
Concept study for the use of a render engine for computer games in a
flight simulation

Bachelor’s thesis

for the degree

Bachelor of Science

of the course Information Technology

at the Baden-Wuerttemberg Cooperative State University Mannheim

by

Michael Ratzel

Submission on 14.09.2020

Processing Period: 22.06.2020 - 13.09.2020
Student id, course: 6614999, TINF17ITIN
Department: FT-FDS
Apprenticing company: German Aerospace Center (DLR)
Company’s supervisor: Torsten Gerlach
University’s reviewer: Prof. Dr. Heinz Jürgen Müller

Declaration

I hereby assure you that I have written my bachelor’s thesis on the

Subject

Concept study for the use of a render engine for computer games in a
flight simulation

independently and that I have not used any other sources and aids than those
indicated.

I also assure you that the electronic version submitted is the same as the printed
version.∗

∗ if both versions are required.

Braunschweig, 14.09.2020

Abstract

The Air Vehicle Simulator (AVES) is operated by the German Aerospace Center
and provides a highly flexible platform with up to four different cockpit modules
for research and development purposes. During the flight simulation, its visuals are
created by the AVESViewer software based on the open-source rendering framework
OpenSceneGraph (OSG). Because the further development of OSG was terminated
in 2019, a replacement is required in the midterm. This work presents the Unreal
Engine 4 (UE4) as a possible candidate by conducting a concept study to develop
the new UnrealViewer application coupled to the existing AVES environment. At
first general requirements for a visual system of flight simulation are specified, and
the current AVESViewer is analyzed how those are fulfilled. For most of them, UE4
techniques could be presented that achieve the same purpose as the AVESViewer
ones. The two exceptions are investigated in-depth.

The first is that the model import process aiming to reuse the terrain model’s
height and image data and the FLT aircraft models was developed, as UE4 can
not natively import it. Both model types can only provide a compromise between
optimal performance, visual quality, and usability, and although the full potential
was not exploited, the general possibility to import the models was shown.

The other aspect of the concept study, the controllability via the AVES Visual
Simulation Animation Protocol, was successfully shown in combination with a
concept for configuring everything via XML and a low input lag.

Kurzzusammenfassung

Der Air Vehicle Simulator (AVES) wird vom Deutschen Zentrum für Luft- und
Raumfahrt betrieben und bietet eine hochflexible Plattform mit bis zu vier verschie-
denen Cockpitmodulen für Forschungs- und Entwicklungszwecke. Die Visualisierung
während der Flugsimulation erfolgt mit der Software AVESViewer, die auf dem
Open-Source-Rendering-Framework OpenSceneGraph (OSG) basiert. Da die Wei-
terentwicklung von OSG im Jahr 2019 eingestellt wurde, ist mittelfristig ein Ersatz
erforderlich. In dieser Arbeit wird die Unreal Engine 4 (UE4) als möglicher Kandidat
vorgestellt, indem eine Konzeptstudie zur Entwicklung der neuen, an die beste-
hende AVES-Umgebung gekoppelten UnrealViewer-Anwendung durchgeführt wird.
Zunächst werden allgemeine Anforderungen an ein visuelles System der Flugsimu-
lation spezifiziert, und der aktuelle AVESViewer wird analysiert, wie diese erfüllt
werden. Für die meisten von ihnen konnten UE4-Techniken vorgestellt werden, die
den gleichen Zweck wie die AVESViewer-Techniken erfüllen. Die beiden Ausnahmen
werden eingehend untersucht.

Die erste ist, dass der Modellimportprozess mit dem Ziel der Wiederverwendung der
Höhen- und Bilddaten des Geländemodells und der FLT-Flugzeugmodelle entwickelt
wurde, da UE4 diese nicht nativ importieren kann. Beide Modelltypen können nur
einen Kompromiss zwischen optimaler Leistung, visueller Qualität und Benutzer-
freundlichkeit darstellen, und obwohl das volle Potenzial nicht ausgeschöpft wurde,
zeigte sich die generelle Möglichkeit, die Modelle zu importieren.

Der andere Aspekt der Konzeptstudie, die Steuerbarkeit über das AVES Visual
Simulation Animation Protocol, wurde erfolgreich in Kombination mit einem Konzept
zur Konfiguration über XML und einer geringen Eingabeverzögerung gezeigt.

Contents

List of Figures VII

List of Tables IX

Listings X

Abbreviations XI

1. Introduction 1
1.1. Air Vehicle Simulator . 1
1.2. AVESViewer . 2
1.3. Aim of this Work . 3

2. Visual Simulation Requirements 4
2.1. Performance Requirements . 4

2.1.1. Frame Rate . 4
2.1.2. Distributed Simulation Architecture 4
2.1.3. Input lag . 5

2.2. Visual Requiremmcpdients . 5
2.2.1. Terrain model . 5
2.2.2. 3D Assets . 5
2.2.3. Effects . 6

2.3. Multichannel Projection . 6

3. AVES Visual System Environment 8
3.1. Tools and Programs . 8
3.2. Terrain Model . 9
3.3. 3D Assets . 11
3.4. Environmental and Visual Effects 12
3.5. Visual Simulation Animation Protocol 14

4. Unreal Engine 4 16
4.1. General . 16

- V -

Contents

4.2. Build system . 17
4.3. C++ Object Handling . 18
4.4. Asset Types . 18
4.5. Landscapes . 19
4.6. Dynamic data loading . 20

4.6.1. Texture streaming . 20
4.6.2. Level streaming . 20
4.6.3. World Composition . 21

4.7. Environmental and Visual Effects 22
4.8. nDisplay . 23

5. Concept Study Design 24
5.1. General . 24
5.2. Import Process . 24
5.3. Controllability . 25

6. UnrealViewer Import Process 26
6.1. Terrain Data . 26

6.1.1. Multigrid support . 26
6.1.2. Model coordinate system . 27
6.1.3. World Composition . 28
6.1.4. Final Import Process . 32

6.2. Aircraft Models . 34
6.2.1. Node Tree Uniformization 34
6.2.2. Final Import Process . 38

7. UnrealViewer Control 40
7.1. General . 40
7.2. VSAPConnection Module . 41
7.3. CoordConversion Module . 42
7.4. UnrealViewer Module . 44

8. Conclusion 48
8.1. Requirements . 48
8.2. Terrain Import Process . 49
8.3. Aircraft Import Process . 50
8.4. Controllability . 51
8.5. Future Work . 52

Appendices 57

- VI -

List of Figures

1.1. A320 Simulation Architecture . 2

3.1. Current Creation Process of the Virtual Worlds 9
3.2. UTM grid in the Trian3DBuilder 10
3.3. Current OpenFlight model preparation 12
3.4. Current OpenFlight Model Preparation Air Vehicle Simulator (AVES)

Spec conform . 12
3.5. Brown Out Effect . 13
3.6. Environmental Effects . 13

4.1. Continuous Geo-MipMap LOD . 20
4.2. World Composition Minimap View 21
4.3. Environmental Effects . 23

6.1. Gap in geocentric terrain . 27
6.2. Adaption of a tiled heightmap created by Trian3DBuilder 29
6.3. Error introduced by adapting the Heightmaps 30
6.4. Landscape UV-channel problem . 31
6.5. New Terrain Import Process . 32
6.6. Custom Import Terrain Widget . 33
6.7. Node Tree Comparison of the different Import Stages 35
6.8. Different levels of detail (LODs) with rotated DOF_Engine3 38
6.9. New Aircraft Import Process . 38

7.1. Unreal Viewer Classes Overview . 40
7.2. Conversion from UTM to Unreal Engine 4 (UE4) space 43
7.3. Game Flow during Startup . 45
7.4. UVStartupGameMode . 46
7.5. UVGameMode . 47

8.1. Terrain Model Imported with new Process 49
8.2. Airbus A380-800 Aircraft Model Imported with new Process 51

A.1. VSAPConnection Class Diagrams 59

- VII -

List of Figures

A.2. CoordConversion Class Diagrams 59
A.3. UnreaViewer Class Diagrams . 60

- VIII -

List of Tables

7.1. OnStartupMap: Parsed XML Information 46
7.2. OnTerrainMap: Parsed XML Information 47

8.1. Requirements Overview and Unreal Engine 4 (UE4) Solutions . . . 48
8.2. Trian3DBuilder Datasmith Model Types Comparison 50

- IX -

Listings

3.1. VSAP Header Definition . 14
3.2. VSAP Object Header Definition . 15
3.3. VSAP Object MODEL_GEO Definition 15

6.1. Node Detection Regular Expressions 36

7.1. Geocentric to UE4 Conversion on UTM Map 44

- X -

Abbreviations

AVES Air Vehicle Simulator

CPU Central Processing Unit

DAE Digital Asset Exchange

DDS DirectDraw Surface

DLR German Aerospace Center

DOF Degrees Of Freedom

FBX Filmbox

FLT OpenFlight

FoV Field Of View

FPS Frames Per Second

GUI Graphical User Interface

IC Interface Computer

IG Image Generator

IVE OpenSceneGraph Binary File

LOD Level Of Detail

MPCDI Multiple Projector Common Data Interchange

O2U OpenFlight To Unreal

OpenGL Open Graphics Library

OSG OpenSceneGraph

RAM Random-access Memory

- XI -

Abbreviations

TGA Targa Image File

UDP User Datagram Protocol

UE4 Unreal Engine 4

UHT UnrealHeaderTool

UTM Universal Transverse Mercator

VSAP Visual Simulation Animation Protocol

XML Extensible Markup Language

- XII -

1. Introduction

1.1. Air Vehicle Simulator

The German Aerospace Center (DLR) is the research center of the federal republic
of Germany, conducting research and development work in the fields of aeronautics,
space, energy, transport, digitization, and security. These projects are integrated
into national and international cooperative ventures and are leading in their fields.
One of DLR’s institutes, the Institute of Flight Systems (FT) at the Braunschweig
site, is active in flight mechanics, measurement, and systems technology of flying
systems. For research purposes, large-scale facilities such as the Air Vehicle Simulator
(AVES) are operated. The AVES is a flight simulator of the highest reality [10].
Since 2013 it is available for use by other DLR institutes and departments, as well
as external companies and research groups. Three different modules are currently
(2020) available, one cockpit from a Eurocopter EC135 helicopter and one from an
Airbus A320 passenger aircraft, as well as a cabin module with 16 seats. A fourth
module, the cockpit of a Falcon 2000LX airplane, is currently in development. As an
example of the AVES simulation architecture, the A320 one can be seen in figure 1.1.
The simulation’s backbone is a central Ethernet connection between the single parts
managed by the Interface Computer (IC) [10]. Various types of subsystems are
integrated into the architecture, like the visual simulation. This part, in particular,
generates the images, which are used in the projection system.
Two of those are currently available, and both provide 15 projectors to create an
extensive viewing range of 240° horizontally and 90° vertically, but only one is
mounted on six degrees of freedom (DOF) motion system, while the other can only
be used in simulations with a fixed base. Combined with the interchangeable cockpit

- 1 -

1.2. AVESViewer

Figure 1.1.: A320 Simulation Architecture

modules, a highly flexible simulation infrastructure is available for research and
development purposes [10].

1.2. AVESViewer

To utilize the simulator properly and create an immersive experience, high-quality
graphics are required in real-time, which the DLR developed render application
AVESViewer can produce. It uses OpenSceneGraph (OSG) as a base and is controlled
by the Visual Simulation Animation Protocol (VSAP).
OSG is a scene graph application that structures the rendered scene into a graph
and performs multiple traversals to render the scene in a performant manner. It acts
as a middleware between the low-level Open Graphics Library (OpenGL) and the
AVESViewer.
VSAP is a DLR developed protocol that handles the communication between the IC

- 2 -

1.3. Aim of this Work

and the AVESViewer and is based on a User Datagram Protocol (UDP) connection.
The AVESViewer renders large virtual worlds, like a whole map of Germany, with
60frames per second (FPS) in real-time. The Trian3DBuilder creates these worlds
with data from multiple satellite and aerial images and measurements. Therefore
a high degree of realism and accuracy can be achieved. Additionally, the render
application allows simulating traffic by rendering multiple different aircraft models,
which are also controlled via VSAP.

