization technique is to split the complex data into
its real and imaginary parts, which results into two butterflies.
The real- and imaginary-valued butterflies have (respectively)
the following forms
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Having the data in split-complex format simplifies
vectorization using SIMD instructions because the data
can be directly loaded and processed. Using the standard
format given in (1a) requires an extraction of the real- and
imaginary-valued vectors, causing an avoidable but relatively



small instruction overhead.

The second technique consists of rearranging the butterflies
and reusing pre-calculated values from look-up-tables. For
example, the sum AF

re + CF
re can be reused instead of

calculating it twice, as shown in (4).
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The result is an efficient structure of the Radix-4 kernel in
(1a). 
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This analogously applies to the imaginary-valued butterfly:
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C. Reorder Stage Optimizations

The output of a Radix-4 DIF FFT is stored in bit-reversed
order. For the sake of brevity, Table II illustrates the bit-
reversal of an 8-point (Radix-2) FFT [2]. To restore the orig-
inal order, a reordering stage is required that swaps elements
(1,4) and (3,6). The proposed VEC-FFT uses a pre-calculated
and FFT size specific reordering look-up-table in order to
identify the necessary swaps. Following this approach, the
number of swaps for the 4096-point example given in Table I
is 2016. In order to increase the performance, we unrolled the
reordering loop. For our test system (Table III), an unrolling
factor of four showed the best performance.

TABLE II
REORDER PROCEDURE FOR AN 8-POINT FFT

Element Original order Bit-reversed order Swap
0 000 000 No
1 001 100 Yes
2 010 010 No
3 011 110 Yes

4 100 001 Yes
5 101 101 No
6 110 011 Yes
7 111 111 No

D. Pre-Calculation of Twiddle Factors

In a similar manner, the twiddle factors are calculated in
advance in order to make them available for execution. Due to
their symmetry properties, one can consider reusing previously
calculated twiddle factors as suggested in [8]. If N = 8 is
assumed, then

W
(1)
8 =W

(1+N/2)
8 = exp

(
j
2π

8
· 1
)

= exp

(
j
2π

8
· 5
)

= 0.707106− j0.707106

Equivalent to (4) and (5), it is more efficient to split the twiddle
factors into their real and imaginary valued parts. In the next
section, we discuss the vectorization of the enhanced Radix-4
algorithm.

III. VECTORIZATION USING INTEL’S VECTOR INTRINSICS

Single instruction multiple data (SIMD) instructions are
implemented on Intel’s general purpose processors in order
to enhance performance. Only a single instruction is fetched
and applied to a set of data (vectors). This approach is suitable
for the split-complex Radix-4 Butterflies in (4) and (5). The
following sections give an overview about the instructions used
by the proposed VEC-FFT.

A. Streaming SIMD Extensions (SSE)

The Streaming SIMD Extensions use 128 bit (xmm) reg-
isters and process, e.g., four packed single precision (sp)
or two double precision (dp) floating point values. Listing
1 shows the SSE instructions used by VEC-FFT. The first
operation loads four contiguous sp floating point values into
an xmm vector, while the second stores the register data
back to the memory. The last three instructions are arithmetic
vector addition, vector subtraction and element-wise vector
multiplication of the vectors a and b [12], [13].

1 m128 mm load ps ( f l o a t c o n s t * mem addr )
2 vo id mm store ps ( f l o a t * mem addr , m128 a )
3

4 m128 mm add ps ( m128 a , m128 b )
5 m128 mm sub ps ( m128 a , m128 b )
6 m128 mm mul ps ( m128 a , m128 b )

Listing 1. Streaming SIMD Extensions (SSE): Loading 4 single precision
values into the xmm (128 bit) registers



B. Advanced Vector Extensions (AVX)

Advanced Vector Extensions use larger registers or vectors
of 256 bit (ymm). They can process, e.g., eight packed sp
or four packed dp floating point values. ymm vectors are
preferred because of their ability to process more data simulta-
neously. Listing 2 shows the AVX instructions used by VEC-
FFT.

