Methodology to simulate veneer-based structural components for static and crash load cases

Giovanni Piazza David B. Heyner Dr.-Ing. Elmar Beeh Prof. Dr.-Ing. Horst E. Friedrich

MDA, Porto, 5th November 2020

Knowledge for Tomorrow

DLR – Overview

Locations

- Approx. 8000 employees across 33 institutes and facilities at 16 sites
- Offices in Brussels, Paris, Tokyo and Washington


For^(s)**tschritt**

Research Areas

- Aeronautics
- Space Research and Technology
- Transport
- Energy
- Defence and Security

In addition

- Space Administration
- Project Management Agency

Outline

Introduction

- Properties of veneer-based components
- Modelling of veneer-based layered composites
 - Material Model *MAT_054
 - Layered composites
- Simulation of generic veneer-based components
 - Calibration of intralaminar behavior
 - Validation of simulation and material model
 - Expansion of dynamic behavior
- Summary and outlook

Introduction Project "For(s)tschritt"

Project duration:

• March 2017 – August 2020 (3.5 years)

Project content:

- Development of veneer-based hybrid materials for vehicle structures
 - Road vehicles
 - Rail vehicles
- Development, testing and simulation
- Demonstrators (Front Door, Train Door, Train Side Panel)

Goal

• Qualification of wood for the usage in vehicle structures

Introduction

Motivation to use beech-based materials in structural components

Requirements:

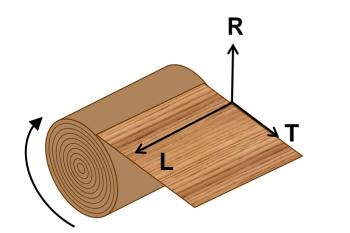
- Lightweighting due to emission guidelines
- Reduction of GWP during production phase

Advantages of beech:

- Very good specific material characteristics especially for bending load cases (Ashby [1])
- Ecological with low CO₂-emissions
- High availability and renewable
- Economical
- High flexibility regarding production technologies

Challenges:

- Scatter of material characteristics
- Protection from environmental influences needed


Technical and economic comparison of materials [2] [3]

Parameter	Density	Young's Modulus	Ultimate strength	Spez. stiffness	Spez. strength
Symbol	ρ	E	UTS	$\frac{E^{1/2}}{\rho}$	$\frac{UTS^{2/3}}{\rho}$
Unit	[g/cm ³]	[MPa]	[MPa]	MPa ^{1/2} g/cm³	MPa ^{2/3} g/cm³
Aluminum	2,30-2,80	70.000	45-500	95 - 115	5 - 27
Beech	0,54-0,91	14.350(l)	100-140(l)	132 - 222	24 - 50
CFRP	~1,50	~140.000(l)	~1.700(l)	~250	~95
GFRP	~2,00	~44.500(l)	~1.100(l)	~105	~53
Magnesium	~1,74	45.000	100-300	122	12 - 26
Steel	~7,85	210.000	340-1.800	58	6 - 19

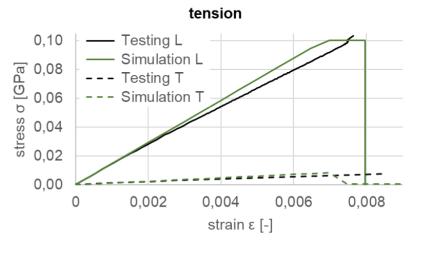
Properties of veneer-based components

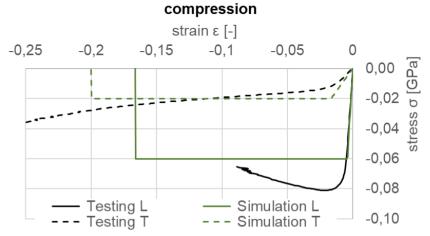
Veneer:

- Produced by peeling of stem
- Orthotropic material properties
- Scatter in material characteristics

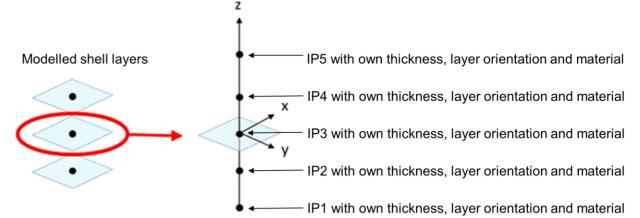
Longitudinal (II), Tangential (I) and Radial direction of veneer