1.3. Aim of this Work

In 2019 it was announced that OSG is no longer being developed and will continue
only in a maintenance phase [44]. Therefore a replacement for the AVESViewer needs
to be found in the midterm, and this work carries out a concept study to determine
if the widely-used Unreal Engine 4 is applicable in replacing OSG concerning two
main aspects: The reusability of the existing aircraft models and terrain data, and
the controllability via a User Datagram Protocol (UDP) connection, especially with
the VSAP.

Therefore general requirements for a visual simulation in the area of flight simulation
are specified in chapter 2. Afterward, in chapter 3, the current AVESViewer system
is analyzed to identify how these requirements are fulfilled, and chapter 4 describes
the possibilities of achieving this with the Unreal Engine. Based on these understand-
ings, the criteria for the concept study are designed in chapter 5. The new import
process is described in chapter 6 and the implementation of the VSAP-controllable
UnrealViewer application in chapter 7.
The results are presented, and the implementation is verified if the criteria specified
in the concept study design are met, and future challenges for productive usage are
discussed.

- 3 -

2. Visual Simulation Requirements

2.1. Performance Requirements

2.1.1. Frame Rate

The most prominent performance requirement is the frame refresh rate, generally
speaking, the higher the FPS are, the better and smoother the user experience is,
but everything above 50 FPS is sufficient to avoid negative effects, like flickering
[3, Chapter 8][35]. Even higher frame rates do not provide a much better result,
especially in flight simulations with civil aircraft, where the camera rotations and
movements are usually relatively slow.

2.1.2. Distributed Simulation Architecture

Exemplary for a professional flight simulation architecture , the AVES A320 one was
presented in section 1.1. It uses the approach of distributing the single parts of a
simulator onto multiple machines, as a single one can not handle the high number of
highly complex subsystems due to performance reasons [3, Chapter 8]. Therefore
some communication protocols between the systems must be implemented.

- 4 -

2.2. Visual Requiremmcpdients

2.1.3. Input lag

The last performance-related requirement is the input lag, which describes the time
between the pilot’s input and visual cues. The delay is usually composed of many
single sources. For example, the network connection between the single parts of the
simulator may cost several tens of milliseconds, but also the render application may
take up to one complete frame until the inputs are processed. Generally speaking,
the input lag shall be as low as possible, and the more demanding flying an aircraft
is, the more crucial a low input lag is [7].

2.2. Visual Requiremmcpdients

2.2.1. Terrain model

Realistic visuals can only be achieved if a realistic virtual world is present. As
the terrain model is the main component of the world, it must meet high-quality
requirements while still providing an acceptable performance [35]. The model is often
of the size of countries, continents, or the whole world and requires a high resolution
if the simulated aircraft is close. This represents a challenge for the visualization due
to file sizes of multiple tens of gigabytes and a challenge for the creation. Designing a
model of this size by hand with the required grade of detail is very time-consuming and
expensive. Therefore the terrain shall be created automatically based on real-world
data, like aerial and satellite images and elevation models.

2.2.2. 3D Assets

3D Assets can be placed inside the world to improve it further. Those can be static
assets like trees, rocks or houses, or dynamic ones like traffic. The static models
break the terrain model’s relatively flat surface and create a more realistic skyline,
especially noticeable for flights at low altitudes. They also provide a size reference

- 5 -

2.3. Multichannel Projection

for the pilot, improving their feeling for distances [3, Chapter 8][35]. On the other
hand, dynamic assets mainly increase the number of possible scenarios, which can
be simulated. A landing approach to a busy airport or an aerial refueling scenario is
not possible without movable aircraft.
Nevertheless, the 3D Assets must be of sufficient quality. This requires them to
consist of a correct geometry as well as high-quality textures. In combination with a
good lighting and shadowing model, this can be very beneficial for perceiving the
position and size of objects [48].

2.2.3. Effects

Another aspect of an excellent visual simulation is using realistic effects. Weather,
clouds, water, or light effects are essential topics [3, Chapter 8]. A simulated thun-
derstorm can not create the same immersion if neither clouds are visible nor rain
is falling, but it does not only look wrong, it also decreases the quality of a pilots
performance in the simulator, as those visual cues are missing and with them, the
perceived information about the virtual world [36].

2.3. Multichannel Projection

A multichannel projection system is required due to the needed high resolution for
the visual system, which is necessary because of the required field of view (FoV) and
pixel density. A wide horizontal FoV improves the pilot’s peripheral vision, which "is
the primary source of information for body orientation, direction of travel, changes
in direction of travel, approximate speed, and objects entering view from the side"
[35]. A large vertical FoV is primarily indispensable in the context of rotorcraft
simulations [10]. If the pixel density is too low, and therefore the pixel size is too
big, they can be perceived by the pilots as a single pixel and not as a whole picture,
limiting the pilot’s capabilities in the simulator and reducing their performance [13].

- 6 -

2.3. Multichannel Projection

This resolution and FoV is currently only achievable with multiple projectors.
A multichannel dome projection is a common approach to align those projectors.
However, for this setup, additional problems arise: the dome itself introduces distor-
tion to the images, the edges of the projectors must be blended to avoid a different
brightness on the overlapping areas, and the projectors must be aligned with each
other to create seamless transitions without visible steps between them.

- 7 -

3. AVES Visual System Environment

3.1. Tools and Programs

The AVES Visual System consists of multiple tools and programs to prepare and
generate three-dimensional models and display them on the projection system:

AVESViewer Rendering application based on OSG

OSG Open source 3D graphics toolkit

Trian3DBuilder (TrianGraphics GmbH) 3D terrain generation software

osgconv OSG based program to convert models between different file formats

3ds Max (Autodesk Inc) 3D modeling and rendering software

The primary tool is OSG, which is used as a middleware between the AVESViewer
render application and the low-level graphics application programming interface
(API) OpenGL. Access to the source code of the open-source software is a vital
aspect of OSG. It creates high expandability and flexibility for the AVESViewer
because every aspect can be altered or expanded, which helps to match the versatile
use cases in the context of research and development [10]. As an example, the viewer
did not support to render many light sources and was expanded to use a modern light
rendering approach, which enabled the AVESViewer to show thousands of dynamic
light sources that increase the realism of night scenarios [31].
With the Trian3DBuilder, 3ds Max, and osgconv the diverse model import processes
of the AVESViewer are created. They are used to create aircraft and terrain models,
with data from multiple sources, and convert them into the OpenSceneGraph Binary
File (IVE) format, to be rendered efficiently with the OSG based AVESViewer.

- 8 -

3.2. Terrain Model

3.2. Terrain Model

The Trian3DBuilder handles the creation of the virtual worlds for the AVES simula-
tion. A brief overview of the process is shown in figure 3.1.

Figure 3.1.: Current Creation Process of the Virtual Worlds

The builder can create the models in various coordinate systems. For example, a
geocentric model preserves the earth’s curvature. It represents a segment of the
earth’s ellipsoid directly, while a Universal Transverse Mercator (UTM) model rep-
resents the earth’s surface projected onto a flat plane. The AVESViewer currently
uses models based on those two coordinate systems, geocentric and the UTM.
In the selected coordinate system, a rectangular grid is defined, and the size of the
finished model is defined by how many tiles the grid has and how big each tile is.
Figure 3.2 shows a grid in the UTM coordinate systems with three by two tiles and
a tile size of 4 km by 4 km.
To create the models, the Trian3dBuilder reads color and height information from
input files and connects them based on their position in the coordinate system. The
final model’s geometry is built from the height information and the texture of the
color information. The density of the model’s vertices and the texture resolution are
essential criteria for the model’s quality.
The Trian3DBuilder can refine the terrain model by placing additional 3D Assets
into the virtual world. The extra airport module of the Trian3DBuilder is capable of
inserting airport-related models into the terrain model, e. g. a runway can be baked
directly into the ground and replace the previously used aerial or satellite image at
that point. In addition, automatically generated light sources can be created for the
simulator [31].
After the terrain model designing is finished, it can be exported into the IVE format.
This is the native OSG binary format for computer models and can be used directly
by OSG and, therefore, by the AVESViewer. No other conversion tools or scripts

- 9 -

3.2. Terrain Model

Figure 3.2.: UTM grid in the Trian3DBuilder

are necessary. The export process supports the OSG technique of PagedLOD, and
exporting light sources [31].

The PagedLOD system is one of the multiple OSG techniques used in the AVES
environment to increase the terrain models’ performance. It combines levels of detail
(LODs) with dynamic data loading.
LODs reduce the large virtual world’s performance impact, especially when combined
with the substantial viewing distances of multiple tens of kilometers. For each tile of
the world, multiple models are created by the Trian3dBuilder, each with a different
grade of detail. Lower details enable faster rendering times, and especially at far
distances, where an object occupies only a few pixels on the screen, fine details are
not distinguishable. Therefore a level of the model with a low grade of detail can be
used [3, Chapter 8][17].
The dynamic data loading helps manage large terrain models, which can easily exceed
file sizes of multiple gigabytes, and therefore loading them entirely into random-

- 10 -

3.3. 3D Assets

access memory (RAM) is not possible due to size limitations of the used hardware.
The OSG PagedLOD technique loads only the viewable LOD and all lower detail
levels of the terrain model so that only the close tiles have their high detail and
memory-intensive levels in RAM, helping to reduce the amount of data down to a
manageable size [4].

Additionally, different areas of the terrain need different grades of details. The areas
close to an airport require the highest detail LODs, while the areas where the aircraft
is in cruise height at high altitudes are only barely visible and need close to no details.
The PagedLOD system helps mitigate problems in terms of RAM usage, but the
disk space wasted by unused high detail LODs is considerable, as well as the central
processing unit (CPU) overhead, which is created by managing a large amount of
PagedLODs.
As the LOD settings are changed for every tile of the grid simultaneously, one single
grid forces the user to compromise between the detailed and vague areas. This is
solved by the Train3DBuilder multigrid feature, which allows defining multiple grids
and exports them into the same terrain model. For example, the areas close to the
airport can be cut out of the primary grid and replaced with a detail grid.

3.3. 3D Assets

The DLR has a large collection of aircraft models from a large variety of sources.
Thus, the aircraft models’ import or creation process differs more than the one for
the terrain. The models are present in numerous file formats, e. g. OpenFlight (FLT),
digital asset exchange (DAE), Filmbox (FBX), or Microsoft specific file formats and
can be imported, or they are directly created via the 3ds Max modeling software.
This work focuses on importing models in the FLT format, as this is a standard file
format in the simulation industry and more than 100 aircraft models are available in
this format for usage in the AVESViewer.
The models are loaded into 3ds Max via the included FlightStudio utility. Afterward,
they are exported in the COLLADA format DAE and converted with the osgconv

- 11 -

3.4. Environmental and Visual Effects

Figure 3.3.: Current OpenFlight model preparation

tool into the IVE format. Without any conversion during the loading, the OSG
native format can be loaded faster in the AVESViewer. As the FLT import process
uses 3ds Max as a tool, native 3ds Max projects are handled in a very similar way
and do not differ by a lot, which is also true for FBX files, as they are imported into
3ds Max as well and after that, follow the same steps as the FLT files.
Similarly to the terrain models, the aircraft models also use LODs, to ensure adequate
performance. Still, no dynamic data loading with PagedLOD is used because the file
size of an aircraft model is only around a few megabytes, and they do not use a lot
of RAM space, so the CPU overhead of managing dynamic loading can be avoided.
To animate the single parts of the aircraft, like the ailerons or gears, the model’s
structure must follow a specific naming convention, the AVES Spec. On simulation
start, the AVESViewer parses the model and collects the corresponding nodes.
Consequently, the preparation process for the aircraft models needs a modification,
as shown in figure 3.4. An additional step is introduced, which parses the Extensible
Markup Language (XML) based DAE files and renames the model structure to match
the convention.

