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Abstract

Nowadays, there is a constant development of new synthetic aperture radar (SAR) systems and
acquisition modes for present and next generation spaceborne SAR missions, which have to be ca-
pable of processing large bandwidths, multiple channels and polarizations, as well as imaging wide
swaths on ground with high spatial resolution. An example for such a next generation system is the
satellite SAR mission proposal Tandem-L, which was recently developed by the German Aerospace
Center (DLR). The system comprises two twin SAR satellites operating at L band and is foreseen
to acquire data in the so-called Staggered SAR mode, which allows for wide swath acquisitions
covering the full range of possible observation angles, while maintaining high spatial resolutions.
The large swaths, along with the fine resolution, can be realized by constantly imaging the target
area with varying Pulse Repetition Intervals (PRI), which ultimately results in data gaps within the
acquired raw data. During the processing phase, a gap-free SAR signal can then be reconstrutcted
at a uniform sampling rate. In order to do so, a certain autocorrelation between neighbouring sam-
ples is necessary. The constant monitoring capabilities and the high data oversampling rate of this
method lead to the generation of large data volumes that need to be stored on board and down-
linked to the ground. This represents a challenging trade-off between the limited onboard resources
in spaceborne system in terms of both computational power and storage memory. Therefore, this
new acquisition method is only feasible if combined with an effective onboard signal quantization,
which aims at providing high data reduction rates together with a satistfying image quality, while
keeping the system complexity at a low level, in order to meet the requirements of the satellite SAR
system. Furthermore, such a method for data reduction requires the ability to cope with the presence
of blind gaps in the SAR raw data.

Predictive coding for data reduction on real SAR data, comprising its direct application to SAR raw
data as well as range focused data, has been proposed by DLR as a possible quantization scheme to
tackle the staggered SAR paradigm. Up to now, the achievable performance of such a quantization
method, called Dynamic Predictive - Block Adaptive Quantization, has been only evaluated from a
theoretical point of view. Its implementation and testing on real SAR data represents therefore a key
aspect for consolidating its architecture and veryfing its potential.

In this thesis work, the performance of this new predictive quantization method is investigated
for the first time with respect to real Staggered SAR data. The quantizer exploits the correlation
between adjacent SAR samples using Linear Predictive Coding in combination with a state-of-the-
art-quantizer for data reduction, based on block adaptive quantizaiton (BAQ). Since no spaceborne
real SAR data, acquired in Staggered SAR mode, are avilable yet, the analyzed data set was gener-
ated from highly oversampled airborne SAR data, acquired by the DLR FSAR airborne SAR system,
according to the Tandem-L system parameters. The results of the analysis confermed the theoretical
prediction and proved the full functionality of the predictive quantizer for a spaceborne Tandem-L-like
system, showing an additional data reduction of up to 20 − 25% on Staggered SAR data, with re-
spect to conventional quantization methods. Morevoer, thanks to the linear structure of the predictor,
the computational effort of the new quantizer is increased only marginally, with respect to standard
BAQ, making it an attactive solution for future SAR missions.
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1 Introduction

Over the last decades, Synthetic Aperture Radar (SAR) has developed into a reliable remote sens-
ing technique for Earth observation, due to to its high performing system parameters and the ability
to install the respective antenna on different platforms like aircraft, or satellites. Especially the latter
option provides a stable system orientation, which enables high resolution imaging and precise long
term monitoring. Furthermore, SAR represents an active remote sensing technique, which allows
imaging independent of weather and sunlight. Over the last years the performance of SAR systems
has constantly increased, by using multiple polarization, high sampling rates, growing bandwidths
and larger swath widths, all of these resulting in the acquisition of higher data volumes. Thus, meth-
ods for efficient onboard data reduction have gained great interest, especially since they define the
final image quality and the required computational effort onboard.
As stated before, the high stability and weather independent operation of SAR provide the ideal con-
ditions for long term applications, like ocean surface current predictions, or deforestation, biomass
and glacier monitoring. The German Aerospace Centre (DLR) is investigating on new spaceborne
SAR systems for these applications, which provide high image resolution and wide swaths. An ex-
ample is the actual proposal for the innovative single-pass interferometric Tandem-L system. The
system is operated in L-band and will be equipped with new acquisition modes, like Staggered SAR
which exploits the wide bandwidth and high Pulse Repetition Frequencies (PRF) of this system in
order to generate high resolving images, while maintaining large swath widths. This can be achieved
by constantly monitoring the target with pulses of varying length over a wide range of observation
angles. Due to the fact, that the sensors are not able to send and receive at the same time, the
raw data contains so called blind ranges, which require a sufficient oversampling in azimuth direc-
tion in order to reconstruct a complete data set. Due to this oversampling, the method results in a
huge amount of data, which requires effective onboard quantization, especially since storage space
is rather limited in spaceborne systems. There have been several approaches for data reduction,
some of them relying on complex algorithms, which proved high effectiveness in the reduction rate.
Since energy in spaceborne SAR systems is limited, those techniques did not prove to be appli-
cable for a real spaceborne implementation. In order to serve the problem, DLR developed a new
technique, which is combining Linear Predictive Coding (LPC) with a state-of-the-art quantization
method. This method exploits the autocorrelation of the SAR signal in order to generate a signal of
reduced dynamic range. The reduced dynamic can then be exploited by a quantizer to represent
the signal in a smaller signal space, while maintaining a good image quality. Up to now, all simula-
tions of this technique were based on synthetic SAR data and demonstrated data reduction of up
to 10 − 15% while maintaining the same image quality, compared to conventional state of the art
quantizer. Being only simulations of synthetic data, these tests were not able to provide information
on special scenarios in real SAR images, like the effects of the quantization on low backscatter ar-
eas, high variations in the signal amplitude, or possible errors, which are only visible after full SAR
focusing. This thesis work will investigate the performance of this new method on real SAR data
with a focus on the Staggered SAR acquisition method for a Tandem-L-like scenario. All data sets
analyzed are based on real SAR images acquired by the airborne F-SAR system of DLR, which has
been designed for testing new SAR acquisition methods due to highly oversampled data and the
capability to record at different frequencies and polarizations. The quantization method is tested for
different preliminary scenarios, including the general performance, the performance on F-SAR data
and the performance on data for a spaceborne SAR system. The final analysis is then conducted
for spaceborne Staggered SAR and takes time variant pulse rates and gaps into account. All results
are analyzed in terms of image quality for different data rates and compared to conventional state of
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the art quantization methods.
In chapter 2 the thesis will introduce to the theoretical background of SAR imaging, including the
SAR geometry, SAR image formation, as well as SAR focusing and important radar parameters.
The chapter also provides information about possible error sources, the calibration of the SAR sys-
tem and SAR acquisition with multiple polarizations. Furthermore, the Staggered SAR acquisition
technique is introduced. The following chapter 3 will present the general functionality of quantiza-
tion, as well as common error sources and most important parameters for performance evaluation.
A state of the art quantizer will be explained and finally the new quantization technique, based on
LPC will be described, as well as their implementation on Staggered SAR data. The airborne F-
SAR system, which was used for generating the Staggered SAR data set, is introduced in chapter
4. The following chapter 5 will show the results of the previously mentioned tests with real SAR data
in terms of image quality. Furthermore, those results are compared to the quantizer in chapter 3,
which was described in chapter 3. In the last chapter 6, the results and observations of this thesis
will be summarized and possible further investigation steps will be discussed.
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2 Theoretical Background

2.1 Synthetic Aperture Radar

Sensor Lifetime Frequency Band Institution, Country

Seasat 1978 L NASA/JPL, USA
SIR-A/B 1981/1984 L NASA/JPL, USA

ERS-1/2
1991-2000
1995-2011

C ESA, Europe

JERS-1 1992-1998 L JAXA, Japan

SIR-C/X-SAR 1994 L/C/X
NASA/JPL, USA
DLR, Germany

ASI, Italy

RADARSAT-1
RADARSAT-2

1995-2013
2007-today

C CSA, CANADA

SRTM 2000 C/X
NASA/JPL, USA
DLR, Germany

ASI, Italy

ENVISAT/ASAR 2002-2012 C ESA, Europe
ALOS/PalSAR 2006-2011 L JAXA, Japan

TerraSAR-X
TanDEM-X

2007-today
2010-today

X DLR/Airbus, Germany

COSMO-SkyMed-1/4 2007. . . 2010-today X ASI/Italian MoD, Italy
RISAT-1 2012-today C ISRO, India

HJ-1C 2012-today S
CRESDA/CAST/

NRSCC
, China

Kompsat-5 2013-today X KARI, South Korea
Sentinel-1a/1b 2014/2016-today C ESA, Europe

ALOS-2 2014-today L JAXA, Japan
PAZ 2018-today X CDTI, Spain

NovaSAR-1 2018-today S SSTL/Airbus/UKSA, UK

SAOCOM-1a
SAOCOM-1b

2018-today
2020-today

L CONAE, Argentina

ICEYE Constellation 2018/2019-today X Iceye Oy, Finland
RCM 2019-today C CSA, Canada

Table 2.1 Past and current satellite based SAR missions with corresponding time of operation, frequency
band and the operating institution.

Synthetic Aperture Radar (SAR) is a widely used remote sensing technology for Earth observa-
tion, which comes with a variety of operational modes and application fields. A SAR antenna can
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be mounted on spaceborne and airborne vehicles and be operated at different microwave frequency
bands, e.g. X and L band, which correspond to wavelengths of λX ≈ 3cm and λL ≈ 23cm. To
overcome the physical limitations of a Real Aperture Radar (RAR) in terms of resolution and swath
width, it exploits the constant movement of the mounting platform to enlarge its antenna by creat-
ing a synthetic aperture. With a proper selection of the sampling rate and time of aperture, a SAR
system is capable of imaging wide areas at fine resolutions without the need for a physical long
antenna. These properties, alongside with its capability of monitoring independently from weather
and sunlight, makes it ideal for a variety of applications, like oceanography, cartography, soil mois-
ture estimation, forest parameters assessment, and digital elevation model (DEM) generation with
interferometric methods. A list of current SAR missions can be found in Table 2.1

This chapters will briefly introduce in the basic principles of SAR geometry, image formation and
imaging modes, as well as radiometric and geometric distortions [26], [27], [3], [4], [5], [29].

2.1.1 SAR Geometry

The reference SAR geometry for air- and spaceborne SAR can be seen in Figure 2.1. The SAR
antenna moves along the radar track in the azimuth direction with velocity vs at an altitude hs over
the nadir-track, which describes the projection of the flight track on the surface. In a general SAR
acquisition model, the antenna emits a pulsed radar signal perpendicular to the azimuth direction,
which is called range direction. The area on ground, which is irradiated by the radar signal is called
antenna footprint, whose dimensions represent two key parameter of a SAR system and are known
as the swath width Wg and the azimuth footprint extension Ls, where

Wg = λR0
W cos Θi and Ls = λR0

La
. (2.1)

In the above equation La describes the length of the antenna in azimuth direction, W the corre-
sponding antenna dimension in range, Θi the incidence angle on ground and λ the radar wave-
length. The last parameter R0 describes the shortest distance (i.e. at zero Doppler) between the
emitter and the target on ground and is called slant range, whereas the corresponding projection on

Figure 2.1 SAR geometry.
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ground originating from the nadir track is called ground range. The blue area in Figure 2.1 describes
the total area covered by the antenna footprint over the full acquisition time and is called swath.
SAR imaging is an active acquisition method, which means that the antenna emits electromagnetic
pulses directed to the target area on ground. The radar wave interacts with the targets illuminated
within the antenna footprint and a fraction of its power is reflected back toward the SAR sensor. After
each transmission the antenna receives the backscattered signal at a delay δt

δt = 2 ·R0
c0

, (2.2)

being c0 the speed of light in free space. Moreover, SAR is a coherence acquisition method in
the sense that the sensor tracks the echos both in amplitude and phase, acquiring information
about the footprints physical and dielectric properties, like distance and reflectivity. Each illuminated
target in the antenna footprint reflects the signal of the radar beam, which can be tracked to retrieve
information on the distance to each scatterer. Since the antenna has different transmission and
reception properties depending on the angle of the emitted and incoming signal, the signal needs
to be weighted with the antenna pattern during transmission and reception. The antenna pattern
defines the angular distribution of the emitted power by the antenna and can be described for a
planar antenna as

G(Ψa,Ψr) = sinc2
(
La
λ

Ψa

)
sinc2

(
W

λ
Ψr

)
. (2.3)

with Ψa describing the off-center azimuth angle and Ψr the off-center angle in range direction. In
the upper equation the sinc function describes the typical signal response of a planar antenna and
is defined as

sinc(x) = sin(x)
x

. (2.4)

The antenna pattern equation appears in (2.3) in squared form, since the antenna pattern is consid-
ering both, the transmission and reception of the signal.
To achieve the best attainable results, the antenna footprint is normally kept within the main lobe
of the antenna pattern, or half power beam width, which can be approximated for a sinc2 pattern in
terms of the corresponding angles in elevation and azimuth dimension, (Ψr,3dB and Ψa,3dB) by

Ψr,3dB ≈ 0.886 λ
W ,

Ψa,3dB ≈ 0.886 λ
La
.

(2.5)

For a proper weighting of the transmitted and received SAR signal, precise knowledge about the
local incidence angle Θi is required. The local incidence angle is defined as the angle between the
slant range vector and the vector perpendicular to the surface where the radar beam hits the target
on ground. In the flat earth model of Figure 2.1 this angle was assumed to be equal to the looking
angle αL, which corresponds to the angle between the slant range and the closest connection
between sensor and ground. This assumption holds for most airborne systems, since the range
distances are small enough to neglect the Earths curvature. For a spaceborne SAR in contrary, this
simplification does not hold any more and the angles differ from each other, which can be seen in
Figure 2.2.
As a consequence of the the change in the looking angle estimation, a curved earth model also
influences the calculation of the azimuth angle for the moving sensor, which pictured in Figure 2.3.
The following steps describe the calculation steps necessary to acquire the correct azimuth angle in
a curved Earth model.
While the signal travels from the antenna to the ground and back, the satellite will have moved by a
distance d = vst. The satellite, however, moves on ground at speed vg, which is defined by

vg ∼= vs
RE

RE + hs
. (2.6)
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Figure 2.2 SAR geometry using a spherical model for a satellite S and a point scatterer P. The Earth center
is labeled as O.

Figure 2.3 SAR geometry using a spherical model for a satellite S, moving on its radar track and a point
scatterer P.