1 m256 mm256 load ps ( f l o a t c o n s t * mem addr )
2 vo id mm256 store ps ( f l o a t * mem addr , m256 a )
3

4 m256 mm256 add ps ( m256 a , m256 b )
5 m256 mm256 sub ps ( m256 a , m256 b )
6 m256 mm256 mul ps ( m256 a , m256 b )

Listing 2. Advaced Vector Extensions: Loading 8 single precision values into
the ymm (256 bit) registers

C. Fused Multiply Add (FMA)

Fused Multiply Add (FMA) instructions are particularly
efficient since they execute two operations simultaneously.
For example, the mm256 fmadd ps() instruction multiplies
packed sp floating-point elements of vectors a and b and adds
the intermediate result to the packed elements in vector c [13],
[14]. Listing 3 shows the FMA instructions used by VEC-FFT.

1 m256 mm256 fmadd ps ( m256 a , m256 b , m256 c )
2 m256 mm256 fmsub ps ( m256 a , m256 b , m256 c )

Listing 3. Fused Multiply Add (FMA) instructions used by VEC-FFT

The right column of Table I shows the vectorization structure
along the stages of the VEC-FFT. The first four stages are effi-
cient regarding the usage of the larger ymm vectors. At stage
five a breakdown to the smaller xmm registers is required,
since the range size is four. Particularly grave are stage six
and the reordering stage, as they cannot be easily vectorized.
The reason is that the introduced load and store operations
are only applicable on contiguous data in memory. However,
stage six executes arithmetic operations on adjacent values.
A solution to this problem is described in [15], [16], which
suggests generating the correct vectors through a vectorized
(4,4)-xmm transpose. The VEC-FFT utilizes a comparable
technique to build the vectors, however, instead of transposing,
Intel’s gather and set operations are implemented. As shown
in Listing 4, they allow, by specifying the data elements, a
non-contiguous or stride data access at the cost of being less
efficient than the regular load/store operations introduced in
Listing 1 and 2 [13], [14]. Therefore stage six has a special
xmm structure while the reordering stage remains scalar.

1 m128 mm set ps ( f l o a t e3 , . . . , f l o a t e0 )

Listing 4. Set instruction for loading non-contiguous data

IV. PROCESSING STRATEGY

An essential step for optimized algorithms is to determine
the architecture of the given system in order to load the
CPU specific code and set the compiler flags. For example,
if AVX is supported and FMA is not, the FMA instructions
have to be replaced by AVX. Furthermore, the compilation
flag ”-mfma” has to be removed. All relevant parameters are

saved to an automatically generated configuration file which
ensures that the appropriate FFT kernel (function) is loaded.
The next step is to create a data size and direction (forward or
backward) based FFT plan which loads the twiddle factors and
other look-up-tables containing FFT size specific information
like the ranges illustrated in Tab. I. Finally, the FFT can be
calculated by calling the execution function that takes as input
the generated plan and data in split complex format. This
process is shown in List. 5.

1 # i n c l u d e ’ c p u c o n f i g . h ’
2

3 v e c f f t p l a n p ;
4 p = m a k e v e c f f t p l a n ( s i z e , d i r e c t i o n ) ;
5

6 e x e c u t e v e c f f t ( p , r e a l a r r a y , i m a g a r r a y ) ;

Listing 5. VEC-FFT Process

V. TEST

We divided our tests into two sections. First, we compared
our implementations with other solutions. Subsequently, we
focused on an extensive test against FFTW, since it is widely
used and well known to the science community [17]. Initially,
we tested the VEC-FFT against FFTW’s version 3.3.4 for
a 4096- and 16384-point FFT. However, since most studies
in the field of high performance FFTs have mainly focused
on testing against the scalar version of FFTW [18]–[20], this
paper compares both, FFTW’s scalar as well as the SIMD
implementation of version 3.3.8 with VEC-FFT. For this pur-
pose, various tests that cover 64- to 16384-point single thread
1D FFTs were conducted. For the FFTW comparison, the per-
formance was measured using the Read Time-Stamp Counter
(RDTSC) instruction in Listing 6 which returns the number
of CPU clock cycles since last reset (start). For each size,
10000 measurements were taken and statistically evaluated in
order to eliminate the impact of the operating system and its
processes. We have ascertained that 1000 or 10000 repetition
are enough for a good statistical evaluation.