Figure 3.4.: Current OpenFlight Model Preparation AVES Spec conform

3.4. Environmental and Visual Effects

The environmental and visual effects shown in the AVESViewer are partially bought
from a third party company and partially made in house. One of the DLR developed
is the light and shadow model, which was only possible due to the open-source of

- 12 -

3.4. Environmental and Visual Effects

OSG [31][32].

Figure 3.5.: Brown Out Effect

An effect, where a helicopter pilot’s view is obstructed by surface material raised by
the downwash of a helicopter close to the ground, the so-called brown out effect was
also implemented by the AVES team [14] (see figure 3.5).
On the other hand, the weather, cloud, and ocean simulation are shown in figure 3.6a.
They are powered by the SilverLining Sky & 3D Clouds and the Triton 3D Ocean
& Water SDK, which are both published by Sundog Software LLC and provide an
interface for the usage with OSG.
However, as the area of effects is one of the fastest developing in computer graphics
and many new techniques are published every year [27][28], the rendering application
needs to be continuously improved to stay up to date.

(a) SilverLining Sky & 3D Clouds (b) Triton 3D Ocean & Water SDK

Figure 3.6.: Environmental Effects (Source: https://sundog-soft.com/evaluate/gallery)

- 13 -

https://sundog-soft.com/evaluate/gallery

3.5. Visual Simulation Animation Protocol

3.5. Visual Simulation Animation Protocol

For the task of distributing the simulation, many custom protocols were developed in
the AVES environment. One of them is the Visual Simulation Animation Protocol
(VSAP), which can control multiple instances of the AVESViewer on different
machines via a UDP connection. It is a protocol with a fixed-size header and a
dynamic payload, containing an arbitrary amount of VSAP objects. A total amount
of 19 different object types are currently supported, but some are only available for
legacy reasons.
In the following, this variable data structure is explained with an example message
containing a VSAP MODEL_GEO object. This represents an input data stream for an
animated 3D model, with positions in the geodetic coordinate system.
The first structure, which will be transmitted, is the header of the message, which
consists of different meta information and the number of VSAP objects. Those
objects represent the payload of the data and are directly following after the header
in the data stream.

Listing 3.1: VSAP Header Definition
1 // Header for visual simulation animation protocol
2 typedef struct
3 {
4 float vers; // Protocol version
5 int size; // DEPRECATED
6 int reply ;
7 int objCnt ; // Number of objects
8 } VSAP_HDR ;

As the object length differs per type, each object starts with a separate object header.
This structure contains the type information and the index, which is only relevant
for some objects. The MODEL_GEO object is one of those because it is the data to
animate this one specific 3d model assigned to the index.
One additional feature used for MODEL_GEO objects is using setup objects. Those
are optional and can be appended to the MODEL_GEO object. How many of those
are present is also specified in the object header, and parsing them follows a similar
approach as with the main objects. They have their type information at the same

- 14 -

3.5. Visual Simulation Animation Protocol

position, which is used to parse the setup object and determine the length. The next
object begins directly after the current one so that the position of the next type
information is known, and the parser can iterate over the objects.

Listing 3.2: VSAP Object Header Definition
1 // Defines the data stream for the general object header
2 typedef struct
3 {
4 int iType ; // Object typ
5 int iLen; // DEPRECATED
6 int iIndex ; // Model or intersection index or NULL otherwise
7 int iSetup ; // Number of setup objects
8 double dSimTime ; // Simulation time of this object
9 } VSAP_OBJ_HDR ;

The MODEL_GEO itself consists, without the setup objects, only of its main payload, a
MODEL_GEO_DATA structure, in addition to the object header. The payload contains
the information required to set the position and rotation of the indexed 3D model,
and the next VSAP object starts directly after the last byte parsed for this MODEL_-
GEO object and its setup data, until the last object specified by the objCnt, in the
message header, is parsed.

Listing 3.3: VSAP Object MODEL_GEO Definition
1 // Defines the geodetic data stream for an animated 3D object
2 typedef struct
3 {
4 double lat; // Latitude coordinate [deg]
5 double lon; // Longitude coordinate [deg]
6 float height ; // Height value [m]
7 float h; // Heading angle [rad]
8 float p; // Pitch angle [rad]
9 float r; // Roll angle [rad]

10 } VSAP_OBJ_MODEL_DATA_GEO ;
11
12 //! Defines the geodetic data stream for an animated model
13 typedef struct
14 {
15 VSAP_OBJ_HDR hdr; // Header with basic information
16 VSAP_OBJ_MODEL_DATA_GEO data; // Model data
17 } VSAP_OBJ_MODEL_GEO ;

- 15 -

4. Unreal Engine 4

4.1. General

UE4 is developed by Epic Games and is currently one of the most spread graphics
engines and is used to develop many graphics applications [5][41]. It combines high
visual fidelity with a high-performance rendering system for the final application as
well as a powerful editor for content creators and developers [38]. The engine and the
editor are written in C++, and the source code is entirely open-source, which enables
the user to change everything to their needs. Using the software comes without a
royalty, except for commercial off-the-shelf products with gross revenue exceeding
one million USD. After accepting these terms and conditions, access to the full source
code is granted via GitHub [11], but the engine can also be installed with build bina-
ries and debug symbols via the Epic Games Launcher to avoid building it from source.

Due to the extensive usage in the game industry and community, many online
resources like forums or tutorials can be found to increase the development speed and
lower the entry barrier in the engine. In addition, stream recordings are available for
many engine features, where the internal staff presents and explains one particular
feature of the engine over for 1 hour, and answers questions from the community to
explain how the feature is intended to use.

The provided editor helps manage, arrange, and import the assets and control
the gameplay. The latter can be done with two different methods, writing C++

- 16 -

4.2. Build system

code or using the Blueprints Visual Scripting system, which is a node-based in-
terface to the engine. The main workflow idea is to create custom Blueprints as
C++ classes with an external text program or integrated development environment
(IDE) and provide them to the editor users so that they can combine them into
the bigger picture. For example, an actor’s capabilities to be controlled via an
external protocol, like VSAP, should be implemented in C++ and exposed to the
Blueprint system. Afterward, an Instance of this Actor is created, and the aircraft
model is assigned to it in the editor. This separates the low-level task of creating
those high-performance low-level parts in C++, from combining them and creating
the whole experience in Blueprints, which enables persons without programming
skills and knowledge of the underlying implementation to develop aspects of the game.

4.2. Build system

The custom UE4 build system provides a system to separate the source code in
different modules. It is a process based on a C# file per module in which the
dependencies and build rules for the module are declared.
Apart from the modules, the build system also uses the UnrealHeaderTool (UHT)
to create the necessary code for the reflection system so that C++ classes can be
used in Blueprints. The UHT utilizes the UENUM, UCLASS, UINTERFACE, USTRUCT,
UFUNCTION, and UPROPERTY macros. Each macro is used for a different part of the
C++ code and indicates the UHT to generate code for this particular part, which
handles multiple purposes. For example, the UFUNCTION macro can be used with the
BlueprintCallable argument, which causes the reflection system to generate the
necessary code, so that this function can be called in Blueprints [22].

- 17 -

4.3. C++ Object Handling

4.3. C++ Object Handling

The Object Handling system of UE4 revolves around the UOjbect, every object of
a class that inherits directly or indirectly from UObject underlies special rules. A
garbage collection system manages those objects, and as soon as no reference points
to the object, it will be freed in the next garbage collection cycle. A raw C pointer
is not sufficient to count as a reference and prevent the object from being garbage
collected. The pointer must be either declared with the UPROPERTY macro or stored
in a UE4 container, like TArray. References declared in this way are automatically
set to null on initialization, and if it is a reference to an AActor or UActorComponent,
it will be updated to null on the deletion of the referenced object [46]. The actor class
is another of the main classes in UE4 and extends an UObject, with the possibility
to place it in a virtual world.
UE4 provides a naming scheme for the class names, to differentiate them based on
the first letter of their names [6]:

U Inheriting from UObject

A Inheriting from AActor

T Template classes

I For interfaces

E For Enums

F For everything else

4.4. Asset Types

The engine provides two different systems to represent external models, Static and
Skeletal Meshes. The former is an efficient structure that uses caching to lower the
model’s performance impact, but the assets ca not be modified to create animations
[39]. On the other hand, the Skeletal Meshes consist of "a set of polygons composed
to make up the surface of the Skeletal Mesh, and a hierarchical set of interconnected
bones which can be used to animate the vertices of the polygons" [37], but they
perform worse in comparison with static meshes, and they can not be created or
edited from within the UE4Editor [37]. Therefore an external editing application is
necessary.

- 18 -

4.5. Landscapes

Importing assets into UE4 can be done with FBX files or with the Datasmith plugin.
The FBX pipeline handles more complex meshes and provides more features than the
Datasmith plugin. For example, Skeletal Meshes are not possible via the Datasmith
plugin and can only be imported as an FBX file [2]. On the other hand, Datasmith
provides a larger variety of supported file formats, including the uDatasmith format
[9], and can import multiple assets combined in a Datasmith scene while maintaining
the single assets’ hierarchy and relational positions [2].
Multiple companies of the area of flight simulation are currently working on providing
a Datasmith import pipeline for their products. The OpenFlight To Unreal (O2U)
plugin developed by Presagis introduced in 2019 aims to streamline importing FLT
models into UE4 by converting them to a Datasmith scene [15][25][42]. Moreover,
TrianGraphics extended their Trian3DBuilder with an optional Plugin to directly
transfer the models to UE4 via the Datasmith [44].

4.5. Landscapes

The UE4s landscape technique is specialized for creating vast terrains and performs
better than static meshes due to a lower memory footprint of roughly one-sixth
[19]. This is possible because the floor of the world consists of a quadratic grid so
that only the height information must be stored and the x, y, and UV information
can be easily calculated on the fly by knowing which point of the grid is currently
considered.
The up to 16 bit height information per grid point is imported via an image file,
a so-called heightmap. The images are usually a single channel Portable Network
Graphics (PNG) or RAW image file with 8 or 16 bits of precision, and internally
the heightmaps are handled like a texture and can benefit from all the regarding
optimizations of UE4, like texture streaming for dynamic loading or mipmaps to
create a lower detail representation.
The landscape system’s additional features are smoothed transitions between two
mipmap levels with a morphing effect, shown in figure 4.1, and procedural foliage.
The latter can cover large areas of the world with very high detail vegetation with

- 19 -

4.6. Dynamic data loading

nearly no memory usage. The system does not store every single tree and its position.
It only stores the area where a forest shall be and places the trees dynamically [26].

(a) Fully LOD 1 (b) Morphing from LOD 1 to LOD 2 (c) Fully LOD 2

Figure 4.1.: Continuous Geo-MipMap LOD (Source: [19])

4.6. Dynamic data loading

4.6.1. Texture streaming

The dynamic data loading processes of UE4 are called streaming, and there are
many different types for multiple use cases. One example is the already mentioned
texture streaming, which calculates for each visible texture the best mipmap level
and loads it asynchronously into memory. At this stage, the loading processes are
dynamically prioritized and adapted so that the most critical textures are loaded
first. The importance can be set by the designer or automatically calculated based
on the screen size of the texture [40].

4.6.2. Level streaming

Another streaming system is level streaming. A virtual world can be separated
into different sublevels. These can be loaded and unloaded dynamically based on
user-defined rules. Therefore only the parts of the world close to the player need to
be in memory while the rest is streamed in as soon as the player comes closer.