The slant range between antenna and point target can be calculated from

R(t) ∼=
√
R2

0 + (vrt)2 ∼= R0 + (vrt)2

2R0
, (2.7)

with vr defining the relative movement between ground and satellite speed as the geometric mean

vr = √vsvg. (2.8)

Using the ground speed vg one can calculate the azimuth angle Φ at time t as

tan Φ = vgt

R0
. (2.9)
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2.1.2 SAR Image Formation

A SAR sensor images the swath on ground by repeatedly sending pulses to the target area, while
travelling along azimuth direction. The received echoes are saved in a two dimensional grid called
raw data matrix, which is mapped by the pulse number and the time delay, corresponding to az-
imuth and slant range. Each grid point contains the echoes reflected by many scatterers on ground
within the illuminated footprint, forming a noisy superimposition, which can be modeled as complex
zero-mean Gaussian stationary and independent process for the In-phase (I) and Quadrature (Q)
component. While the sensor moves along the azimuth dimension, it sends the radar pulses at a
certain Pulse Repetition Frequency (PRF), which is usually set for spaceborne SAR at a few thou-
sand Hertz. During each Pulse Repetition Interval (PRI), which is the inverse of the PRF, the SAR
sensor transmits and receives the signal and the reflected echoes.
The time in azimuth direction is usually known as the slow time t in SAR geometry, since the SAR ob-
servation usually takes place over several seconds, while the range time on the other hand is called
fast time τ due to sampling rates in the millisecond domain and usual range sampling times in the
order of nanoseconds. As mentioned earlier, the received echo gives information about the geomet-
ric and radiometric properties of the observed area. The information can be obtained by measuring
phase and amplitude of the signal. The corresponding values of the amplitude and phase at the time
instance t can be calculated from R(t) (2.7) and Φ (2.9).
The SAR raw data need to be properly converted into interpretable information to be exploited for
further applications. In the first step of the data processing, the received signal is amplified, trans-
ferred into baseband and discretized in range and time. Consequently, the time discrete raw data is
quantized on board and downlinked from the satellite to the ground. After reception, the raw data
matrix is reconstructed and focused using matched filters, which are further described in the follow-
ing sections and are displayed for a general overview through the processing steps in Figure 2.4.
Subsequent to the SAR focusing, in a final step of the SAR image formation the acquired data needs
to be georeferenced to an exact location on Earth. In addition to the the processing steps necessary

Figure 2.4 SAR image formation steps with real F-SAR data.

to create a usable SAR image, the system needs to be calibrated and corrected for deviations [6] in
order to keep the received data at a high level of precision.
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Range Focusing

The first step in the processing of the received data is the reconstruction of the information in range
direction, which is also called range focusing. The reflected signal r(t) from a point-like target on
ground can be modeled as a phase-shifted, delayed, and attenuated version of the emitted signal
s(t) with a noise contribution n(t)

r(t) = As

(
t− 2R0

c0

)
exp

(
−j 4πR0

λ

)
+n(t). (2.10)

In the above equation, A describes the attenuation of the emitted signal and j is the imaginary con-
stant for its complex part. When looking at the raw SAR data in Figure 2.4, it becomes apparent, that
the reflected signal needs to be further processed and corrected for a proper extraction of the infor-
mation. This processing step is called SAR focusing and is accomplished, by filtering each range
line with its “matched filter” h(t). The matched filter represents the optimal filter which maximizes
the Signal-to-Noise Ratio (SNR) and is expressed as the complex conjugate ’∗’ of the transmitted
signal [3], [27]

h(t) = s∗(−t). (2.11)

Filtering a SAR signal is normally done by a convolution of the echo with the corresponding matched
filter, which is defined for a general convolution process ~ as

r ~ h =
∫ +∞

−∞
r(τ)h(t− τ)dτ (2.12)

To save resources and achieve a better performance, the signal is converted in the frequency do-
main by using a Fourier Transformation (FT), which simplifies the convolution to a multiplication.
An important factor in the SAR image quality is the range resolution, describing the minimum dis-
tance for scatterers to be distinguishable. For a rectangular pulse of duration τp the range resolution
can be simply described as

δrrect = c0τp
2 . (2.13)

By analyzing (2.13) it gets clear, that the resolution improves with a shorter pulse length, which, on
the other hand, degrades the SNR, due to the smaller energy of the emitted signal. To solve this
problem, conventional SAR systems emit a linear frequency shifted signal, which is called chirp and
can be modelled as

g(t) = cos
[
Φ0 + sπ

(
f0t+ kτ t

2

2

)]
+j · sin

[
Φ0 + sπ

(
f0t+ kτ t

2

2

)]
. (2.14)

In the upper equation, f0 and Φ0 describe the carrier frequency and phase of the signal. The factor
kτ describes the chirp rate, which defines the linear variation of the chirps frequency over time by
fi = kτ t and the chirps Bandwidth Bτ = kττ . When applying the matched filter to a chirp signal the
output can be expected to have the form of a sinc function and is defined as

χ(t) = sinc
(

2Bτ
c0

R

)
, (2.15)

with a minimal slant range resolution of

δr = c0
2Bτ

. (2.16)

Because of the inverse proportionality to the chirps bandwidth, it becomes clear, that the resolution
of a chirp signal increases by using a longer chirp duration, which also ensures a higher SNR. While
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the slant range resolution is completely independent of geometrical parameters, the ground range
resolution is defined as

δrg = δr
sin(Θi)

. (2.17)

This plays an important role in the processing of airborne SAR data, where the incidence angle Θi

changes over multiple tens of degree in the swath due to the smaller sensor altitude.

Azimuth Focusing

The focusing in the azimuth dimension is done in the same way as in the range dimension. The
signal is filtered in azimuth dimension by convolving it with its matched filter. The expected response
of a point scatterer on ground is called the Azimuth Reference Function (ARF) and is defined as [2]

sa(t) = A
√
σ0e

iΦse−
4π
λ
R(t). (2.18)

In the above equation σ0 represents the Radar Cross Section (RCS), Φs the scattering phase and
R(t) the slant range defined in (2.7). In (2.18) the term−4π

λ R(t) identifies the azimuth phase history,
describing the effect of the changing range distance on the phase. As for the range dimension, the
resolution in the azimuth domain represents a key parameter of the SAR system. In a Real Aperture
Radar (RAR) the resolution corresponds to the azimuth antenna footprint and is defined as

δaRAR = Ls = λR0
La

. (2.19)

For typical SAR systems δaRAR ranges from several tens of meters up to kilometers, and is therefore
rather limited. As presented in (2.19) the only options to improve the azimuth resolution are to min-
imize the distance to the target, use a higher frequency, or increase the antenna length. Especially
for spaceborne systems, those parameters can be hardly changed after launch. SAR provides a
solution to those restrictions by virtually elongating the antenna length. By exploiting the systems
stable and constant movement and, it becomes possible to observe the target in several consecutive
pulses, as pictured in Figure 2.5, which can then be combined to get a finer resolution. A non-moving
target P is staying in the radar beam for the time

tint = Ls
vs

= λR0
Lavs

, (2.20)

which is known as the integration time tint. Hence, the length of the virtual antenna corresponds to
the length of the track, that the SAR sensor travels during the integration time. Each scatterer from a
point target on ground returns a version of the originally emitted signal, translated in frequency with
a Doppler frequency shift according to the targets azimuth angle. This Doppler shift can be derived,
and under the small angle assumption, further simplified to

fD(t) =
2vs sin

(
Ψ(t)

)
λ

∼=
2vsa(t)
λR0

= − 2v2
s

λR0
t. (2.21)

The Doppler shift resolution δfD of the system is equal to the inverse of the integration time in (2.20).
By substituting (2.20) into (2.21) the azimuth resolution can be finally expressed as

δa = La
2 . (2.22)

From the above equation it becomes clear, that smaller antennas achieve a finer azimuth resolution,
thanks to the linear dependency on the physical antenna length. Furthermore, the resolution is
independent of other geometrical parameters like the range distance or the azimuth angle. The
Doppler bandwidth of the system can be defined as in (2.16), by taking the reciprocal of the time it
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Figure 2.5 Synthetic aperture Lsa and antenna footprint Ls of the same length.

takes the sensor to travel through a resolution cell, which can be also expressed by the Doppler rate
kD

BD = vs
δa

= |kD|tint = 2vs
La

. (2.23)

This leads to an alternative definition of the azimuth resolution as

δa = vs
BD

. (2.24)

By analyzing the above equations, it becomes clear, that the azimuth resolution improves for higher
integration times. Nevertheless, when designing a SAR system the well known Shannon sampling
theorem must be met to avoid the increase of azimuth ambiguities. When selecting the sampling
rate in the azimuth dimension, which corresponds to the systems PRF, each PRI has to be small
enough to meet the maximum attainable azimuth resolution. Those terms lead to the restrictions of

PRF ≥ BD or vs · PRI ≤ La
2 . (2.25)

In order to fulfill the requirements of those constraints, the receive echo window has to be held short
to enable a high sampling rate. This, however, implies that a shorter swath width is achieved by the
system. Consequently, the design of a SAR system has to always considered a trade of between
a large swath width and a sufficiently fine azimuth resolution. During the last years there have
been several developments to overcome those restrictions, like multichannel SAR, Scan on Receive
(SCORE), or Staggered SAR [7], [17], [8]. The latter will also be further explained in the upcoming
sections, since an approach for data volume reduction for staggered SAR systems is investigated in
this thesis work.

2.1.3 SAR Imaging Modes

Thanks to its capability to have a non-fixed synthetic antenna and the possibility of adjusting the
antenna pattern during the data take, SAR comes with a variety of operational modes. Each mode
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has its own advantages and can be selected to address the specific goals of the mission. They
provide the possibility to generate high precision images of small regions, or, if needed, a wide
swath width to cover a bigger area, when the resolution is not the highest priority. In the following,
the three most common modes are introduced:

(a) Stripmap mode (b) Spotlight mode (c) Scan-SAR mode

Figure 2.6 SAR Imaging modes

• Stripmap:The formulas and figures presented so far were all referring to the standard stripmap
mode, which is shown in Figure 2.6a. When operating in stripmap, the SAR antenna is set
to a fixed elevation angle and illuminates one single swath. Because of the constant imaging
of the area along the swath, this imaging mode is known as a continuous observation mode,
meaning that the observation has theoretically no limit in azimuth direction.

• Spotlight: In Spotlight mode (Figure 2.6b), the sensor achieves finer azimuth resolution by
steering the antenna pattern along the azimuth angle to target a fixed area over the image
period. The finer azimuth dimension comes at the cost of a reduced swath width of a few
kilometers. In contrast to the other two operation modes, spotlight represents the only non-
continuous mode in this list as the azimuth scene extension is limited by the antenna steering
operation.

• ScanSAR: In ScanSAR (Figure 2.6c) mode, the antenna cyclically varies its pattern over
the elevation angle, i.e. over the slant range. For each angle, the sensor bursts a shorter
set of radar pulses down to the target. This method allows for a much larger swath width
after fully processing of the acquired data. The swath usually achieves several hundreds
of kilometers and results in a degraded azimuth resolution. This method is also known as
continuous observation mode.

2.2 Radar Parameters

SAR is characterized by a number of parameters, which have to be considered during the processing
of the radar signal and for properly calibrating the system. Those parameters concern the radiomet-
ric as well as geometric properties of the system. The most significant parameters and processing
steps, which are needed for the understanding of this thesis work, are addressed in the upcoming
sections.

2.2.1 Radar backscatter and speckle

The recorded backscatter of a SAR image resolution cell always consists of the coherent contribution
of many targets on ground. The scatterers can be classified in two main types, “point scatterers” and
“distributed scatterers”. The first represents the dominant energy contributor of a single resolution
cell, which means that most of the reflected energy is comming from this target. The reflected energy
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of a point target illuminated by a radar wave at polarization q can be modeled by the point target
radar equation

P rq =
P tqGpGqλ

2

(4π)3R4 σpq. (2.26)

P tq hereby denotes the transmitted power at polarization q, p represents the polarization used by the
radar system in transmission, Gp and Gq the antenna gain in transmission and reception, and σpq
the antenna cross-section, defining the ratio between the actual reflected intensity at the target and
the intensity of the emitted signal that reaches the target.

Distributed targets, on the other hand, represent the case where non-dominant scatterers con-
tributing all in the same way to the signal intensity of a resolution cell. Due to the Central-Limit
Theorem (CLT) they can be modeled as Gaussian random variables with a probability density func-
tion of

fx(x) = 1
πĪ

exp
(
Re(x)2 + Im(x)2

Ī

)
. (2.27)

In the above equation Ī describes the Intensity of the complex signal fx(x), while the imaginary
and real part are normally assumed to be uncorrelated, allowing the magnitude and phase to be
independent from each other. Since a single resolution cell always contains multiple scatters, the
cells amplitude and phase can be seen as the coherent summation of all of them. Due to the
averaging of the amplitudes and phases, the single reflections are no longer distinguishable and
significant variations can occur for neighbouring cells. This spatial fluctuation of the resolution cells
is called speckle and mostly appears in areas with a surface roughness comparable to the radar
wavelength. Speckle is also naturally reduced for systems with high resolution, due to low numbers
of scatterers per cell. In order to get a more informative SAR image, speckle must be sufficiently
reduced. This, however, can not be simply done by increasing the signal intensity, since its variance
increases with the transmitted power [26]. An efficient method to reduce speckle in the radar image
is called multi-looking [27]. It can be described as the averaging of the amplitudes and phases of
pixels in the same region, which leads to a decrease of the backscatter standard deviation of the
backscatter and consequently to an improvement of the radiometric resolution and interpretability, at
the cost of a decreased image resolution. The multi-looking process can be carried out in different
domains:

• Spatial domain: Contiguous pixels in a fixed area are averaged together.

• Time domain: Splitting of the synthetic aperture into several smaller sub apertures, resulting
into separately processed images of the same area with lower resolution.

• Frequency domain: Like in the time approach, the Doppler-bandwidth is separated in several
sub-bands and separately processed.

2.2.2 Noise Equivalent Sigma Zero

The Noise Equivalent Sigma Zero (NESZ) is a key parameter for determining the performance of a
SAR system and describes the systems sensitivity (i.e. noise floor). The NESZ can be calculated
as the backscatter coefficient σ0 for a Signal-to-Noise Ratio (SNR) equal to one

SNR = σ0
NESZ

= 1. (2.28)

The value itself describes the systems noise and is composed of many contributers, which are
defined in

NESZpq = 44π3R3vs sin(η)kBTrBrgFNLtot
P tpGqGpλ

3c0τpPRF
, (2.29)
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for a pq-polarized SAR signal. In the above equation kB represents the Boltzmann constant, Tr
the receiver temperature describing the thermal noise, FN is the noise figure, Gp and Gq describe
the transmit and receive antenna gains and Ltot stands for all remaining loss factors like system,
atmosphere and data quantization. During performance analysis, the NESZ is normally measured in
regions with low backscatter, like seas, or calm water in general, where almost the complete signal
is reflected in specular direction and only a negligible power fraction of the emitted pulse is reflected
back to the sensor. Thus, the signal can be assumed to be below the system noise [3], [22].

2.2.3 Absolute Calibration

After focusing the data from the received radar echoes in range and azimuth, the resulting SAR
image represents the radar reflectivity of the acquired area. For a proper interpretation, the data
need to be calibrated. Calibration of a SAR system can be divided into two main tasks: Firstly the
internal calibration, which is done by compensating for the radar gain term Ks i.e. setting it to 1[6]

Ks =
P tpGqGpλ

2GeqGproc

(4π)3R4LsLa
. (2.30)

Ks describes all possible error terms like the antenna gain in transmit and receive Gp and Gq, the
transmit power P tp, the processor Gain Gproc, the electronic gain in the radar receiver Geq, possible
attenuation by the atmosphere La and a general system loss term Ls. The parameters R and λ
represent the range delay to the target and signal wavelength. The compensation term is calculated
and adjusted pre- and in-flight by multiple internal feedback loops. Secondly, the external calibration,
which is required since not all parameters can be sufficiently exact determined by internal calibra-
tion. The calibration is done by targeting reflectors with known scattering characteristics, like corner
reflectors or specially designed transponders to compensate for the errors and is further detailed
explained in [6].

2.2.4 Geometric Distortions and Geocoding

In a last step the image needs to be georeferenced. Hereby, the image is geographically mapped,
by using points of precisely known location in the scene. Nevertheless, due to the transformation of
three-dimensional SAR data into a two-dimensional space, a few geometrical distortions can occur,
typically in scenarios, where big height differences and slopes are present in the scene under obser-
vation. The main distortions are shown in Figure 2.7 and can be summarized under consideration
of the slope α and the elevation angle Θe:

• Shadowing: Shadowing represents the effect of areas hidden from the Radar view, due to
higher terrain in front of it. It appears in regions with α < 0 and π

2 − |α| < Θe.An example can
be seen in Figure 2.7a, where the area CB is shadowed by C.

• Layover : A layover is observed if the the terrain slope alpha is bigger than the elevation angle
(α > Θe). The SAR receiver observes a point inversion of targets on the bottom side of the
elevated area versus a target on top of it, as it is shown in Figure 2.7b.

• Foreshortening: Appears for a positive slope (α > 0) facing towards the transmitter. The
SAR antenna observes a falsely reduced distance between targets in front and on top of the
elevated region versus targets behind the elevated region (Figure 2.7c).

These geometrical distortions can be minimized by selecting a proper elevation angle for the ob-
served area. Typically, incidence angles between 30° and 50° offer a good compromise between
the occurrence of geometric distortions and resulting SNR. Furthermore, foreshortening can be cor-
rected during data processing, and specifically during geocoding.
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Figure 2.7 Geometric Distortions: a) Shadowing, b) Layover, c) Foreshortening.

2.3 Interferometric SAR (InSAR)

As already mentioned a SAR system retrieves its information by analyzing the backscattered sig-
nal and its scattering properties. Interferometric SAR (InSAR) expands this acquisition method by
considering measurements from different receivers, which are separated in time and space. These
measurements are usually gained from the phase and can be separated in two main information
sources, the propagation phase and the backscattered phase. The first type was already men-
tioned earlier and gives information about the distance between sensor and the scatterer on ground.
The latter, on the other hand, gives information about the contribution of phase difference due to the
properties of the observed area. Those measurements can be used to retrieve information about the
geophysical properties of the surface, like elevation models (i.e. Digital Elevation Models (DEMs)),
surface movements (i.e. glacier movements or ocean currents) and ground deformations, and can
reach a precision up to a few centimetres, or even millimeters.

