Efficient and sustainable rotor blade manufacture enabled by online quality assurance systems in combination with low-waste resin flow control

Philipp Zapp, Dr. Jan Stüve, Dr. Arne Hindersmann

Wind Turbine Blade Manufacture 2019
Düsseldorf, 10th of December 2019
DLR – German Aerospace Center

Tasks
- Research Institution
- Space Agency
- Project Management Agency

Research Areas and Cross-link-fields
- Aerospace
- Space Research and Technology
- Energy
- Transport
- Security
- Digitization (e.g. „Factory of the Future“, „Condition Monitoring“)

Publicly funded non-profit organisation
DLR – German Aerospace Center
Sites and Staff

- Approx. 8,500 employees
- 50 Institutes and Institutions
- More than 20 Sites

Institute of composite structures and Adaptive Systems
Center for Lightweight-Production-Technology (ZLP®) Stade in “CFK Nord”

20,000 qm for cooperation and innovation
Center for Lightweight-Production-Technology (ZLP®) Stade

- Research platforms and main research areas

Large-scale components in Fiber-Placement-Technology (multi-robot-approach)

Research Autoclave for smart autoclave processing

High-rate netshape composite part production using automated textile preforming and RTM

Efficient and sustainable rotor blade manufacture enabled by online quality assurance systems in combination with low-waste resin flow control

P. Zapp, Dr. J. Stüve

10.12.2019
Rotorblade research at ZLP®
SmartBlades I + II (BMWi 2013 – 2018)

Partners: Fraunhofer IWES, ForWind, several Windenergy-OEMs

Results:
- Fiber placement technology for the processing of raw, untreated, dry rovings, see WTBM 2016: J. Stüve, “Proceedings in the development and qualification of the Direct Roving Placement technology (DRP)”
Classical infusion technology

- Infusion during rotor blade construction

Huge amount of waste

- flowmedia
- additional resin
- vacuum bag

Efficient and sustainable rotor blade manufacture enabled by online quality assurance systems in combination with low-waste resin flow control

P. Zapp, Dr. J. Stüve

10.12.2019
Infusion using resin sprues

- Usage of multiple resin sprues on part surface (inside of vacuum bagging)

→ Ondulation of fibers in laminates made of different textiles
Innovative infusion by pressure controlled resin distribution channels

- Usage of reusable resin distribution channels

- Resin distribution channels are positioned outside of the cavity

- Channels can be activated temporarily by differential pressure between cavity and channel
Validation of innovative infusion technology

- Example: Micrographs of UD Material

Demonstrator: Rotor blade sandwich panel
Advantages of innovative infusion technology

Material related
• No channel marks left on the composite parts surface → no undulation of fiber material
• Channel systems can be assembled and are reusable
• Amount of used resin can be minimized
• Production waste is reduced

Process related
• Positioning of distribution channels on stiff preform (under vacuum conditions)
 • Faster preparation, lower quality risk
 • No displacement of fiber material or prefabs
• Flexible positioning of distribution channels during infusion
 • channels can be repositioned or additional channels can be applied (modular concept)
 • risk of dry spots is reduced
• Resin flow and distribution can be actively controlled during production
Monitoring of blade manufacturing
Parameters and sensors

Monitoring of:

- Global temperature distribution
- Flow front detection
- Leakage detection
- State of cure
- Components thickness

How to monitor?

- Optical cameras
- Thermographic cameras
- Temperature sensors
- Cure sensors
- Laser system

First demonstration of a rotor blade manufacturing at the DLR Stade
Monitoring of blade manufacturing
Measuring system

Movable measuring cell:
- Traversable cell
- Additional linear drive for the cameras
 - Leakage detection (thermographic)
 - Resin arrival (optical)
- Able to reach and follow every area during the manufacturing

Tool mounted sensors:
- Integrated adjustable heating
- Curing sensors
- Thermocouples
Monitoring of blade manufacturing
Component thickness

Reference
Tool

During infusion process
Fibre material

Final structure
Final component

Sensors
Reference points

Efficient and sustainable rotor blade manufacture enabled by online quality assurance systems in combination with low-waste resin flow control

P. Zapp, Dr. J. Stüve
10.12.2019
Monitors of blade manufacturing
Component thickness

3D scan of a section of a rotor blade tooling

Illustration of cross section and calculation of component thickness
Monitoring of blade manufacturing
Thermographic system/ analysis

Thermographic system during manufacturing for monitoring and quality assurance

- Global temperature distribution
- Cold spot and Hot Spot
- Flow front progress

Leakage detection

- Detection of “cold spots”
- Necessary / possible intervention during process
- Avoid rejects
Monitoring of blade manufacturing
State of cure

Online quality control

- Detect degree of cure and temperature
- Quality assurance
- Decrease curing time

Sensor integration during production
Evaluation of the sensors after testing
Monitoring of blade manufacturing

E.V.A.R. – capture and process

Data (Capture Handle Analyze React):
- Capture
- Archive / documentation
- Process

Measuring system:
- Recording process data based on different sensors
- Above/underneath
- Throughout the whole process

Heating control:
- Based on sensor data
- Based on EVAR evaluation

Blade manufacturing
- Improve the process
- Avoid errors
- Rating the component

Thermographic monitoring

Control command
Motivation
Why we need industry 4.0?

Fiber reinforced plastics
- Essential material, uses in production
- Material advantages
- Complex production insufficient quality assurance
- Strong impact of degree of cure
- Large tolerances \rightarrow long process times \rightarrow cost intensive

Opportunities by using „Industry 4.0“
- Quality Assurance
- Cost reduction
- Low waste
Conclusion
Advantages of presented manufacturing methods

- Reduction of production costs
 - Less production waste
 - Less curing time
 - Less material use
 - Lower wastage rate

- Active control of resin flow front and distribution
 - Create a basis with relevant data for new design generation

- Suitable sensors for specific measuring tasks
 - Data analyses
 - Sustainable infusion

- Quality assurance and process control
Thank you for your attention!

We gratefully thank the Federal Ministry for Economic Affairs and Energy of Germany for funding the research activities in the project “DFWind”