- 20 -

4.6. Dynamic data loading

4.6.3. World Composition

Figure 4.2.: World Composition Minimap View

A specialization of the level streaming technique is the World Composition. It
combines the dynamic data loading with automatic sublevel detection and World
Origin Shifting.
World composition is activated in the root level, which will be the persistent level
and unaffected of the streaming. Every other level placed in the same folder or a
subfolder is then detected and added as a sublevel. They are shown in a Minimap
view, where they can be rearranged and assigned to streaming layers. The layers are
shown in the top row. For example, in figure 4.2, the custom 50km layer was added,
and it is currently selected so that all assigned levels are shown. The layers group
the sublevels, and each has its own streaming distance. In the example, the levels
assigned to the 50km layer are streamed in at a distance of 50 km from the player.
Additionally, a LOD system is supported by the level detection. Each sublevel can
have up to 4 LOD streaming levels. Those LOD levels follow the naming scheme

- 21 -

4.7. Environmental and Visual Effects

[sublevelname]_LOD# and are combined automatically. The distance at which the
LOD is streamed in is in relation to the base sublevel. For example, if the layer of
one sublevel has a streaming distance of 50 km and the first LOD has an offset of
20 km, the LOD is streamed in at 70 km. The LODs can be created by an external
application or an auto generator, reducing the contained meshes and landscapes
based on reduction settings. [49].
The other main feature of World Composition is the World Origin Shifting. It pro-
vides a technique to keep the origin of the world always close to the Viewer. This is
necessary because the UE4 position calculations are entirely based on single-precision
floats, and therefore, a numerical error is introduced quickly for objects which are
too far away from the origin. When the player approaches the border of the area
with sufficient precision, the system will shift every actor with the same offset vector
closer to the origin, so that the relative positions are preserved [49]

4.7. Environmental and Visual Effects

For the Unreal Engine are already many effects available, either directly provided
with UE4 or via third party plugins, and the effect database is increasing with nearly
every release of the engine. For example, in 4.24, a new physically based atmospheric
sky model was introduced, and with the next 4.26 release, UE4 is expanded by
water effects to visualize rivers, lakes, and oceans [45]. The lighting effects are also
continuously improved, with 4.25, the ray tracing system is flagged as ready for
real-time productions, and the previously existing lighting and shading models are
already production-proven with good visual results [18][38].
Furthermore, even if the default implementation is not sufficient enough, the engine
can be extended with an own implementation following one of the many available
tutorials or with a third party plugin, like the TrueSky plugin from Simul Software Ltd,
which renders volumetric clouds, weather effects, or the Realistic Ocean Simulator
by "Storm in a Teacup S.R.L." as shown in figure 4.3a[30].
Due to this active development and continuous improvement in the area of effects

- 22 -

4.8. nDisplay

(a) TrueSky weather simulation
(Source: Instagram @truesky_simul)

(b) Realistic Ocean Simulator
(Source: http://www.stcware.com/rd/)

Figure 4.3.: Environmental Effects

and the already large amount of available and high-quality effects, the requirements
of a visual simulation regarding effects can be fulfilled sufficiently.

4.8. nDisplay

UE4 provides a system for rendering with multiple Image Generators (IGs) simulta-
neously, nDisplay. It uses a custom Transmission Control Protocol (TCP) connection
to communicate and synchronize between the different IGs. A synchronized state is
achieved, by synchronizing information and events, like the actor’s location or the
frame start, and combining them with deterministic behavior. For example, if the
player opens a door in the game, only the event when this animation starts must be
synchronized as long as the action results in a deterministic behavior of the scene so
that each IG will generate precisely the same images.
In section 2.3, other issues regarding a multichannel projection are mentioned, like
dome distortion, projector alignment, or edge blending. These can also be solved
by the nDisplay system, which is already production-proven in dome arrangements
[8][33]. However, the task of creating a correct configuration file can be very time con-
suming [29][21], although the VESA Multiple Projector Common Data Interchange
(MPCDI) standard is supported and a third-party applications from the Scalable
Display Technologies company [34].

- 23 -

http://www.stcware.com/rd/

5. Concept Study Design

5.1. General

Within the scope of this concept study, the UnrealViewer will be developed. It is an
executable program that shall be coupled with the AVES simulation environment.
It answers the questions to be examined: Is it possible to import the existing model
data into the application, and is it possible to control an instance of the UnrealViewer
via the Visual Simulation Animation Protocol?

5.2. Import Process

Two new import processes need to be developed, one for the aircraft model and one
for the terrain data. The following four criteria are used to determine if the new
processes are considered as successful:

• Use existing data (FLT models, and elevation and image data)

• A simple process with as few tools, scripts, or programs as possible

• Create high-performance models, especially utilize LOD and streaming tech-
niques

• Enable animations for the aircraft

- 24 -

5.3. Controllability

The Trian3DBuilder can create two file formats, which the UE4Editor can read,
FBX and Datasmith, but the FBX exporter only supports the Unity engine and is
therefore not usable for this work. On the other hand, the Datasmith exporter was
firstly announced in 2019 and is very new [44] and might not be completely mature.
This must be tested, especially if the exporter creates usable results, and if additional
preparations of the models are necessary before they can be displayed with sufficient
performance. Especially the use of the UE4 World Composition system needs a more
in-depth investigation, as it is irreplaceable for large scale maps, due to the World
Origin Shifting.
Two different options are available for importing FLT models, using the O2U plugin
by Presagis or via 3ds Max. Both are promising approaches with O2U as the much
simpler tool and 3ds Max as the already used tool, but due to the limitation that
UE4 can not import skeletal meshes via Datasmith, it is not possible to import
animated aircraft via O2U. Other widespread 3d modeling tools like Cinema4D or
Blender do not provide an importer for FLT models and are therefore not usable
[16][23]. 3ds Max is the only option remaining, which supports not only the in-depth
investigated FLT models, but also many more formats.

5.3. Controllability

The UnrealViewer aims to create not only one finished scenario with one fixed terrain
and only a predefined set of aircraft but to make the scenario highly configurable
and dynamic. The loaded terrain, as well as the aircraft, shall be configurable via an
XML file or directly controllable via the VSAP. The quality of the implementation
is determined with the following four criteria:

• Configure the scenario with an XML file (terrain and aircraft models)

• Setup the VSAP connection with an XML file

• Control the aircraft position and rotation via VSAP

• Low control input latency

- 25 -

6. UnrealViewer Import Process

6.1. Terrain Data

The Trian3DBuilder offers two different model types of how the terrain is exported,
either as a static mesh or a landscape. In this section, the better-suited model
type is selected with the following criteria and afterward evaluated according to the
requirements presented in section 5.2:

• Multigrid support

• Model coordinate system

• World Composition

6.1.1. Multigrid support

A Trian3DBuilder feature commonly used in the AVES environment, multigrids,
is currently unusable in combination with the Datasmith exporter, regardless of
whether it is exported as a static mesh or as a landscape. No official documentation
of TrianGraphics does confirm this, but the software crashes regardless of the tested
configurations, which create correct multigrid terrains with other exporters like
OpenSceneGraphs IVE.

- 26 -

6.1. Terrain Data

6.1.2. Model coordinate system

The AVESViewer currently supports two different coordinate systems for the terrain
models, UTM and geocentric (See section 3.2). The main difference between the
models is that the earth’s surface is projected onto a flat plane for a UTM model,
while the geocentric model has a curved surface.
This curvature is a problem for a UE4 landscape system, as the system is based on
a flat and regular grid, and only the heights for each point are stored. A similar
approach, where only the distance to the earth’s center is stored in the heightmap,
might be possible in theory, but it must be added manually to the engine. On the
other hand, a UTM model can be easily represented by a landscape due to the flat
plane’s projection.
The situation for static meshes is similar: UTM works and geocentric does not,
but the reason is different. A static mesh can represent a curved surface, but for a
geocentric model, the reference point and, therefore, the world origin is at the center
of the earth. This results in positions for the static meshes, where the system of the
single-precision position of UE4 already creates significant errors, which results in
unacceptable gaps between the single tiles, as shown in figure 6.1.

Figure 6.1.: Gap in geocentric terrain

- 27 -

6.1. Terrain Data

6.1.3. World Composition

The Trian3DBuilder generates for each tile of the terrain a single uDatasmith file and
one combined asset file for reoccurring assets, like trees, materials, or textures. The
default process for importing in the UE4Editor is importing the asset file in the root
content directory and using a special import widget provided by TrianGraphics for
the single levels. Each tiled uDatasmith file is imported directly into a sublevel of the
currently opened level, without creating correct sublevel files on the file system. As
the World Composition changes how sublevels are detected and the new one is based
on an automatic approach looking in specific directories, the level structure created
by the TrianGraphics widget is not suitable for World Composition. Therefore a
custom widget was created, which is based on the TrianGraphics one, but it takes
care of automatically importing the assets file as well as importing each tile explicitly
into a separate sublevel file in the correct folder structure (See section 6.1.4). Another
task solved by the import widget is creating the persistent base level for the World
Composition. This level is created as a copy of a default map, where the World
Composition system is already activated.
As a result of the changed structure, the asset file’s paths in the uDatasmith tile file
are broken and need adaption. For static meshes, the meshes’ materials are defined
within the level, and the path to the textures needs adaption, while the materials
of the landscape files are defined in the assets file, and therefore the path from
the model to the material has to be corrected. Two python scripts were developed
for this task. Python was selected because of its widespread usage in the area of
model pipeline automation. Both UE4 and 3ds Max support python scripting for
manipulating files.
With this FixStaticTerrain.py script, a static mesh can be successfully imported
with World Composition, while the landscape terrain pipeline must solve another
challenge. Exporting tiled terrains as landscapes are officially not supported by
the Trian3DBuilder [43, p. 270]. UE4 expects the adjacent landscape tiles to share
their border grid points, so the same height must be stored in both heightmaps
to create a smooth transition without sudden jumps or wholes in the terrain [20].
This requirement is not fulfilled by the Trian3DBuilder, as shown in figure 6.2, the

- 28 -

6.1. Terrain Data

FixLandscapTerrain.py script is therefore extended to also correct this misalign-
ment.

(a) Original Heightmap (b) Original Border Difference

(c) Adapted Heightmap (d) Adapted Border Difference

Figure 6.2.: Adaption of a tiled heightmap created by Trian3DBuilder

Figure 6.2a shows the combined heightmap of an example terrain, with three by
two tiles. The example uses a very low-resolution heightmap of 64 by 64 pixels per
tile to increase the plot’s visibility, but the real used terrain with a resolution of
roughly 500 by 500 shows the same effect. The differences at the borders are shown
in figure 6.2b and are roughly between −1.7m and 1.5m.
The python script parses all heightmap files and averages adjacent tile’s border
pixels to the same value. Additionally, all height values are adapted so that they are

- 29 -

6.1. Terrain Data

transformed in the same manner. That is necessary because UE4 transforms the 16
bit height information to the specific use case, e. g. in a very flat environment with a
very fine structure, the 16 bit information must contain a very high precision, while
a landscape with high mountains and deep valleys requires less precision but a broad
range of values. With a different scaling and translation for each heightmap, the
borders will not match exactly due to numerical imprecision. Equation (6.1) shows
how the uint16 zin from the heightmap is scaled by the factor s and translated by
the offset t to the float zout, representing the UE4 height in cm.

zout = 512cm · s ·
(

zin − 215

216

)
+ t (6.1)

With the default values s = 1 and t = 0 cm the heightmap represents a range from
-256cm to +256cm, with a difference of 78.125µm between adjacent height values.
The corrected heightmaps in Figure 6.2c are scaled by s ≈ 7.04 and translated
by t ≈ 7972 cm to create the exact matching borders shown in figure 6.2d and a
difference between two height values of circa 0.55mm.

Figure 6.3.: Error introduced by adapting the Heightmaps

Averaging the border heights and changing the transformation introduces an error to

- 30 -

6.1. Terrain Data

the terrain’s height, which is shown in figure 6.3. In this specific example, the highest
absolute error is 0.844367 m, which is acceptable compared to the error introduced by
the Trian3DBuilder’s terrain creation process. When used for the AVESViewer, the
software is usually configured to reduce the terrain model’s complexity by removing
vertices from the model. Regarding the LOD, this process is usually allowed to
introduce an error between multiple meters and centimeters. Therefore, the error
introduced by the averaging is in the acceptable range.

