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Abstract—State-of-the-art device free localization systems infer
presence and location of users based on received signal strength
measurements of line-of-sight links in wireless networks. In this
letter, we propose to enhance device free localization systems by
exploiting multipath propagation between the individual network
nodes. Particularly, indoors, wireless propagation channels are
characterized by multipath propagation, i.e., received signals com-
prise multipath components due to reflection and scattering. Given
prior information about the surrounding environment, e.g., a floor
plan, the individual propagation paths of multipath components
can be derived geometrically. Inherently, these propagation paths
differ spatially from the line-of-sight propagation path and can
be considered as additional links in the wireless network. This
extended network determines the novel multipath-enhanced device
free localization system. Using theoretical performance bounds on
the localization error, we show that including multipath compo-
nents into device-free localization systems improves the overall lo-
calization performance and extends the coverage area significantly.

Index Terms—Cramér–Rao lower bounds (CRLBs), device-
free localization (DFL), multipath propagation, wireless sensor
networks.

I. INTRODUCTION

UBIQUITOUS connectivity and location-based services are
key components for smart environments, such as modern

manufacturing facilities and smart homes [1]. The demand in
location awareness can be served, e.g., by active radio frequency
(RF) based localization systems requiring the user to carry a
localization device. Alternatively, passive localization systems
estimate presence and location of the user by measuring the
user’s impact on the propagation of RF signals. We distinguish
thereby between radar systems exploiting properties of directly
reflected and scattered signals, as in [2], and device-free local-
ization (DFL) systems exploiting user-induced power changes
of received signals within wireless networks due to diffraction
and shadowing, as in [3]. Unlike classic radar, DFL can be
deployed using arbitrary underlying wireless networks, ranging
from ZigBee [3] to ultrawideband (UWB) [4]. Typically, DFL
systems measure the received signal strength (RSS) between
network nodes. Based on these RSS measurements, the location
is either estimated by computing propagation field images, so-
called radio tomographic imaging [3], or by using empirical [5]
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Fig. 1. Exemplary multipath propagation for network link l (Txi and Rxj) in
a given environment with two reflecting surfacesS = {s1, s2}. Arrows indicate
the physical propagation paths of LoS and MPCs according to the set of visible
sequences Xl = {ξl,1, ξl,2, ξl,3}. The geometric decomposition is illustrated
for the second-order reflection ξl,3 by VTs and VRs at mirrored positions ofTxi
and Rxj . Resulting equidistant paths between pairs of corresponding nodes are
indicated by red lines reconstructing the physical propagation path of the MPC
within the observation area.

or theoretical propagation models [6], [7], which directly relate
the RSS measurements to the user location.

Prevalent DFL systems deploy narrowband RF devices, and
thus, besides the user impact, the RSS is also affected by small-
scale multipath fading. Since multipath fading is unique for
each network link, narrowband DFL systems require extensive
initial calibration and frequent recalibration accounting for time-
variant propagation environments [8]. Addressing the issues of
multipath fading, Beck et al. [9] propose to use UWB devices
for DFL systems. Thereby, the wide signal bandwidth enables
the separation of the received signal into line-of-sight (LoS) and
multipath components (MPCs). The extraction of MPCs allows
to isolate the LoS signal and, thus, to mitigate distortions due to
multipath propagation.

Instead of mitigating distortions of the LoS signal, we propose
to make particular use of multipath propagation for improving
DFL systems. The proposed novel multipath-enhanced device-
free localization (MDFL) systems are strongly motivated by the
measurements in [10]. These measurements demonstrate that
user-induced fading can be also observed in the received power
of reflected and scattered signals. Naturally, the propagation
paths of these reflected and scattered signals differ spatially from
the LoS propagation path (see Fig. 1), and thus, contain spatial
information in addition to that of the LoS paths. The goal of
this letter is to illustrate the performance improvement of DFL
systems that can be obtained by incorporating propagation paths

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9345-142X
https://orcid.org/0000-0003-4298-8195
https://orcid.org/0000-0001-9502-5654
https://orcid.org/0000-0003-2736-1140
mailto:martin.schmidhammer@dlr.de
mailto:christian.gentner@dlr.de
mailto:stephan.sand@dlr.de
mailto:uwe.fiebig@dlr.de


454 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 20, NO. 4, APRIL 2021

of reflected and scattered signals as additional links to the un-
derlying wireless network. We provide the signal processing to
extract the spatial information from each pair of transmitting and
receiving node and derive the theoretical performance bounds on
the localization error for the novel MDFL system. In a case study,
we evaluate MDFL numerically and quantify the improvement
compared to common DFL.