2.3.1 InSAR Acquisition Modes

Since InSAR represents a multi-static, or at least bi-static acquisition technique, the sensors for the
data acquisition are separated in time and space. The acquisition modes separated in time can be
differentiated into two modes:

• single pass mode: The time lag between the two receiving antennas is equal to zero, which
is the case if the satellite is featured with two, or more receiving antennas.

• repeat pass mode: The time lag between both antennas is nor equal to zero, i.e. if the sensor
has to revisit the observed area at a later time instance.

The different operation modes for the separation in space can be combined with the time modes and
are listed below:

• along track interferometry: The sensors are aligned along track for the data acquisition.
This operation mode yields ideal properties for monitoring surface movements and is usu-
ally operated in single pass mode to minimize the time lag in order to monitor fast changing
movements, like ocean currents.

• across track interferometry: The sensors are aligned perpendicular to the orbit track. This
mode is ideal for DEM generation in both time modes.
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Since the InSAR measurements rely on the combination of SAR images acquired by at least two
satellites called master and multiple slave, the data generated by the Sensors must be synchronized.
The synchronization takes place in form of a interpolation where all slave images are interpolated
to fit on the georeferenced data grid of one selected master image. The interferometric phase
difference between two sensors S1 and S2 can be expressed by

∆Φint = 4π
λ

∆r, (2.31)

where ∆r represents the travel path difference between the two signals. Figure 2.8 shows an

Figure 2.8 InSAR geometry for across-track interferometry by two sensors and a flat earth model: S1 as
master and S2 as slave.

exemplary model for the InSAR geometry with all important parameters. The travel path difference
for single pass mode is defined as ∆r = 2(RS1 − RS2), while the concerning parameter for the
repeat pass mode defines as ∆r = RS1 − RS2 . The height of ambiguity (HoA) for the system can
be defined as

HoA = λ ·RS1 · sin(Θi)
2B⊥

, (2.32)

and is defined as a full 2π shift of the interferometric phase. The parameters for (2.32) can be seen
in Figure 2.8, which shows the general InSAR geometry for a flat earth model, with RS1 being the
distance between S1 and the target, Θi the incidence angle and B⊥ the baseline between both
receivers perpendicular to the line of sight.

2.3.2 Interferometric Coherence and Noise

For evaluating the quality of InSAR products, the key parameter, which gives information about the
amount of noise in the interferogram, is the interferometric coherence γ. It represents the normalized
complex correlation coefficient between the master S1 and its slave S2 and can be calculated from

γ = |γ|ejΦ = E[S1 · S∗2 ]√
E[|S1|2] ·

√
E[|S1|2]

, (2.33)

where E[·] is the expected value. The coherence γ ranges from 0 to 1 describing the correlation
of both images, with 1 corresponding to full correlation and 0 to no correlation. The interferometric
coherence can be seen as the multiplication of different error sources, which form the final coherence
factor γ[35]. Contributers are for example the coherence loss due to the limited SNR γSNR, the loss
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due to the relative Doppler shift spectra γAz, the loss due to ambiguity decorrelation γRg, γV ol as the
loss due to volume decorrelation, γTemp represents the temporal decorrelation and the coherence
loss in raw data quantization γQuant, which will be further explained in section 3.3

γ = γSNR · γAz · γRg · γV ol · γTemp · γQuant. (2.34)

The contributer with the most imapct is the coherence loss due to the limited SNR γSNR, which can
be calculated from

γSNR = 1√
(1 + SNR−1

1 ) · (1 + SNR−1
2 )

, (2.35)

with SNR1/2 describing the SNR for the master and slave channel. The SNR of the single channels
can be calculated from

SNR = σΘi
0

NESZΘi
1,2
, (2.36)

with σ0 describing the normalized backscattering coefficient and NESZ the noise equivalent sigma
zero from (2.29), both as function of the incidence angle Θi.

2.4 Staggered SAR

Conventional SAR observations always come with the constraint of having a fine azimuth resolution
or wide swath width. The former requires a sufficiently low PRF in order to match the Shannon
sampling theorem described in (2.25) and have at least one receive window during a PRI. Hence,
the PRF decreases for wider swaths, since the chirp duration increases and the PRI as well. The
latter, on the other hand, improves with increasing Doppler Bandwidth, which increases with higher
PRF. In order to guarantee a uniform sampled data stream the PRF has to hold

PRF = 2vsat
Laz

, (2.37)

with vsat as the satellite speed and Laz representing the azimuth antenna length. Over the years,
several new techniques have been developed to widen the swath, without decreasing the azimuth
resolution further. Those methods are using Multiple Azimuth Channels (MAC) and Digital Beam
Forming (DBF) in elevation to continuously scan a wide swath, for the implementation of the so
called Scan on Receive (SCORE). Despite the advantages, this method brings the problem of blind
spots in the acquisition, since the antennas are only able to either transmit or receive. By using a
constant PRI, those blind spots always align in the same range distance, creating blind strips in the
final image. Staggered SAR is solving this drawback by using a cyclically changing PRI, to vary the
location of the missing spots. The idea of changing the PRI to vary the blind spot location was first
independently developed in [11] and [16] and later further developed to the concept of Staggered
SAR [31].
There are different ways to distribute the location of the blind spots. One option is to randomly dis-
tribute them over the image. If a significantly small percentage of pixels is missing, the resolution of
the acquisition only slightly degrades and can be focused without significant performance loss [28].
The resulting image, however, shows high sidelobes, which potentially shadow bordering pixels with
lower amplitude. High sidelobes can be avoided by the varying PRI in a way, such that two consec-
utive azimuth samples are never missed. An example of a staggered SAR like PRI sequence can
be seen in Figure 2.9. Together with a high azimuth oversampling the missing spots can then be
reconstructed by interpolating the non-linear sampled acquisition on an equally spaced grid. This
method provides a continuous and large swath up to 350 km without the use of multiple sub-swaths
or a large antenna. During the design of the PRI sequence the minimum PRI must be chosen in con-
sideration of the Shannon theorem (2.25) to ensure a proper azimuth sampling. The maximum PRI,
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Figure 2.9 Blind range locations for staggered SAR with changing PRI

on the other hand, is restricted by the maximum gap width of the system. After the signal acquisition,
in order to reconstruct the gaps and for simpler focusing, the signal needs to be translated from the
non-uniform PRI on a uniformly sampled raw data grid. Best Linear Interpolation (BLU) [32] repre-
sents a reliable interpolation method, since it uses the correlation between subsequent samples to
estimate the new samples. For an adequate reconstruction using BLU, a sufficient oversampling (i.e.
correlation) of data in azimuth direction is required. The high oversampling also means a lot data to
be stored on board, which is strictly limited for spaceborne SAR. Thus, staggered SAR requires an
almost instant downlink of the acquired data.
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3 SAR Raw Data Quantization

Quantization is a process where an input value is mapped on the closest value of a fixed set of
output values. Quantization can be performed on time discrete as well as time-continuous signals
after a proper sampling and is mainly used to digitize signals, coming from a continuous time source.
Under the right conditions the process leads to less data consumption with the drawback of a lower
resolution in the data representation. In signal processing, as well in SAR systems the discretization
of the analogue time continuous signal is an essential step before further processing steps and is
generally performed using a Analogue to Digital Converter (ADC). After the quantization with the
ADC, which will be further explained in the upcoming section, the time and value discrete signal
is stored in the onboard memory and down-linked to the ground segment for reconstruction. This
quantization process (as well as all quantization methods in this thesis) is a lossy process, which
means that the original signal can not be fully recovered from the quantized signal. The quantization
error represents a key parameter, when evaluating the quantization process, since it gives direct
information about the similarity of the quantized signal to its original. Generally applies, that the
smaller the quantization, the better the reconstruction and therefore the final SAR image quality.
Therefore, it is important to keep the error as small as possible, which can be done by increasing the
set of output values. On the other hand one has to consider the data consumption, which makes it
mandatory to find the optimal balance between a sufficiently good image quality after reconstruction
and a good data reduction. The quantizer in the following sections are all treated as Cartesian
quantizer, which means that the imaginary and real part of the complex SAR signal are processed
separately, due to their uncorrelated properties according to the Central Limit Theorem (CLT). In the
following sections, a basic introduction on quantization is given, as well as the impact of quantization
errors and an overview over the most important parameters during the quantization according to
[9][14][34]. In the last sections of this chapter, two state of the art quantizers, the Block Adaptive
Quantizer (BAQ) and the Dynamic Predictive BAQ (DP-BAQ) [23] are presented.

3.1 Quantization Basics

As already stated in the previous section it is required to discretize, i.e. quantize, a time continuous
signal, like the backscattered pulses during a SAR acquisition, before applying further processing
steps. For a generic SAR system the quantization starts by sampling the analogue signal in time.
Subsequently, all amplitudes of the resampled signal are mapped from the infinite set of analogue
values to the matching one in a fixed set of output values. This can be done by firstly assigning each
input value of the analogue signal to input intervals ξi, which are defined by the decision levels di.
Secondly, all values of one input interval are mapped to the same reconstruction level ri, which is
assigned to that specific interval. The set of possible reconstruction levels is called the alphabet of
the quantizer and far less complex than the range of input values. Its length depends on the number
of bits Nb representing a single output value. In case of a binary system the alphabet length is
defined as

M = 2Nb . (3.1)

As already mentioned, the decision levels describe the boundaries of the input intervals ξ, which are
defined as M intervals in a defined input range [+/− Vclip]. By dividing the full input dynamics into
intervals, each of the analogue samples can be represented by the interval covering him.

x ∈ ξi ,with ξi = [di, di+1], i = 1, 2, . . . ,M. (3.2)
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Values that outreach the maximum value i.e. |x| > Vclip are automatically “clipped”, i.e. set to the
maximum valued input interval according to its sign. The translation from input value to output one
is defined by the quantizers characteristic transfer function fq, which also defines the type of the
quantizer itself. Depending on the position of the decision boundaries, it is possible to define two
main quantizer types. The first type is called midtread quantizer , since it allows for a reconstruction
level at the value of zero. Its transfer function can be seen in Figure 3.1a. The second type on
the other hand is named midrise quantizer. It has a step in the transfer function placed directly on
the zero reconstruction value, which allows the quantizer to always consider the sign of the input
signal in the output, since they never become zero as it can be seen in Figure 3.1b. Due to the sign
consideration during the reconstruction, the midrise is typically used in SAR systems as well as in
this thesis for further calculation.

(a) Transfer function of a uniform midtread quantizer
with Vclip = 15 and Nb = 3.

(b) Transfer function of a uniform midrise quantizer
with Vclip = 15 and Nb = 3.

Figure 3.1 Transfer functions for uniform quantizer.

Assuming a zero mean random distributed signal, the transfer function of a linear distributed
midrise quantizer can be formulated as

sq,n = sn
‖sn‖

·∆ ·
(⌊
‖sn‖

∆

⌋
+1

2

)
, (3.3)

for the n-th sample of the quantized signal. In the upper equation, sn describes the n-th sample of
the input signal and b·c the “floor” function, which limits the value to the next integer less or equal
to itself. ∆ is called step size, which is defined as the distance between two decision levels and
describes the resolution of the quantizer. The placing of the decision levels along the input signal
space is a key parameter during the quantization design. The levels can have uniform and non-
uniform spacing to optimally fit the signal statistics. For a Gaussian input, such as SAR raw data,
a uniform quantizer is used. For an uniform sampled transfer function the reconstruction levels are
equally distributed between [+/ − Vclip] in the center of the input intervals ξ and can be therefore
defined as

∆ = 2Vclip
2Nb − 1 . (3.4)

3.2 Quantization Errors

As mentioned in the previous sections, quantization is a lossy process, which means that the quan-
tized signal can not be fully reconstructed. The resulting distortion of the signal is represented in the



21

quantization error q, which identifies the difference between the original signal s and the quantized
signal sq by

q = s− sq. (3.5)

Alongside errors caused by the quantizer, like the granular and clipping error, there are also those,
which are caused by the SAR acquisition itself, like the low scatter suppression and phase error. All
these errors will be introduced in the following.

3.2.1 Granular and Clipping Error

Based on the CLT, a SAR signal can be assumed to be a random distributed, zero mean signal x
with a variance σ2

x and a probability density function (pdf) of

σ2
x = E[X]2 =

∫ +∞

−∞
xpx(x)dx. (3.6)

Due to the random nature of the input signal x and since the quantized signal is based on the same
process, the quantized signal xq has also random properties. Therefore, the quantization error q,
which is according to (3.5) directly dependent on both variables, can be assumed as a zero-mean
random variable with a pdf pQ(q) of

σ2
Q = E[Q]2 =

∫ ∞
−∞

[x− fq(x)]2pX(x)dx. (3.7)

The quantization error can be split into two main components, which are here further explained:

• clipping error : The clipping error describes the values falling out of the input window between
[+/− Vclip] and is named after the process of clipping all values above/below that level to the
maximum/minimum reconstruction value rclip. This introduces a distortion to the quantization
process, since the clipped values can not be correctly reconstructed. Its pdf is defined as

σ2
qc =

∫ −Vclip
−∞

(x+ rclip)2pX(x)dx+
∫ +∞

+Vclip
(x− rclip)2pX(x)dx. (3.8)

• granular error : This error considers the error within the single decision levels, thus describes
the precision of the quantizer. During the quantization, many input values of different ampli-
tudes are mapped to the same decision interval, which is then represented by only one specific
reconstruction value. Consequently, after their transformation they can not be completely re-
constructed, which results in the granular error. Under consideration of the M decision levels
from (3.2), its pdf is defined as

σ2
qg =

M−1∑
k=2

∫ dk+1

dk

(x− rk)2pX(x)dx. (3.9)

In case the decision levels are sufficiently sampled, the high rate approximation holds and the
granular error can be assumed to be uniformly distributed. Its pdf simplifies to

pQ(q) =
{ 1

∆ if |q| ≤ ∆
2 ,

0 otherwise,
(3.10)

and the variance of the quantization noise can be expressed by

σ2
Q = ∆2

12 = 1
3V

2
clip2−2Nb . (3.11)
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The error contributions can be influenced by setting the signal dynamic. Therefore, the system
parameter have to be carefully chosen to minimize the quantization error. In general, the granular
error increases when enlarging the dynamic range of the signal. This happens, if the clipping value
Vclip is set too high, or the signal-to-clipping ratio γclip, which will be further explained in section 3.3,
too low. If, on the other hand, the clipping is set too low for the signal, the amount of samples being
set to Vclip increases and the clipping error with it. In order to minimize the quantization error, the
right balance for the right signal dynamic has to be found, which will be discussed in section 3.3.

3.2.2 Low Amplitude and Low Scatterer Suppression

Granular and clipping error are the biggest contributers to the quantization error, both depending on
the quantization parameters, and are not influenced differently for higher or lower amplitudes. When
investigating the phase error introduced by the quantization process on the other hand, a strong
relation between the error and the signal amplitude can be seen. Figure 3.2 shows two complex
input samples xi and xj and their corresponding quantized versions yi and yj . Even though the
amount of granular error eg is equivalent, the phase differs much more for the low amplitude value.
This implies a more imprecise sensitivity of the quantizer at low amplitudes, resulting in much higher
phase errors, worsening the performance of the Cartesian quantizer. The maximum possible phase
error ∆Φ occurs for low amplitude values and is bounded to 45 ° , according to

|∆Φ|max = |Θxa,ya −Θxb,yb |
2 . (3.12)

Another error that occurs during the quantization is caused by the superposition of high and low
backscatter intensities. In particular, if two scatterers with different backscatter properties lie close
to each other, i.e. the azimuth distance between both targets in azimuth daz is significantly smaller
than the synthetic aperture length Ls and, in range, drg is smaller than the chirp length Lchirp

daz � Ls = λR0
La

and drg � Lchirp = c0τp
2 , (3.13)

Figure 3.2 Example plot for the phase error: The input values are shown in light and dark red and the output
values correspondingly in light and dark blue. While the granular error is the same for both samples, the
phase error for the low amplitude sample is higher.
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both targets are overlapping and the stronger backscatter shadows the lower one, which is called
low scatter suppression. Since a Max-Lloyd quantizer, which will be further explained in section
3.4, adapts to the mean signal power, the stronger scatter is well represented thanks to its higher
amplitude, while the low backscatter can not use the full dynamic of decision levels, resulting in a
coarser representation.