Another problem of the landscape models with tiled landscapes is a misalignment of
the UV coordinates. Textures created by the Trian3DBuilder can not be fully used,
as they have overlapping parts, which is shown in figure 6.4a. A UE4 landscape
with 64 by 64 pixels creates UV-coordinates in the range [0; 63]. To span a whole
image over the landscape, the UV-coordinates must be scaled by 63 and offset by 0
to create the necessary texture look-up coordinates in the range [0; 1].

(a) Wrong UV Alignment

(b) Corrected UV Alignment

Figure 6.4.: Landscape UV-channel problem

The Trian3DBuilder textures have a 4-pixel wide border with duplicate pixels so that
the two outmost pixels of the texture must be ignored for a clean border between

- 31 -

6.1. Terrain Data

adjacent landscapes. This is also done by the FixLandscapeTerrain.py script,
which calculates the correct scaling factor scale and offset values panU/V for the
materials UV channel with equations (6.2) and (6.3). The variables resH and resT

represent the resolutions of the heightmap and the texture.

scale = (resH − 1) + 4 × resH

resT

(6.2)

panU/V = 2
resT

(6.3)

6.1.4. Final Import Process

The newly developed four-step process for importing a terrain database into the
UE4Editor is shown in figure 6.5. It starts with configuring the terrain model with
the Trian3DBuilder and exporting it as a uDatasmith file. After it was corrected
using one of the two python scripts, it can be imported into the correct directory
structure by using the provided custom import widget. After that, the tiles’ level
streaming settings need to be adapted.

Figure 6.5.: New Terrain Import Process

The detailed settings to choose are explained with an example. Hereby is the
Trian3DBuilder project file Test01 called and stored in D:/Testing/. The model is
configured with a two by three tile grid, and the primary difference to the current
IVE Trian3DBuilder configuration is apart from changing the file format and avoiding
multigrids, to create only one LOD. Any other LOD extends the generation process
duration without affecting the result. The next step is to run one of the python
scripts, which both follow the same syntax:

FixLandscapeTerrain.py <InputFolder> <BaseFileName>

- 32 -

6.1. Terrain Data

FixStaticTerrain.py <InputFolder> <BaseFileName>

The scripts’ input folder is where the uDatasmith files are, and the base file name
equals the Trian3DBuilder project name, for this example:

InputFolder D:/Testing/Test01/UnrealDatasmith/terrain/

BaseFileName Test01

The python scripts’ outputs are adapted uDatasmith files stored in the same directory,
and filenames are prefixed with FIXED_ to differentiate them from the originals. After
that, the files can be imported to the UE4Editor, with the custom widget. It is
shown in figure 6.6 with the inputs set according to the example. The Use Fixed
Files checkbox controls if the corrected files with the FIXED_ prefix are imported,
or the uncorrected original ones. The world name specifies how the root level of the
newly created terrain is called, and where it is placed in the content directory of the
UE4Editor. This position is where the UnrealViewer application will search for a
map with the world name specified via XML.

/Game/Content/Terrains/<WorldName>/<WorldName>.umap

Figure 6.6.: Custom Import Terrain Widget

- 33 -

6.2. Aircraft Models

The final step is to assign the levels to a streaming layer and create additional LODs
at will, with the World Composition utilities. The basic lighting settings, which are
predefined in the default world, might also need specialization on a per-world basis.

6.2. Aircraft Models

As skeletal meshes are required for animated models, the FBX pipeline must be used
together with the 3ds Max software. A relatively up to date version of 3ds Max is
necessary, as the FBX import pipeline of UE4 is based on the 2018 version of FBX,
but this software can both import the FLT models and export them in FBX with
native functionalities. However, the FLT file format does not contain the concept of
skeletal meshes [24] and therefore are the current FLT models constructed without a
skeleton. Importing each aircraft model into 3ds Max, creating a skeleton for it, and
exporting it as an FBX file is a very time-consuming work to do manually.
However, the UE4Editor can import models without a skeleton as a skeletal mesh
by automatically creating the bone architecture. It traverses the scene graph and
creates a new bone for each detected node, and if the model is exported with LODs,
the UE4Editor builds its skeleton with the highest detail LOD and tries to match the
other LODs to this. A successful result is, therefore, heavily dependent on exactly
matching node structures in each LOD.

6.2.1. Node Tree Uniformization

This structure is not given with the currently used FLT models. Figure 6.7 shows
the problem with the node trees of an Airbus A380-800 model in different stages of
the import process. The green markings at the top of the images highlight the nodes
regarding gear one of the aircraft in the highest-detail LOD, while the green ones at
the bottom show the nodes for the same part in a lower-detail LOD. The structure
of the nodes is correct, while the naming does not match. A python script using
the 3ds Max python interface pymxs was developed to correct the mismatch. The

- 34 -

6.2. Aircraft Models

(a) Original FLT (b) Adapted (c) Imported in UE4

Figure 6.7.: Node Tree Comparison of the different Import Stages

- 35 -

6.2. Aircraft Models

script uses the regular expression library re of python to group the nodes with the
following expression:

Listing 6.1: Node Detection Regular Expressions
1 import re
2
3 LOD = re. compile (r"^LOD [0 -3]?$")
4 DOF = re. compile (r"^DOF_")
5 REMOVABLE = re. compile (r"^L[0 -3] -")
6 BODY = re. compile (r"[bB]ody_ ?[1 -4]")
7 UNDEFINED = re. compile (r".*")

The script’s first step is to remove the nodes of the REMOVEABLE group from the node
tree and assign the children of the removed nodes to their parents to preserve those.
Because of this, the DOF node of the gear has in the adapted node tree only one
child and not two like in the original The two red marked nodes were deleted.
In the slimmed-down node tree, the LOD nodes are searched. In the example, the
four blue marked nodes in figure 6.7 are detected. The blue highlighted group node
in figure 6.7b is created, and the respective children assigned to group them.
For unifying the node names, two suffixes are removed, "_Ref[1-3]$" and "_f0(_-
[1-4])?$", to reduce the differences, but not completely eliminate them. Therefore
the highest-level LOD node is selected as the reference and, each other LOD’s node
tree is traversed an additional time, looking for names in the lower level LODs that
are not present in the highest-level one. If a mismatch is detected, the parent node
must have been equal, because otherwise, the parent must have mismatched first.
Because of that, the script creates a name list based on the reference node tree.
All names of the matching parents’ children fill up the list and are the possible
candidates. The closest matching name is selected from the list and assigned as
the new name for the mismatching node. When the traversal has finished, it is safe
to say that each node in LOD has the same name, parent, and node path in the
reference LOD, but not that each parent has the same amount of children.
After unifying the names, the LODs are created with the "Level of Detail" utility
of 3ds Max. As the utility is not directly accessible with the pymxs package, the
graphical user interface (GUI) scripting capabilities of pymxs need to be used to

- 36 -

6.2. Aircraft Models

simulate the click on the "Create New Set" button of the LOD utility. Creating new
LODs is necessary, although they already have one in the FLT model because that
information is not automatically interchanged.
The last steps of the script are to correct two more straightforward issues. The
FLT models are designed so, that each part of the aircraft has a different instance
of the same material assigned, which causes the UE4Editor’s importer to create
multiple copies of the same texture file and wasting disk, as well as RAM space.
Replacing duplicate instances by a single one avoids this behavior. The other issue
is the incompatibility of UE4 with DirectDraw Surface (DDS) texture files. The
FLT models in the AVES environment use this file format, but UE4 can not use it
properly. The script changes the file endings of the texture files referenced in the
models from ".dds" to ".tga", but creating the Targa Image File (TGA) textures
needs to be done with an external program.

One problem which the script can not solve is a bug in the UE4Editor FBX importer.
For LODs that do not have the full node tree from the reference LOD, the importer
might fail to connect the geometry to the correct node automatically. Figure 6.7c
shows the imported node tree of LOD 2, the one with green markings at the bottom
of figure 6.7b. This model does not contain, for example, the DOF_Engine3 node,
as the rotation of the aircraft engine shall not be animated after a certain distance.
Nevertheless, the bone DOF_Engine3 is present in the UE4 representation, indicated
by the bold name. During the import process, the connection between the single
bones is correctly detected and the regarding bones created. Thus, the five bones
at the bottom of the tree are created and written in bold. However, the parts of
the geometry are assigned from top to bottom without gaps so that until the Gear3
node, everything aligns correctly, but after that, the geometry of spoiler one is
assigned to the DOF_Engine1 node and so on until the airplane body is matched
wit DOF_Engine3. As soon as the aircraft switches into LOD 2 and engine three is
spinning, the body starts to spin, as shown in figure 6.8. This is not the desired effect.
Therefore LODs with reduced animation capabilities are currently not possible with
skeletal meshes and need to be avoided.

- 37 -

6.2. Aircraft Models

(a) LOD 0 (b) LOD 1

(c) LOD 2 (d) LOD 3

Figure 6.8.: Different LODs with rotated DOF_Engine3

6.2.2. Final Import Process

The complete import process for an FLT model is a six-step process, as shown in
figure 6.9. It starts with converting the DDS files to TGA ones and continues with
importing the FLT file into 3ds Max by utilizing the native importer. Afterward,
the mismatching node trees are uniformized with the python script, and the texture
paths, as well as duplicate materials, are corrected. After importing the file as FBX
and importing it with the skeletal mesh pipeline, a skeletal mesh asset is available in
the UE4Editor. The lower-detail LODs of the assets might still contain mismatched
bones, which will be problematic as soon as the model shall be animated.

Figure 6.9.: New Aircraft Import Process

- 38 -

6.2. Aircraft Models

The details of the process are explained following an Airbus A380-800 example model,
with the following relevant paths:

D:/3DAssets/A388_DLH.flt

D:/3DAssets/A388_DLH_Big.dds

D:/3DAssets/A388_DLH_Big.tga

The first path is the FLT model file, and the other two are the texture files before and
after the conversion from DDS to TGA. The XnView was used for the conversion,
but the used program is arbitrary.
Afterward, the FLT file is imported into 3ds Max, and the node tree looks like
figure 6.7a. Then the python script can be run to create the node tree shown in
figure 6.7b. The script should be run via the "MAXScript" utility in the "Utilities"
panel of the 3ds Max GUI to ensure it runs properly, as the required GUI scripting
needs to access the opened "Utilities" panel.
The fourth step is to export the FBX file with embed media activated to ensure that
the textures are exported and export in the FBX 2018 version, as this is the officially
supported version of UE4.
The so created FBX file can then be imported with the skeletal mesh pipeline of
UE4. At this moment, the important settings are the "Import Mesh LODs" set to
true, "Normal Import Method" to "Import Normal" as the normals exported from
3ds Max provide a better visual result, "Convert Scene Unit" true to automatically
scale the model and a rotation of around the z-axis of 90°. The latter is necessary,
as the FLT model is imported with their nose heading to the left. If the model shall
be configurable via the XML file, it must be stored with the following path:

/Game/Content/Aircraft/<ModelName>/<ModelName>.uasset

The imported model consists at this stage of every LOD, even the broken ones,
but those can be removed entirely within the UE4Editor Skeletal Mesh Editor,
or replaced with automatically generated ones, that will build a reduced model.
However, the auto-generated ones only provide a reduced visual quality compared to
the hand-crafted FLT LODs.

- 39 -

7. UnrealViewer Control

7.1. General

Like the engine itself, the UnrealViewer is separated into modules, the VSAPCon-
nection, the CoordConversion, and the main module, the UnrealViewer. Figure 7.1
gives an overview of the different classes in the modules, while the detailed class
diagrams can be found in appendix A. The application’s design revolves around a
custom startup behavior, encapsulated in the UnrealViewer model and described
in-depth in section 7.4. A newly implemented game instance class is utilized to
distribute the specific workloads to other classes and modules during the startup.
The VSAPConnection encapsulates creating the UDP socket, receiving and parsing
VSAP messages, and sending the replies, while the CoordConversion module converts
locations and rotations from the geocentric to the UE4 space.