II. NETWORK AND PROPAGATION MODEL

We consider an MDFL system relying on a network of
NTx transmitting and NRx receiving nodes at known locations
rTxi

, i ∈ {1, . . . , NTx}, and rRxj
, j ∈ {1, . . . , NRx}. Receiv-

ing nodes can be collocated with transmitting nodes or indi-
vidually placed. The network link configuration is determined
by the index set P , where link (i, j) ∈ P is composed of the
ith transmitting and the jth receiving node and is indexed by
l ∈ {1, . . . , |P|}. For link l, the signal at the receiving node is
modeled as a superposition of scaled and delayed replica of a
known transmit signal sl(t) of duration Tsym. These comprise
the LoS and a finite number of static MPCs due to reflections of
the surrounding environment. Therewith, the received signal is
expressed as

yl(t) =

Nl∑
m=1

αl,m(t)sl(t− τl,m) + nl(t) (1)

with time-variant, complex amplitude αl,m(t), and static prop-
agation delay τl,m of the mth MPC [11]. For notational conve-
nience, we omit the time index for the amplitude and consider
LoS paths also as MPCs. The term nl(t) denotes white circular
symmetric normal distributed noise with variance σ2

yl
.

Following Meissner et al. [12] and Gentner et al. [13], we
model the delays of the MPCs geometrically using virtual nodes.
Therefore, we represent the surrounding environment by a finite
number of reflecting surfaces determining the setS . For this rep-
resentation, we require prior information about the surrounding
environment, which can be provided, e.g., by a floor plan [12].
Based on the set of reflecting surfacesS , we can define reflection
sequences that chronologically describe the signal propagation
for an MPCp from the transmitting to the receiving node of link l.
Using tuple notation, we express these sequences as ξl,p = (sb)
with sb ∈ S , where the sequence length, denoted as Nξl,p , is
determined by the order of reflection. Subsequently, we can
compose a set X containing all potential reflection sequences.
Based on these sequences, we can construct virtual transmitters
(VTs) and virtual receivers (VRs) for each MPC of the network
links by consecutively mirroring the physical nodes. Note that
due to symmetry, VRs are constructed using the sequences in
reverse order. For sequence ξl,p ∈ X , the locations of the virtual

nodes are thus denoted by r
(u)
VTl,p

and r
(Nξl,p

−u)

VRl,p
, where the

index u ∈ {0, . . . , Nξl,p} corresponds to pairs of related virtual
nodes. Thereby, the physical transmitting and receiving nodes
are referred to as r(0)VTl,p

and r(0)VRl,p
, respectively. Fig. 1 provides

an example for a second-order reflection illustrating the sets of
VTs and VRs. It is noticeable that the distances between the
pairs of related nodes are equal. Due to geometry, these distances
correspond to the length of the physical propagation path. Thus,
we can express this length for any pair of related nodes u as

d (ξl,p) = dl,p = ‖r(u)VTl,p
− r

(Nξl,p
−u)

VRl,p
‖. (2)

Furthermore, as shown in Fig. 1, the paths between pairs of
related nodes intersect at the physical reflection points. Thus,
we can reconstruct the physical propagation paths geometrically
similar to optical ray-tracing [12]. This allows to compose a
set of visible sequences Xl ⊆ X for each network link, with
cardinality |Xl| = Nl equal to the number of MPCs modeled
in (1). Finally, we can define a set of possible path lengths as

Dl = {d(ξl,m) | ξl,m ∈ Xl}. (3)

III. MULTIPATH-ENHANCED DFL

The objective of any DFL system is to estimate the user state,
defined as location and velocity, based on user-induced changes
in the received signal power. Following a Bayesian approach,
this objective can be expressed by a transition model describing
the spatiotemporal evolution of the user state, and a measurement
model relating the measured changes in the received signal
power to the user state. In the following, we describe the required
signal processing and provide a corresponding measurement
model.