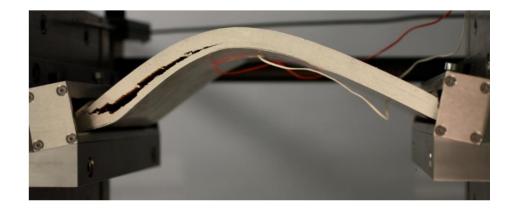
Veneer-based layered composites:


- Multiple veneer layers glued together
- Free selection of orientation, thickness, material of each layer
- Reduction of scatter:
 - Preselection of veneer with little to none imperfections
 - Statistically averaging due to usage of multiple veneers



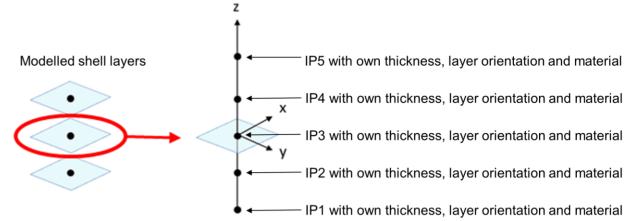
Modelling of veneer-based layered composites Material Model

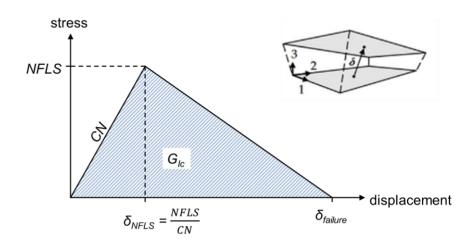

- FEM-Solver LS-Dyna
- *MAT_ENHANCED_COMPOSITE_DAMAGE (*MAT054) [4]
 - Orthotropic material model
 - Failure Modell after Chang/Chang or Hashin
- Comparison with data from testing shows:
 - UTS and failure strain in tension I met quite well
 - UTS and failure strain in tension ⊥ met quite well
 - UTS in compression I met quite well
 - UTS in compression ⊥ met quite well
 - But: failure strain in compression I and compression ⊥ is a tradeoff



Modelling of veneer-based layered composites Layered Composites

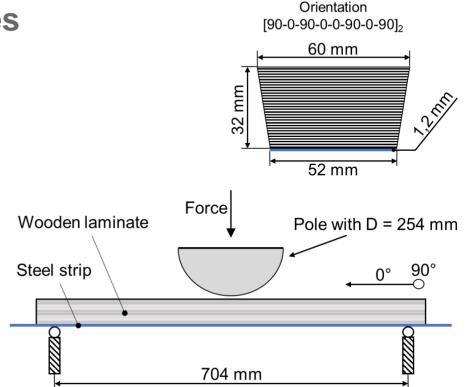
- Delamination in the middle due to exceeding of shear stress possible
- → Component is discretized with 2 Shell-layers or more
- Each shell layer represents a sub-laminate
- Characteristics from true layers stored in numerical integration points (IP)

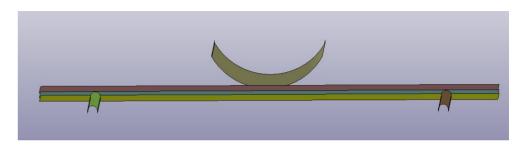




Modelling of veneer-based layered composites Layered Composites

- Delamination in the middle due to exceeding of shear stress possible
- → Component is discretized with 2 Shell-layers or more
- Each shell layer represents a sub-laminate
- Characteristics from true layers stored in numerical integration points (IP)
- Delamination based on a bilinear tractionseparation law

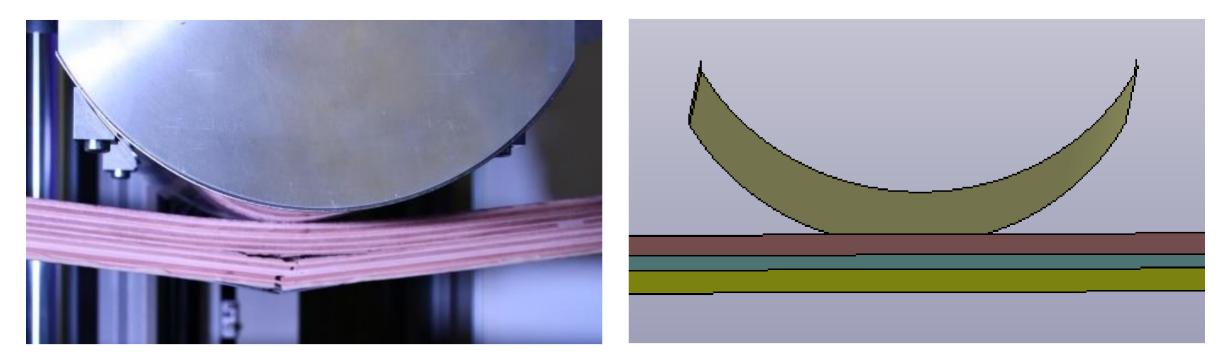

Simulation of veneer-based layered composites Calibration of intralaminar behavior – setup