1 u n s i g n e d long long c y c l e s ( )
2 {
3 u n s i g n e d i n t lo , h i ;
4

5 asm v o l a t i l e (
6 ” r d t s c ” : ”=a ” ( l o ) , ”=d ” ( h i ) ) ;
7 r e t u r n ( ( u n s i g n e d long long ) h i << 32) | l o ;
8 }
9

10 u n s i g n e d long long s t a r t , s t o p ;
11

12 s t a r t = c y c l e s ( ) ;
13 f f t w f e x e c u t e ( p1 ) ;
14 s t o p = c y c l e s ( ) ;

Listing 6. Performance assessment

The tests were executed on an Intel processing units that offer
AVX, AVX2 and FMA as shown in Table III. The program
was compiled and tested several times using different compiler
and optimization flags:

• -march=native -O2 -mfma -std=c99
• -march=native -O3 -mfma -std=c99



• -march=native -ftree-vectorize -O2 -mfma -std=c99
• -march=native -ftree-vectorize -O3 -mfma -std=c99

We discuss the best solutions in the following sections.

TABLE III
TEST SYSTEM

Processor Name Intel Core i7 8700
Code Name Coffee Lake
Max TDP 65 W
Cores 6
Hyper Threading Off
L1 D cache: 32 KB
L1 I cache: 32 KB
L2 cache: 256KB
L3 cache: 12288 KB
Base frequency 3.2 GHz

Memory Type DDR4
Capacity 64 (2x32) GB
Operation Dual Channel
Frequenzy 2333 Mhz
CL 15 Clocks
tRCD 15 Clocks
tRP 15 Clocks
tRAS 36 Clocks

Operating System Linux
Distribution Ubuntu 18.04 LTS
Version 18.04 LTS (64 bit)

A. Test Against Other Solutions

We have performed a total of three different tests. If the
reference mentioned measured the performance in execution
time, we also carried out a time measurement in order to
be able to compare the results. The execution times of the
proposed VEC-FFT represent the median of a measurement
of 1000 repetitions. Since these tests depend on the test
system, the results are only a superficial assessment.

1) A 65536-point FFT test: In our first test, we compared
a 65536-point FFT with [21].

TABLE IV
65536-POINT FFT - MEASURED IN SECONDS

Reference VEC-FFT

0.1181 0.0002

2) Test of multiple FFT sizes: In this test, we tested our
VEC-FFT against [22].

TABLE V
MULTIPLE FFT SIZES - MEASURED IN SECONDS

Size Reference VEC-FFT

256 0.0025 10-̂7
1024 0.0031 10-̂6
4096 0.0077 5*10-̂6

16384 0.0197 3*10-̂5

TABLE VI
256-POINT FFT - MEASURED IN CLOCK CYCLES

Reference VEC-FFT

2763 1248

3) A 256-point FFT test: In this test, we tested our VEC-
FFT against [15] by measuring the clock cycles for 256-point
FFT. The result is shown in Table VI Other comparisons can
be considered with [18], [19].

B. Initial Test Against FFTW’s Version 3.3.4

The configuration for the FFTW library version 3.3.4 is as
follows:

• Precision:
–enable-float

• Performance mode:
FFTW offers four different performance modes de-
pending on the planning effort. In this benchmark the
FFTW EXHAUSTIVE mode has been chosen to mea-
sure FFTW’s peak performance. Since the planning time
increases dramatically with the data size, FFTW offers
the opportunity to save and import the generated plan to
eliminate the planning effort. This tool is called ”wisdom”
and can be built as shown in Ls. 7.