Figure 7.1.: Unreal Viewer Classes Overview

This application aims to create an entirely via XML configurable system, which
contradicts the usual UE4 approach of creating the basic functionalities in C++
and reflecting them into the editor, where a game designer combines them into
the final experience. That is because the XML file does the job of setting up the

- 40 -

7.2. VSAPConnection Module

scenery. Therefore the Blueprint system is used relatively rarely for the gameplay
implementation of the UnrealViewer.

7.2. VSAPConnection Module

The VSAPConnection module provides the AVSAPDriver and FVSAPParser classes
for communicating with VSAP messages (see figure 7.1). FVSAPParser is a module-
private class used only by the driver to separate the message’s continuous data into
the single VSAP objects. The parser determines the type and the length of the
incoming VSAP object by parsing the header object and determining the type and
the variable length. The parser can process any type of VSAP message, so that the
driver can receive any VSAP message, without necessarily processing it further, and
continue with the next one.
The driver himself handles setting up the UDP socket, receiving the data, and for-
warding the detected messages to the respective objects. In the setup method, the
FUdpSocketBuilder factory provided by UE4 is used to create the socket with the
respective IP address and port. With this socket, a FUdpSocketSender is created,
which handles sending arbitrary data asynchronously, while the FUdpSocketReceiver
class is not used. The receiver works similarly to the sender also asynchronously, but
it does not use an interrupt controlled approach and polls the socket in a given time
interval. An unfortunate combination of the frame rate and the receiving cycle can
lead to problems, where an additional input lag is introduced, or the first part of
the frame is processed with older information than the other one. To mitigate this,
the AVSAPDriver inherits from AActor to enable ticking for the driver, so that the
engine calls its Tick function once per frame, which then handles the data receiving.
This makes sure that right at the beginning of a frame, the most up to date messages
are received, and after that, the whole frame is processed with one consistent set of
information.
For distributing the messages to the respective objects, the UE4 delegate system is
used. Arbitrary functions can be bound to a delegate, as long as they match the
correct function signature. As soon as the delegate is executed, the bound functions

- 41 -

7.3. CoordConversion Module

are called to carry out their logic. For each message type, an individual delegate
is available, and if an object is interested in receiving, for example, MODEL_GEO
messages, it binds its receive method to the delegate, which is then executed with
the respective data when the next MODEL_GEO is received. As some of the VSAP
messages use indexes to address one specific object and others do not, two different
delegate types are provided by the VSAPDriver. A multicast delegate is used for
none indexed communication, where more than one function can be bound to it. On
the other hand, for indexed communication, a single cast delegate is stored for each
bound index in a TMap container.

7.3. CoordConversion Module

The CoordConversion Module takes care of converting input coordinates in the geo-
centric space, with latitude, longitude, and height, into the internal UE4 space, with
x, y, and z. Depending on the projection used to create the loaded terrain model, dif-
ferent intermediate conversion steps are necessary. Therefore the ICoordConverter
class is provided to create a standard interface for using any converter type.
During this concept study, only one implementation of the Interface was created be-
cause the only relevant coordinate system is UTM, as the new terrain import process
does not support the geocentric projection, and other projections are not used in the
AVES environment. Therefore the AUTMConverter converts the latitude, longitude,
and height position from the geocentric space to UTM space and afterward to UE4
space. The first conversion is done using the same underlying math implementation
as in the current AVESViewer to convert the latitude and longitude into UTM
northing and easting values and vice versa. This implementation is encapsulated in
the GEO2UTMCONV namespace and consists of 2 functions geo2utm and utm2geo.
The second step is described in figure 7.2. The black outer circle shows the northing
and easting position and the aircraft heading angle, while the red inner circle shows
the corresponding x and y position and the yaw angle. The different signs for the
northing- and the y-axis result are caused by right-handed coordinate system in

- 42 -

7.3. CoordConversion Module

Figure 7.2.: Conversion from UTM (black) to UE4 (red) space

UTM and a left-handed in UE4. The difference of 90° between the heading and the
yaw angle is due to an arbitrary choice of UE4 that east is at 0 degree. The elevation
directly corresponds to the z-axis, and at last, the position is scaled by 100 because
the UE4 space is in centimeter and the UTM space in meter.

To work correctly, the AUTMConverter must be configured with his setup method.
It sets the UTM zone where the converter is currently operating in and the terrain
origin. The position is used in the system against the precision loss of the converter.
As the Trian3DBuilder exports UTM terrain models with the terrain origin point
in the center of the model and not at 0°N and 0°E, this results in a shifting vector,
which has to be applied during the conversion. The terrain origin provided with the
setup method is therefore transformed into UTM space and then added as an offset
to every other conversion, see listing 7.1 for the implementation source code.
Nevertheless, as UE4 uses only single-precision floating-point calculations, this system
is not enough, because an aircraft can quickly leave the 20 km by 20 km area, where
UE4 considers positions as sufficiently precise. The World Origin Shifting system
is therefore also required to keep the precision up. That is why AUTMConverter
inherits from AActor, the wrapper itself can be spawned into a world, and the
ApplyWorldOffset method is called as soon as the world’s origin is shifted. The

- 43 -

7.4. UnrealViewer Module

wrapper accumulates this shifting with double precision into another offset vector
for the position. The process for converting a location from geocentric to UE4 is
entirely in double precision, and only the output is in single precision.

Listing 7.1: Geocentric to UE4 Conversion on UTM Map
1 // Convert lat/long to northing / easting
2 const double dLatRad = dLat * GEO2UTMCONV :: DEG2RAD ;
3 const double dLongRad = dLong * GEO2UTMCONV :: DEG2RAD ;
4 double dNorthing , dEasting ;
5 GEO2UTMCONV :: geo2utm (m_iUTMZone , dLatRad , dLongRad , &dNorthing , & dEasting);
6
7 // Convert meters to UE4 centimeters and shift with terrain center
8 const double shiftedEasting = dEasting * 100.0 - m_dShiftEasting ;
9 const double shiftedNorthing = dNorthing * 100.0 - m_dShiftNorthing ;

10 const double shiftedHeight = dHeight * 100.0;
11
12 // Convert shifted northing / easting / height to x/y/z and shift by the world

origin shifting offset
13 xyz.X = (float)(shiftedEasting + m_dWorldOriginShiftX);
14 xyz.Y = (float)(- shiftedNorthing + m_dWorldOriginShiftY);
15 xyz.Z = (float)(shiftedHeight + m_dWorldOriginShiftZ);

7.4. UnrealViewer Module

The default startup behavior of UE4 is changed to start the application as specified in
the XML configuration file, as shown in figure 7.3. Usually, when the game is started,
the game instance is initialized, a predefined map is loaded with an associated game
mode before the game starts. The game instance is an object which exists exactly
once for the whole duration of the game and can be accessed from nearly every other
UObject, while the game mode declares a set of rules applying to the game, which
defines what is currently allowed and the current aim for the players.
The adapted startup behavior is constructed around the new UUVGameInstance
object, which creates and setups the AVSAPDriver and the AGEO2UTMWrapper by
utilizing the UXMLConfigurationParser. The startup is a two-step process and
splits into the onStartupMap and the onTerrainMap methods of the game instance.
The onStartupMap method is called by the UVStartupGameMode Blueprint, as soon

- 44 -

7.4. UnrealViewer Module

(a) Native Unreal Engine 4 [12] (b) UnrealViewer

Figure 7.3.: Game Flow during Startup

as its BeginPlay is executed (see figure 7.4). The Blueprint is assigned to the startup
map to be executed as soon as the map is loaded. This startup map is an empty map
with the single purpose to call onStartupMap. The startup map is set to be the de-
fault map of the UnrealViewer, in the project settings, and behaves like a completely
black main menu screen, which is controlled via XML files. When onStartupMap
is called, it creates the XML parser, loads the configuration file specified in the
command line argument with the UXMLConfigurationParsers method loadConfig,
and parses them for the first part of information with onStartupMap, see table 7.1.
The parser looks at this moment for additional files specified to parse, the IP address
and port for the UDP socket, the terrain map’s name, which should be loaded, and
the terrain origin position. After that, the engine is instructed by the game instance
to open the specified terrain map, and the remaining information is stored so that it
can be used in the onTerrainMap method.
This method is called by the UVGameMode Blueprint, which is the default game

mode and automatically assigned to every map unless otherwise stated. Therefore

- 45 -

7.4. UnrealViewer Module

Figure 7.4.: UVStartupGameMode

XML symbol Function
import Use the specified file as input for the parser
terrain
world World name
zone UTM zone of the terrain
origin Terrain origin
connect Specifying the VSAP connection
ip Receiving IP address
port Receiving port

Table 7.1.: OnStartupMap: Parsed XML Information

on loading the terrain map, the UVGameMode starts and behaves very similarly to
the UVStartupGameMode, except that it calls the onTerrainMap method of the game
instance. It utilizes the previously achieved information to spawn and setup the
AVSAPDriver and AGEO2UTMWrapper actors, as both are required to run in the correct
world context, one needs to tick each frame, and the other uses the World Origin
Shifting system.

After that, the remaining parts of the XML configuration are parsed, with the
onTerrainMap function of the parser (see table 7.2). Each aircraft definition found
will result in spawning one actor object of one of the two classes, an AStaticMeshActor
or an AAircraftActor. The deciding aspect is if the aircraft shall be controllable via
VSAP or is a static decoration for the terrain, and the deciding XML configuration is
if the index argument of the aircraft node is present and not set to -1. After spawning

- 46 -

7.4. UnrealViewer Module

Figure 7.5.: UVGameMode

XML symbol Function
scenery Containing an arbitrary amount of aircraft child nodes
aircraft Specifying an aircraft to be placed in the world
name Name of the spawned actor
index VSAP index
main If the main camera shall be attached to this aircraft
model Model name of the asset
rot Initial rotation
pos Initial position in geocentric coordinates

Table 7.2.: OnTerrainMap: Parsed XML Information

the actor, a reference for each is added to a TArray in the parser, to prevent them
from being garbage collected.
As mentioned, the AAircraftActor class’s task is to receive VSAP messages and
control with them the 3D model. An object of the class consists of three compo-
nents, the default root component, which sets the location and rotation in the world,
a camera component with an offset transformation to the root component, and
a UPoseableMeshComponent, which controls the Skeleton of the attached Skeletal
Mesh by accessing the single bones by name.
As soon as the actor’s VSAP index is set, it registers its receiveModelGeo method
at the indexed VSAPDriver delegate. Another important setup method is setMain.
If this is set to true, the aircraft’s model is set invisible, while still casting shadows.
That is important for the main aircraft to avoid partially visible parts of the own
aircraft because the main camera is placed inside the object at the cockpit position.

- 47 -

8. Conclusion

8.1. Requirements

This work determined multiple requirements for three categories: performance,
visuals, and multichannel. After analyzing how these are currently solved in the
AVES environment, new approaches were developed for UE4. The majority of the
requirements were already satisfied by production-proven build-in solutions or third-
party plugins, as shown in table 8.1, but two significant features had to be analyzed
in this work: importing existing data and controllability.