• Generic structure comparable to a door impact beam:

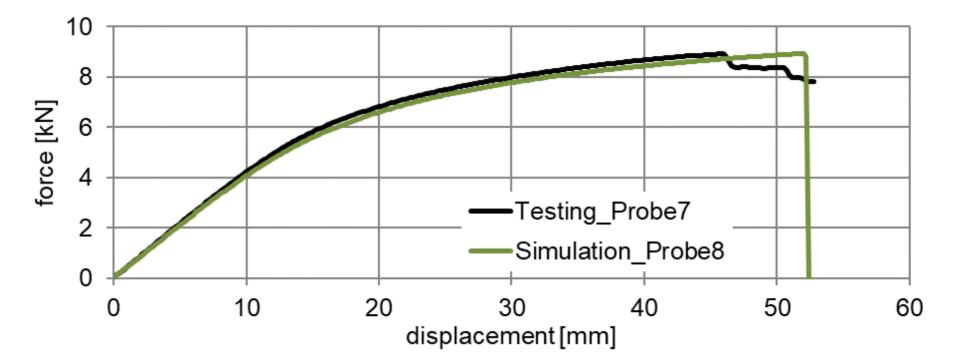
- Wooden part made of 16x 2,0 mm veneer layers
- Steel strip with 1,2 mm thickness

• Testing:

- Quasi-static three-point bending flexural test
- Usage of 10" pole (254 mm diameter)
- Force measurement at pole
- Displacement measured at pole
- Simulation:
 - 2 shell layers for wooden part and 1 shell layer for strip
 - Material model as developed
 - Aim: Calibration of intralaminar behavior (delamination)



Simulation of veneer-based layered composites Calibration of intralaminar behavior – comparison


Testing

Simulation

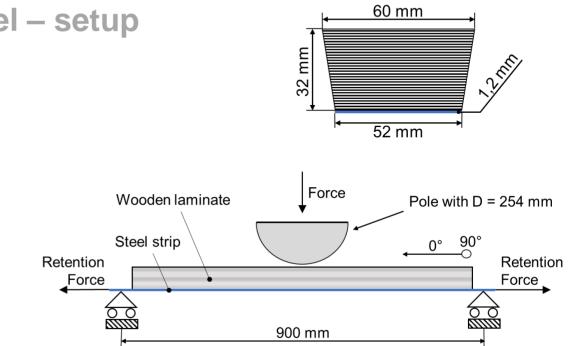
Simulation of veneer-based layered composites Calibration of intralaminar behavior – results

Calibration of intralaminar failure:

 \rightarrow similar course of the force-displacement curve

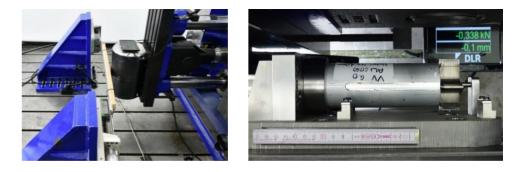
 \rightarrow fracture pattern could be mapped to good approximation

Simulation of veneer-based layered composites Validation of simulation and material model – setup


- Generic beam:
 - Same geometry
 - Different orientation of layers

• Testing:

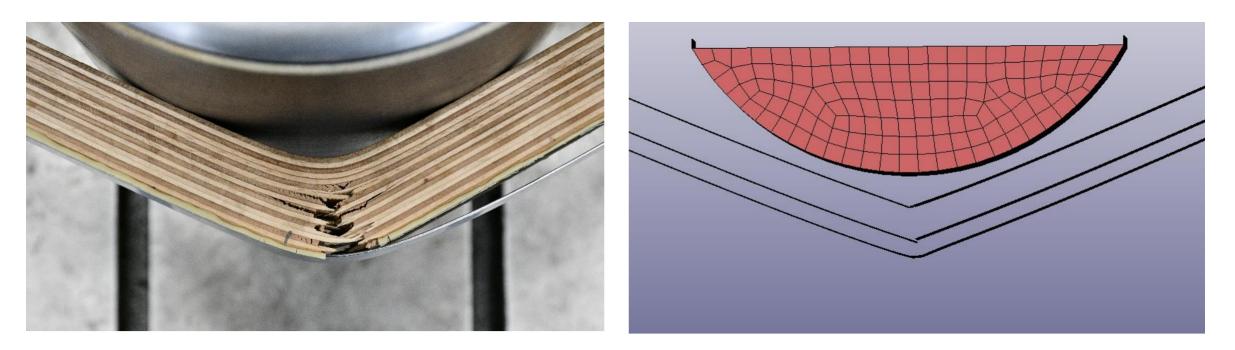
- Quasi-static three-point bending flexural test
- Usage of absorber units (AU) for retention force
- Force measurement at pole and at AU
- Displacement measurement at pole and at AU