3.3 Quantization Parameters

Figure 3.3 Histogram of the real part of a SAR image acquired by real SAR data. Additionally to the histogram,
the plot shows the standard deviation of the image and its mean value.

3.3.1 Signal to Quantization Noise Ratio

The Signal to Quantization Noise Ratio (SQNR) is the general measurement for the quality of the
quantization process. It can be described as the difference between the variance of the input signal
σ2
X and the variance of the quantization error σ2

Q

SQNR = σ2
X

σ2
Q

. (3.14)

If a complex signal is considered, the SQNR can either be calculated separately with (3.15) or, due
to their uncorrelated property, by means of a cumulative representation:

SQNR =
∑N
i=1 |xi|2∑N
i=1 |qi|2

, (3.15)

where i is the sample number, x the input signal and q the quantization error defined in (3.5). As
already stated in the previous sections, the error variance strongly depends on the number of bits
Nb used for the quantization. When investigating the direct effect of the bit rate on the performance
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of a quantizer, like an optimal ADC, it is possible to derive an expression for the approximate gain,
by substituting (3.11) into (3.14)

SQNRdB = 10 · log1022Nb ≈ 6 ·NbdB. (3.16)

3.3.2 Signal-to-Clipping Ratio

In order to achieve the best attainable quantization performance, the signal statistics must be taken
into account when defining properly adapted quantization parameters. The best way to evaluate the
chosen parameters is to analyse the Signal-to-Clipping ratio γclip, which rates the actual fitting of the
quantization space on the input signal. The corresponding relation is derived from the ratio of the
maximum input Vclip and the input signals standard deviation σx, which is visible for the real part in
Figure 3.3

γclip = σx
Vclip

=

√
σ2
inI + σ2

inQ

Vclip
. (3.17)

γclip =

√
σ2
inI + σ2

inQ

Vclip
, (3.18)

with σinI and σinQ describing the standard deviation of the real and imaginary part, respectively.
Under the assumption that the two independent processes have the same standard deviation, (3.18)
simplifies to

γclip =
√

2 · σinI
Vclip

. (3.19)

Figure 3.4 SQNR plot in dB of a uniform midrise ADC for different bitrates (bps) over different γclip, with
Vclip = 127.5.
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In order to control and adapt the signal dynamic, the value of γclip is usually set to a fixed value that
brings maximum performance and is then used to scale the input signal accordingly to the desired
range. The scaling factor α can be calculated from (3.19)

α = γclip · Vclip√
2 · σinI

. (3.20)

Figure 3.4 shows the influence of the clipping factor γclip on the quantization performance. The plot
shows the SQNR values in dB, as reference for the quality of the quantization, of an ideal ADC at
different bit rates. The performance was hereby tested for different values of γquant on the quantizer
and analyzed to find the optimal value for controlling the signal dynamic.

The left side of the plot shows the effect of a high signal dynamic, which compromises the per-
formance, featuring granular error. When increasing the scaling factor, the SQNR of the quantized
signal constantly improves until a value close to −10 dB. After that value the second effect, which
describes the effect of the clipping error, can be seen. Due to the insufficient scaling of the signal it
gets distorted during the quantization and the performance drops.

3.3.3 Quantization Coherence

As already mentioned in chapter 2.3.2, the quantization coherence is also a contributer to the co-
herence factor γ of an InSAR system [36]. The quantization coherence describes the effect of the
quantization process on a SAR interferogram and is therefore an important and informative factor
for evaluating the quantization performance. The value of γQuant can be calculated solely from the
SQNR as

γQuant = 1
1 + SQNR−1 = SQNR

SQNR+ 1 . (3.21)

3.4 Block Adaptive Quantization (BAQ)

The raw SAR signal after reception usually shows strong variations in the backscatter intensity of
several dB, due to the properties of the observed surface. Under such circumstances, a common
ADC quantizer with fixed decision levels di and clipping values Vclip is only applicable to a SAR
signal by using high bitrates (Nb = 8). This performance would come at the cost of a high storage
usage, which is not suitable for spaceborn systems with limited memory and downlink capacity.
Block Adaptive Quantization (BAQ) is a reliable Max-Lloyd quantizer, that has proven itself to be
very effective in the quantization of SAR raw data [18][22][19]. Its flow chart can be seen in Figure
3.5.
The concept of the Max-Lloyd quantizer presents a more effective option than an ADC to quantize

Figure 3.5 Flow chart for BAQ quantizer, with input x, ADC quantized signal xq,ADC , exponent E, mantissa
M and quantized signal xq.

a strongly varying signal. The key behind this type of quantizer is to adapt the decision levels
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to the signal by separating the signal in smaller subsets and fitting the parameters on the signal
statistics of the smaller segments. The goal is to minimize the quantization noise power σ2

q , or
equivalently the SQNR of the quantization. Ideal decision levels are derived from the quantization
noise power [24] and are placed directly between subsequent reconstruction levels ri, whereas the
reconstruction levels are placed at the maximum of the intervals pdf. The quantizer, which minimizes
the mean square error (MSE) resulting from those problems is called Max-Lloyd Quantizer. In case
of a uniform distributed signal, the Max-Lloyd quantizer results in a uniform quantizer, whereas all
other distributed signals result in a non-uniform distributed quantizer. Due to the adaptation of the
quantizer to the signal dynamic, the quantization error for each decision interval has zero mean
properties. Furthermore, the error variance of each decision interval ξi is the same, even when
increasing the stepsize ∆ [14]. The adaptivity of the quantizer to the signal dynamic is usually
done by scaling the input signal before the quantization and rescaling it before the reconstruction,
respectively.
The realization of a Max-Lloyd quantizer on SAR data can be implemented by a cartesian BAQ,
which means that the the In-phase (I) and Quadrature (Q) components are processed separately,
due to the statistically independent characteristics of the complex SAR signal. In a first step the
analogue SAR signal is clipped and converted to a digital signal using an ADC at a high bitrate
(Nb = 8) and a clipping voltage of Vclip = +/− 127.5. The resulting signal can then be represented
by 8 bits for each I- and Q-sample

In,ADC = −1s
(

1
2 +

6∑
i=0

MI,ADC,i2i
)
, (3.22)

and

Qn,ADC = −1s
(

1
2 +

6∑
i=0

MQ,ADC,i2i
)
, (3.23)

with n referring to the n-th sample of the signal, i to the i-th bit correspondingly, s to the sign bit and
M representing the corresponding value of the i-th bit. After the conversion by the ADC, the signal
is separated along range direction into blocks of equal length LBAQ and forwarded to the quantizer.
The block length is hereby chosen, that the signal dynamic within the blocks is sufficiently small to
properly adapt the quantization parameters.
The quantization process applied on each range line is described as follows [19]:

Compression rate,
nBAQ

C Emax Mmax

8:2 2.20374 24 1
8:3 5.28038 20 3
8:4 8.50475 16 7
8:5 11.8188 12 15
8:6 15.2549 8 31

Table 3.1 Parameters for BAQ encoding, depending on the compression rate.

• Step 1: The In,ADC and Qn,ADC components of each range line are separated into blocks of
length LBAQ = 128.

• Step 2: According to the chosen compression rate the quantizer selects the corresponding
value of C from Table 3.1.

• Step 3: The C value is used to calculate the exponent according to

E1 = 4 · log2

(
1 + 1

LBAQ

LBAQ∑
n=1

(‖In‖+ ‖Qn‖)
)
−C. (3.24)
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• Step 4: The Exponent of the preceding step is rounded off to the next biggest integer less or
equal to itself and compared to the maximum exponent Emax from Table 3.1

E = min{Emax, bE1c}. (3.25)

• Step 5: Using the exponent E from the prior step, the input values In,ADC and Qn,ADC can
now be scaled to Īn and Q̄n

Īn = In
2E/4

, and Q̄n = Qn
2E/4

, (3.26)

• Step 6: The value of each sample is compared to the maximum mantissa Mmax from Table
3.1 and limited to it if the value exceeds the limit

IBAQ,n = Īn

‖Īn‖
·min{‖In‖,Mmax}, and QBAQ,n = Q̄n

‖Q̄n‖
·min{‖Qn‖,Mmax}. (3.27)

• Step 7: In the final step the resulting mantissa is quantized using a uniform quantizer (3.3)
between [−Mmax − 0.5,Mmax + 0.5] at a bit rate of nBAQ.

The quantized mantissa alongside with the exponent E from step 4 are then transmitted on-ground.
Both values are then used to reconstruct the transmitted signal according to

In,BAQ = −1s ·
(

1
2 +

nBAQ−1∑
i=0

KI,i · 2i
)
·2E/4, (3.28)

Qn,BAQ = −1s ·
(

1
2 +

nBAQ−1∑
i=0

KQ,i · 2i
)
·2E/4. (3.29)

Here, K refers to the value of the i-th bit (either 0 or 1) and s to the value of the sign bit. Figure
3.6 shows the performance in terms of SQNR, for a BAQ compared to an ADC, both calculated on
two dimensional simulated SAR data and a planar antenna pattern. The SQNR values of the BAQ
show constantly better performance when increasing the bitrate. The BAQ even reaches a SQNR
value of 9.2 dB at a bitrate of only 2 bps, which is higher than the performance of the ADC at a
bitrate of 3 bps. Thus, providing a better quantization performance with less memory usage, due to
its adaptivity.



28

Figure 3.6 Signal to Quantization Noise Ratio (SQNR) of a BAQ compared to an ADC for all possible bitrates
(bps)

3.5 Dynamic-Predictive Block Adaptive Quanitzation (DP-BAQ)

SAR acquisitions come with the generation of an huge amount of data. Especially in new acquisition
methods, capable of imaging wide swath at high spatial resolutions, like staggered SAR, the amount
of data increases even more. Due to the limitations in terms of processing and storage, the data
need to be transferred to the ground in almost real time, which requires maximum compression of
the data at the cost of minimal computational effort. There have been several approaches, using
predictive coding for data reduction, which investigated on the performance on raw SAR data as
well as range focused SAR data [21], [13]. In this section a new quantization method, developed at
DLR, is introduced, which combines the benefits in signal dynamic reduction from Linear Predictive
Coding (LPC) of different prediction orders, specially fitted on the SAR signal statistics, with the
well known quantization technique of BAQ. Additionally, this new technique is specially designed for
handling Staggered SAR and its varying PRI as well as blind ranges, using dynamic bit allocation
and adapted handling of the prediction order in gap vicinity.

3.5.1 Linear Predictive Coding

Linear Predictive Coding (LPC), which evolved from the well known Differential Pulse Code Modula-
tion (DPCM)[14], offers a method to significantly reduce the dynamic in signals with strong varying
amplitudes. The principle of DPCM is to harness the correlation, i.e. similarity, between subsequent
samples to generate a signal with lower dynamics by calculating the difference sd[n] between the
original sample s[n] and its predecessor s[n− 1]

sd[n] = s[n]− s[n− 1]. (3.30)

The original signal can later be reconstructed by simply inverting the procedure in (3.30).
As it becomes clear, the dynamic reduction of DPCM is only dependent on the similarity of the sub-
tracted signal to the original one, which is limited at some point. LPC, on the other hand, exploits
the correlation between subsequent samples to estimate the prediction of the current sample, which
is in general more similar to the original sample than the preceding one is. Thus this method gen-
erates a signal with less signal dynamic than DPCM, by subtracting the prediction from the original
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sample. The prediction is calculated from the combination of N preceding samples, each weighted
by the corresponding prediction weight. The weights are calculated from the correlation values of
the signal and represent the relation between the original sample and the samples, that are used for
the prediction. Therefore, the prediction s̃[n] can be calculated from the summation on N preceding
samples s[n− i], weighted by the prediction weights βi according to

s̃[n] =
N∑
i=1

βi
(
s[n− i] + e[n− i]

)
, (3.31)

where e describes the error term of the prediction process, i refers to the i-th sample before the
predicted one, and N to the prediction order.
Since the prediction consists of a single linear combination, the computational requirements are not
significantly increased, thus making it suitable for onboard implementation. An overview over all
prediction steps can be seen in Figure 3.7. After predicting a sample from prior ones, the resulting
signal can be used to calculate the difference for the upcoming sample according to

sd[n] = s[n]− s̃[n]. (3.32)

By considering the scheme in Figure 3.7, equation (3.33) can now be reformulate to express the
prediction process by substituting (3.32) into (3.31), leading to

s̃[n] =
N∑
i=1

(sd[n− i] + s̃[n− i])βi. (3.33)

As can be seen, the prediction of the current sample requires the saving of only N preceding pre-
diction errors. The errors are also used for the reconstruction of the original sample, as described
by the model in Figure 3.8. By analyzing these schemes, it becomes clear that the reconstruction
is the inverse process of the encoding. After initializing the prediction process, by providing the first
sample as original to the reconstructor, i.e. setting the first prediction to zero, both sides hold the
same information and use the same predictor to estimate the upcoming sample. Thus, possible er-
ror sources can be significantly minimized. The reconstruction process at time instance n can now
be expressed under consideration of the flow chart as

ŝ[n] = sd[n] + s̃[n]. (3.34)

As already stated, the prediction weights are the key parameters for the design of the predictor
they define the relation between prior samples and the predicted one and can be pre-calculated if
the signal statistics are known.

Figure 3.7 Flow chart for 1st order Predictor.
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Figure 3.8 Flow chart for 1st order Reconstructor.

The weights are calculated to maximize the outcome of the quantization, which means providing the
best attainable dynamic reduction. In case of LPC a low signal dynamic is directly dependent on
the prediction error sd[n]. The weights can be therefore calculated by minimizing the Mean Square
Error (MSE) for the variance of the prediction error derived from (3.32) as [23]

σ2
d = E

[
s2
d[n]

]
= E

[
(s[n]− s̃[n])2]

= E
[(
s[n]−

∑N
i=1 βi · · · [n− i]−

∑N
i=1 βi · e[n− i]

)2]
,

(3.35)

where e[n − i] is the error term describing the quantization error after the prediction. Since the
quantization error is also affected by the predictor, it must be weighted by βi as well. In order to
solve the MSE, i.e. to find the minimum of the variance, the derivative of (3.35) for a set of βj , with
1 ≤ j ≤ N , is set to 0

dσ2
d

dβj
= −2E

[
s[n]−

N∑
i=1

βi
(
s[n− i] + e[n− i]

)
·
(
s[n− j] + e[n− j]

)] != 0, (3.36)

which simplifies to

E[(s[n]− s̃[n])ŝ[n− j]] = E[sd[n] · ŝ[n− j]] = 0, 1 ≤ j ≤ N. (3.37)

By expanding (3.37)and substituting (3.32) the equation can be further simplified, considering that
the quantization error e[n] is independent from the input signal s[n], to

Φ[j] =
N∑
i=1

βi(Φ[j − k] + σ2
eδ[j − i]), 1 ≤ j ≤ N. (3.38)

In the above equation Φ[j] represents the autocorrelation of s[n] and is defined at any discrete time
instance n as

ρ[j] = Φ[j]
σ2
x

=
N∑
i=1

βi

(
ρ[j − k] + σ2

e

σ2
x

δ[j − i]
)
, 1 ≤ j ≤ N. (3.39)

The above equation can be represented in matrix form as

ρ = Cβ, (3.40)
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where the single vectors and matrices are defined as follows:

ρ =


ρ[1]
ρ[2]
ρ[3]

...
ρ[N ]

 ,β =


β1
β2
β3
...
βN

 ,C =


1 ρ[1] ρ[2] . . . ρ[N − 1]
ρ[1] 1 ρ[1] . . . ρ[N − 2]
ρ[2] ρ[1] 1 . . . ρ[N − 3]

...
...

...
. . .