Requirement Solution with UE4
Performance
High frame rate Modern high-performance system is build in
Distributed VSAP protocol
Low input lag Receive at frame start in UnrealViewer
Visual
Terrain model New import process for models created by the Trian3DBuilder
Static assets Can be placed with the Trian3DBuilder
Dynamic assets New import process for FLT models and configuration via XML
Shading model The build-in model is one of the best available
Lighting effects Large number of build-in effects
Weather effects Promising third-party plugin TrueSky
Water effects Promising third-party plugin Realistic Ocean Simulator
Multichannel Completely handled by nDisplay system

Table 8.1.: Requirements Overview and UE4 Solutions

- 48 -

8.2. Terrain Import Process

Figure 8.1.: Terrain Model Imported with new Process

8.2. Terrain Import Process

A new terrain import process was developed, which can be considered as mainly
successful, regarding the criteria presented in the concept study design. It consists of
two newly implemented python scripts and one new import widget for the UE4Editor.
The existing elevation and image data used for the AVESViewer can be reused by
utilizing the same tool to create the terrain databases, the Trian3DBuilder. The
process contains four simple steps, as shown in section 6.1.4, and the developed
tools hide the complexities of adapting the exported Datasmith files and importing
them in the correct folder structure to be used with the UnrealViewer. The process
supports both exporter model types offered by the Trian3DBuilder: static meshes
and landscapes. Both model types are compared in table 8.2, and the landscape
model performs in every aspect as good or better than the static mesh export be-
cause it is UE4’s dedicated system for large terrain models, with the only exception
that a small error introduced, while the tilled export is corrected. A successfully
imported landscape terrain model is shown in figure 8.1, which was rendered on the
test systems with more than 300 FPS on an Intel Core i7-3820 from 2012, and an
NVIDIA GeForce GTX 1080, at a resolution of 1920 by 1200.

Nevertheless, even the landscape model is not the best possible model to create, due
to the lack of a working multigrid exporter from the Trian3DBuilder. This forces the

- 49 -

8.3. Aircraft Import Process

model to be created with one tiling and detail setting for the whole virtual world,
which creates an unwanted compromise between the desired high-details in areas
where the aircraft will be close, like airports and the remaining areas, and the areas
where a lower detail model would reduce file sizes and CPU overhead.

Criteria Static Landscape
Multigrid export Trian3DBuilder crashes Trian3DBuilder crashes
Procedural foliage Unsupported Supported
LOD morphing Unsupported Supported
Tiled export Correct Can be corrected
UTM model Possible Possible
Geocentric model With precision loss Impossible
World composition Possible Possible

Table 8.2.: Trian3DBuilder Datasmith Model Types Comparison

8.3. Aircraft Import Process

Regarding the criteria presented in the concept study design, the newly developed
aircraft import process can be considered as partially successful. It consists of six
simple steps utilizing an image conversion tool, 3ds Max, and a python script, which
hide the tedious work of unifying the LOD’s node trees, as shown in section 6.2.2. By
using this process the existing FLT models, used for the AVESViewer, can be reused,
as shown with the successfully imported aircraft in figure 8.2. However, the result is
only a compromise: either all four handcrafted LODs can be used for the best visual
experience and better performance, or the models can be animated. It is not possible
to combine both features due to a flaw in the UE4Editor’s FBX import pipeline for
skeletal meshes, that mismatches sparsely filled LOD bones to the geometry
Nevertheless, the import process is based on 3ds Max, which supports FLT files, and
additionally, multiple other file formats used in the AVES environment. Due to this
flexibility, the process can be adapted to different types of file formats or structured

- 50 -

8.4. Controllability

Figure 8.2.: Airbus A380-800 Aircraft Model Imported with new Process

aircraft, and as soon as the flaw in the FBX importer of UE4 is eradicated, all file
formats can be imported without a compromise.

8.4. Controllability

With the UnrealViewer, an application was developed to successfully showcase the
concept of a fully configurable and VSAP controllable rendering application in the
AVES environment.
The custom startup behavior constructs a highly flexible environment, altering both
main aspects of the scenery, the terrain model, and the aircraft models with an XML
configuration file. The possible configurations consist of importing extra configura-
tion files, setting the VSAP connection IP Address and port, selecting one of the
maps containing an imported terrain and configuring the UTM projection, as well as
spawning and positioning multiple aircraft.
The UnrealViewer’s VSAPConnection can communicate via the VSAP while main-
taining a low input lag and simultaneously ensuring the whole frame is rendered
with the same data. This is achieved by a custom receiving solution, which leverages
the ticking function and receives at the beginning of each frame. Although only the
aircraft actor receives messages to position and rotate itself, the module can process
every possible VSAP message without breaking the application. This was tested by
using the existing VSAP output of the simulation environment.

- 51 -

8.5. Future Work

8.5. Future Work

To utilize the full potential of the 3D assets, both import processes need further
adaption, the terrain model does not support multigrids, and the FLT models have
partially broken LODs. The former can only be done by TrianGraphics themselves,
while the latter can be solved in multiple ways. Either the flaw in the UE4 skeletal
mesh pipeline is removed, or the meshes must be assigned manually with a skeleton.
Nevertheless, both problems only limit the potential of the models and do not con-
tradict using them.

On the other hand, the UE4 can decently provide productive usage in the AVES
environment, a proper setup, containing general settings, effects, and the nDisplay
system, must be created.
Most of this process is mainly integration or configuration work because, for nearly
all of the problems, solutions exist, but the vast number of available options com-
plicates it, especially in the AVES environment. The render application is not one
product that will be finished at a given point in time. The application is continuously
extended to visualize the new demands of the research and development projects.
For streamlining one part, the setup of the nDisplay system, UE4 supports the
VESA MPCDI standard, and the Scalable Display Technologies company provides a
third-party solution.[21][34][47].

The last aspect mentioned is the announcement of the new Unreal Engine 5 for late
2021, which claims to revolutionize the rendering by removing polygon budgets and
introducing a fully dynamic illumination solution, which significantly simplifies the
game design [1]. Forward compatibility for current UE4 was also announced, but
before the time is invested in setting up a complex UE4 project and migrate it later
on to version 5, it might be worth waiting until more information is available.

- 52 -

Bibliography

[1] A first look at Unreal Engine 5. 2020. url: https://www.unrealengine.com/
en-US/blog/a-first-look-at-unreal-engine-5 (visited on 06/30/2020).

[2] About the Datasmith Import Process: Contains details about specific issues in the
way Datasmith imports scenes into Unreal, and next steps you can follow to work
with the imported Assets in Unreal. url: https://docs.unrealengine.com/
en-US/Engine/Content/Importing/Datasmith/Overview/ImportProcess/
index.html (visited on 08/10/2020).

[3] David Allerton. Principles of Flight Simulation. 1st ed. Aerospace Series. s.l.:
Wiley-Blackwell, 2009. doi: 10.1002/9780470685662.

[4] AlphaPixel. LOD (Level of Detail) in OpenSceneGraph. 2015. url: https:
//alphapixel.com/wp-content/uploads/2015/04/LOD-Level-of-detail-
in-OpenSceneGraph-OSG.pdf (visited on 07/21/2020).

[5] Awesome games coming in 2020 and beyond. 2019. url: https://www.
unrealengine.com/en-US/blog/awesome-games-coming-in-2020-and-
beyond (visited on 08/03/2020).

[6] Coding Standard: Standards and conventions used by Epic Games in the
Unreal Engine 4 codebase. url: https://docs.unrealengine.com/en-
US/Programming/Development/CodingStandard/index.html (visited on
08/27/2020).

[7] D. Francis Crane. “Flight Simulator Visual-Display Delay Compensation”. In:
Proceedings of the 13th Conference on Winter Simulation - Volume 1. WSC
’81. IEEE Press, 1981, pp. 59–67.

[8] Sevan Dalkian. nDisplay Technology: Limitless scaling of real-time content.
Ed. by Epic Games. 2019.

[9] Datasmith-Supported Platforms: Details what Datasmith features work on
which different platforms. url: https://docs.unrealengine.com/en-US/
Engine/Content/Importing/Datasmith/Platforms/index.html (visited on
08/10/2020).

- 53 -

https://www.unrealengine.com/en-US/blog/a-first-look-at-unreal-engine-5
https://www.unrealengine.com/en-US/blog/a-first-look-at-unreal-engine-5
https://docs.unrealengine.com/en-US/Engine/Content/Importing/Datasmith/Overview/ImportProcess/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Importing/Datasmith/Overview/ImportProcess/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Importing/Datasmith/Overview/ImportProcess/index.html
https://doi.org/10.1002/9780470685662
https://alphapixel.com/wp-content/uploads/2015/04/LOD-Level-of-detail-in-OpenSceneGraph-OSG.pdf
https://alphapixel.com/wp-content/uploads/2015/04/LOD-Level-of-detail-in-OpenSceneGraph-OSG.pdf
https://alphapixel.com/wp-content/uploads/2015/04/LOD-Level-of-detail-in-OpenSceneGraph-OSG.pdf
https://www.unrealengine.com/en-US/blog/awesome-games-coming-in-2020-and-beyond
https://www.unrealengine.com/en-US/blog/awesome-games-coming-in-2020-and-beyond
https://www.unrealengine.com/en-US/blog/awesome-games-coming-in-2020-and-beyond
https://docs.unrealengine.com/en-US/Programming/Development/CodingStandard/index.html
https://docs.unrealengine.com/en-US/Programming/Development/CodingStandard/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Importing/Datasmith/Platforms/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Importing/Datasmith/Platforms/index.html

Bibliography

[10] Holger Duda et al. “Design of the DLR AVES Research Flight Simulator”.
In: AIAA Modeling and Simulation Technologies (MST) Conference. Reston,
Virginia: American Institute of Aeronautics and Astronautics, 2013. doi:
10.2514/6.2013-4737.

[11] Frequently Asked Questions - Unreal Engine. url: https://www.unrealengine.
com/en-US/faq (visited on 07/16/2020).

[12] Game Flow Overview: The process of starting the engine and launching a
game or play-in-editor session. url: https://docs.unrealengine.com/en-
US/Gameplay/Framework/GameFlow/index.html (visited on 06/09/2020).

[13] James P. Gaska et al. “Pixel Size Requirements for Eye-Limited Flight Simu-
lation”. In: (2010).

[14] T. Gerlach. “Visualisation of the brownout phenomenon, integration and test
on a helicopter flight simulator”. In: The Aeronautical Journal 115.1163 (2011),
pp. 57–63. doi: 10.1017/S0001924000005364.

[15] Import OpenFlight Models and Terrains into Unreal Engine. 2020. url: https:
//www.presagis.com/en/press- center/detail/import- openflight-
models-and-terrains-into-unreal-engine/ (visited on 06/25/2020).

[16] Import-Export. url: https://docs.blender.org/manual/en/latest/
addons/import_export/index.html#addons-io (visited on 08/10/2020).

[17] Peigang Jiao and Lei Wang. “Research on Virtual Visualization Technology
of Flight Simulation”. In: IOP Conference Series: Materials Science and
Engineering 452 (2018), p. 042206. doi: 10.1088/1757-899X/452/4/042206.

[18] Brian Karis and Epic Games. “Real shading in unreal engine 4”. In: Proc.
Physically Based Shading Theory Practice 4 (2013), p. 3.

[19] Landscape Outdoor Terrain: Landscape system for creating terrain for large,
open, outdoor environments. url: https://docs.unrealengine.com/en-
US/Engine/Landscape/index.html (visited on 08/29/2020).

[20] Landscape Technical Guide: Technical Settings for Landscape. url: https:
//docs.unrealengine.com/en-US/Engine/Landscape/TechnicalGuide/
index.html (visited on 08/08/2020).

[21] nDisplay Configuration File Reference: A reference companion for all the
settings available in the nDisplay configuration file. url: https://docs.
unrealengine.com/en-US/Engine/Rendering/nDisplay/Configuration/
index.html (visited on 09/11/2020).

[22] Michael Noland. Unreal Property System (Reflection). 2014. url: https://www.
unrealengine.com/en-US/blog/unreal-property-system-reflection
(visited on 09/11/2020).