Simulation:

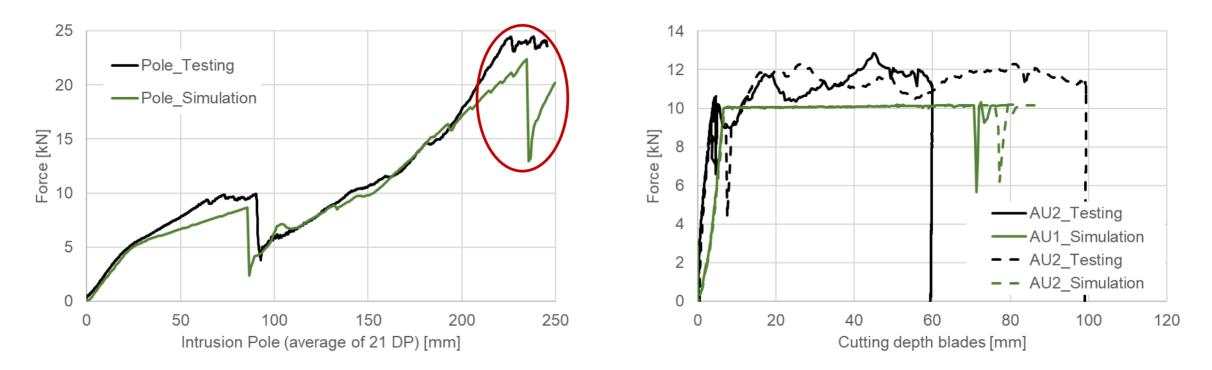
- 2 shell layers for wooden part and 1 shell layer for strip
- · Material model and sim. model as developed
- Aim: Validation of simulation and material model

Orientation

[90-0-90-0-0-90-0-90]



Simulation of veneer-based layered composites Validation of simulation and material model – comparison


Testing

Simulation

Simulation of veneer-based layered composites Validation of simulation and material model – results

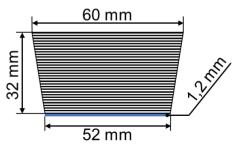
- qualitative course is similar
- absolute values in simulation tend to be smaller

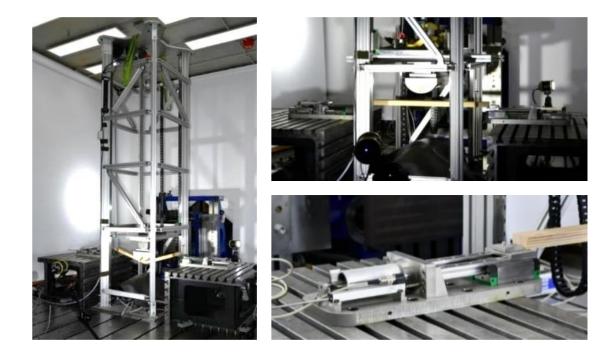
- Sum of displacement is similar
- · Kinematics in good approximation to testing

 \rightarrow Validated simulation and material model

Simulation of veneer-based layered composites Expansion of dynamic behavior – setup