...
ρ[N − 1] ρ[N − 2] ρ[N − 3] . . . 1

 . (3.41)

Here, the vector ρ contains the correlations of the samples used for the prediction and the estimated
sample, β contains the prediction weights and C represents the relation between all samples used
during the prediction, containing the corresponding correlation values. In order to calculate the
prediction weights, equation (3.41) can be solved with respect to β

β = C−1ρ. (3.42)

3.5.2 Autocorrelation

For a proper prediction, or in particular for the calculation of the concerning weights, knowledge
about the signal statistics, i.e. the autocorreation, which defines how similar subsequent samples
of a data set are, is required. While this thesis work contains the analysis of multiple systems,
the general derivation of the autocorrelation will be introduced, assuming a planar antenna for a
Tandem-L-like system [25].
Since the quantization takes part on the raw data level, raw SAR data is considered for the deriva-
tion. As already known the complex SAR signal can be assumed as a random normal distributed
process, weighted by the squared antenna pattern to represent transmission and reception proper-
ties adequately. The antenna pattern of a planar spaceborne antenna was already introduced in the
planar antenna model (2.3) , which provided sufficient accuracy for this simulation. Under consider-
ation of the independence of imaginary and real part, the SAR raw data can be defined along the
azimuth dimension as circular complex signal s with a variance of σ2 for both real and imaginary
part

r = |G(Φaz)|2e−4πj R
λ ~ s where

<s ∼ N (0, σ2)
=s ∼ N (0, σ2), (3.43)

with G(Φaz) representing the azimuth antenna pattern for the planar antenna SAR system. The
autocorrelation ρτ of the SAR raw data can then be considered as the inverse Fourrier transform of
the signals power spectral density, which is defined for the planar antenna model as

ρτ = F−1

sin4
(
π
La
2vs

f

)/(
π
La
2vs

f

)4 , (3.44)

where La represents the antenna azimuth length, vs the satellite velocity, and f the Doppler fre-
quency. By performing the inverse Fourrier transformation separately on both sinc2 functions, the
autocorrelation can be derived as

ρτ =


3
4(BR · τ)3 − 3

2(BR · τ)2 + 1 0 ≤ τ ≤ 1
BR

,

−1
4(BR · τ − 2)3 1

BR
≤ τ ≤ 2

BR
,

0 elsewhere.

(3.45)

In the above equation τ stands for the time delay between the samples and BR represents the
bandwidth of the spectral power density function, which is defined as

BR = 2vs
La

. (3.46)
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When analysing (3.46) and (3.45) one can clearly see, that a larger antenna emits a more directive
beam and can be seen, due to the reduced bandwidth as a narrower low-pass filter in the Doppler-
domain. A lower velocity, on the other hand, causes a wider correlation time, since two targets will
be more overlapped for a given time lag, i.e. more samples will be recorded for the same area on
ground, assuming the same PRF.
Additionally, the sampling rate of the SAR image in azimuth direction (PRF) has an impact on the
correlation of subsequent samples. An example for the direct impact of the PRF for a Tandem-L-like
scenario can be seen in Figure 3.9, which shows the correlation values for the first six samples of
the autocorrelation, depending on different sampling rates. As can be seen, the correlation values
strongly decrease for lower PRF, which correspond to higher PRI and therefore higher time lags
between subsequent samples.

Figure 3.9 Correlation values over different sampling frequencies (PRF).

3.5.3 Coding Gain

Linear Predictive Coding uses the similarity of the predicted signal to the original signal for reducing
the signal dynamic, i.e. improving the quantization process. The coding gain GP represents the
actual dynamic reduction achieved by the prediction process without the effects of the quantizer, by
comparing the input dynamic, i.e. its variance σ2

x with the prediction errors variance σ2
d.

The coding gain can be derived from the Signal-to-Noise ratio (SNR), which reduces coherently
with the coding gain and is defined by the ratio between the power of the input signal sd and the
introduced error e as

SNR = E[s2[n]]
E[e2[n]] . (3.47)

The SNR of the above equation can be split and reformulated by considering that the introduced
error depends on both the prediction process and the quantization process as

SNR = σ2
x

σ2
d

· σ
2
d

σ2
e

= GP · SNRQ. (3.48)
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The latter part in the above equation represents the SNR of the quantization process, whereas the
first part describes the coding gain introduced by the predictor

GP = σ2
x

σ2
d

. (3.49)

Figure 3.10 shows the coding Gain for the first four prediction orders over different sampling rates
of the TerraSAR-X [33], the Tandem-L [25] and the FSAR system, which will be further explained
in chapter 4. The most system parameters used for the plots can be seen in Table 3.2 A general

Parameter Tandem-L TerraSAR-X F-SAR

Orbit height 745 km 514 km <6.1 km

Carrier frequency, fc
1.25 GHz
(L band)

9.65 GHz
(X band)

1.325 GHz
(L band)

Range bandwidth < 84 MHz < 150 MHz < 150 MHz
Mean (staggered) PRF 2700 Hz 3000 Hz 2500 Hz

Reflector diameter 15 m 10 m 0.65 m
looking angle 25° 25° 50,4°

sensor velocity 7480m/s 7600m/s 90.1m/s
Table 3.2 System parameters of the Tandem-L, TerraSAR-X and F-SAR system

Figure 3.10 Coding gain of the TerraSAR-X system, a Tandem-L-like system, and the FSAR system for the
first four prediction orders, over different sampling rates (PRF).

observation for all system is the increase of the coding gain with higher sampling rates, which can
be explained by the higher similarity between subsequent samples for smaller time delays leading
to more precise predictions and, therefore, to less dynamic in the prediction error. As can be seen
in the plot, the FSAR system yields for much higher coding gain than the spaceborn systems, due
to the higher oversampling, i.e. correlation, between the samples, caused by the reduced moving



34

speed. When comparing spaceborne systems the TerraSAR-X provides less gain, than the Tandem-
L system, which can be explained by (3.45) and (3.46), i.e. the smaller antenna of TerraSAR-X
causes a faster decrease of the correlation and results in smaller correlation values at a similar PRF.
An observation for all systems, on the other hand, is, that the gain steps between the prediction
orders become smaller for higher prediction orders, which can be seen as a kind of saturation where
the predictor yields the maximum possible precision of the available data. Any higher order does not
bring significant gain and is therefore not shown in this plot. The non-linear growth of the Tandem-L
system gain for higher orders can be explained by the matrix inversion ofC in the weights derivation,
which shows high sensibility to zeroes, present in the correlation values.

3.5.4 DP-BAQ implementation

Figure 3.11 Flow chart for 1st-th order Predictive quantizer.

Figure 3.12 Flow chart for 1st-th order Reconstructor.

The Dynamic Predictive BAQ (DP-BAQ) is the combination of LPC and a BAQ, with prediction and
quantization parameters specially adapted to the SAR signal properties. This section summarizes
the results of the preceding sections in order to introduce to the processing steps necessary to im-
plement a DP-BAQ, which are schematically recalled in Figures 3.11 and 3.12.
In preparation for the quantization, the autocorrelation for the system needs to be calculated ac-
cording to section 3.5.2, since the signal characteristics are not known during the calculation. The
autocorrelation is then used to calculate the prediction weights βi according to the formulas in sec-
tion 3.5.1, which are then stored in the onboard memory.
As for the BAQ, the signal is divided into range blocks of 128 bit in order to keep the signal length as
short as possible for optimal signal dynamic reduction. Those blocks are then processed separately
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by the DP-BAQ along the azimuth direction according to [23].
The quantization starts with the first range line being quantized by a normal BAQ, since no previous
data is available for a prediction. Therefore, the range line is scaled, under consideration of the
blocks variance according to (3.20), by the factor α to reduce the signal dynamic. Consequently
the scaled block is forwarded to the BAQ and the quantized signal is down linked to the ground for
reconstruction and additionally stored on board for the prediction of the next block. The prediction
of the first range block “as is” ensures that both predictors in the encryption and decryption hold the
same information base. After the first block being quantized, the predictor has information for one
prior step at hand, which can be used for a first order prediction of the next sample, following this
logic the prediction order increases after each quantized signal until the maximum order is reached,
which makes the assignment of the prediction error a dynamic process. As already mentioned, be-
ginning from the processing of the second range block, LPC is included to the quantization. This
means that the DP-BAQ no longer quantizes the original signal, but the prediction error instead,
which has much less signal dynamic, i.e. less error contribution in combination with a quantizer.
Nevertheless, a BAQ is still a lossy process, which means that the quantization error remains in the
resulting signal. In order to keep the outcome of the estimation process in the predictor and the
reconstructor as close as possible, the quantization error is considered in both processing steps by
using the quantized signal as input.
The following description explains the single processing steps of the predictive part of the DP-BAQ,
which are repeatedly applied on each range block s[n], with n referring to the index of the block in
azimuth direction:

1. In a first step the last preceding prediction error quantized by the BAQ sqd[n] is reconstructed
according to (3.28) and (3.29) and stored on board as ŝd[n− i].

2. Subsequently, the predictor calculates the prediction s̃ based on the pre-calculated prediction
weights βi and the preceding samples according to

s̃[n] =
N∑
i=1

(
ŝd[n− i]
αn−i

+ s̃[n− i]
)
βi. (3.50)

3. The prediction of the current sample s̃ is then used, together with its original s[n], to calculate
the prediction error sd[n] as

sd[n] = s[n]− s̃[n]. (3.51)

4. Before forwarding the difference sd[n] to the BAQ, the dynamic of the signal is adapted by
multiplying it with the scaling factor α as described for the BAQ sample.

5. The BAQ is then applied on the scaled prediction error and the resulting quantized version
sqd[n] is downlinked to the ground and stored onboard for the next prediction step.

6. On ground, the received signal is reconstructed from the quantized signal to ŝd[n] according
to (3.28) and (3.29) and used to calculate the reconstructed range block ŝ[n] of the original
signal as

ŝ[n] = ŝd[n]
αn

+ s̃[n]. (3.52)

As mentioned before, the prediction order changes during the “starting”-phase of the predictor and
stays constant as soon as the maximum level is reached. This model only holds for continuous
signals, i.e. a data set without gaps in the SAR raw data, which is not the case for Staggered SAR
as stated in section 2.4. The constant transmission and reception of Staggered SAR results in gaps,
i.e. blind ranges, in the generated SAR raw data matrix. For the DP-BAQ this has two effects: firstly,
there is no data to be quantized in the gap position and, secondly, the data can not be used for the
prediction of succeeding samples.
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Since the position of the gaps is known a priori, the quantizer can adapt to this situation [23].
A gap in the SAR image is treated by the DP-BAQ like a restart of the whole quantizer. The first
sample after the gap is therefore quantized using a non predictive BAQ and the subsequent ones are
quantized using a DP-BAQ with step-wise increasing prediction order, until the maximum prediction
order N is reached, as can be seen in in Figure 3.13. When reaching the maximum, the quantizer
stays at that order until the next gap sequence.
Except from the dynamic adaption of the quantizers prediction order, which is necessary due to
the missing data, the gaps are also adapted with regard to the quality of the reconstructed signal.
Because of the high oversampling, the neighboring samples of a gap can be used to reconstruct the
missing ones, which can be further improved by providing more accuracy for the samples forming the
base for the reconstruction. During transmission, the SAR system would normally waste valuable

Figure 3.13 Example raw data matrix with gaps and the corresponding prediction order and bitrate. Nb

represents the average bitrate and the color of each matrix cell corresponds to the used prediction order.

space in the downlink by sending the gap data as “empty” bits. Thus, the space, which would
be normally used for transmitting the gap content, can be used to improve the sample quality in
gap proximity. By using the a priory information about the location of the gaps, the bits can be
dynamically assigned to send additionally data for the bordering samples. Figure 3.13 shows an
exemplary two-dimensional scheme for Staggered SAR data with gaps, as well as the bitrate used
for the quantization of each sample close to the gap. As can be seen, the samples close to the
gaps are quantized at a bitrate of 3

2Nb instead of the normal average bitrate of Nb. The 3
2Nb bits

correspond to the normally available bits for transmission and the additionally distributed ones from
the gap sample. Table 3.3 shows the exact bit allocation for different bit rates close to the gap.
The variation in the amount of samples that are quantized in a higher bit rate can be explained by
the distribution of Nb

2 . Since only a limited set of bit rates is available, the additional bits must be
distributed on multiple samples.
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bit rate before cell on gap 1st after gap 2nd after gap 3rd after gap

2 3 0 3 2 2
3 4 0 4 4 3
4 6 0 6 4 4
6 8 0 8 8 6

Table 3.3 Variable bit allocation before and after the gap for different bitrates.

Analytical Derivation for Gaussian inputs

The upcoming section will present a mathematical general mathematical derivation for the coding
gain. Under the assumption of a normal distributed signal, which is the case for SAR (as visible in
Figure 3.3), the variance of the prediction error can be expressed as the variance of the difference
between two random distributed signals

D , X − Y ∼ N (0, σ2
x + σ2

y − 2σxy) where
X ∼ N (0, σ2

x)
Y ∼ N (0, σ2

y)
σxy = σxσyρ

. (3.53)

σ2
x and σ2

y in the above equation represent the variance of both random processes and σxy the
covariance between both variables, which can be calculated by the multiplication of both variances
times the correlation between them. Since the prediction is calculated on the original sample, both
variances depend on the same process and can be therefore assumed to be equal according to the
stationary hypothesis (σx = σy). Despite the equality of both variances the only known parameter of
(3.53) is the correlation between both samples. The exact mathematical derivation for the weights
and gain of the first four prediction orders will be presented in the Appendix.
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4 F-SAR

F-SAR is an airborne SAR system, which is operated by the German Aerospace Center (DLR) [1],
[12] and has its main purpose is the development and testing of SAR technologies as well as the
generation of common SAR products. The SAR system is mounted on a Dornier DO228-212, which
is also run by the DLR and was used for the DLR E-SAR system before. The plane is capable of
reaching altitudes up to 6100 m and flying at a velocity of 90m/s, with an altitude variation below 2 m
during the SAR acquisition, which can last up to 2.75 to 4.75 hours, depending on the instrumental
configuration.
The speciality of F-SAR is the ability of operating acquisitions at different polarizations and wave-

Figure 4.1 Research airplane Dornier Do228-212, with mounted F-SAR carrier (back) and P-band antenna
(bottom).

lengths simultaneously, while providing a high range resolution, which makes it ideal to test and
develop new SAR technologies. The high range resolution is provided by the large system band-
width (2.24), which is spacing from 50 MHz at L-band up to 760 MHz for X-band and can be seen
along with the supported frequency bands as well as the corresponding system parameters in Table
4.1.

The antennas for the different frequency bands, which are all pointing to the area on the right hand
side of the plane, i.e. right-looking SAR, can be installed and removed according to the mission
requirements. F-SAR provides space for up to seven different antennas, which is shown in Figure
4.2.
The three X-band antennas are highlighted in blue, the two S-band antennas in orange, the C-band

antenna in green and one L-band antenna purple, which is placed separately under the front of the
airplane due to its size. A general overview of the available antenna configurations can be seen in
Table 4.2 along with the maximum endurance and the band-specific center frequency.

The acquisition modes, available for each frequency band depends on the number of antennas
and their placement. While repeat pass Polarimetric Interferometric SAR (repeat pass PolInSAR) is
available for any frequency band, single pass PolInSAR is restricted to a limited set of frequencies,
since multiple antennas are only available for X- and S-band. The interferometric constellation are
thereby available as across track (XTI) measurements for X- and S-band, with a baseline of ∼ 1.6
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X C S L P
RF [GHz] 9.60 5.30 3.25 1.325 0.435

Bandwidth [MHz] 760 384 300 150 50
PRF [kHz] 5 5 5 10 10
PT [kWpeak] 2.5 2.2 2.2 0.9 0.9

Rg. resolution [m] 0.3 0.6 0.75 1.5 2.25
Az. resolution [m] 0.2 0.3 0.35 0.4 1.5

Flight altitude range from 2000 ft above ground to 22000 ft above mean sea level.
Off-Nadir angle range Nominal from 25° to 60°.

Ground range coverage From 600 m up to 6 km according to the flight altitude.

Sampling
8 bit real; 1GS/500MS selectable; max number of samples 64k

per range line; four recording channels.

Table 4.1 Technical parameters of the F-SAR system.

Figure 4.2 Antenna configuration of a fully equipped F-SAR system.

m and along track (ATI) for X-band with a baseline of ∼ 0.85 m.
In order to keep the system at a sufficient performance the F-SAR has high standards for stability
and precision. This requires a highly precise reference systems concerning the timing, i.e. for
sampling, synchronization, and positioning. Furthermore, the system is constantly calibrated using
different methods [15]:

Configuration X C S L P Endurance

F-SAR X-C-S-L 9.600 GHz 5.300 GHz 3.250 GHz 1.325 GHz — 3.75-4.25 h
F-SAR P — — — — 0.435 GHz 4.0-4.5 h
F-SAR L — — — 1.325 GHz — 4.25-4.75 h

F-SAR L-P — — — 1.325 GHz 0.435 GHz 3.5-4.0 h
F-SAR X-C-S-L-P 9.600 GHz 5.300 GHz 3.250 GHz 1.325 GHz 0.435 GHz 2.75-3.25 h

Table 4.2 possible F-SAR configurations with maximum endurance and operating center frequency f0.
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• The system uses the calibration test site in Kaufbeuren with the addition of 14 corner reflectors
to calibrate the range- and azimuth positioning, as well as the resolution, the radar cross
section and the polarimetric phase. The calibration process is repeated at least after each
change in the antenna configuration, or after the de-/installation of an antenna.