- 54 -

https://doi.org/10.2514/6.2013-4737
https://www.unrealengine.com/en-US/faq
https://www.unrealengine.com/en-US/faq
https://docs.unrealengine.com/en-US/Gameplay/Framework/GameFlow/index.html
https://docs.unrealengine.com/en-US/Gameplay/Framework/GameFlow/index.html
https://doi.org/10.1017/S0001924000005364
https://www.presagis.com/en/press-center/detail/import-openflight-models-and-terrains-into-unreal-engine/
https://www.presagis.com/en/press-center/detail/import-openflight-models-and-terrains-into-unreal-engine/
https://www.presagis.com/en/press-center/detail/import-openflight-models-and-terrains-into-unreal-engine/
https://docs.blender.org/manual/en/latest/addons/import_export/index.html#addons-io
https://docs.blender.org/manual/en/latest/addons/import_export/index.html#addons-io
https://doi.org/10.1088/1757-899X/452/4/042206
https://docs.unrealengine.com/en-US/Engine/Landscape/index.html
https://docs.unrealengine.com/en-US/Engine/Landscape/index.html
https://docs.unrealengine.com/en-US/Engine/Landscape/TechnicalGuide/index.html
https://docs.unrealengine.com/en-US/Engine/Landscape/TechnicalGuide/index.html
https://docs.unrealengine.com/en-US/Engine/Landscape/TechnicalGuide/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/Configuration/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/Configuration/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/Configuration/index.html
https://www.unrealengine.com/en-US/blog/unreal-property-system-reflection
https://www.unrealengine.com/en-US/blog/unreal-property-system-reflection

Bibliography

[23] Plug-Ins & File Exchange. url: https://www.maxon.net/de/produkte/
cinema-4d/workflow-integration/plug-ins-file-exchange/ (visited on
08/10/2020).

[24] Presagis. OpenFlight Scene Description Database Specification: Version 16.7.
2018. url: https://portal.presagis.com/support/solutions/articles/
19000096896-openflight-16-7.

[25] Presagis and Epic Games Join Forces to Provide New Capabilities to the Simu-
lation Industry. 2018. url: https://www.presagis.com/en/press-center/
detail / presagis - and - epic - games - join - forces - to - provide - new -
capabilities-to-the-simulation-industry/ (visited on 06/25/2020).

[26] Procedural Foliage Tool Quick Start: How to set up and use the Procedural
Foliage tool. url: https : / / docs . unrealengine . com / en - US / Engine /
OpenWorldTools/ProceduralFoliage/QuickStart/index.html (visited on
09/03/2020).

[27] Programs & Events - SIGGRAPH. 2019. url: https://s2019.siggraph.
org/conference/programs-events/ (visited on 08/03/2020).

[28] Programs & Events - SIGGRAPH. 2020. url: https://s2020.siggraph.
org/conference/program-events/ (visited on 08/03/2020).

[29] Projection Policies in nDisplay: Reference for policies supported in Unreal
Engine for multiple screen displays. url: https://docs.unrealengine.com/
en- US/Engine/Rendering/nDisplay/ProjectionPolicies/index.html
(visited on 09/11/2020).

[30] R&D - Storm In a Teacup. url: http://www.stcware.com/rd/ (visited on
09/11/2020).

[31] Michael Ratzel. Erweiterung des AVES Viewer zur performanten Visualisierung
von Lichtquellen. 2019.

[32] Michael Ratzel. Expansion of the AVESViewer with realistic Light and Shadow
effects. 2020.

[33] Rendering to Multiple Displays with nDisplay: nDisplay renders your Unreal
Engine scene on multiple synchronized display devices. url: https://docs.
unrealengine . com / en - US / Engine / Rendering / nDisplay / index . html
(visited on 08/04/2020).

[34] Scalable Display Technologies |Automatic warp & blend for multi-projector
displays. url: https://www.scalabledisplay.com/ (visited on 09/11/2020).

[35] Schachter. “Computer Image Generation for Flight Simulation”. In: IEEE
Computer Graphics and Applications 1.4 (1981), pp. 29–68. doi: 10.1109/MCG.
1981.1674014.

- 55 -

https://www.maxon.net/de/produkte/cinema-4d/workflow-integration/plug-ins-file-exchange/
https://www.maxon.net/de/produkte/cinema-4d/workflow-integration/plug-ins-file-exchange/
https://portal.presagis.com/support/solutions/articles/19000096896-openflight-16-7
https://portal.presagis.com/support/solutions/articles/19000096896-openflight-16-7
https://www.presagis.com/en/press-center/detail/presagis-and-epic-games-join-forces-to-provide-new-capabilities-to-the-simulation-industry/
https://www.presagis.com/en/press-center/detail/presagis-and-epic-games-join-forces-to-provide-new-capabilities-to-the-simulation-industry/
https://www.presagis.com/en/press-center/detail/presagis-and-epic-games-join-forces-to-provide-new-capabilities-to-the-simulation-industry/
https://docs.unrealengine.com/en-US/Engine/OpenWorldTools/ProceduralFoliage/QuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/OpenWorldTools/ProceduralFoliage/QuickStart/index.html
https://s2019.siggraph.org/conference/programs-events/
https://s2019.siggraph.org/conference/programs-events/
https://s2020.siggraph.org/conference/program-events/
https://s2020.siggraph.org/conference/program-events/
https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/ProjectionPolicies/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/ProjectionPolicies/index.html
http://www.stcware.com/rd/
https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/nDisplay/index.html
https://www.scalabledisplay.com/
https://doi.org/10.1109/MCG.1981.1674014
https://doi.org/10.1109/MCG.1981.1674014

Bibliography

[36] Michael J. Sieverding, Clarence W. Stephens, and Amos E. Kent. “The
Emerging DoD Requirement for More Realistic Weather in Flight Simulation”.
In: (2010).

[37] Skeletal Meshes: Meshes bound to a hierarchical skeleton of bones which can
be animated for the purpose of deforming the mesh. url: https://docs.
unrealengine . com / en - US / Engine / Content / Types / SkeletalMeshes /
index.html (visited on 07/16/2020).

[38] Antonín Šmíd. “Comparison of unity and unreal engine”. PhD thesis. 2017.
[39] Static Meshes: Static geometry which can be cached in video memory and

rendered by the graphics card. url: https://docs.unrealengine.com/
en - US / Engine / Content / Types / StaticMeshes / index . html (visited on
07/22/2020).

[40] Texture Streaming: System for loading and unloading textures into and out of
memory during play. url: https://docs.unrealengine.com/en-US/Engine/
Content/Types/Textures/Streaming/Overview/index.html (visited on
08/04/2020).

[41] TIGA. Game engines used by video game developers UK 2014 | Statista. 2014.
url: https://www.statista.com/statistics/321059/game- engines-
used-by-video-game-developers-uk/ (visited on 07/16/2020).

[42] Amanda Towner. Presagis Brings Physics-Based Simulation to Gaming. 2019.
url: https://www.halldale.com/articles/16557- presagis- brings-
physics-based-simulation-to-gaming (visited on 06/25/2020).

[43] TrianGraphics. Trian3DBuilder Manual v7.1. 2020.
[44] TrianGraphics at 2019 I/ITSEC. 2019. url: https://exhibits.iitsec.

org/2019/Public/eBooth.aspx?IndexInList=0&FromPage=Exhibitors.
aspx & ParentBoothID = &ListByBooth = true & BoothID = 175674 (visited on
06/25/2020).

[45] UE4 Roadmap | Trello. 2020. url: https://trello.com/b/TTAVI7Ny/ue4-
roadmap (visited on 08/04/2020).

[46] Unreal Object Handling: Overview of the features of the UObject system. url:
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/
Objects/Optimizations/index.html (visited on 09/08/2020).

[47] VESA - Interface Standards for The Display Industry. Free Standards - VESA -
Interface Standards for The Display Industry. url: https://vesa.org/vesa-
standards/ (visited on 09/11/2020).

- 56 -

https://docs.unrealengine.com/en-US/Engine/Content/Types/SkeletalMeshes/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/SkeletalMeshes/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/SkeletalMeshes/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/StaticMeshes/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/StaticMeshes/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Streaming/Overview/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/Textures/Streaming/Overview/index.html
https://www.statista.com/statistics/321059/game-engines-used-by-video-game-developers-uk/
https://www.statista.com/statistics/321059/game-engines-used-by-video-game-developers-uk/
https://www.halldale.com/articles/16557-presagis-brings-physics-based-simulation-to-gaming
https://www.halldale.com/articles/16557-presagis-brings-physics-based-simulation-to-gaming
https://exhibits.iitsec.org/2019/Public/eBooth.aspx?IndexInList=0&FromPage=Exhibitors.aspx&ParentBoothID=&ListByBooth=true&BoothID=175674
https://exhibits.iitsec.org/2019/Public/eBooth.aspx?IndexInList=0&FromPage=Exhibitors.aspx&ParentBoothID=&ListByBooth=true&BoothID=175674
https://exhibits.iitsec.org/2019/Public/eBooth.aspx?IndexInList=0&FromPage=Exhibitors.aspx&ParentBoothID=&ListByBooth=true&BoothID=175674
https://trello.com/b/TTAVI7Ny/ue4-roadmap
https://trello.com/b/TTAVI7Ny/ue4-roadmap
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Objects/Optimizations/index.html
https://docs.unrealengine.com/en-US/Programming/UnrealArchitecture/Objects/Optimizations/index.html
https://vesa.org/vesa-standards/
https://vesa.org/vesa-standards/

Bibliography

[48] Leonard Wanger. “The effect of shadow quality on the perception of spatial
relationships in computer generated imagery”. In: Proceedings of the 1992
symposium on Interactive 3D graphics - SI3D ’92. Ed. by Marc Levoy, Edwin E.
Catmull, and David Zeltzer. New York, New York, USA: ACM Press, 1992,
pp. 39–42. doi: 10.1145/147156.147161.

[49] World Composition User Guide: System for managing large worlds includ-
ing origin shifting technology. url: https://docs.unrealengine.com/
en- US/Engine/LevelStreaming/WorldBrowser/index.html (visited on
08/08/2020).

- 57 -

https://doi.org/10.1145/147156.147161
https://docs.unrealengine.com/en-US/Engine/LevelStreaming/WorldBrowser/index.html
https://docs.unrealengine.com/en-US/Engine/LevelStreaming/WorldBrowser/index.html

Appendix

Appendix A: UnrealViewer Class Diagrams 59

- 58 -

Appendix A.

UnrealViewer Class Diagrams

(a) FVSAPParser Class Diagram

(b) AVSAPDriver Class Diagram

Figure A.1.: VSAPConnection Class Diagrams

Figure A.2.: CoordConversion Class Diagrams

- 59 -

Appendix A. UnrealViewer Class Diagrams

(a) UUVGameInstance Class Diagram

(b) AAircraftActor Class Diagram

(c) UXMLConfigurationParser Class Dia-
gram

Figure A.3.: UnreaViewer Class Diagrams

- 60 -

	List of Figures
	List of Tables
	Listings
	Abbreviations
	Introduction
	Air Vehicle Simulator
	AVESViewer
	Aim of this Work

	Visual Simulation Requirements
	Performance Requirements
	Frame Rate
	Distributed Simulation Architecture
	Input lag

	Visual Requiremmcpdients
	Terrain model
	3D Assets
	Effects

	Multichannel Projection

	AVES Visual System Environment
	Tools and Programs
	Terrain Model
	3D Assets
	Environmental and Visual Effects
	Visual Simulation Animation Protocol

	Unreal Engine 4
	General
	Build system
	C++ Object Handling
	Asset Types
	Landscapes
	Dynamic data loading
	Texture streaming
	Level streaming
	World Composition

	Environmental and Visual Effects
	nDisplay

	Concept Study Design
	General
	Import Process
	Controllability

	UnrealViewer Import Process
	Terrain Data
	Multigrid support
	Model coordinate system
	World Composition
	Final Import Process

	Aircraft Models
	Node Tree Uniformization
	Final Import Process

	UnrealViewer Control
	General
	VSAPConnection Module
	CoordConversion Module
	UnrealViewer Module

	Conclusion
	Requirements
	Terrain Import Process
	Aircraft Import Process
	Controllability
	Future Work

	UnrealViewer Class Diagrams