A. Initialization and Data Association

Initially, we need to determine the individual propagation
effects of the static environment. In the initialization step, the
channel of each network link is therefore observed over a pe-
riod Tini. Ideally, the environment should be devoid of any user
during this period. This ensures that we can accurately describe
the propagation effects of the static environment. With Tg as
time interval between two adjacent received signals, a total
of �Tini/Tg� consecutive signal samples are collected. For each
signal sample, we determine amplitude and delay values for N̂l

separable MPCs using maximum likelihood estimation, e.g., us-
ing the space-alternating generalized expectation-maximization
algorithm [14].

By averaging the amplitude and delay estimates over the
amount of signal samples, we obtain the set of mean amplitude

{ᾱl,q}N̂l
q=1 and the set of mean delay {τ̄l,q}N̂l

q=1. The set of mean
amplitude allows to calculate the power of the MPCs for the idle
channel, which serves as reference to determine user-induced
power changes. The set of mean delay determines the set of
estimated path lengths as

D̂l = {c · τ̄l,q | 1 ≤ q ≤ N̂l}. (4)

After the initialization step, i.e., the estimation of all observ-
able MPCs from the received signals, we need to determine
the physical propagation paths of these MPCs. In Section II,
we have modeled the delays of MPCs using virtual nodes and
reflection sequences in a preinitialization step. Thereby, a reflec-
tion sequence describes chronologically the signal propagation
from transmitting to receiving node and represents the physical
propagation path, accordingly. Thus, we can relate the MPCs
estimated during initialization to the physical propagation paths
modeled in the preinitialization step.

The MPCs are characterized by delay or path length, respec-
tively. We therefore use the corresponding sets of expected and
estimated path lengths for data association, i.e., Dl in (3) and
D̂l in (4). A possible association approach provide Meissner
et al. [12], following optimal subpattern assignment [15].
Thereby, the setsDl and D̂l are matched such that the cumulative
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distance between expected and estimated path lengths is mini-
mized. The individual associations are further constrained not to
exceed a certain distance value, the so-called cutoff value. The
cutoff value is defined by the ranging accuracy of the transmitted
signals [12]. Therewith, we discard strongly outlying MPCs and
avoid wrong associations. Clutter due to diffuse reflections and
scattering is thus inherently eliminated.

The constrained data association is applied for each network
link l resulting in sets of associated reflection sequences X̌l.
Depending on the observed MPCs during the initialization and
the subsequent association step, the set X̌l of network link l
contains an individual number of Ňl associated sequences. Com-
bining the information from all network links results in the union
set X̌ = ∪|P|

l=1X̌l. Eventually, the cardinality |X̌ | = ∑|P|
l=1 Ňl

determines the overall amount of associated reflection sequences
and, thus, the amount of corresponding MPCs, which can be used
for MDFL. Note that the association step is crucial since MDFL
relies on the location information contained in the propagation
paths. Misassociated MPCs could therefore even degrade the
localization performance.

B. Parameter Estimation and Measurement Model

After initialization and data association, the network is ba-
sically ready for localization, but requires measurement data.
Therefore, we continuously determine the amplitude values of
all associated MPCs of each network link. For each ξl,n ∈ X̌
with corresponding delay τ̄l,n, we estimate the amplitude using

α̂l,n = α̂(τ̄l,n) =

∫ Tsym

0

(
yresl,n(t)

)∗
sl(t− τ̄l,n) dt (5)

as the projection of the residuum signal yresl,n(t) onto the unit
transmit signal sl(t) [12]. Thereby, the residuum signal is
defined as received signal adjusted for all MPCs up to the
(n− 1)th, i.e., yresl,n(t) = yl(t)−

∑n−1
n′=1 α̂l,n′sl(t− τ̄l,n′).