• The system records a copy of the emitted signal before and after the mission for internal
calibrations and to track possible changes in the antenna behaviour.

• The antennas can be calibrated in an indoor facility at DLR, called Compact Test Range (CTR),
to record the antenna transfer functions from all angles and under consideration of possible
surrounding conditions [20].

Exemplary missions for the variable utilization of F-SAR are amongst the generation of DEMs the
ARCTIC mission (2015), where F-SAR was used over Greenland to investigate SAR capabilities in
security applications and tested new methods for the snow parameter extraction, in addition. Another
example of developing new techniques is the AfriSAR mission of 2016, where F-SAR contributed
to develop the forest structure and biomass retrieval algorithms over the rainforest of Gabon for the
BIOMASS mission, which is operated by the European Space Agency (ESA) and started in 2020.
Additionally, thanks to its high flexibility, F-SAR was utilized in this mission to evaluate the capabilites
of a satellite based SAR system in L- and P-band for future SAR mission concepts, i.e. the Tandem-
L mission. The results in this thesis can be also listed under the development of new remote sensing
methods, where F-SAR provided ideal capabilities to simulate a Staggered SAR like scenario, due
to its high oversampling in azimuth direction.





43

5 Analysis and Results

In this section the performance of the DP-BAQ is analyzed for different SAR configurations. The
goal is to validate the results from prior synthetic simulations and to evaluate the capabilities and
functionality of the DP-BAQ on real Staggered SAR data. Since no present SAR system is capable
of Staggered SAR acquisition the data had to be emulated with real airborne F-SAR data, which
provides ideal conditions for a precise downsampling, due to its high oversampling. In order to
ensure full functionality in the final analysis, three different configurations were tested as preparation:
The results in the first section (5.1) focused on the verification of the results from Gollin [10] and the
proof of a proper functionality of the algorithms on synthetic data. The quantization was evaluated by
analyzing the resulting the image quality in terms of the SQNR. In the second scenario (section 5.2),
the DP-BAQ was tested for the first time on real airborne SAR data, generated by the F-SAR system
of DLR. In the last scenario in section 5.3, the oversampled F-SAR data was used in a preliminary
test to create a more realistic spaceborne scenario and prove the full functionality of the DP-BAQ
under spaceborne conditions with uniform sampling. Subsequently, the predictive quantizer was
tested for its initial purpose in a Tandem-L-like scenario with non-uniform PRI and gaps in the raw
data to prove the full functionality in a Staggered SAR-like scenario under realistic circumstances.

5.1 Synthetic scenario

The first test scenario included the analysis of the DP-BAQ, which was implemented according to
the descriptions in chapter 3.5.4,applied on synthetic SAR data. The SAR signal was generated by
multiplying the two way planar antenna pattern, which was calculated using the Tandem-L system
parameters, with the azimuth angle dependent phase history. Subsequently, the resulting signal
was convolved separately with both complex components of a normal distributed Gaussian noise
according to (3.43). The real and imaginary part of the signal could be therefore assumed to be
uncorrelated. An overview of the Tandem-L parameters can be seen in Table 5.1.

Parameter Value

Orbit height 745 km (@ equator)
Carrier frequency, fc 1.25 GHz (L band)

Range bandwidth up to 84 MHz
Mean (staggered) PRF 2700 Hz

Doppler bandwidth, PBW 1130 Hz
Azimuth resolution 7 m

Swath width 175 km (quad) . . . 350 km (single/dual)
Raw data quantization BAQ @ 4 bits per sample (bps)

Downlink capacity ∼ 8 Terabyte/day
Reflector diameter 15 m

Table 5.1 Tandem-L system parameters.

The prediction weights for the LPC were calculated based on the planar antenna pattern of the
Tandem-L system according to the calculation steps in section 3.5.2 and sampled at the PRF of 2700
Hz. The resulting autocorrelation curve, with the correlation of two subsequent samples marked in
red, can be seen in Figure 5.1. The DP-BAQ was implemented according to the processing steps,
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Figure 5.1 Autocorrelation for the Tandem-L system with an sampling rate of 2700 Hz. The value for the
correlation between two subsequent samples ρ1 is marked in red and corresponds to 0.667.

described in chapter 3.5.4, with a clipping value Vclip of 127.5 and −10 dB for the signal-to-clipping
range γclip. Because of the uncorrelated properties of the SAR signals real and imaginary part, a
cartesian quantizer was implemented, meaning that both complex parts were processed separately.
The predictive quantizer was implemented for the first four prediction orders, according to the results
of the analysis on the coding gain (3.49), which indicated no significant gain after the fourth order.
The performance of the predictive quantizer was evaluated at different bit rates and compared to the
corresponding results of a direct quantizer, i.e. a BAQ, to show the possibilities in data reduction.
An overview of the implemented processing steps can be seen in Figure 5.2. As in the analysis of

Figure 5.2 Process chain for Tandem-L scenario with simulated data.

the BAQ and ADC (Figure 3.6), the SQNR was taken as reference for the quality of the quantized
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signal and calculated according to the formula in (3.15). For a better visualization of the results, the
SQNR values were converted into dB according to

SQNRdB = 10 · log10

(∑N
i=1 |xi|2∑N
i=1 |qi|2

)
, (5.1)

with the quantization error qi = xi − xq,i calculated on the difference between each sample xi of
the original signal and the corresponding reconstructed one xq,i. The SQNR plots for the first four
orders, calculated on raw data can be seen in Figure 5.3, 5.4, 5.5 and 5.6. In order to visualize
the actual gain that was introduced by the Linear Predictive Coding (LPC), the SQNR values of the
DP-BAQ (SQNRDP−BAQ) were directly compared to the BAQ values (SQNRBAQ) in the absolute
gain, which was calculated according to

∆SQNR = SQNRDP−BAQ − SQNRBAQ. (5.2)

Like the results in [10], the BAQ showed a constant behaviour over the changing sampling rate
and introduced a gain of approximate 6 dB for each additional bit used in the quantization. The
values of the SQNR for the DP-BAQ on the other hand, which are represented by the triangular
marked lines, show an increase coherent with the increasing PRF, which validates the assumed
better performance at higher correlation. Both values show consistent behaviour compared to the
values of the work from Gollin [10], which proves the functionality of the predictors with simulated
SAR data.
The plots for the absolute Gain of the DP-BAQ compared to the BAQ for the synthetic data can be
seen in the Figures 5.7, 5.8, 5.9 and 5.10. All four plots show matching results with respect to the
expected theoretical Gain in Figure 3.10, with the exception of the 2 bit sample.

Figure 5.3 SQNR plot in dB of the first-order DP-BAQ and the corresponding BAQ for every bit-rate over
different sampling rates (PRF).
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Figure 5.4 SQNR plot in dB of the second-order DP-BAQ and the corresponding BAQ for every bit-rate over
different sampling rates (PRF).

Figure 5.5 SQNR plot in dB of the third-order DP-BAQ and the corresponding BAQ for every bit-rate over
different sampling rates (PRF).
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Figure 5.6 SQNR plot in dB of the fourth-order DP-BAQ and the corresponding BAQ for every bit-rate over
different sampling rates (PRF).

Figure 5.7 Absolute gain ∆SQNR in dB of the first-order DP-BAQ and the corresponding BAQ for every
bit-rate over different sampling rates (PRF).
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Figure 5.8 Absolute gain ∆SQNR in dB of the second-order DP-BAQ and the corresponding BAQ for every
bit-rate over different sampling rates (PRF).

Figure 5.9 Absolute gain ∆SQNR in dB of the third-order DP-BAQ and the corresponding BAQ for every
bit-rate over different sampling rates (PRF).
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Figure 5.10 Absolute gain ∆SQNR in dB of the fourth-order DP-BAQ and the corresponding BAQ for every
bit-rate over different sampling rates (PRF).
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5.2 Direct application on oversampled real F-SAR data

Since the functionality of the DP-BAQ was shown for synthetic data in the previous section, this
section describes the first implementation of the DP-BAQ on real SAR data, as preparation for the
final analysis on the spaceborne system. The F-SAR system generates highly oversampled SAR
images in azimuth direction, due to its comparably low velocity. Thus, it provides ideal properties
to test the predictive coding and the gain achieved by the DP-BAQ on F-SAR data was expected
to be extremely high. The F-SAR image, processed in the following analysis, was acquired over
the test site in Kaufbeuren in south Germany. The land site was chosen, due to its varying surface
properties, including lakes, urban areas, forest and grass land, which made it ideal for testing the
performance on different backscatter properties.
The image was provided as a range focused SAR signal, sampled at a PRF of 2500 Hz in azimuth
direction at a processed Doppler Bandwidth BD of 132.21 Hz, providing an azimuth oversampling
factor σf calculated as

σf = PRF

BD
, (5.3)

of ∼ 18.91. For comparison the same factor for the Tandem-L scenario is only 2.39.

Figure 5.11 Processing chain for F-SAR quantization test.

An overview of the required processing steps for the analysis can be seen in Figure 5.11. Since
the quantization is always applied on raw data, the SAR image had to be at first range de-focused,
which was done by convolving the focused image by the complex conjugate of the time reversed
range chirp, generated according to (2.14) and the F-SAR acquisition parameters in Table 5.2.
The autocorrelation for the LPC was calculated on the provided antenna pattern according to the
equations in section 3.5.2, by convolving the squared pattern with a Gaussian noise and calculating
the correlation values from the inverse Fourier transformation of the power spectral density. Unlike
the calculations for the synthetic data, the pattern was already pre-calculated as a three-dimensional
pattern in order to properly consider each scatterer, with axes for the squint angle, i.e. the azimuth
angle, the off-nadir angle, i.e. the elevation and the center frequency f0. The resulting autocorrela-
tion for a center frequency f0 = 1.325 GHz and a mid range antenna pattern can be seen, sampled
at a PRF of 2500 Hz in Figure 5.12.
The correlation value between two subsequent samples is again marked in red and is, by comparing
it to the Tandem-L correlation in Figure 5.1 significantly higher, which was already expected, due to
the high oversampling.
In order to sufficiently consider the different signal statistics, which were varying over the range, the
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Parameter F-SAR

Orbit height 3 km

Carrier frequency, fc
1.325 GHz
(L band)

Range bandwidth 150 MHz
Mean (staggered) PRF 2500 Hz

Processed Doppler bandwidth, PBW 132 Hz
Reflector diameter 0.65 m

looking angle 15-90 °
sensor velocity 90.1m/s

Table 5.2 F-SAR system parameters

Figure 5.12 Autocorrelation for the FSAR system with an sampling rate of 2500 Hz.The value for the correla-
tion between two subsequent samples ρ1 is marked in red and corresponds to 0.982.

original image was split into blocks of 128 consecutive azimuth lines and the correlation calculated
on the center azimuth line of each block. In this way the predictor was able to consider the individual
signal statistics properly, without increasing the complexity of the quantization process too much.
A plot of the different correlation for each range block can be seen in Figure 5.13. The difference
between the correlation values might not seem significant, especially at small time delays, but due
to the inversion of the C matrix during the weights derivation even such small differences have a
significant impact on the calculated values for βi.
After the de-focusing of the SAR image and preparation of the prediction parameters, the DP-BAQ
was applied on the raw SAR data. The performance was again investigated for the first four orders of
the DP-BAQ at different bitrates as well as a BAQ for reference. Subsequently the quantized images
were reconstructed and focused according to section 2.1.2. The performance was again evaluated
by means of the SQNR, which was calculated according to 5.1, and the absolute gain according to
(5.2).
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Figure 5.13 Autocorrelation of F-SAR signal at different elevation angles.

The corresponding plots for SQNR and absolute Gain ∆SQNR of all orders, calculated on the range-
focused data can be seen in Figure 5.14 and 5.15. The values for the first two orders grow constantly
and show the expected behaviour of gaining 6 dB for each additional bit in the quantization and high
absolute gain of up to 22 dB. Compared to the BAQ the second order predctor perform at 3 bit al-
ready better than the BAQ at 4 bit, providing a data reduction rate of over 70%. Additionally, the
calculated absolute gain of the first two orders, shows matching results with the theoretical gain in
Figure 3.10. The results of the 3rd and 4th order, on the other hand, show strong variations in the
SQNR plots, or instability during the quantization, which corresponds to the non-existend SQNR
values in the plot.
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Figure 5.14 SQNR in dB for all prediction orders of the DP-BAQ on raw data after range focusing.

Figure 5.15 Absolute gain ∆SQNR in dB for all prediction orders of the DP-BAQ on raw data after range
focusing.
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The corresponding plots for the SQNR values and absolute Gain of the fully focused SAR images
can be seen in the Figures 5.16 and 5.17. As it becomes apparent, the performance of the DP-BAQ
does not change much and shows constantly better performance for the stable cases. The main
difference can be seen in the absolute gain plot after full SAR focusing, where the azimuth focusing
limits the maximum performance of higher bit rates. Despite that, the resulting image quality is still
at performance levels far higher than direct quantizer.
The instabilities for higher prediction orders can be explained by the high oversampling of the data

Figure 5.16 SQNR in dB for all prediction orders of the DP-BAQ on raw data after full focusing.

in azimuth direction. Due to the high correlation between subsequent samples in the F-SAR data,
the predictor manages to estimate the signals with a high accuracy, resulting in a extremely low
dynamic of the prediction error. At a given point the prediction is so precise, that the contribution of
the quantization error changes the quantized prediction error significantly. The direct consequence
is that the predictor starts to calculate wrong predictions, which lead to the constant decrease in
performance of the DP-BAQ. The error keeps growing until it reaches a size where the scaling factor
α reaches zero, which automatically results in a mathematical error, i.e. division by zero, in the
calculation.
The effects described above were visualized by the error ratio ∆error between the prediction error
power σ2

pred and the quantization error power σ2
quant according to

∆error = 10 · log10

(
σ2
pred

σ2
quant

)
. (5.4)

The ratio was analyzed at different sampling rates (PRF) in order to investigate the behaviour of the
DP-BAQ at lower correlated signals and to find the ratio, where the signal starts degrading. The
resulting plots for the first four orders can be seen in the Figures 5.18, 5.19, 5.20 and 5.21. When
comparing the plots of the first two orders with the plots of the last two orders one can clearly see
that the first order ratio falls much slower: Even though the first order ratio is slightly worsening for
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Figure 5.17 Absolute gain ∆SQNR in dB for all prediction orders of the DP-BAQ on raw data after full focusing.

higher correlation, i.e. PRF, it stays stable over the whole PRF range and never reaches the point,
where the quantization error exceeds its critical value. The same can be said for the 2nd order ratio,
the values stay mostly in a reasonable range and the results are not corrupted too severely, which
can be also seen in the SQNR plots. For the last two plots on the other hand the ratio decreases
very quickly and results into strongly corrupted files after a PRF of 1 kHz at most, with the exception
of the 8 bps cases which were able to cope the low signal dynamic due to their high resolution in the
quantization space.
The results show that the DP-BAQ works in general for real SAR data. The unstable results at higher
prediction orders are acceptable for the F-SAR scenario, since the DP-BAQ was originally designed
for spaceborne systems, where the correlation, i.e. oversampling, is much smaller. A more realistic
configuration of a SAR system, considering future applications of the DP-BAQ is presented in the
following section.
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Figure 5.18 Ratio between the power of the prediction error σ2
pred and the quantization error power σ2

quant of
the first order DP-BAQ for different PRF.

Figure 5.19 Ratio between the power of the prediction error σ2
pred and the quantization error power σ2

quant of
the second order DP-BAQ for different PRF.
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Figure 5.20 Ratio between the power of the prediction error σ2
pred and the quantization error power σ2

quant of
the third order DP-BAQ for different PRF.

Figure 5.21 Ratio between the power of the prediction error σ2
pred and the quantization error power σ2

quant of
the fourth order DP-BAQ for different PRF.