1 / * G e n e r a t e and e x p o r t FFTW p l a n * /
2 f f t w f p l a n p1 ;
3 p1 = f f t w f p l a n d f t 1 d ( num , i n p u t a r r a y ,

i n p u t a r r a y , FFTW FORWARD, FFTW EXHAUSTIVE) ;
4 f f t w f e x p o r t w i s d o m t o f i l e n a m e ( f f t w p l a n ) ;
5

6 f f t w f e x e c u t e ( p1 ) ;
7

8 / * For a new c a l c u l a t i o n t h e p l a n has t o be
i m p o r t e d on ly * /

9 f f t w f p l a n p1 ;
10 f f t w f i m p o r t w i s d o m f r o m f i l e n a m e ( f f t w p l a n ) ;
11 p1 = f f t w f p l a n d f t 1 d ( num , i n p u t a r r a y ,

i n p u t a r r a y , FFTW FORWARD, FFTW EXHAUSTIVE) ;
12

13 f f t w f e x e c u t e ( p1 ) ;
14

Listing 7. FFTW’s WISDOM mechanism

Next, the runtime in clock cycles of the VEC-FFT is
compared to that of the FFTW for 4096-point and 16384-
point FFTs, in Figs. 2 and 4, respectively. The plots show
the cumulative distribution of the runtime. It can be seen that
the VEC-FFT outperforms the FFTW by a factor of up to 3.42.

In order to guarantee similar outputs, the discrepancy in the
FFT output between the two libraries in terms of magnitude
and phase is addressed in Figs. 3 and 5 (again for 4096-
point and 16384-point FFTs, respectively). It can be seen
that the difference between the two outputs is negligible (in
the order of 10e − 5), meaning that the two operations are
interchangeable in the processing chain.
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Fig. 2. Statistical performance evaluation for a 4096-point FFT
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Fig. 3. Magnitude and phase deviation for a 4096-point FFT
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Fig. 5. Magnitude and phase deviation for a 16384-point FFT

C. Test Against FFTW’s Latest Version 3.3.8

For FFTW version 3.3.8 we additionally used the following
compilation flags in order to perform a SIMD test:

–enable-sse, –enable-sse2, –enable-avx, –enable-avx2,
–enable-avx-128-fma, –enable-fma

A total of five tests were performed: our first compares
the VEC-FFT with FFTW’s scalar implementation of the
FFT, whereas the second examines FFTW’s SIMD version.
The third explores VEC-FFT without reordering stage in
order to measure its impact. The fourth evaluates Intel’s set
instructions which were used in the last stage of the Radix-4
algorithm in order to generate the vectors for the FFT kernel,
as it is described in section III and Table I. Finally, the effect
of the breakdown from the larger 256 bit ymm to the 128 bit
xmm registers of stage 5 are analyzed.

Tables VII–IX show the performance results for each of
the FFT (VEC-FFT, FFTW-scalar and FFTW-SIMD) the
tests where MIN, MEDIAN, MEAN and SD represent the
minimum, median, mean value and the standard deviation of
the runtime in number of clock cycles, respectively.

1) First test: comparison to FFTW-scalar: Comparing Ta-
ble VII with VIII, the first test shows that the proposed VEC-
FFT calculates the FFT up to four times faster than FFTW’s
scalar version for the given FFT sizes. For a 4096-point FFT,
the difference in performance decreases significantly by a
factor of two. The reason behind this variation is the increase
in the number of swaps which makes the reordering function
more important. To measure its impact, a comparison between
Table VII and Table X is considered. The following equations
calculate the reordering effort E for the 4096- and 16384-point
FFT:

EMedian
reordering(4096) = EMedian

FFT − EMedian
FFTNR (6)

= 25442− 17343

= 8099 clock cycles

EMedian
reordering(16384) = EMedian

FFT − EMedian
FFTNR (7)

= 229619− 90200

= 139419 clock cycles

While for a 4096-point FFT the reordering effort with 8000
clock cycles is about 1/3, it takes with approx. 140000 clock
cycles 2/3 for a 16384-point FFT of the overall performance.
This effect can also be seen in Fig. 6, where the FFT sizes
are shown on the x-axis and the corresponding effort in clock
cycles on the logarithmically scaled y-axis.