Given the amplitude estimates, we can calculate the measured
power of an MPC as |α̂l,n|2 and express the user-induced power
changes by adjusting the measured power by the power of
the idle channel determined during initialization. Thus, we can
compose the measurement vector z ∈ R|X̌ |, defined in decibel,
by stacking the individual components zl,n = 20 log10

|α̂l,n|
|ᾱl,n| .

The estimation steps described earlier were successfully ap-
plied to measurement data in [10]. The results were used to
validate a physical model for user-induced fading on the power
of MPCs. In this letter, we adopt the model derived in [10]
and slightly modify it for simplification. We therefore carefully
approximate the user impact on individual pairs of related nodes
by the empirical exponential model as in [5]. Thus, we can model
the power changes of an MPC depending on the user location r
as the sum

f(r, ξl,n) =

Nξl,n∑
u=0

φl,ne
−δ

(u)
l,n (r)/κl,n (6)

whereφl,n defines the maximum modeled power change in deci-
bel and κl,n expresses the spatial decay rate. The excess path

length δ
(u)
l,n (r) of the uth pair of virtual nodes, as defined by

sequence ξl,n, is calculated by

δ
(u)
l,n (r) = ‖r(u)VTl,n

− r‖+ ‖r(Nξl,n
−u)

VRl,n
− r‖ − dl,n (7)

with the path length dl,n being defined in (2). Eventually, we
can model the measurement vector defined in decibel as

z = [. . . , f(r, ξl,n), . . . ]
T +w ∀l, n : ξl,n ∈ X̌ (8)

with Gaussian measurement noise w ∼ N (0,R(r)). Assum-
ing mutually independent measurements, the noise covariance
matrix R(r) ∈ R|X̌ |×|X̌ | is diagonal. For clarity of presentation
and avoiding complexity, in this letter, the elements of the noise
covariance matrix are assumed to be independent of user location
r, i.e., σ2

l,n(r) = σ2
l,n and therewith R(r) = R.

IV. PERFORMANCE BOUND

The Cramér–Rao lower bound (CRLB) provides a lower
bound on the variance of an unbiased estimator, defined by
the inverse of the Fisher information matrix (FIM). Therefore,
the unbiased estimator r̂ of user location r = [rx, ry, rz]

T

satisfies Cov(r̂) = E[(r̂ − r)(r̂ − r)T] ≤ F(r)−1, where
F(r) ∈ R3×3 denotes the FIM. Given the Gaussian
measurement model (8) with noise covariance matrix R,
which, for simplicity, is assumed to be independent of the user
location, we can express the FIM as

F(r) = J(r)TR−1J(r) (9)

where J(r) ∈ R|X̌ |×3 denotes the Jacobian matrix of the mea-
surement model with respect to the user location [6]. Using the
differential operator∇r = [ ∂

∂rx
, ∂
∂ry

, ∂
∂rz

]T, the elements of the
Jacobian matrix, which correspond to ξl,n, are calculated as

[J(r)]ξl,n = ∇rf(r, ξl,n)

=
φl,n

κl,n

Nξl,n∑
u=0

e−δul,n(r)/κl,n∇rδ
u
l,n(r) (10)

with

∇rδ
u
l,n(r) =

r
(u)
VTl,n

− r

‖r(u)VTl,n
− r‖

+
r
(Nξl,n

−u)

VRl,n
− r

‖r(Nξl,n
−u)

VRl,n
− r‖

. (11)

For the evaluation of the localization accuracy, we can use the
CRLB to determine the root-mean-square error (RMSE) of the
location estimate. Based on the diagonal elements of the CRLB,
the RMSE is lower bounded by

RMSE =
√
E [‖(r̂ − r)‖2] ≤

√
tr (F(r)−1). (12)

V. NUMERICAL RESULTS

Finally, we evaluate the performance of the proposed
MDFL approach numerically for a fully meshed network of
NTx = NRx = 20 circularly arranged, collocated transmitting,
and receiving nodes. Each node has a distance of 4 m to the
network center. All nodes are located at the same height and
correspond to the height of the body center of the user. Thus,
both the network nodes and the evaluated user locations are
placed on the same plane. The multipath propagation environ-
ment is characterized by four reflecting surfaces confining an
observation area of 23 m × 15.5 m. The exact arrangement of
the setup is shown to scale in Fig. 2.