58

5.3 Equivalent spaceborne simulation with real F-SAR data

After verifying the functionality of the DP-BAQ applied on real SAR data, the performance could be
investigated for its initial purpose, the application on staggered SAR. The simulation of a spaceborne
Staggered SAR like scenario with proper signal statistics required the downsampling of the original
F-SAR data to a lower PRF. In order to ensure full functionality for the more complicated Staggered
SAR case, the analysis was split in two separate processing steps. In a preliminary analysis, an
ordinary downsampling process and full functionality of the DP-BAQ under spaceborne conditions
with real SAR data should be developed. The following analysis consequently included the full
implementation and analysis of the DP-BAQ applied on spaceborne Staggered SAR data.

5.3.1 Constant PRI

To ensure the full functionality of the DP-BAQ on real spaceborne SAR data, as well as to validate
the signal generation steps, which were necessary to generate a Staggered SAR set, the DP-BAQ
was tested on an uniformly sampled set it advance.

PRI selection

Figure 5.22 Comparison of the Tandem-L correlation (blue), sampled at 2700 Hz and the oversampled F-SAR
correlation (orange) at a PRF of 100 kHz.

In order to generate a SAR acquisition with spaceborne SAR signal properties, the F-SAR data
required further processing. As already stated in previous chapter, F-SAR data is much higher cor-
related, i.e. oversampled, in azimuth direction, which exceeds the possible correlation observed
between spaceborne samples by far. A possible way to reduce correlation is to increase the time
steps between subsequent samples, or equally said, to resample the original data at a lower PRF.
In order to get a signal as close as possible to that of a spaceborne SAR, the sampling rate was se-
lected with reference to the Tandem-L correlation. Thereby, the correlation between two subsequent
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samples ρ1 of Tandem-L at a selected PRF was compared to the values of an oversampled F-SAR
correlation, which can be seen as exemplary plot in Figure 5.22. The plot shows the Tandem-L cor-
relation for the system parameters according to Table 5.1 and its mean staggered PRF of 2700 Hz
(ρ1 ∼ 0.667), as well as the oversampled F-SAR correlation. For the calculation of the new sampling
rate, the value with the smallest difference to the Tandem-L correlation was chosen and the related
time delay used for the definition of the PRI. In doing so, the oversampled autocorrelation ensured
high precision in the adjustment of the resampled autocorrelation.

Analysis and results

The processing steps, which were necessary to generate and process a spaceborne-like signal
are shown in Figure 5.23. After the range defocusing of the F-SAR data the F-SAR image was

Figure 5.23 Process chain for spaceborne SAR quantization at a constant PRI.

resampled at a lower constant PRF, in order to generate a data set with similar correlation, i.e.
performance, to a non-staggered spaceborne SAR. The new PRI for resampling the F-SAR data
was calculated according to the processing steps in the first subsection of 5.3.1. Thereby, the
calculation was based on the Tandem-L system parameters of Table 5.1 and a sampling rate of 2700
Hz, which corresponds to the mean PRF of the staggered case for the main analysis. Figure 5.24
shows the resulting F-SAR correlation for the calculated sampling rate of ∼ 532 Hz (PRI = 1.88 ms)
and the Tandem-L correlation. To avoid an interpolation, the sampling frequency was chosen as the
next higher fraction of the original PRF of 2500 Hz, which corresponded for 532 Hz to 625 Hz. The
reason to round to the next higher value was to ensure full functionality of the staggered SAR, since
the higher correlations proved to be more critical than the lower ones in the previous analysis with
the direct implementation. After the downsampling of the SAR image, a low-pass filter was applied
at the new PRF, to remove further noise sources.
Subsequently, the resulting SAR image was quantized by the DP-BAQ and the BAQ for reference.
The resulting plots for the SQNR and absolute Gain ∆SQNR of the quantized signals after range
focusing can be seen in Figure 5.25 and 5.26.
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Figure 5.24 Comparison of the Tandem-L correlation (blue), sampled at 2700 Hz and the F-SAR correlation
(orange), sampled at the chosen PRI of 1.88 ms (∼ 532 Hz).

Figure 5.25 SQNR for the Tandem-L-like data set based on real F-SAR data after range focusing.
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Figure 5.26 Absolute gain ∆SQNR for the Tandem-L-like data set based on real F-SAR data and constant
PRI after range focusing.
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When comparing the results of the DP-BAQ with the BAQ, it becomes apparent, that the 3 bps
quantization from the second order on performs already as good as a 4 bps BAQ. The third order
3 bps case performs even better than the corresponding BAQ at 4 bits. Furthermore, the BAQ as
well as the DP-BAQ show the average gain of about 6 dB per additional bit. In total, the quantizer
shows a little better performance compared to the results in [10], thanks to the higher correlation
caused by the increased sampling rate. The direct impacts can be seen in the better performance
of the 3 bit predictive case compared to the 4 bit case of the BAQ, as well as the increased gain
compared to the BAQ which reached around 6 dB instead of 4 dB for a third order predictor. The
observed results do not change for the fully focused results of the DP-BAQ in Figure 5.27. The final

Figure 5.27 SQNR for the Tandem-L-like data set based on real F-SAR data and constant PRI after full SAR
focusing.

plots of this section show the histograms for the SQNR values of each pixel calculated on the fourth
order predictor at all available bit rates. The average gain of 6 dB per additional bit is clearly visible
in the plots as well as the constant shape of the distribution, which suggests similar performance
of the different regions over time. The consistent performance as well as the matching with the
expected behaviour proved, that the DP-BAQ is applicable on a spaceborne system with a constant
PRI similar to the mean PRI of a staggered SAR system. Furthermore, it confirmed the results
from the prior section that the DP-BAQ only degenerates at high correlation values, since the new
sampling rate of the F-SAR at 625 Hz, which was well below the critical frequency ranges, showed
normal performance at all prediction orders. To ensure the full functionality an additional analysis
was conducted by repeating the test set of section 5.1. The resulting plots can be seen in Figure
5.32 and show consistent results with exception of the 2 bit case of the fourth order, which overlaps
with the error ratio analysis in section 5.2. Furthermore, the plots proof the results of the synthetic
analysis, as they show the same performance results.
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Figure 5.28 Histogram of SQNR values calculated on each pixel of the Tandem-L-like data set at constant
PRI for the fourth order and 2 bps after full focusing.

Figure 5.29 Histogram of SQNR values calculated on each pixel of the Tandem-L-like data set at constant
PRI for the fourth order and 3 bps after full focusing.
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Figure 5.30 Histogram of SQNR values calculated on each pixel of the Tandem-L-like data set at constant
PRI for the fourth order and 4 bps after full focusing.

Figure 5.31 Histogram of SQNR values calculated on each pixel of the Tandem-L-like data set at constant
PRI for the fourth order and 6 bps after full focusing.
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(a) SQNR plot for first order DP-BAQ on resampled
F-SAR data.

(b) SQNR plot for second order DP-BAQ on resam-
pled F-SAR data.

(c) SQNR plot for third order DP-BAQ on resampled
F-SAR data.

(d) SQNR plot for fourth order DP-BAQ on resampled
F-SAR data.

Figure 5.32 SQNR plot for all order of the DP-BAQ on resampled F-SAR data.
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5.3.2 Staggered PRI

The results of prior sections proved the full functionality of the DP-BAQ on real raw SAR data in a
spaceborne scenario, as well as the full functionality of the downsampling method. This leads to
the analysis of the DP-BAQ on staggered SAR data, which also represents the main analysis of this
thesis.
The data for the performance analysis were generated, as in the previous section based on real F-
SAR data. The main difference between the preceding analysis and this one was the the presence
of gaps in the raw data matrix, as well as a non-constant PRI, due to the system properties of
Staggered SAR. Therefore, the DP-BAQ had to be adjusted to the gaps accordingly, as described in
section 3.5.4. After the quantization Best Linear Unbiased (BLU) interpolation was used to resample
the staggered signal at a uniform PRI [32], [30]. This interpolation method exploits the correlation
between subsequent samples to reconstruct the values at the interpolation steps. BLU interpolation
requires a certain correlation of the data samples, like in Tandem-L or F-SAR data, to be able to
reconstruct the missing data in a gap position, which would lead to significant errors in common
interpolation methods.
In addition to the signal reconstruction by the BLU interpolator the signal needed to be resampled at
a fractional PRF of the original sampling rate of F-SAR for a proper azimuth focusing. An overview
over the processing steps to generate the signal can be seen in Figure 5.33 and for the quantization
and reconstruction in Figure 5.34.
In the first step the signal needed to be resampled at a PRF, which provided a correlation between

Figure 5.33 Process chain for staggered SAR signal generation.

subsequent azimuth samples similar to a real spaceborn SAR, like Tandem-L. The corresponding
time vector for the resampling of the F-SAR data was again calculated by comparing the correlation
of the Tandem-L system for a given PRF with an oversampled correlation of F-SAR. In opposition to
the resampling in the previous section, the PRI for the staggered SAR were changing, which required
the separate calculation of each PRI separately. Thus, the staggered PRI vector for the exemplary
Tandem-L system was calculated for a mean PRF of 2700 Hz and subsequently transformed, sample
by sample, into a corresponding PRI vector for the F-SAR system. The new values were calculated
according to the steps in section 5.3.1 with the Tandem-L system parameters and a PRF according
to the transformed PRI, as well as an oversampled F-SAR correlation at 100 kHz.
For the resampling of the F-SAR data at the Staggered PRI Subsequently the original signal could
be simply resampled by a linear interpolation, which was possible, thanks to the high oversampling
of the F-SAR data. Adjacent to the resampling, a low-pass filter was applied on the generated image
at the smallest PRI to remove noise introduced by higher frequencies. In the final step of the signal



67

Figure 5.34 Process chain for quantization steps on staggered SAR with signal reconstruction.

generation, the gaps were introduced in the resampled signal. The translated PRI sequence, as well
as the position of the gaps can be seen in Figure 5.35.
For the quantization, the DP-BAQ with gap mitigation implemented, as described in section 3.5.4,

Figure 5.35 Translated F-SAR PRI sequence for a single staggered SAR sequence of the Tandem-L system
at a mean PRF of 2700 Hz, with the gap position marked in red.

and applied on the staggered signal. The F-SAR autocorrelation, which was used for the calculation
of the prediction weights, was calculated from the antenna pattern for each 128 bit range block and
sampled at the mean staggered PRI of 1.88 ms, i.e. 532 Hz. Subsequently, the resulting quantized
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signals for the first four prediction orders and different bit rates, as well as the un-quantized ”original´´
signal and the corresponding results of the BAQ for reference, were reconstructed with the BLU
interpolation at the mean staggered PRI.
The resulting SQNR plots of the first four prediction orders as well as the BAQ quantized samples
after the BLU reconstruction can be seen in Figure 5.36 and the absolute Gain for the predictors in
Figure 5.37. The plots show, that the 3 bps DP-BAQ at the third and fourth order almost matches
the performance of the 4 bps BAQ, which is equal to the reduction of a fourth of the originally used
data. Furthermore, a 20% reduction of data reduction could be achieved by using a DP-BAQ at a
bitrate of 4 bps instead of a BAQ at 5 bps. Furthermore, the calculation of the prediction weights at
the exact staggered PRI showed no visible gain, as can be seen in Figure 5.38, thus the prediction
weights were calculated for simplicity on the mean PRI.

Figure 5.36 SQNR for the staggered SAR data set based on real F-SAR data after BLU reconstruction.
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Figure 5.37 Absolute gain ∆SQNR for the staggered SAR data set based on real F-SAR data after BLU
reconstruction.

Figure 5.38 SQNR for the staggered SAR data set based on real F-SAR data after BLU reconstruction with
prediction weights, calculated at the Staggered PRI.
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In preparation for the SAR focusing, all resulting signal-sets were upsampled to the next higher
fractional PRF of the original F-SAR system, which corresponds to one fourth of the original fre-
quency, or equally said, 625 Hz.
The subsequent SAR focusing in range and azimuth resulted in an additional 3 dB gain to the SQNR
plots, which can be seen in Figure 5.39, whereas the the changes in the corresponding absolute gain
in Figure 5.40 are negligible. The exact SQNR distributions for all bit rates of the fourth order DP-

Figure 5.39 SQNR for the staggered SAR data set based on real F-SAR data after full SAR focusing.

BAQ can be seen in the histograms in Figure 5.41, 5.42, 5.43 and 5.44, and show the achieved gain
for each bit rate, ranging like in the previous analysis around 6 dB, as well as the equal distribution
of the SQNR values as indication for equal performance of the bitrates.
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Figure 5.40 Gain for the staggered SAR data set based on real F-SAR data after full SAR focusing.

Figure 5.41 SQNR histogram of all pixels for the fourth order predictor at 2bps.
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Figure 5.42 SQNR histogram of all pixels for the fourth order predictor at 3bps.

Figure 5.43 SQNR histogram of all pixels for the fourth order predictor at 4bps.
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Figure 5.44 SQNR histogram of all pixels for the fourth order predictor at 6bps.



74

As already stated in the analysis after the BLU, the results of the BAQ at 4 bps and 5 bps were
showing similar results as the fourth order DP-BAQ at 3 bps and 4 bps respectively. Thus, these
BAQ cases represent possible candidates of being replaced by the DP-BAQ for data reduction and
will be further investigated in the following plots.
Figure 5.45 shows the SQNR values of the fourth order predictor at a bitrate of 3 bps. The values
for the SQNR are calculated and displayed on each pixel as well the histogram of all SQNR values.
When comparing to the corresponding plot for the four bit BAQ in Figure 5.46, the histograms of
both plots are almost identical with the BAQ shifted by ∼ 1.2 dB to the higher SQNR values, which
equals a data reduction of 25% at the cost of a 5% worse image quality. The same shift applies
for the two dimensional representation of the SQNR, where the DP-BAQ mainly lacks performance
in low backscattering areas like grass land and fields, while the areas with higher intensities and
SQNR values are represented in a comparable quality. The corresponding plots for the 4 bit fourth
order DP-BAQ (Figure 5.47) and the 5 bit BAQ (Figure 5.48) show similar outcomes, with a smaller
difference in the performance of only ∼ 0.4 dB, i.e. a data reduction of 20% at the cost of only 1.6%
worse image quality.

Figure 5.45 SQNR calculated on each pixel of the fully focused SAR image with corresponding histogram of
all pixels for the fourth order predictor at 3bps.
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Figure 5.46 SQNR calculated on each pixel of the fully focused SAR image with corresponding histogram of
all pixels for the 4bps BAQ.

Figure 5.47 SQNR calculated on each pixel of the fully focused SAR image with corresponding histogram of
all pixels for the fourth order predictor at 4bps.
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Figure 5.48 SQNR calculated on each pixel of the fully focused SAR image with corresponding histogram of
all pixels for the 5bps BAQ.
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The phase error, which was introduced by the quantization, can be seen in representative form for
each pixel in the histograms of Figures 5.49, 5.50, 5.51 and 5.52 . The phase error was calculated
according to

∆Φn = Φn − Φn,q with ∆Φn ∈ [−π,+π], (5.5)

where Φn corresponds to the phase of the nth pixel for the non-quantized signal and Φn,q the cor-
responding phase of the quantized signal. All values exceeding the maximum value for the phase
error of +/ − π are wrapped around the interval borders. The effect of adding an additional bit to
the quantization process can be seen, when comparing the histogram of the phase error to the 2
bps case (Figure 5.53) of the same order. By comparing the results for the phase errors of the two
similar performing cases visually, the difference is negligible for both cases.

Figure 5.49 Phase error calculated on each pixel of the fully focused SAR image with corresponding histogram
of all pixels for the fourth order predictor at 3bps.



78

Figure 5.50 Phase error calculated on each pixel of the fully focused SAR image with corresponding histogram
of all pixels for the 4bps BAQ.

Figure 5.51 Phase error calculated on each pixel of the fully focused SAR image with corresponding histogram
of all pixels for the fourth order predictor at 4bps.
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Figure 5.52 Phase error calculated on each pixel of the fully focused SAR image with corresponding histogram
of all pixels for the 5bps BAQ.