2) Second test: comparison to SIMD-FFTW: In turn, the
second test compares the performance of VEC-FFT (Table
VII) and SIMD-FFTW (Table IX). The result is that, up to
a 4096-point FFT, the SIMD version of FFTW is about 30%
more efficient than VEC-FFT. Especially for a 16384-point
FFT, the difference in performance is a factor of two. As



TABLE VII
VEC-FFT PERFORMANCE IN CLOCK CYCLES

Size MIN MEDIAN MEAN SD
64 253 262 265 10

256 1207 1238 1248 87
1024 5428 5508 5625 308
4096 24974 25442 25722 891

16384 227400 229619 234061 11282

TABLE VIII
FFTW SCALAR PERFORMANCE IN CLOCK CYCLES

Size MIN MEDIAN MEAN SD
64 712 834 833 6

256 4128 4736 4741 211
1024 17388 21524 21028 1140
4096 84410 90437 93206 10283

16384 415294 445100 452253 33262

already mentioned, from this size on, the slow reordering
function of the VEC-FFT has a strong impact explaining the
gap to SIMD-FFTW.

TABLE IX
FFTW SIMD PERFORMANCE IN CLOCK CYCLES

Size MIN MEDIAN MEAN SD
64 302 313 318 62

256 965 987 1010 195
1024 3501 3758 3840 306
4096 18866 19428 19784 980

16384 101444 102974 106601 9411

3) Third test: VEC-FFT without reordering stage: Hence,
the third test was conducted in order to compare the VEC-
FFT without the reordering stage (VEC-FFT NR) with SIMD-
FFTW. Considering Tables IX and X, it can be seen that VEC-
FFT NR improved being now about 10% faster than SIMD-
FFTW. Accordingly, Fig. 6 shows that the curve of VEC-FFT
NR lies below SIMD-FFTW’s curve.

TABLE X
VEC-FFT PERFORMANCE IN CLOCK CYCLES WITHOUT REORDERING

Size MIN MEDIAN MEAN SD
64 187 199 199 9

256 766 802 804 31
1024 3649 3712 3746 162
4096 17079 17343 17464 437

16384 88576 90200 91601 6222

4) Fourth test: impact of the breakdown to the smaller xmm
registers: Table XI shows the result of the fourth test for a
4096-point FFT. The median performance for the first four
ymm stages is around 9000 clock cycles, which translates into
an average of 2250 clock cycles. The breakdown to the xmm
register in stage five has a negative impact on the performance,
causing an additional 1250 clock cycles.

5) Fifth test: impact of using Intel’s set instructions:
Furthermore, Table XI shows that the set instructions linked
to the non-contiguous data access in stage six have a stronger
impact on the performance, raising the total number of

Fig. 6. Results for scalar and SIMD test

TABLE XI
VEC-FFT STAGE PERFORMANCES FOR A 4096-POINT FFT

Stage Register Clock cycles
1 - 4 8 ymm (AVX) 9004

5 4 xmm (SSE) 3585
6 4 xmm (SSE) 4754

Reordering scalar 8099
Total - 25442

required clock cycles to 4754.

In order to estimate the stability, the standard deviation can
be considered. Stability can be understood as the ability of
reproducing the median runtime performance. In this respect,
the VEC-FFTW and FFTW show equivalent figures.

VI. CONCLUSION AND FUTURE WORK

This paper shows that performance optimization of FFT
algorithms has not yet come to an end, although it is getting
more advanced and competitive. Still, for embedded/onboard
software computing routines almost every cycle matters
due to very limited resources. Especially, for spaceborne or
airborne platforms with complex payloads the demands for
fast processing routines in software is constantly growing.
These demands do not only concern the FFT but also other
signal processing routines that depend on the scientific use
case and are subject to changes during missions.

We have accelerated FFT processing using an optimized
Radix-4 Algorithm that can performance-wise be compared
against automatically tuned libraries such as FFTW. In order
to achieve such high-performance goals, we have fully par-
allelized the FFT algorithm and computed the most efficient
memory mapping for look-up tables for each iteration stage
separately. Compared to FFTW version 3.3.4 the execution
time could be improved by a factor of 1.83 to 3.42 through
VEC-FFT, when neglecting side-effects of the operating sys-
tem. Using the example of a 4096-point FFT, it can be
observed that within the first stages, which allow for more
efficient vectorization, the utilization of vector instructions is



at 96.7%, which proves that for these no memory bottleneck is
present. However, the last two stages as well as the reordering
of the Radix-4 algorithm show less efficiency. Therefore, our
future work will concern the optimization of these less efficient
stages by employing a mix of Radix algorithms similar to
FFTW version 3.3.8.
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