For the numerical analysis, we have refrained from an explicit
simulation of the signal estimation process at the receiving
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Fig. 2. CRLB limit to the localization accuracy of DFL and MDFL systems. The underlying network is identical for each system and consists of 20 circularly
arranged transceiving nodes, as indicated by white bold dots. The observation area is confined by reflecting surfaces S = {s1, s2, s3, s4} represented by hatched
lines. A DFL system with LoS signals only is considered in (a), MDFL systems with LoS and first-order reflections in (b), and with LoS, first- and second-order
reflections in (c). The white rectangle in the network center defines an area of 2 m × 2 m used to calculate the expected RMSE (cf., Fig. 3).

nodes. Instead, we assume perfect association of all consid-
ered MPCs. This implies that all components of the received
signals within the network are assumed to be perfectly esti-
mated and then correctly associated with the respective reflecting
sequences (cf., Section III-A). Reflections from ground and
ceiling are not taken into account. However, it can be assumed
that MPCs due to these reflections would further improve the
performance of MDFL. The parameter set of the measure-
ment model is assumed as φl,n = −2.5 dB, κl,n = 0.05 m, and
σl,n = 1.5 dB ∀l, n [8]. Using (12), the localization accuracy
is evaluated in terms of RMSE. For assessing the spatial local-
ization capabilities, we define the area in which a localization
approach achieves an RMSE < 1 m as coverage area.

The localization accuracy is calculated for state-of-the-art
DFL, as shown in Fig. 2, and for two MDFL systems com-
plementing the network by all possible MPCs due to first- and
second-order reflections, as shown in Fig. 2(b) and (c). It can be
seen that the DFL and MDFL systems cover the area between
the network nodes with high localization accuracy. For DFL,
however, this area coincides with the coverage area. In contrast,
the coverage areas of the considered MDFL systems span over
the entire observation area. In particular, MDFL, including
MPCs of second-order reflections, covers the observation area
almost completely.

Apart from a larger coverage, the results in Fig. 2(a)–(c)
indicate that also the absolute localization accuracy has im-
proved for MDFL compared to DFL. To further investigate this
performance improvement, we calculate an expected RMSE for
an area of 2 m × 2 m located in the network center, as marked in
Fig. 2. The expected RMSE is determined for different numbers
of network nodes, different orders of reflections, and a varying
environment. As before, fully meshed networks of circularly
arranged transceiving nodes are assumed. The resulting values
are shown in Fig. 3. For each environment, the expected RMSE
monotonically decreases with the number of nodes. Overall, the
localization accuracy improves with an increasing number of
considered reflection surfaces and higher orders of reflection,
which both increase the number of MPCs. Hence, rich multipath
environments are beneficial for MDFL. The highest accuracy
gain can be achieved for networks employing only a few nodes.

Fig. 3. Expected RMSE as a function of network nodes, calculated for an area
of 2 m × 2 m in the network center (cf., Fig. 2). The evaluated MDFL systems
consider in addition to LoS paths also propagation paths of first-, second-, and
third-order reflections from surfaces S = {s1, s2, s3, s4}.

Sparse networks benefit particularly from multipath propaga-
tion, since MPCs compensate for the lack of measurements from
additional nodes.

VI. CONCLUSION

In this letter, we introduce a multipath-enhanced DFL ap-
proach. For this novel approach, we provide a geometrical
model describing the physical propagation of MPCs and the
corresponding signal processing. Based on the underlying mea-
surement model, we derive the theoretical performance bound on
the localization error allowing to evaluate the proposed approach
numerically. The results show that the consideration of MPCs
overcomes the constrained spatial localization capabilities of
state-of-the-art DFL approaches and extends the coverage area
significantly. Moreover, the localization accuracy improves with
increasing number of MPCs, especially for sparse networks.
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