Figure 5.53 Phase error calculated on each pixel of the fully focused SAR image with corresponding histogram
of all pixels for the fourth order predictor at 2bps.
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The intensity plots of both combinations can be seen in Figure 5.54, 5.55, 5.56 and 5.57. The
comparison between the plots of the BAQ and the corresponding plots of the DP-BAQ show no
visible differences thanks to the similar performance. The biggest change can be seen between dif-
ferent bitrates, where low backscattering areas like lakes and runways are visibly better represented
for higher bitrates.
The effects of the quantization on low backscatter regions are also visible in the last plots of this
analysis, which show the Noise Equivalent Sigma Zero (NESZ) estimated on the two lakes in the
SAR image (Figure 5.58) , according to

NESZrange = 1
N
·
k+N∑
i=k

σ0[i], (5.6)

with NESZrange corresponding to the NESZ value of a single range line, k to the azimuth coordi-
nate, where the lake starts, N corresponding to the number of samples in azimuth direction and
σ0[i] to the pixel specific value for σ0. The NESZ for the DP-BAQ and BAQ quantized signals can be
seen in Figure 5.59 and 5.60. As for the Intensity plots, the comparison between the corresponding
results of the different quantizer shows similar noise levels for both lake sites. When comparing
the bitrates on the other hand, it becomes clear that most of the introduced noise is resulting from
reduced bitrates in the quantization.
Concluding to all results, this section showed, that the implementation of the DP-BAQ on real Stag-
gered SAR data is possible. Furthermore, the Results show consistent performance and a maximum
gain compared to the BAQ of∼ 5 dB. In addition the DP-BAQ allows for a data reduction of 20−25%
with minimal to none losses in the image quality, which are mostly present in low backscattering ar-
eas.

Figure 5.54 Intensity calculated on each pixel of the fully focused SAR image with corresponding histogram
of all pixels for the fourth order predictor at 3bps.
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Figure 5.55 Intensity calculated on each pixel of the fully focused SAR image with corresponding histogram
of all pixels for the 4bps BAQ.

Figure 5.56 Intensity calculated on each pixel of the fully focused SAR image with corresponding histogram
of all pixels for the fourth order predictor at 4bps.
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Figure 5.57 Intensity calculated on each pixel of the fully focused SAR image with corresponding histogram
of all pixels for the 5bps BAQ.

Figure 5.58 Positions of the two lakes used for the calculation of the Noise equivalent sigma zero.
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Figure 5.59 Noise equivalent sigma zero calculated on all orders and bit rates of the DP-BAQ for the staggered
SAR data set.

Figure 5.60 Noise equivalent sigma zero calculated on all bit rates of the BAQ for the staggered SAR data
set.
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6 Conclusion and outlook

The constant development of SAR acquisition methods and the design of new SAR systems, which
are capable of wider swath widths and higher spatial resolutions, result in the generation of huge
amount of data onboard the SAR systems. As an example, the Tandem-L SAR system, which was
proposed by DLR, generates approximately 8 Terrabyte of data per day. Under consideration of the
restricted computational power and onboard data storage capacity of a spaceborne SAR system,
this requires the development of new methods for effective onboard data reduction. The method,
called Dynamic Predictive BAQ (DP-BAQ), which was analyzed in this thesis work provides a good
data reduction at a low computational cost while maintaining a high image quality compared to al-
ternate approaches. The new method exploits the correlation between subsequent samples along
the azimuth direction by using Linear Predictive Coding (LPC) to generate a signal with lower signal
dynamic, which means less bits for a proper representation after a quantization. The new signal for
quantization is hereby calculated as the difference between the original sample and its prediction
and a BAQ was used for the quantization.
The goal of this thesis was to verify prior simulations of this quantizer based on synthetic data and
to prove the full functionality for the first time on real Staggered SAR data under spaceborne con-
ditions. Since no SAR system is capable of producing Staggered SAR data yet, real airborne SAR
data was used to generate the data sets according to the system parameters of Tandem-L, which is
capable of Staggered SAR acquisitions thanks to its azimuth oversampling. The SAR images were
provided by the F-SAR system of DLR in range compressed form and targeted the well known test
site in Kaufbeuren, south Germany. The airborne system, which is specially designed for testing
new acquisition methods, provides a much higher oversampling of SAR data in azimuth direction
than Tandem-L. Thus, represents ideal properties to generate the required data sets. In preparation
for the final analysis the predictive quantizer was tested under different conditions to ensure the full
functionality on synthetic data, as well as real SAR data in general and under Staggered SAR-like
conditions with a constant sampling rate.
The performance was evaluated considering the achievable image quality in form of the Signal to
Quantization Noise Ratio (SQNR) for a given bit rate. The results were analysed for the DP-BAQ of
the first four prediction orders, using the a priori knowledge on the signal statistics from the antenna
pattern, and compared to a direct quantizer in form of a BAQ for reference.
The analysis on the synthetic data verified the results of preceding tests and the functionality of
the algorithms in general. The tests included Monte Carlo simulations of the DP-BAQ on synthetic
data, which were generated based on the Tandem-L system parameters. The analysis showed the
expected average gain of 6 dB per additional bit in the quantization. Furthermore, an additional gain
of approximate 4 dB could be observed for a third order predictor at a Pulse Repetition Frequncy
(PRF) of 2.7 kHz, which matches with prior results on synthetic data.
The remaining tests analyzed the functionality of predictive coding with real SAR data and were
all based on the F-SAR acquisition. The general functionality of the DP-BAQ on real data was
investigated by the direct application of the DP-BAQ on the airborne data. Thanks to the high over-
sampling, the results showed a gain of the DP-BAQ with respect to a normal BAQ of up to 22dB, as
well as possible data reduction of up to 70% for a second order predictor. Nevertheless, the results
also showed limitations of the quantizer for strongly correlated signals at higher prediction orders,
which were caused by the dynamic reduction of the LPC that could not be handled by the quantizer.
Despite these irregularities, which represent a special case with correlation values far higher than
for a spaceborne system, the direct implementation proved that the predictive quantizer is applicable
on real SAR data.
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In order to analyse the predictive coder in a scenario, which represents a more realistic field of ap-
plication, the F-SAR data was adapted to the parameters of the Tandem-L system. The analysis
showed consistent results for all prediction orders and similar performance to the results from the
synthetic simulations on the DP-BAQ, with small improvements in the gain. The quantizer was able
to achieve an absolute gain compared to the BAQ of approximate 6 dB for a third order DP-BAQ.
Those results proved that the DP-BAQ is applicable for its intentional purpose of reducing data for a
spaceborne satellite system with azimuth oversampling.
The main analysis of this thesis was conducted on Staggered SAR data, which included non-uniform
PRI sequences and the presence of gaps for a Tandem-L-like scenario. In order to achieve maxi-
mum performance, the DP-BAQ was implemented with full gap mitigation, i.e. dynamic bit allocation
and variable prediction orders. Subsequent to the quantization the signal was reconstructed to a
constant time vector and SAR focused. The results showed equal performances of a 3 bit DP-BAQ
and a 4 bit BAQ, corresponding to a data reduction rate of 25%, which is matching with the results
in the synthetic simulations. Additionally, the predictor was able to achieve data reduction rates of
over 20% for the 4 bit DP-BAQ. Further analysis on the completely focused SAR image showed,
that the quantizer is capable of representing high amplitude variations and did not introduce visible
corruptions, or a significant rise in the noise-floor.
As a conclusion, the analysis proved the outcomes of preceding analysis on synthetic staggered
data. Furthermore the new predictive quantizer was succesfully implemented for real SAR data
and showed, in combination with the precalculated signal statistics, good performance on the over-
sampled F-SAR data. In addition, the analysis demonstrated that the predictive quantizer performs
stable for lower prediction orders, even far off reasonable correlation values. On the other hand,
the analysis was able to reveal possible limitations for the DP-BAQ, which can be investigated in
further analysis. As the most important outcome of this thesis, the DP-BAQ could be succesfully
implemented and tested on real spaceborne SAR data, which showed good performance and sta-
bility for a uniformly sampled SAR image, but more importantly also the expected performance on
staggered SAR data in the presence of gaps. The implemented DP-BAQ was able to achieve data
reduction rates of over 20%, which is validating the results of the synthetic simulation. Additionally,
the predictor did not corrupt the image, or introduced further noise.
Considering further development of predictive coding in combination with SAR quantization, there
are still many open points that need to be investigated. Since this thesis showed the behaviour of
predictive coding in combination with highly oversampled data, as well as the resulting limitations for
quantization, it would be of great interest to investigate the performance on very low oversampled
data, like for TanDEM-X. Another field of interest is represented by the design of the predictor. The
samples that have been used for prediction so far were all previously recorded samples, providing
a processing of the recorded data in real time, since all data samples required for the prediction
are available at the time of recording. This prediction structure is called a causal predictor. Further
investigations could as example include the effects of a non-causal predictor on the system perfor-
mance, which is not capable of real time prediction, since its usage of samples before and after the
predicted sample requires the predictor to wait for upcoming samples. This new approach would
introduce increased complexity of the system during the decoding of the signal, due to inconsisten-
cies in the available data during the encoding and decoding, but since the decoding is performed on
ground, the increased computational effort is tolerable.
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A Appendix

A.1 First Order Predictor

The first order predictor uses only one, i.e. the preceding, sample for the prediction process. As
already mentioned in the previous section, both variables depend on the same process and have
therefore the same base variance σx. During the prediction process the sample is weighted by β1,
which also applies to σy = β1σx and therefore leads to the total variance of the differential signal in
(3.53) of

σ2
d1 = σ2

x + σ2
y − 2σxσyρxy = σ2

x + β2
1σ

2
x − 2σ2

xβ1ρxy. (A.1)

The value for β1 can be derived from (3.42) as

β = β1 = C−1ρ = [1]−1ρxy = ρxy, (A.2)

, with ρxy referring to the correlation at a time lag of |tx − ty|. By substituting (A.2) into (A.1) this
leads to the exact calculation of σ2

d1

σ2
d1 = σ2

x + ρ2
xyσ

2
x − 2σ2

xρ
2
xy = σ2

x(1− ρ2
xy). (A.3)

The coding gain can then be calculated by substituting (A.3) into (3.49) and deriving the first order
coding gain G1

G1 = σ2
x

σ2
x(1− ρ2

xy)
= 1

(1− ρ2
xy)

. (A.4)

By analyzing (A.3) and (A.4) it is visible that the variance and therefore the Coding gain is reduced
for any value of ρ > 1.

A.2 Second order Predictor

For the second order predictor the variances can be calculated the same way. This time the predic-
tion is dependent on the last two prior samples, extending the closed form expression of the variance
for the difference for one additional parameter to

D , X − Y − Z ∼ N (0, σ2
x + σ2

y + σ2
z − 2σxy − 2σxz + 2σyz). (A.5)

Under the assumption that all normal distributed variables are based on the same random process,
they can be defined as

X ∼ N (0, σ2
x) Y ∼ N (0, σ2

y) = N (0, β2
1σ

2
x) Z ∼ N (0, σ2

z) = N (0, β2
2σ

2
x). (A.6)

The covariances can be derived as in the preceding chapters by multiplication of the variances of
the concerning two random processes and the corresponding correlation, resulting in

σxy = σxσyρxy σxz = σxσzρxz σyz = σyσzρyz. (A.7)

The corresponding prediction weights can be calculated according to 3.42[
β[1]
β[2]

]
=
[

1 ρyz
ρyz 1

]−1 [
ρxy
ρxz

]
. (A.8)
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By using the definitions in (A.6) and (A.7) and substituting them into (A.5) the variance of the predic-
tion error can be reformulated to

σ2
d2 = σ2

x(1 + β2
1 + β2

2 − 2β1ρxy − 2β2ρxz + 2β1β2ρyz). (A.9)

Finally leading to the definition of the second-order coding gain as

G2 = 1
σ2
x(1 + β2

1 + β2
2 − 2β1ρxy − 2β2ρxz + 2β1β2ρyz)

. (A.10)

The above equation can be further simplified under the assumption, that the time lags between the
samples are of equal length (ρxy = ρyz = ρ1 and ρxz = ρ2), to

G2 = 1
σ2
x(1 + β2

1 + β2
2 + 2ρ1(β1β2 − β1)− ρ2β2

. (A.11)

A.3 Third order Predictor

The closed form representation for the variance of the 3rd order prediction difference is now defined
as

D , X −Y−Z−W ∼ N (0, σ2
x+σ2

y+σ2
z +σ2

w−2σxy−2σxz−2σxw+2σyz+2σyw+2σzw), (A.12)

with the random variables according to

X ∼ N (0, σ2
x) Y ∼ N (0, σ2

y) = N (0, β2
1σ

2
x)

Z ∼ N (0, σ2
z) = N (0, β2

2σ
2
x) W ∼ N (0, σ2

w) = N (0, β2
3σ

2
x). (A.13)

The according weights can be calculated from (3.42) by considering now three preceding samples

β[1]
β[2]
β[3]

 =

 1 ρyz ρyw
ρyz 1 ρzw
ρyw ρzw 1


−1 ρxyρxz

ρxw

 . (A.14)

Subsequently, the covariances can be calculated from

σxy = σxσyρxy σxz = σxσzρxz σxw = σxσwρxw
σyz = σyσzρyz σyw = σyσwρyw σzw = σzσwρzw,

(A.15)

leading to a variance σ2
d3 for the prediction error of

σ2
d3 = σ2

x(1 + β2
1 + β2

2 + β2
3 + 2β1(β2ρyz + β3ρyw − ρxy) + 2β2(β3ρzw − ρxz)− 2β3ρxw), (A.16)

which simplifies under the assumption (ρxy = ρyz = ρzw = ρ1 and ρxz = ρyw = ρ2 and ρxw = ρ3)
to

σ2
d3 = σ2

x(1 + β2
1 + β2

2 + β2
3 + 2ρ1(β1β2 + β2β3 − β1)+

2ρ2(β1β3 − β2)− 2ρ3β3). (A.17)

The gain can then be calculated from

G3 = [(1 + β2
1 + β2

2 + β2
3 + 2ρ1(β1β2 + β2β3 − β1) + 2ρ2(β1β3 − β2)− 2ρ3β3)]−1. (A.18)
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A.4 Fourth order Predictor

The corresponding closed form representation for the 4th order variance is defined as

D , X − Y − Z −W − V
∼ N (0, σ2

x + σ2
y + σ2

z + σ2
w + σ2

v − 2σxy − 2σxz − 2σxw
−2σxv + 2σyz + 2σyw + 2σyv + 2σzw + 2σzv + 2σwv)

, (A.19)

with the according random variables defined according to (3.53)

X ∼ N (0, σ2
x) Y ∼ N (0, σ2

y) = N (0, β2
1σ

2
x)

Z ∼ N (0, σ2
z) = N (0, β2

2σ
2
x) W ∼ N (0, σ2

w) = N (0, β2
3σ

2
x)

V ∼ N (0, σ2
v) = N (0, β2

4σ
2
x).

(A.20)

By calculating the weights 
β[1]
β[2]
β[3]
β[4]

 =


1 ρyz ρyw ρyv
ρyz 1 ρzw ρzv
ρyw ρzw 1 ρzv
ρyv ρzv ρwv 1


−1 

ρxy
ρxz
ρxw
ρxv

 , (A.21)

and the required covariances

σxy = σxσyρxy σxz = σxσzρxz σxw = σxσwρxw σxv = σxσvρxv σyz = σyσzρyz
σyw = σyσwρyw σyv = σyσvρyv σzw = σzσwρzw σzv = σzσvρzv σwv = σwσvρwv,

(A.22)

the variance σ2
d4 for the 4th prediction error can be calculated from

σ2
d4 = σ2

x(1 + β2
1 + β2

2 + β2
3 + β2

4 + 2β1(β2ρyz + β3ρyw + β4ρyv − ρxy)+
2β2(β3ρzw + β4ρzv − ρxz) + 2β3(β4ρwv − ρxw)− 2β4ρxv).

(A.23)

The above equation simplifies under the assumption (ρxy = ρyz = ρzw = ρwv = ρ1 and ρxz =
ρyw = ρzv = ρ2 and ρxw = ρyv = ρ3 and ρxv = ρ4) to

σ2
d3 = σ2

x(1 + β2
1 + β2

2 + β2
3 + β2

4 + 2ρ1(β1β2 + β2β3 + β3β4 − β1)+
2ρ2(β1β3 + β2β4 − β2) + 2ρ3(β1β4 − β3)− 2ρ4β4), (A.24)

and a coding gain of

G4 = [(1 + β2
1 + β2

2 + β2
3 + β2

4 + 2ρ1(β1β2 + β2β3 + β3β4 − β1)+
2ρ2(β1β3 + β2β4 − β2) + 2ρ3(β1β4 − β3)− 2ρ4β4)]−1.

(A.25)
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