- Generic beam:
 - Same geometry
 - Different orientation of layers

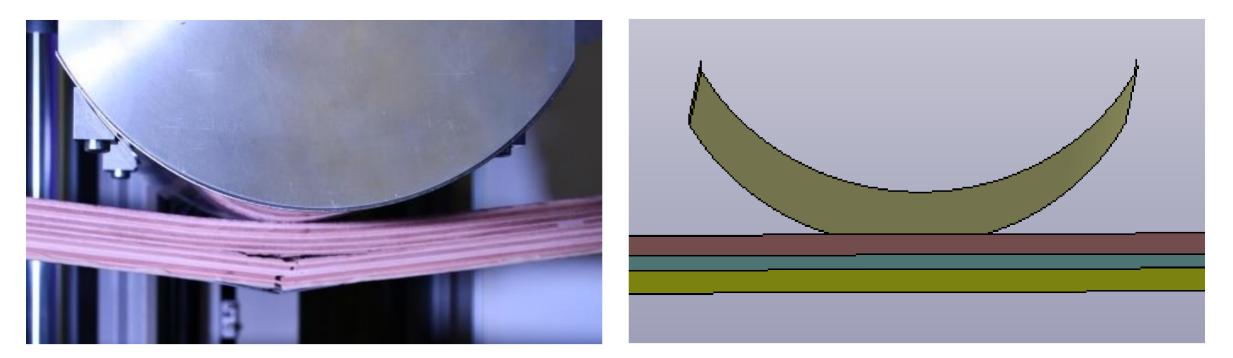

• Testing:


- High-speed three-point bending flexural test
- Test setup comparable to validation
- Usage of drop tower in combination with AU
- Force measurement at pole and at AU
- Displacement measurement at pole and at AU

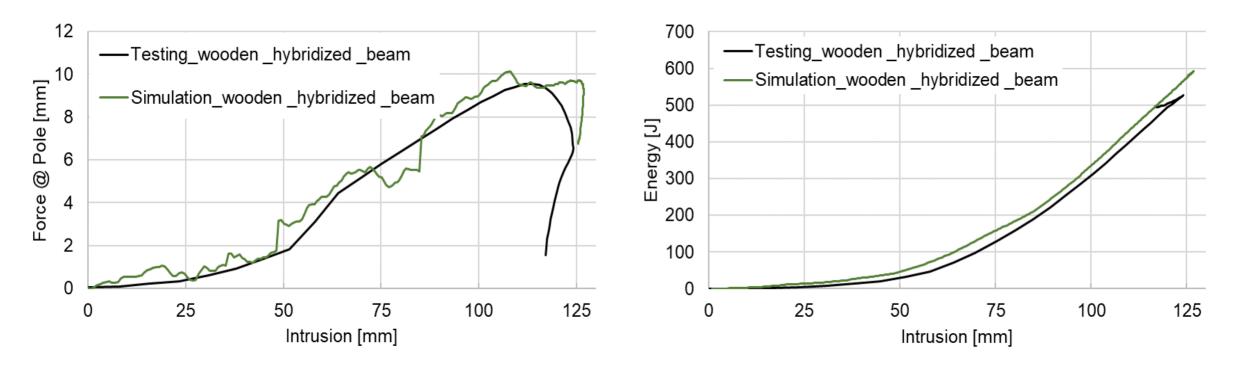
• Simulation:

- 2 shell layers for wooden part & 1 shell layer for strip
- Material model with dynamic behavior
- Aim: Expansion to dynamic material model

Orientation [90-0-0-90-0-0-90-0-90-0-0-90-0-90]



Simulation of veneer-based layered composites Expansion of dynamic behavior – comparison


Testing

Simulation

Simulation of veneer-based layered composites Expansion of dynamic behavior – results

- qualitative course is quite similar
- · absolute values in simulation tend to be higher

- Higher absorbed energy in simulation (~15%)
- No spring back in simulation

 \rightarrow Successful expansion of dynamic behavior

Summary and outlook

Summary	Outlook	Contact details
 Material model created for quasi-static and high-speed loads 	 Refinement of dynamic parameters in order to better match absorbed energy 	Giovanni Piazza
		+49 711/ 6862 - 8154
 Intralaminar behavior modeled 	 Simulation of a specific assembly in a real use case, like Euro-NCAP Side Pole Impact 	<u>Giovanni.Piazza@dlr.de</u>
 Modelling approach with layered shells validated 	 Comparison of specific assembly with a reference impact beam to determine potential of veneer-based structure 	Further information about the project For(s)tschritt: <u>holz-im-fahrzeug.de</u>

Literature

- [1] Ashby, M.F.: "Materials Selection in Mechanical Design", 3rd edition, Elsevier, 2004
- [2] Bergman, R., Alanya Rosenbaum, S.: "Cradle-to-gate life cycle assessment of laminated veneer lumber production in the United States", Forest Products Journal, vol.67, November 2016
- [3] Klein, B.: Lightweight-Construction. Wiesbaden, 2011
- [4] LS-DYNA, Keyword user's manual, Volume II: material models, Livermore Software Technology Corporation (LSTC), 2013.